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Abstract

Forecasting solar energy from cloud cover observations is crucial to truly anticipate
future changes in power supply. On an intra-hour timescale, ground-level sky cameras
located near a solar site offer the most valuable source of information on incoming clouds.
In the literature, the analysis of these hyperlocal cloud cover observations for solar mod-
elling is increasingly performed by deep learning algorithms trained and tested on years’
worth of local data. However, this approach is not suitable for industrial applications
since solar energy producers cannot wait for years of local data collection to start gen-
erating reliable solar forecasts. However, they might own relevant multi-location data
collected from other solar sites over time. This study thus explores the capability of such
algorithms to generalise beyond their training location in two data scarce conditions:
zero-shot learning (i.e. direct application of a trained model to a new location without
local fine-tuning) and few-shot learning (i.e. calibration of a pre-trained model based on
very limited local data such as a day of observations). Zero-shot learning results show
that using local clear-sky models to normalise output variables (e.g. solar irradiance or
solar energy production values) facilitates cross-dataset transfer learning. Compared to
previous methods, the resulting forecast skill increases by close to 25% in cloudy con-
ditions and by more than 700% in clear-sky conditions. An additional gain is observed
when local data collected in overcast weather conditions are used for model calibration
via few-shot learning. The corresponding neural networks trained in data scarce condi-
tions achieve comparable performance to expert local models based on years of training
data. These promising results shed light on the potential of large-scale and multi-location
sky image datasets to improve the generalisation skills of solar forecasting algorithms.
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1. Introduction

The current energy transition towards an increasing consumption of electricity to-
gether with higher portions of low carbon energy sources requires a deep transformation
of our power systems [1, 2]. In particular, the variable nature of renewables such as wind
and solar poses major challenges for their future large-scale integration in the energy
mix [3, 4, 5]. To address this difficulty, several technical solutions have been explored
including energy storage [6], spinning reserves [7] and demand flexibility [8]. To facilitate
these methods, predicting the future energy demand and supply is crucial [9, 10, 11, 12].

In solar energy, the dominant source of uncertainty directly arises from diverse atmo-
spheric factors including clouds and aerosols. If not anticipated on time, the resulting
solar power fluctuations can have critical consequences on the security of energy supply,
hence increasing the risk of power outage or market price volatility. For this reason,
solar energy forecasting is expected to be predominantly tackled via the modelling of
the atmosphere at difference spatio-temporal scales [13]. As such, improving solar power
predictions would benefit various activities including energy storage — pumped, battery,
thermal and mechanical energy storage — and spinning reserve optimisation, energy
trading, frequency setting and energy dispatch [4, 14, 15, 16, 17].

1.1. Solar forecasting with computer vision

On a short-term time scale from a few minutes to several hours ahead, computer
vision algorithms offer a significant opportunity to model the cloud cover dynamics from
Earth observations via remote and local sensing such as satellite or ground-based sky
imagery [18, 19]. Having the advantage of processing data substantially faster than Nu-
merical Weather Prediction (NWP) models, these methods based on physics or machine
learning are able to integrate the most recent measurements to ameliorate shot-term pre-
dictions up to several hours ahead [20]. In addition, NWP are based on physical model
simulations, which have both uncertainties and limitations. In comparison, methods us-
ing earth observations benefit from direct measurements of the cloud cover state, and
thus tend to be more accurate.

Recent advances in the field of computer-vision-aided solar forecasting have employed
neural networks for image or video analysis [21]. In particular, convolutional neural net-
works, recurrent neural networks, and transformers have been trained to extract relevant
spatio-temporal features from cloud cover images for solar modelling [22, 23, 24]. As
such, deep learning models offer a significant potential to improve solar forecasts by
utilising atmospheric observations from satellites [25], all-sky imagers (ASIs) [26] or a
combination of both [27].

From that perspective, ASIs equipped with hemispherical sky cameras offer high
spatio-temporal and hyper-local information on the cloud cover for solar power or irradi-
ance map modelling. Following a decade development of physics-based algorithms based
on cloud detection, tracking and radiative transfer modelling [28, 29, 30, 31], a wide
range of data-driven methods have been proposed in recent years [32, 33, 34, 35, 36]. In
particular, Zhang et al. [22] first benchmarked the application of deep learning and in
particular recurrent neural networks to sky images for solar irradiance forecasting. Sun
et al. [37] investigated diverse input and output configurations for PV power forecasting
using a convolutional neural network. In this work, the variables of interests are the
sampling frequency, as well as the number, interval and pacing of lag terms. To combine
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sky image processing with auxiliary data, Siddiqui et al. [38] developed a neural network
design with two parallel branches whose outputs are integrated in a single regression
head. Paletta et al. [39] highlighted, in a benchmark study composed of common deep
learning architectures, a consistent lag of data-driven predictions relative to the ground
truth. Kong et al. [40] built on video prediction algorithms to predict both future solar
irradiance values and sky images. Paletta et al. [24] introduced a video prediction model
trained to predict future segmented sky images together with the corresponding solar
irradiance values. Logothetis et al. [41] compared the capability of five ASIs to foresee
ramp events. Following this, Terrén-Serrano and Martinez-Ramon [42] proposed to ex-
tract relevant physical cloud features for solar forecasting from sky images acquired by
an infrared imager centred on the Sun. More recently, Nie et al. [43] developed a physics-
informed stochastic video prediction model able to generate several possible future sky
videos with diverse cloud motion patterns.

Similar techniques have been applied to forecast solar production from satellite data.
For instance, Qin et al. [44] utilised a deep learning model to fuse satellite and ground
data. Similarly, Bansal et al. [45] proposed a forecasting model based on geostation-
ary observations as well as historic solar and temperature measurements. Si et al. [46]
compared time series, NWP and hybrid methods for solar forecasting from satellite ob-
servations.

Moreover, sky-image-based models has been shown to outperform algorithms using
satellite observations in intra-hour deterministic and probabilistic solar irradiance fore-
casting [27]. This can be partly explained by the ability of sky images to not only capture
rapidly varying information such as incoming clouds visible from the camera, but also
contextual information including the current weather conditions, the position of the sun,
the types of cloud and aerosol properties. Consequently, although sky cameras are in-
trinsically unable to provide truly accurate forecasts beyond a certain horizon based on
their field of view and the speed of clouds, the contextual spatio-temporal features they
can provide have the potential to benefit long-term predictions including satellite-based
forecasts.

1.2. Limitations

Despite showing a strong potential to become a prevailing approach in the future,
the utilisation of deep learning models for solar forecasting faces several limitations [47]
such as a recurrent temporal lag penalising critical event prediction [39], a lack of trans-
parency of current architectures, as well as a need for improved uncertainty quantification
methods [48, 49, 27, 50, 43].

Another key challenge of data-driven methods is the difficulty to generalise knowledge
acquired at one location to a new place. Even though data augmentation methods
have been shown to improve generalisation skills [51, 52], the learning of deep models
is bounded by the diversity of the training samples in terms of weather patterns, sky
conditions as well as imaging setups. In that respect, preliminary studies applying direct
transfer learning to unseen data have shown a significant performance drop due to the
distribution mismatch between the datasets [53, 54].

1.3. Transfer learning

Conditioned on the availability of local data, supervised transfer learning methods
offer the possibility of a local fine-tuning (i.e. calibration) based on a target data dis-
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tribution to improve the generalisation skills of an expert model trained on a different
(but related) source dataset that often contains a larger amount of data. In particular,
the large quantity of open source sky image datasets is a significant opportunity for the
development of such transfer learning techniques [55]. In that respect, several transfer
learning approaches based on three datasets collected on different continents have been
investigated in Nie et al. [53]. These techniques were compared in a range of data avail-
ability contexts from the absence of data (i.e. no local sky observation) to data scarcity
(i.e. a few days of atmospheric observations) and data sufficiency (i.e. several years of
data) [56].

Although the study by Nie et al. [53] highlights the poor generalisation skills of solar
forecasting models when applied to a different location (set-up also known as zero-shot
learning : ZSL), transfer learning seems to provide more encouraging results: by learning
diverse features over a combination of multiple datasets, models fine-tuned on target data
achieve superior performances compared to local baselines. In particular, the outcome
of the study showed a significant potential of such methods for model calibration when
limited local data are available.

This specific task described as few-shot learning (FSL) is especially relevant when
the availability of local sky image data is constrained for various reasons, e.g. starting
of a new solar site, setup of a novel camera, modified imaging setup, changing solar
production capacity, recent changes in the shading configuration or soiling events. In
these conditions, the rapid adaptation of the forecasting algorithm is challenging but key
for short-term operations.

1.4. Objectives of the study

The main goal of this work is to evaluate and improve the application of already
trained deep solar forecasting models to unseen locations such as a new solar farm. To
improve this cross-site generalisability, the application of pre-trained neural networks to
a new site without fine-tuning (i.e. ZSL) or via a moderate calibration (i.e. FSL) based
on as little as one day of data is explored. The proposed method improves over Nie et al.
[53] in data scare conditions by applying a simple but highly effective physics-informed
normalisation strategy for solar data based on a clear-sky model. In particular, this
study aims at addressing the following questions :

• Can the normalisation of PV and irradiance data via clear-sky models improve
transfer learning for solar forecasting?

• Which weather conditions provide the most valuable information for local fine-
tuning via FSL?

• To what extent can data augmentation facilitate transfer learning?

• How do models trained on a single day of data using FSL compare with local and
fine-tuned models based on a large dataset?

To tackle these problems, the present study compares the proposed FSL/ZSL ap-
proaches with the transfer learning baselines introduced in Nie et al. [53]. The chosen
learning method consists of adapting a solar power forecasting neural network pre-trained
on a large sky image dataset collected at SIRTA atmospheric observatory near Paris [57]
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(sky images and global horizontal irradiance measurements) to a target dataset gener-
ated at Stanford University [58] (SKIPP’D dataset: sky images and PV output values)
with no or limited local target data for fine-tuning.

The rest of the article is structured as follows: Section 2 describes in more details
the two datasets utilised in the experiments including sky images, irradiance and PV
output measurements. Following this, Section 3 introduces the proposed transfer learning
strategies including ZSL and FSL methods. Finally, Sections 5 and 6 summarise and
discuss the main results obtained in the study.

2. Data and preprocessing

The study focuses on the operational challenge of providing accurate solar power
forecasts to newly-opened solar facilities, which have not yet generated enough data
to train a reliable deep learning model [53] but which have access to a large quantity of
label data collected at other sites. To address this challenge, transfer learning approaches
aim at adapting a machine learning model pre-trained on a (larger) source dataset (i.e.
SIRTA) to a (smaller) target dataset (i.e. SKIPP’D).

2.1. Source dataset: SIRTA

The source dataset used to pre-train solar forecasting models is collected at SIRTA,
an atmospheric observatory part of the Baseline Surface Radiation Network [59] and lo-
cated near Paris in France. The dataset is composed of about 450,000 samples that were
generated between 2017 and 2019 at a 1- to 2-minute resolution (1 min in 2017, 2 min
in 2018-2019).

Irradiance measurements. The site is equipped with diverse irradiance measurement
devices including a pyrheliometer (downwelling direct solar irradiance), pyranometers
(downwelling diffuse and global solar irradiance, upwelling global solar irradiance) and
pyrgeometers (downwelling and upwelling infrared irradiance). The downwelling global
horizontal solar irradiance (GHI) used in this work corresponds to the amount of solar
energy received by a 1m2 surface parallel to the ground over a second (unit: W/m2).
The GHI is measured at a 1-second resolution on site by a ventilated pyranometer (Kipp
and Zonen CM22) and reported as its per minute average. This sensing device has been
operating on site since October 2005. To ensure reliable measurements, the pyranometer
is regularly calibrated by the World Radiation Center located in Davos and cleaned from
3 to 5 times a week.

Sky images. Cloud cover observations are collected by an EKO SRF-02 hemispherical
sky camera located near the pyranometer. Figure 1A depicts a sky image taken by this
all-sky imager (ASI). From the original resolution of 768 × 1024 pixels, sky images are
centred and cropped to remove some of the side uninformative black frame and rescaled
to a more standard 64× 64 pixel resolution for further analysis by neural networks. This
processing step includes a low pass filtering to prevent aliasing effects induced by down-
scaling [60].
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Figure 1: Sky images taken at (A) SIRTA atmospheric laboratory and (B) Stanford University. Source:
Google Map and Cros et al. [61]. The pyranometer and solar panels used to collect solar power data
are highlighted in yellow in the figure. In subplot (A), the pyranometer and sky camera are 115 meters
away, and in subplot (B), the studied solar panels are located about 125 meters away from the camera.

2.2. Target dataset: SKIPP’D

The target dataset used to fine-tune and test solar forecasting models is generated
at Stanford University in California, US [62]. The 140,000 samples utilised in this work
were collected from March 2017 to November 2019 at a 1 minute resolution.

PV output measurements The PV output data are collected from solar panel arrays
approximately 125 meters away from the camera, situated on the top of the Jen-Hsun
Huang Engineering Center at Stanford University, with an tilt angle of 22.5◦ and an az-
imuth angle of 195◦. The PV panels are manufactured with poly-crystalline technology
and the system is rated at 30.1 kWp. The PV power generation data are logged with
1-min frequency and are minutely averaged. The forward average is applied, e.g. value
at 8:00:00 am representing the average PV generation from 8:00:00 to 8:00:59 am.

Sky images The sky images are frames from videos recorded during daytime (6:00 AM ∼
8:00 PM 1) by a 6-megapixel 360-degree fish-eye camera (Hikvision DS-2CD6362F-IV2)
located on top of the Green Earth Sciences Building (37.427◦, -122.174◦) at Stanford
University and oriented towards 14° south by west. The camera captures video with
a resolution of 2048×2048 pixels at 20 frames per second (fps) and the images (.jpg)
are extracted from the video at 1-min sampling frequency and are down-sampled to a
resolution of 64×64 pixels.

2.3. Solar measurement normalisation via clear-sky models for improved inter-site data
compatibility

In this study, we normalise GHI and PV output based on their theoretical values
under clear sky condition. The resultant ratio is called clear-sky index kc (CSI), which
can be expressed by Equation 1 below:

kc =
I

Iclr
or

PV

PVclr
(1)

1Data were recorded based on the local time zone, which is either Pacific Standard Time (PST) or
Pacific Daylight Time (PDT).
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Where the PV and I are the actual PV power production and irradiance measurements,
respectively, and Pclr and Iclr are the corresponding theoretical clear-sky estimates.

The CSI reflects the impact of the cloud cover on incident solar irradiance and, by
extension, PV power generation [63]. According to Equation 1, the actual solar level can
be easily retrieved based on their clear-sky estimates (details on estimating the clear-sky
values of GHI and PV output can be found in the following paragraphs). Therefore,
instead of predicting the absolute solar value (I or PV ), the CSI can be used as a proxy
to focus the modelling on the spatio-temporal dynamics of the cloud cover by factorising
the clear-sky solar flux (see Section 3.3). In addition, the CSI provides a normalisa-
tion approach that might ameliorate generalisation skills of deep learning models (e.g.
application of a model to a different solar site) and facilitate dataset compatibility for
multi-location data modelling approaches including data fusion and transfer learning [53].

The estimation of clear-sky GHI and PV output is primarily geometric, hence can
be solved based on the location of the observer on Earth. For the SIRTA site, a clear-
sky model external to this work is used (McClear, [64]). For the Stanford PV facility,
the clear-sky solar power output PVclr is modelled based on sun angles and PV panel
orientations as shown in the following Equation 2 [65, 66]:

Pclr(t) = ImAe{cos ϵ cosχ(t) + sin ϵ sinχ(t) cos[ξ(t)− ζ]} (2)

Where Im is the maximum solar irradiance, 1000 W/m2; Ae is the effective PV panel
area, 24.98 m2, which is obtained from a least square fit with the real panel output of 12
clear sky days (details can be found in study by Sun et al. [37]); ϵ and ζ are elevation
and azimuth angles of the solar PV arrays, which are 22.5◦ and 195◦, respectively; χ(t)
and ξ(t) are the zenith and azimuth angle of the sun, which can be estimated for any
minute of the year from the empirical functions [65].

Additionally, the CSI is used to define the smart persistence model (SPM) based
on the expected clear-sky irradiance changes over the forecast horizon T (Equations 3
and 4). The proposed modelling approaches are compared with this baseline model (see
Section 4 for more details).

ISPM(t+ T ) = Iclr(t+ T )
I(t)

Iclr(t)
(3)

PVSPM(t+ T ) = PVclr(t+ T )
PV (t)

PVclr(t)
(4)

3. Methodology

3.1. Deep learning architecture

The deep learning model used in this study is the ConvLSTM model (Figure 2)
presented in [39] in a solar forecasting benchmark and adapted in [53] for the initial
transfer learning study. The model is composed for parallel encoders for past solar
measurements over 15 minutes at a 2 minute resolution (last eight lag terms of GHI or
PV output) and past sky images (last eight RGB images). The encoder for auxiliary data
is composed of a set of densely connected layers whose sequential output is processed by
a recurrent neural network (long short-term memory network: LSTM). Similarly, input
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Figure 2: Deep learning architecture used to forecast solar energy. Adapted from [39] and [53].

sky images are first individually encoded by 2D convolutional layers (spatial encoding)
followed by a 2D recurrent neural network (convolutional LSTM). The output of both
encoders is merged (concatenation) prior to be fed to another set of dense layers with
decreasing size: 512, 64 and finally 1 neuron corresponding to the solar prediction. The
lead time considered in this study is 15 minutes. Overall, the model is composed of
4.36M trainable parameters.

3.2. Transfer learning approaches

This section presents a range of transfer learning approaches for applying a pre-
trained solar forecasting neural network to a different site following on the diverse data
availability scenarios.

Zero-shot learning (i.e. no local sky observations) The primary objective of this
task is to evaluate the potential of deep solar forecasting models to generalise beyond the
location they have been trained on. The experimental approach consists of training a
model on a source dataset (SIRTA) and to directly test it on another dataset (SKIPP’D)
without local fine-tuning (ZSL). This zero-shot regression task was initially addressed
in [55] by normalising both solar time series based on robust statistics (e.g. standard
deviation, 95% quantile). As such, the model was trained to forecast the normalised solar
level that was scaled back to the appropriate range (e.g. about 0 to 30kW for PV output
or 0 to 1300W/m2 for irradiance measurements). This method resulted in significantly
worse local performances than the ones of models locally trained. The authors observed
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Figure 3: Illustration of the FSL approach. Adapted from [53].

that the majority of the corresponding forecast error originates from a poor scaling for
the output variable. Indeed, the statistics used in this method partly depend on location-
specific parameters (e.g. the sun position, weather conditions) and on the characteristics
of the measuring device (pyranometers versus power meters).

To address that limitation, a proposed method consists of predicting the CSI, i.e.
the solar value normalised by the corresponding clear-sky estimation. This method is
expected to be a more robust approach than using local data statistics, especially in the
context of limited data availability.

Few-shot learning (e.g. one day of data). This field of machine learning focuses
on solving tasks based on limited data. This often requires a large and diverse auxiliary
dataset to learn relevant features that can be reused for the target task via fine-tuning
(Figure 3).

In this study, ‘limited data’ corresponds to one day of measurements. In practice,
a range of neighbouring days are selected from the target dataset (SKIPP’D, US) for
fine-tuning a source model trained on about half a million samples of cloud cover obser-
vations collected over three years in another location (SIRTA, France). These training
days correspond to diverse sky types used to evaluate the benefit of different meteorolog-
ical conditions for model calibration: clear-sky, scattered clouds, broken-sky, overcast to
clear-sky, overcast (Figure 4). To describe a realistic scenario, the associated validation
set is composed of 4 days (three clear-sky days and one cloudy day) occurring closely
after the selected training days (Figure 5).

Fine-tuned model on the extended local dataset (269 days). The ZSL and FSL
approaches are compared with the transfer learning configuration based on the full target
dataset for calibration [53]: the model pre-trained on SIRTA dataset is fine-tuned on 269
days of sky images collected at Stanford University. The performance of the resulting
algorithm will provide some insights on the progress margin of models based on no or
limited data.

9



Figure 4: Days with diverse weather conditions used for local fine-tuning via FSL: clear-sky day (A),
scattered clouds (B), broken cloud cover (C), overcast to clear-sky (mix) (D), overcast (E). Time windows
containing night times and missing data have been truncated.
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Figure 5: Days used for validating the models fine-tuned via FSL. Discontinuities in the time series
correspond to missing data. Time windows containing night times and missing data have been truncated.

3.3. Modelled output variable

In the context of transfer learning, multitask learning, and multi-site dataset integra-
tion, the choice of the output variable being predicted by the model can have a strong
impact on the overall forecasting performance. This study investigates three methods to
address this strong limitation (Figure 6).

Time series normalisation using local data statistics. To deal with the heterogene-
ity of the modelled variables from the source and target datasets (e.g. solar irradiance
and PV output) in terms of scale and distribution, a first approach introduced by Nie
et al. [53] consists of normalising each time series independently by the same local statis-
tics to facilitate dataset matching. In practice, the model is trained on normalised time
series (Equation 5), which can be scaled back to the original space by reversing the nor-
malisation function. In this work, the GHI and PV output time series are normalised
by the respective 95% percentile, 853.0 W/m2 and 23.8 kW respectively (Figure 7). It
should be noted that this method — Time series normalisation using local data statistics
(TSN) — requires reliable data statistics to compute the normalised solar value (NSV)
and that it is prone to biases induced by the distribution of location-specific weather
patterns (e.g. clear-sky versus overcast) and the sampling distribution over the collec-
tion period (e.g. summer versus winter). This limiting factor is strengthened in the
context of local data scarcity. As such, additional experiments will highlight the impact
of the local normalising constant (i.e. 95% percentile of the PV output time series) on
the overall forecasting skill. The training loss for TSN method is defined by Equation 5:

LNSV =
1

N

N∑
k=1

(N̂SV t+15min −NSVt+15min)
2 (5)
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Figure 6: Approaches addressing the output variable heterogeneity (e.g. solar irradiance versus PV
output, different locations or sampling periods): (1) time series normalisation using local data statistics
based on the normalised solar value (NSV), (2) normalisation via the clear-sky index (CSI), and (3)
clear-sky index errors weighing based on the clear-sky solar value (CSV).

Figure 7: Distribution of solar irradiance and PV output measurements normalised by the 95% quantile
for distribution matching.
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Figure 8: Distribution of the CSI (kc) and absolute solar values for SIRTA (GHI) and Stanford (PV
output) training sets.

Normalisation by the clear-sky solar value. Another approach introduced in the
literature consists of modelling the CSI based on a local clear-sky model instead of the
absolute solar value [37, 67, 68]. In addition to past sky images, the model is fed past
CSI values instead of past GHI (or PV) measurements and is trained to predict the
future CSI. As such the resulting loss function is based on CSI values (Equation 6). The
future clear-sky irradiance or clear-sky PV output is then used to convert the CSI into
the variable of interest (i.e. GHI or PV output). Contrary to the TSN method, this
type of normalisation approach does not require local data statistics. Additionally, the
model does not have to handle the scale of the target distribution as it is modelled by
the clear-sky model. This limitation was shown to cause a significant performance loss
in low data availability conditions [53, 54].

LCSI =
1

N

N∑
k=1

( ̂kc,t+15min − kc,t+15min)
2 (6)

Weighted clear-sky index errors. A possible limitation of the CSI method is the
changing target distribution induced by the normalisation (Figure 8). As such, the
model will uniformly focus on samples regardless of the magnitude of the corresponding
GHI or PV output value (Figure 11 in [37]). As a result, the model’s focus might partly
shift from high clear-sky solar conditions corresponding to high absolute errors towards
low clear-sky solar conditions (i.e. beginning and end of the day). The resulting absolute
solar forecasting performance might therefore drop.

To tackle this challenge while benefiting from the CSI, an alternative consist of weigh-
ing the output of the model by the corresponding clear-sky solar value (CSV) such that
the objective function L is based on the absolute solar value (ASV) instead of the CSI
as ASV = kc ×CSV . The resulting loss function based on the weighted clear-sky index
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Figure 9: FSL pipeline: The sub-models are first trained via k -fold cross-validation (brown: training set,
blue: validation set) on the source dataset (SIRTA) prior to calibration on a single day of data collected
at the target location (Stanford).

errors (WCE) depicted in Equation 8 weighs high top-of-atmosphere solar conditions
more while the algorithm models the CSI.

LASV =
1

N

N∑
k=1

([ ̂kc,t+15min − kc,t+15min]× CSVt+15min)
2 (7)

=
1

N

N∑
k=1

([ ̂kc,t+15min × CSVt+15min −ASVt+15min])
2 (8)

4. Results

The proposed experiments are implemented using the deep learning framework Pytorch.
When the training dataset contains enough data for pre-training and fine-tuning (i.e. full
SIRTA and SKIPP’D dataset), ten-fold cross-validation is applied during the learning
phase. The predictions of the resulting 10 sub-models are averaged during the model
evaluation phase. In the context of data scarcity (i.e. less than 10 days), the 10 sub-
models trained on the source dataset are all fine-tuned on the same small training set
and evaluated on a validation set composed of distinct days (Figure 5). For instance,
in the context of FSL, the 10 sub-models are first trained via ten-fold cross-validation
on SIRTA dataset. Then, each sub-model is fine-tuned on a single day (e.g. clear-sky
day) and validated on the four days composing the validation set (Figure 9). All models
trained in study are tested on the same test set composed of 10 clear-sky days (5359
samples) and 10 cloudy days (4292 samples). No statistical post-processing is performed
on the output of the model.

Evaluation metrics comparing model predictions ̂yt+15min with ground truth yt+15min

include the root mean square error (RMSE - Equation 9) and the mean bias error (MBE -
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Equation 10). In addition, the forecast skill (FS) metric is used to quantify the improve-
ment of the models relative to the smart persistence model (SPM) based on the RMSE
(see Equation 11). Furthermore, a distribution-oriented approach is used for forecast
verification via scatter plots [69].

RMSE =
1

N

N∑
k=1

( ̂yt+15min − yt+15min)
2 (9)

MBE =
1

N

N∑
k=1

( ̂yt+15min − yt+15min) (10)

Forecast Skill =

(
1− RMSEmodel

RMSESPM

)
× 100 (11)

In addition, the results obtained in low data availability conditions are compared with
traditional training approaches based on a large quantity of data (e.g. 2 to 3 years). The
resulting performance of both local learning (i.e. training on the full Stanford dataset)
and transfer learning (i.e. pre-training on SIRTA dataset and fine-tuning on the full
Stanford dataset) strategies are depicted in Table 1. Furthermore, data augmentation
being a key solution for FSL to increase the diversity of a small training set, the impact
on the forecasting skill of random rotations (0 − 360◦) applied to sky images during
training is also presented in Figure 10. This data augmentation technique was shown to
improve the accuracy of solar irradiance predictions in previous studies but it has never
been tried with PV output forecasting [51]. It is specifically utilised here to highlight the
general potential of augmenting the data in data scarce conditions. In practice, there
exist a wide range of other data augmentation strategies that have been applied to sky
images, specifically vertical, horizontal and temporal flips, Gaussian noise, Colour cast-
ing, brightness adjustment, SMOTE, Mixup [51, 52]. Combining all these methods and
others during training would likely ameliorate the solar forecasts further while improving
the generalisation skills of the models to specific contexts such as lens soiling, cameras
in different hemispheres, and different image capturing settings.

4.1. Expert models

The first results presented in Table 1 highlight the forecasting accuracy of the deep
learning model following three training approaches: local training (SKIPP’D), local fine-
tuning of a pre-trained model based on SIRTA data, and local fine-tuning of a pre-trained
model based on SIRTA data using data augmentation. In addition, the three modelling
strategies described in Section 3.3 are tested: TSN, CSI and WCE. This preliminary
experiment aims to set competitive baselines — expert models — using the entire source
and target datasets (SKIPP’D and SIRTA). These algorithms will be compared with ZSL
and FSL methods in the following sections.

In terms of average forecasting error, the models based on the clear-sky index (CSI
or WCE) often outperforms the TSN method in cloud-free conditions. For instance, the
forecasting skill of the local model trained via TSN without data augmentation is around
31.0% in clear-sky days compared to 53.7% and 49.4% for the CSI and WCE methods.
In cloudy conditions, the various methods perform similarly with a forecast skill metric
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Figure 10: Original sky image and corresponding clock-wise rotations by 90, 180 and 270 degrees.

Table 1: Performance of ‘expert’ solar power forecasting models (15-min lead time) based on a large
target training set (SIRTA) and three training strategies: time series normalisation (TSN), predicting
the clear-sky index (CSI), and weighing the clear-sky index errors (WCE) with the corresponding CSV
to generate the ASV from the CSI prediction (ASV = kc ×CSV ). The forecasting performance of these
expert models are provided for comparison with ZSL (Table 2) and FSL (Table 3) methods.

RMSE ↓ [W/m2] (Forecast Skill ↑ [%]) MBE
Training strategies | Cloud-free Cloudy | Cloud-free Cloudy

SPM 0.36 (0%) 4.79 (0%) 0.11 -0.17

Local training

- TSN [53] 0.25 (31.0%) 3.87 (19.1%) 0.12 0.33
- TSN (+ Rotations) 0.18 (50.6%) 3.92 (18.0%) 0.11 -0.17

- CSI 0.17 (53.7%) 3.91 (18.3%) 0.04 0.32
- CSI (+ Rotations) 0.15 (59.5%) 3.84 (19.8%) 0.02 0.48

- WCE 0.18 (49.4%) 3.90 (18.4%) 0.04 0.27
- WCE (+ Rotations) 0.16 (54.7%) 3.86 (19.4%) 0.02 0.31

pre-training on SIRTA data

- TSN [53] 0.21 (40.7%) 3.92 (18.1%) 0.10 0.39
- TSN (+ Rotations) 0.17 (52.7%) 3.87 (19.1%) 0.02 0.36

- CSI 0.18 (51.2%) 3.91 (18.3%) 0.07 0.58
- CSI (+ Rotations) 0.16 (56.9%) 3.85 (19.5%) 0.02 0.50

- WCE 0.23 (34.7%) 3.90 (18.5%) 0.07 0.41
- WCE (+ Rotations) 0.15 (57.4%) 3.87 (19.1%) 0.02 0.33

pre-training on SIRTA data with data augmentation

- TSN [53] 0.22 (39.8%) 3.98 (16.8%) 0.10 0.23
- TSN (+ Rotations) 0.19 (47.7%) 4.04 (15.6%) -0.02 0.17

- CSI 0.23 (37.0%) 3.91 (18.3%) 0.14 0.29
- CSI (+ Rotations) 0.15 (57.7%) 3.87 (19.1%) 0.04 0.53

- WCE 0.18 (50.4%) 3.93 (17.8%) 0.04 0.37
- WCE (+ Rotations) 0.16 (55.7%) 3.89 (18.8%) -0.01 0.42
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Table 2: Test set performance of the ZSL approach for solar power forecasting models (15-min lead
time) based on a large source training set (no local fine-tuning) and three training strategies: time series
normalisation (TSN), predicting the clear-sky index (CSI), and weighing the clear-sky index errors
(WCE) with the CSV to generate the ASV from the CSI (ASV = kc×CSV ). As shown by the MBE in
clear-sky conditions, the difficulty to estimate the solar power output from the current sky image results
in negative forecast skill scores (i.e. the models under-perform the SPM). In most cases, however, the
RMSE obtained in cloudy conditions outweighs the one corresponding to cloud-free days.

RMSE ↓ [W/m2] (Forecast Skill ↑ [%]) MBE
Training strategies | Cloud-free Cloudy | Cloud-free Cloudy

SPM 0.36 (0%) 4.79 (0%) 0.11 -0.17

- TSN [53] 4.07 (-1033.5%) 5.41 (-13.1%) -3.19 -3.17
- TSN (+ Rotations) 2.81 (-683.7%) 5.83 (-21.8%) -0.92 -3.37

- CSI 2.17 (-504.7%) 4.28 (10.5%) -0.82 -0.68
- CSI (+ Rotations) 1.68 (-367.0%) 4.27 (10.69%) 0.52 -0.83

- WCE 2.20 (-512.6%) 4.51 (5.7%) -0.35 -1.20
- WCE (+ Rotations) 1.55 (-332.7%) 4.24 (11.4%) 0.74 -0.53

ranging from 15.6 to 19.8%. Applying random rotations to input sky images to augment
the training dataset leads to consistent gain for cloud-free samples and for methods based
on the CSI in cloudy conditions. This shows that this type of data augmentation can also
be beneficial for forecasting the power output of a solar site even though the orientation
of tilted solar panels — as opposed to flat sensors such as a pyranometers — hinders the
rotational invariance of the problem. We hypothesise that the model might be able to
recognise the orientation of the rotated image based on static objects in the image (e.g.
trees or buildings) or that the benefit of showing more diverse spatiotemporal patterns
of the cloud cover outweighs the difficulty to learn the specific solar panels orientation.
Note that the forecast error associated with cloud-free days is an order of magnitude
lower than the one corresponding to cloudy days. The mean square error loss function
amplifies this difference during training, hence it predominantly stirs the model atten-
tion towards samples with clouds, which are more challenging. As a results, the impact
of cloud-free samples is often marginal in an overall training objective based on diverse
cloud cover conditions.

4.2. Zero-shot learning results

The results of the ZSL experiments are shown in Table 2. To begin with, the per-
formances of the models in cloud-free conditions are significantly worse than the SPM
with forecast skills ranging from −1033.5% to −332.7%. In these conditions, the error
associated with clear-sky days is comparable to the one obtained in cloudy days. Note
that the magnitude of the corresponding MBE is significantly higher than in Table 1. For
instance, the TSN gives a MBE of about −3.2W/m2 for a RMSE of 4.07W/m2 in cloud-
free conditions and 5.41W/m2 in cloudy conditions. For most configurations, the use of
data augmentation via rotations provides a performance gain, especially when the sky is
clear. The use of the CSI in the modelling (CSI and WCE methods) gives a significant
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Table 3: Performance of the FSL approach for solar power forecasting models (15-min lead time) based
on a large source training set and a small local dataset (1 day) via three training strategies. Similarly
to the ZSL results, the SPM based on the last solar measurement outperforms FSL methods in cloud-
free conditions (i.e. negative forecast skills). In cloudy conditions, however, positive skills are observed
together with error values outweighing the ones obtained in clear-sky conditions based on a quadratic
loss.

RMSE ↓ [W/m2] (Forecast Skill ↑ [%]) MBE
Training strategies | Cloud-free Cloudy | Cloud-free Cloudy

SPM 0.36 (0%) 4.79 (0%) 0.11 -0.17

Time series normalisation [53]

- Clear-sky 1.16 (-222.9%) 4.20 (12.2%) 0.22 0.87
- Scattered clouds 1.59 (-341.8%) 4.55 (5.0%) 0.24 1.82
- Broken-sky 2.01 (-459.2%) 4.21 (12.1%) 0.80 0.91
- Overcast to clear-sky 1.36 (-278.5%) 4.14 (13.4%) 0.25 0.91
- Overcast 2.04 (-468.0%) 4.24 (11.4%) -0.32 -0.56

Clear-sky index

- Clear-sky 2.18 (-506.2%) 6.04 (-26.2%) 1.82 4.32
- Scattered clouds 2.03 (-466.6%) 6.88 (-43.8%) 1.58 5.16
- Broken-sky 1.99 (-452.7%) 4.54 (5.17%) 1.57 1.97
- Overcast to clear-sky 2.37 (-560.9%) 5.11 (-6.8%) 2.07 3.01
- Overcast 1.42 (-296.1%) 4.03 (15.75%) 0.78 0.42

Weighted clear-sky index errors

- Clear-sky 2.17 (-504.3%) 6.2 (-29.6%) 1.82 4.49
- Scattered clouds 2.25 (-527.7%) 6.16 (-28.7%) 1.80 4.27
- Broken-sky 2.16 (-501.7%) 4.91 (-2.7%) 1.74 2.52
- Overcast to clear-sky 2.26 (-530.3%) 5.52 (-15.3%) 1.91 3.32
- Overcast 1.53 (-325.9%) 4.20 (12.1%) 0.69 0.30

benefit compared to the TSN approach. For example, the forecast skill associated with
the WCE strategy reaches 11.4% in cloudy conditions compared to around 17− 19% for
the models trained on the entire target dataset (Table 1). This performance gap with
the TSN method can be explained by the difficulty with this modelling strategy to adjust
the scale of the output variable [53] resulting in a large MBE (Table 2). On the contrary,
modelling approaches parameterised by the CSI (e.g. CSI, WCE) have the scale right by
design: clear-sky conditions correspond to a model prediction of about 1 regardless of the
actual output variable distribution and scale. This analysis advocates for the use of the
CSI in a ZSL context, especially when the variables of interest have widely different scale
(e.g. solar irradiance versus solar power output, solar irradiance at different latitudes).

Overall, the WCE strategy with data augmentation offers the best ZSL performance
in terms of forecasting skill. However, improving the zero-shot-regression performance in
clear-sky conditions remains crucial to close the gap with expert models learning from a
large amount of target samples, and thus providing more reliable local predictions.
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4.3. Few-shot learning results

Table 3 describes the accuracy of the models in the FSL setting, i.e. data scarce con-
ditions. The pre-trained source models presented in Section 4.1 are fine-tuned based on
a single day of cloud observations using data augmentation. Interestingly the modelling
strategy (e.g. TSN, CSI and WCE) give widely different results based on the type of
weather used for model fine-tuning. For instance, clear-sky images (clear-sky and over-
cast to clear-sky days) are the most informative when the predicted output variable is
the solar measurement normalised by the 95% quantile. This result can be explained
by the conclusion of Section 4.2, i.e. the model’s difficulty to predict the scale of the
output variable via TSN (i.e. systematic bias) is partly overcome by observing the sun
in sky images (i.e. clear-sky and overcast to clear-sky samples). As a result, the model
calibrates its predictions by refining the learnt sun-position-to-power-output equation
based on local observations of the sun and corresponding power output measurements.
Similarly, observing overcast samples is not as efficient to learn the magnitude of the
output variable in clear-sky conditions, which leads to poorer performances. Note that
the application of random rotations to training clear-sky image results in a significantly
wider coverage of sun positions seen by the model compared to a training without data
augmentation, which only describe a single sun trajectory over a day.

In contrast, models predicting the CSI can easily learn the scale of the clear-sky PV
output distribution, i.e. from 0 to about 1.3. However, the magnitude of solar power
production when the sun is occluded remains challenging as it depends on the type of
sensor (e.g. solar panel, pyranometer) and its spatial distribution (e.g. solar cell versus
solar farm). Consequently, learning the left-hand side of the distribution corresponding
to samples with an occluded sun, is more informative for the neural networks trained via
the CSI. As expected, the best performance is obtained when models are fine-tuned on
the overcast day.

Although the cloud-free forecast skill of models trained via FSL is still substantially
worse than the one of expert models (i.e. −222.9% versus 59.5%), the performance
gap narrows in cloudy conditions (e.i., 15.75% versus 19.8%). The error associated
with cloudy samples outweighing the one of clear-sky samples in practice, the overall
performance of the best FSL models is close to the one of expert models. Therefore, we
infer that an algorithm modelling the output variable via a clear-sky model (e.g. CSI
or WCE strategies) followed by a local calibration on a single day with specific weather
conditions (e.g. overcast conditions), offers competitive generalisation skills compared to
local models trained on several years of data. Alternatively, the TSN strategy appears
to offer more robust results with forecast skill scores ranging from 5 to 13.4% in cloudy
conditions, whereas 7 out of 10 forecast skills are negative for the CSI or WCE strategies.

4.4. Overall quantitative comparison

Figure 11 summarises the forecast accuracy of the diverse modelling strategies in
different data availability conditions. All the models previously described in this study
are reported here including local expert models (i.e. local models and fine-tuned models
based on a large target dataset of 522 days), FSL models calibrated via a single day, and
ZSL models applied without local fine-tuning. Interestingly, all models based on a large
amount of data (‘Local training’ and ‘Transfer learning’ in the figure) perform similarly
on average: from 0.15 to 0.25 W/m2 in clear-sky days and from 3.85 to 4.05 W/m2 in
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Figure 11: Comparison of training and modelling approaches based on the forecasting performance of the
models on 10 clear-sky days and 10 cloudy days. All results presented in previous sections are illustrated
here.
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Figure 12: Benefits of model pre-training on a large source dataset (SIRTA) in the context of FSL (i.e.
limited availability of target data). For each modelling strategy, the type of weather condition that was
shown to provide the best performance in Section 4.3 is used for the local training (i.e. TSN: clear-sky
day, CSI & WCE: overcast day). The largest gain is observed for the TSN method in both clear-sky and
cloudy days.

cloudy days. In comparison, the error associated with ZSL and FSL approaches is more
spread out as illustrated by performance gaps up to 3 W/m2 among models. However,
the difference between expert local models and the best ZSL/FSL methods is narrow,
especially in cloudy conditions.

Regarding the gain of model pre-training for FSL, the results widely depend on the
type of modelling strategy. Figure 12 highlights the RMSE of the diverse FSL methods
based on the weather conditions that were shown to give the most accurate forecasts
(Table 3): TSN: clear-sky, CSI & WCE: overcast. Even though the benefits of model
pre-training are contrasted for models based on a clear-sky model (i.e. CSI and WCE),
a significant improvement is observed for the model trained via TSN in both clear-sky
and cloudy days as shown in Nie et al. [53].

4.5. Qualitative observations

Figures 13 and 14 illustrate the forecasting behaviours induced by the various training
contexts: local expert model, transfer learning, FSL, and ZSL. Only the best performing
model of each category was selected for each training context. Note that the sharp
discontinuities particularly visible in Figure 13 correspond to missing data.

For cloud-free days, all algorithms seem to perform similarly (Figure 13). As expected,
the ZSL shows a much higher systematic bias. In contract, the bias induced by the FSL
approach is more visible at the beginning and at end of each day. This is likely caused by
the poor performance of the clear-sky model in these conditions. In similar conditions,
expert models provide more reliable predictions, which indicates that this type of bias was
corrected during training. In cloudy weather conditions, the predictions of all models
appear highly correlated (Figure 14). This highlights the reliability of ZSL and FSL
approaches, and thus the potential of these computer vision algorithms to generalise well
to new sites via limited or even no local fine-tuning.

The scatter plots presented in Figure 15 highlight the joint and marginal distributions
of the ground truth solar panel output and corresponding model predictions based on
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Figure 13: Solar prediction curves of the best target modelling approach for diverse data availability
contexts — from no target local data to a large quantity of target samples — based on the forecasting
performance of the model on 10 clear-sky days. Discontinuities in the time series correspond to missing
data. Time windows containing night times and missing data have been truncated.
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Figure 14: Solar prediction curves of the best target modelling approach for diverse data availability
contexts — from no target local data to a large quantity of target samples — based on the forecasting
performance of the model on 10 cloudy days. Discontinuities in the time series correspond to missing
data. Time windows containing night times and missing data have been truncated.
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Figure 15: Joint distributions of the best models’ predictions in clear-sky conditions (left column) and
cloudy weather (right column). From top to bottom : 1. SPM, 2. Zero-shot learning, 3. Few-shot
learning, 4. Local model trained on the full dataset via transfer learning. The plots summarise the joint
distributions, or equivalently, the marginal and conditional distributions [69].

24



Figure 16: Impact of the target camera (Stanford) orientation on the zero-shot solar forecasting perfor-
mance quantified by the RMSE for three training strategies. 0◦ corresponds to the same North-South
orientation of the source (SIRTA) and target cameras at test time.

various approaches: SPM, ZSL, FSL, and local experts trained via transfer learning. For
clear-sky days, all forecasts appear well correlated with the PV output measurement. As
expected, the more local data are used for fine-tuning the better. In cloudy conditions, the
distribution of the model predictions is narrower than the one of corresponding observed
solar measurements as observed in [39]. Similarly to the first row, the more local training
data the better the correlation, even with as little as one day of observations.

4.6. Impact of the camera orientation at the target location

This section evaluates in more details the benefits of augmenting the training data
with rotations. Figure 16 describes how the error of the model (RMSE) varies with the
orientation of the target sky camera in the context of ZSL. The aim of the experiment is
to evaluate the ability of models to transfer to cameras oriented differently or located in a
different hemisphere. The results show that the models trained with data augmentation
(i.e. rotations from 0 to 360◦) are unaffected by the orientation of the target camera.
However, the performance of the model trained with standard images only (i.e. no
rotations of the source camera), decreases significantly with the rotation of the target
camera.

By showing more diverse sky patterns and in particular more varied sun positions
in the image, data augmentation via rotations facilitates the generalisation of computer
vision models to different camera orientations. This conclusion advocates for the use
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Figure 17: Impact of the target normalisation factor on the forecast error associated with the TSN
approach (test set). In this particular case, increasing the value of this parameter by about 10% would
have decreased the overall RMSE by close to 5%.

of this data augmentation technique when combining several datasets obtained from
cameras with diverse orientations.

For the zero-shot regression task, the performances of the CSI and WCE approaches
strongly correlate with the accuracy of the underlying clear-sky model. The clear-sky
algorithm used for the Stanford dataset was fitted using 12 sunny days [37]. The resulting
RMSE is 1.94 kW for 10 test days. This inaccuracy partly explains the difficulty of ZSL
methods based on the CSI to reach a RMSE below 1.5 kW in clear-sky days [37]. Results
show that with more local training data, the models are able to correct some of the
clear-sky model biases (Table 1).

4.7. Normalisation factor

A key component of the TSN approach is the normalisation factor used to match solar
data form different sources. In this project the parameter was set to the 95% quantile of
the ordered solar measurements — solar irradiance for the SIRTA dataset and PV power
output for the Stanford dataset — of the training / validation time series. Although
using a quantile improves the robustness of the technique, its value can be biased by
various factors: data collection period, type of variable (e.g. PV output, GHI, direct
normal irradiance, etc.), local climate, and weather conditions. As a result, a additional
tuning of this parameter might be beneficial, especially for the target dataset. Figure 17
illustrates how a change in the value of the target normalisation factor — 23.8 kW in
this study — impacts the accuracy of the ZSL method, which is the most affected by this
parameter (no model calibration via fine-tuning). For this specific study, we observed
that increasing the value of the normalisation factor by 10% could have improved the
RMSE by about 5%. Note that the methods based on the CSI are not affected by this
limitation.

5. Discussion

This work investigates the ability of computer-vision solar forecasting models to gen-
eralise beyond their training location(s). More specifically, two approaches are explored,
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namely zero-shot regression learning (i.e. application of a pre-trained algorithm to a
new location without local fine-tuning at the target location) and few-shot regression
learning (i.e. calibration of a pre-trained model based on limited local data at the target
location). Furthermore, the benefit of using a clear-sky model to model the solar variable
of interest (solar irradiance or PV power output) is evaluated.

Results show that with the right modelling approach and specific cloud cover data
for model calibration, ZSL and FSL methods generalise relatively well with forecast skill
scores close to the ones of expert models in cloudy conditions (ZSL: 11.4%, FSL: 15.75%,
Local expert: 19.8%). However, the accuracy of these models in clear-sky conditions is
worse than the one of the SPM.

For the TSN method, this limitation can be explained by the difficulty to properly
match the source and the target distributions: different sensing periods, climates, spatial
extents of the sensor (e.g. pyranometer versus solar power plant), etc. This matching can
be significantly improved via model calibration (via FSL instead of ZSL). Alternatively,
the prediction of relative values — CSI/WCE methods or by predicting solar power
changes relative to the last measurement [24] — instead of the absolute value would be
beneficial. Forecasting a future solar value could indeed be decomposed into two parts:
estimating the current level of solar power and predicting the future change relative to the
current value. The former challenge is relatively well addressed by neural networks when
enough training data is available [70]. However, in scarce data availability conditions,
the majority of the forecast error seems to originate from the radiative transfer part. To
address this limitation, systematic errors could be corrected locally. Note that the lack of
representativeness of a dataset composed of a few subsequent days (FSL) induces some
biases that hinder the generalisability of resulting models to other climate patterns such
as the ones described in the test sets.

In that respect, the refining of deep learning models via FSL highly depends on the
modelling strategy (e.g. TSN, CSI or WCE) and on the weather type of local training
data (e.g. clear-sky, overcast, partly-cloudy conditions). This raises the question of the
relative value of cloud cover training samples for a given learning objective. With the
rapidly growing availability of sky image datasets corresponding to centuries of cloud
cover observations [55], training models on such a large quantity of data will be chal-
lenging. The development of foundation models trained on diverse tasks and datasets
prior to a local fine-tuning is therefore a promising research path. In that respect, trans-
formers [71, 43] and diffusion models [72] are strong candidates due to their capacity to
handle large datasets. Furthermore, estimating the potential benefit of each individual
training sample could help decrease the size of the training set without degrading the
performance. Alternatively, transfer learning techniques aiming at reducing the marginal
and conditional feature space mismatch between source and target datasets could provide
additional gains tailored to individual data availability conditions.

Regarding the impact of weather on the accuracy of the solar forecasts, cloudy condi-
tions are significantly more challenging than clear-sky days as illustrated by the RMSE
and MBE metrics in Table 1. For instance, the RMSE of the SPM is more than 13
times lower during cloud-free days than it is in cloudy conditions (0.36 W/m2 versus
4.79 W/m2). Furthermore, the forecast skill metric shows that it is more challenging for
expert models to improve over the SPM in cloudy conditions than in clear-sky conditions
(Table 1). Interestingly, this trend is reversed for few-shot and zero-shot learning meth-
ods (Tables 2 and 3) as indicated by a forecast skill ranging from −1033 to −222.9%
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in cloud-free conditions and from −43.8 to 15.75% in cloudy conditions. To extend this
analysis further, future research could test the performance of the model on more diverse
weather types including different categories of clouds and aerosols.

The large discrepancy in terms of RMSE between clear-sky and cloudy days as well as
the different solar flux distributions between Paris and San Francisco (Figure 8) highlight
not only the dependency of the average prediction accuracy on the weather and cloud type
distribution, but also on the local climate conditions. Therefore, the future development
of multi-location datasets [73] will allow to characterise the impact of diverse climate
conditions on the solar forecasting performance of deep learning models.

Augmenting the local training dataset with sky image rotations is another valuable
strategy even when applied to solar power output forecasting, which is typically not
fully invariant by rotation. Interestingly, the gain offered by data augmentation is sig-
nificantly higher in data scarce conditions compared to local expert model conditions
(Tables 1 and 2). This indicates that augmenting the data further would likely close the
performance gap between both types of configurations. Beside other data augmentation
techniques, simulating local data for model calibration could provide further forecast-
ing gains. This could be achieved by generative models such as generative adversarial
networks or diffusion models [21].

6. Conclusion

Accurate solar forecasting is crucial to address the variability of solar energy at di-
verse spatiotemporal scales. For short-term horizons up to an hour, sky cameras have
demonstrated a unique capability to monitor the surrounding cloud cover, and thus pre-
dict the future impact of its dynamic on the local energy production. In this study,
the generalisation skills of solar forecasting algorithms using neural networks to process
cloud cover observations is evaluated beyond their training location via transfer learn-
ing. More specifically, two data scarce conditions are investigated: zero-shot learning
(i.e. direct application of a trained model to a new location without local fine-tuning)
and few-shot learning (i.e. calibration of a pre-trained model based on very limited local
data such as a day of observations). Results demonstrate the potential of both methods
to provide reliable predictions competitive with the ones of local experts trained on years
of data. The use of a local clear-sky model significantly benefits ZSL methods by facili-
tating multi-domain (solar irradiance versus solar power production) target distribution
matching; and FSL methods when local overcast sky images are used for model calibra-
tion. However, the generalisation to clear-sky conditions remains worse than that of the
smart persistence model, partly because of the difficulty to design an accurate clear-sky
model for solar power plants taking into account the spatial distribution of solar panels,
their characteristics, and potential shading effects. In this context, fitting a clear-sky
model with limited local data or applying bias correction methods could improve ZSL
and FSL approaches further.

Overall, these results highlight the potential to apply computer vision-based solar
forecasting pre-trained models to new locations with no or limited local data for model
calibration. The increasing availability of large public and private sky image datasets col-
lected around the world [53] is likely going to improve the technique further by enabling
the development of so-called foundation models — large-scale models pretrained on di-
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verse datasets and tasks [73] — that could easily be adapted to a new location of interest.
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