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Photon losses are the main obstacle to fully photonic implementations of device-
independent quantum key distribution (DIQKD). Motivated by recent work showing
that routed Bell scenarios offer increased robustness to detection inefficiencies for the
certification of long-range quantum correlations, we investigate DIQKD protocols based
on a routed setup. In these protocols, in some of the test rounds, photons from the
source are routed by an actively controlled switch to a nearby test device instead of
the distant one. We show how to analyze the security of these protocols and compute
lower bounds on the key rates using non-commutative polynomial optimization and
the Brown-Fawzi-Fazwi method. We determine lower bounds on the asymptotic key
rates of several simple two-qubit routed DIQKD protocols based on CHSH or BB84
correlations and compare their performance to standard protocols. We find that in
an ideal case routed DIQKD protocols can significantly improve detection efficiency
requirements, by up to ∼ 30%, compared to their non-routed counterparts. Notably,
the routed BB84 protocol achieves a positive key rate with a detection efficiency as low
as 50% for the distant device, the minimal threshold for any QKD protocol featuring
two untrusted measurements. However, the advantages we find are highly sensitive
to noise and losses affecting the short-range correlations involving the additional test
device.

1 Introduction
A prerequisite for device-independence quantum information protocols is the ability to certify
genuine quantum correlations between the devices involved [ABG+07, BCP+14]. In practice, this
requires the ability to perform Bell tests free of the detection loophole [Pea70, CH74, GM87], i.e.,
to detect quantum particles with a high enough efficiency. In full photonic implementations, this is
one of the main obstacles to overcome because of unavoidable losses in the quantum optical channel.
In particular, the distance record for full photonic loophole-free Bell tests is of the order of 200 m
[SZB+21, LZL+21, LLR+21]. This is far from the distances required for practical applications.

One possible way to overcome optical losses and reach high enough detection efficiencies is to
use an ‘event-ready’ scheme [BA04], where the presence of entanglement between the two remote
devices is heralded before they perform their measurements. This may be achieved through entan-
glement swapping [ZZHE93, SSC+11, CM11], quantum amplifier [GPS10], local precertification
of the photons [CS12] or full quantum repeaters [AEE+23]. In each case, this requires additional
sources of quantum particles and/or joint measurements, substantially increasing the implementa-
tion complexity.

Recently, the idea of routed Bell tests has been proposed [CVP24, LPP23] as a simple modi-
fication to standard Bell tests that can reduce the detection efficiency required for loophole-free
experiments, hence extend the distance over which quantum correlations can be certified. The
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(b) Bob’s particle is routed to the distant device when
s = 1.

Figure 1: The routed Bell scenario.

basic idea behind a routed Bell test is depicted in Fig. 1. As in a standard Bell test, it features a
measurement device A for Alice, a measurement device B for Bob, and a source of entangled parti-
cles. In each experimental trial, Alice and Bob can operate their devices independently, submitting
random inputs x and y, respectively, (the measurement settings), and obtaining classical outputs
a and b. However, in the routed configuration, an additional element is introduced: the possibility
for Bob’s particle to be routed via a switch to a different measurement device than B. We denote
this additional device T and its corresponding input and output z and c. The switch is controlled
by a classical input s, which determines whether Bob’s particle is routed to T or B. E.g., s = 0
routes it to T and s = 1 routes it to B. Depending on the switch setting s, one can thus either
perform a Bell test in the A/T configuration or the A/B configuration. The purpose of the A/T
test is to certify, as best as possible, the quantum behavior of the particle source and of the device
A. To minimize losses in these tests, and reach a high Bell violation, the devices A and T are thus
situated close to the source of entangled particles. Performing a Bell test with the A/T setup for
a randomly selected subset of the trials will then ensure that Alice’s device A behaves (almost)
honestly, even when it is part of the long-distance A/B test. This limits how A can collude with
B to simulate genuine quantum correlations, thereby lowering the detection efficiency threshold
required to authenticate such correlations in the A/B configuration.

As in standard DIQKD, all components of the setup, including the switch and the additional
measurement device T are untrusted and their internal functioning is uncharacterized. The only
assumption made on the devices is that they obey certain no-signaling constraints preventing them
from signaling arbitrarily to each other. Specifically, the behavior of the devices on Alice’s side of
the entangled source should not influence the devices on Bob’s side, and vice versa. Thus, in a
given trial, the classical input x and output a on Alice’s side should not influence Bob’s particle
and the measurements performed at T or B. Similarly, the classical inputs and outputs s, z, c, y
and b on Bob’s side should not influence Alice’s quantum particle or the measurement performed
at A. This last condition is crucial to ensure that the source and the measurement device A behave
identically whether Bob’s particle is routed to B or T. This is necessary to ensure that the A/T
tests are a reliable indicator of the behavior of A also in the A/B configuration.

In [LPP23], criteria and tools are introduced to certify long-range quantum correlations between
A and B, given that certain correlations are observed in the short-range A/T test. Though the
required detection efficiency at B can be lowered compared to standard Bell tests which lack the
intermediate A/T test, the improvements are modest.

Nevertheless, the routed Bell scenario exhibits features that could be of interest to DIQKD.
For instance, the BB84 correlations, which are emblematic in QKD, and can be produced from a
maximally two-qubit state |ϕ+⟩ by carrying out σz and σx Pauli measurements at A and B, can be
replicated classically in a standard Bell setup, hence are unsuitable for standard DIQKD. However,
their quantum nature can be certified in a routed Bell experiment by performing random CHSH
tests in the A/T configuration, with the testing device T using the CHSH bases (σz ± σx)/

√
2

[LPP23]. Furthermore, when the short-distance A/T test achieves the maximal CHSH value, the
detection efficiency threshold for the device B is 50%, the minimal one for a two-measurement
device [MP03].

Alice’s measurements at A can also be seen as remotely preparing states for Bob’s device B.
The A/T tests within a routed Bell framework self-test the entangled particle source and Alice’s
device A, hence they self-test those remotely prepared states. When this self-test is perfect, these
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remotely prepared states are fully characterized. Hence, the additional measurements made at T
effectively turn a DIQKD protocol into a one-sided DI prepare-and-measure QKD protocol, which
is typically more efficient and noise-robust.

The above observations, and the relative simplicity of implementing routed Bell tests, motivate
the study of their applications to DIQKD, both for improving the experimental prospects for
DIQKD and our conceptual interest. In the present paper, we introduce simple DIQKD protocols
based on routed Bell tests and show how lower bounds on the key rates can be computed numerically
using non-commutative polynomial optimization (NPO) [NPA07, NPA08, PNA10] and the BFF
method [BFF21a]. We determine such lower bounds for several simple routed DIQKD (rDIQKD)
protocols and compare their performance to standard DIQKD protocols.

2 Routed DIQKD
2.1 Setup
The rDIQKD protocols that we introduce are based on the routed Bell configuration, represented
in Fig. 1 and succinctly described in the Introduction. As in standard DIQKD, we assume that
Alice and Bob are in safe laboratories and that they each operate independently the untrusted
measurement devices A and B, respectively. In most of the rounds, the outputs of these devices
are kept secret and will constitute the raw key. In the remaining rounds, the outputs are publicly
announced and contribute to statistical data collection for parameter estimation.

Part of the time, Bob’s particle is also randomly routed to the testing device T instead of B.
The outputs of such rounds are never used to generate a key but always contribute to parameter
estimation. As regards the location of the device T, as well as of the entangled source and the
switch, there are then two possibilities.

The first, depicted in Fig. 2a, is to consider them as being outside Alice’s and Bob’s laboratories
and in full control of the eavesdropper, similar to the entangled source in standard entanglement-
based QKD or the joint measurement in measurement-device-independent QKD. We can then
think1 of, say, Alice as providing through public announcements the classical inputs s and z, and
the device T as answering back with a publicly announced classical output c. The difficulty with
this setup is that we should ensure that, upon learning s or z, the eavesdropper does not modify
Alice’s quantum state before it enters her laboratory and her measurement is completed, as this
would violate the no-signaling requirements discussed in the Introduction. In principle, Alice could
announce the value of s or z after her measurement is completed and she has recorded her output
a. However, this would require delaying the operation of the switch until that moment, which
in practice would require the use of a quantum memory to store the quantum state until the
announcement is made. This is a significant experimental complication.

The other option is to assume that the switch and the device T are all situated in Alice’s
laboratory, as depicted in Fig. 2b, and that these devices cannot arbitrarily communicate their
private inputs to Alice’s device A. This is a customary assumption in DI quantum cryptography
[PAM+10], which can, e.g., be enforced through shielding of the devices. This is a setup that
amounts effectively to viewing Alice as holding a measurement-based preparation device that pre-
pares quantum states that are sent to Bob on an untrusted public quantum channel; part of the
time, these states are not sent by Alice on the public channel but are instead locally measured by
T in her laboratory to verify their quantum properties. We stress that even though in this setup
we assume that we can control and restrict the classical and quantum communication that goes
in and out of the devices involved in the protocol, they are all still viewed as black boxes whose
internal functioning is untrusted.

Though it is more natural to think of rDIQKD as implemented in the setup of Fig. 2b, we will
analyze in the following its security in the setup of Fig. 2a, where Eve can freely control and access

1The alternative possibility of incorporating a trusted intermediary between A and B to supply random inputs to
the switch and device T departs from our focus, which is on direct, secure communication between Alice and Bob.
Furthermore extending QKD at a large distance through third-party trusted intermediaries is always possible, but
opens new additional points of potential vulnerability.
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(a) rDIQKD setup assuming the switch and the device
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(b) rDIQKD setup where the switch and the device T
are located in Alice’s laboratory.

Figure 2: Two possible setups for rDIQKD.

the internal state of the switch and the device T. Clearly, security in this later case also implies
security in the case of Fig. 2b, as we are giving more power to Eve.

2.2 Generic protocols
We now outline the general procedure of a generic rDIQKD protocol based on the setup described
above. In each measurement round i = 1, . . . , n of the protocol, Alice generates independent
random variables Xi ∈ X and Si ∈ {0, 1} and feeds them, respectively, to her device A and the
switch. If Si = 0, indicating the choice to route Bob’s quantum particle to T, she also generates
a random variable Zi ∈ Z and feeds it to T. She records the output variables Ai ∈ A and, if
applicable, Ci ∈ C. She publicly announces Si. If Si = 1, indicating the choice to route Bob’s
quantum particle to B, Bob generates a random variable Yi ∈ Y, feeds it to his device B, and
records the output Bi ∈ B. Alice and Bob then start a new round i→ i+ 1.

Once all n measurement rounds have been completed, Alice and Bob communicate on a public
classical channel with two main goals. On one hand, they disclose part of the data they generated
to check that a statistical test Γ is passed, such as verifying a significant violation of a routed
Bell inequality. On the other hand, they agree on a subset of the rounds for which they will keep
the variables Ai and Bi secret. These variables will constitute the raw key. Typically, these key
generation rounds will be those for which the inputs of Alice and Bob belong to a certain subset
K of all their possible input pairs X ×Y (e.g. they may generate a key only when Alice uses input
x = 0 and Bob uses input y = 3).

The probabilities with which the input variables are chosen in the n measurement rounds are
usually fixed to maximize the key rate, while at the same time ensuring that enough data is obtained
for the test Γ to be statistically significant. One might for instance choose these probabilities so
that the number of key generation rounds is roughly of order n−√n, while the number of rounds
used for parameter estimation is of order

√
n.

Finally, if the statistical test Γ is passed, Alice and Bob apply error correction and privacy
amplification techniques to their copy of the raw key to extract the finally shared secret key.

2.3 Long-range quantum correlations are necessary for security
Before explaining how the security of rDIQKD protocols can be analyzed and key rates computed,
we first point out that long-range quantum correlations, as defined in [LPP23], are necessary for
the security of rDIQKD protocol, in the same way that nonlocal correlations are necessary for the
security of standard DIQKD protocols.

Routed Bell scenarios feature a short-range Bell test, involving the A/T devices, and a long-
distance Bell test, involving the A/B devices. In any given round, the quantum strategy that is
used gives rise to the correlations{

p(a, c|x, z) = tr
(
ρAB Aa|x ⊗ Tc|z

)
if s = 0 ,

p(a, b|x, y) = tr
(
ρAB Aa|x ⊗ Bb|y

)
if s = 1 ,

(1)
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where ρAB is the entangled state produced by the sources and Ax = {Aa|x}a, Tz = {Tc|z}c and
By = {Bb|y}b are the POVMs performed by the devices A, T and B, respectively.

Following [LPP23], we say that the correlations {p(a, c|x, z), p(a, b|x, y)} are short-range quan-
tum (SRQ) correlations if they can be simulated by a quantum model in which the measurements
performed at B are jointly measurable. Formally, this means that the correlations can be written
as {

p(a, c|x, z) = tr
(
ρ̃AB Ãa|x ⊗ T̃c|z

)
if s = 0 ,

p(a, b|x, y) =
∑

λ p(b|y, λ) tr
(
ρ̃AB Ãa|x ⊗ Nλ

)
if s = 1 ,

(2)

for some quantum state ρ̃AB , POVMs Ãx = {Ãa|x}a for A, T̃z = {T̃c|z}c for T, and a single ‘parent’
POVM N = {Nλ}λ for B, independent of the input y. The outcome b at B is then outputted
with probability p(b|y, λ) depending on the classical outcome λ. Given that the parent POVM N
is independent of y, it can be carried out near the switch, eliminating the need to transmit Bob’s
quantum particle to the distant device B. Instead, only the classical outcome λ of this parent
measurement needs to be communicated to B. Quantum correlations that cannot be written as in
(2) are called long-range quantum (LRQ) correlations in [LPP23]. These require the transmission
of quantum information to B for a genuine quantum measurement to occur after the input y to B
is provided.

In our rDIQKD context, if the quantum devices of Alice and Bob only generate SRQ cor-
relation of the form (2), then the parent POVM N can be performed by Eve on the public
channel between the switch and the device B. As Eve can keep a copy of the classical out-
come λ, the correlations between A and B factorize when conditioned on Eve’s information, i.e.,
p(a, b|x, y, λ) = p(b|y, λ) tr

(
ρ̃AB Ãa|x ⊗ Nλ

)
/ tr (ρ̃AB I⊗ Nλ) = p(a|x, λ)p(b|y, λ), where p(a|x, λ)

= tr
(
ρ̃AB Ãa|x ⊗ Nλ

)
/ tr (ρ̃AB I⊗ Nλ), implying that no secure key can be extracted [MW99].

In [LPP23], techniques are introduced for determining when a given set of correlations is SRQ
and minimal detection efficiencies required to exhibit LRQ correlations are presented for various
cases. These results put constraints on the required detection efficiencies for rDIQKD. For instance,
it is shown that in a routed Bell scenario, where Alice and Bob have two inputs, i.e., X = Y = {0, 1},
no LRQ correlations can be generated if the detection efficiencies ηA of A and ηB of B satisfy

ηB ≤
ηA

3ηA − 1 . (3)

For instance, when ηA = 1, no key can be extracted if ηB ≤ 1/2.

2.4 Proving security of rDIQKD protocols
As in standard DIQKD, and other QKD protocols, proving the security of an rDIQKD protocol
amounts to finding, given that the statistical test Γ is passed, a lower bound on the smooth min-
entropy Hϵ

min(An|E) of Alice’s final raw string An = A1 . . . An conditioned on the eavesdropper’s
information E, which includes all information publicly disclosed in the protocol as well as Eve’s
quantum side information acquired during the protocol by interacting with Alice’s and Bob’s
quantum systems. Provided the bound is sufficiently high, it guarantees that privacy amplification
can be performed to extract a secure key of the desired length.

The security of standard DIQKD protocols composed of n measurement rounds, which may
generally not follow an independent and identically distributed (i.i.d.) model and where memory
effects can be present in the devices, can be reduced to a single-round analysis through the use
of the Entropy Accumulation Theorem (EAT )[DFR20, AFDF+18, AFRV19] or the Generalized
Entropy Accumulation Theorem (GEAT) [MFSR22]. One then finds that the smooth min-entropy
is basically the same, up to sublinear terms in n, as in the case where the devices behave identically
and independently in each round of the protocol. That is, roughly, Hϵ

min(An|E) ≥ nH(A|E) −
O(
√
n) where H(A|E) is the conditional von Neumann entropy of Alice’s output A given Eve’s

information E in a single i.i.d. round. In particular, the asymptotic key rate (when n → ∞)
of the protocol against the most general attacks is the same as the i.i.d. key rate given by the
Devetak-Winter bound [DW05].

To apply the EAT or GEAT following the approach of [AFDF+18, AFRV19], the CPTP maps Pi

describing the individual steps of an intermediary ‘entropy accumulation’ (EA) protocol, to which
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Figure 3: Structure of the CPTP maps Mi describing the quantum measurement phase of the protocol
at step i.

the security of the entire protocol can be reduced, must satisfy a certain Markov condition, in the
case of EAT, or a no-signaling condition, in the case of the GEAT. These conditions capture the
idea that any side-information Eve may hold about the measurement results at step i is outputted
at step i and not recorded in Alice or Bob’s quantum systems to be later passed out to Eve in
a subsequent round. This is essentially the only non-trivial technical requirement that has to be
satisfied for applying either the EAT or GEAT.

An rDIQKD protocol mainly differs from a DIQKD protocol only in the purely quantum phase
of the protocol, where Alice and Bob’s entangled systems are measured to produce classical outputs
Ai, Bi, and Ci. Other aspects of the protocol, like public communication, sifting, parameter
estimation, error correction, etc, are essentially identical and can be analyzed in the same way. In
particular, the reduction from a multi-round analysis to a single-round analysis using the EAT or
GEAT can be done following the approach outlined in [AFDF+18, AFRV19] for DIQKD protocols.
The sole requirement is to verify that the no-signaling condition necessary for applying the GEAT
is satisfied.

Since rDIQKD and DIQKD mainly differ in the quantum measurement phases Mi of the pro-
tocol, let us focus on this basic building block. At step i, and conditioning on the input classical
variables Xi, Si, Zi, Yi, we can describe this process as a CPTP map Mi : QAi−1QBi−1Ei−1 →
AiBiCiQAiQBiEi that takes as input the quantum registers QAi−1 , QBi−1 , and Ei−1 of, respec-
tively, Alice’s private measurement device A, Bob’s private measurement device B, and the eaves-
dropper Eve, and produces as output the classical variables Ai, Bi, Ci along with updated quantum
registers QAi

, QBi
, and Ei

2. This CTPT map has the structure outlined in Fig 3. It is essentially
similar to the corresponding map of a standard DIQKD protocol, except for the middle part under
the control of Eve, which depends on additional random inputs Si and Zi and produces an addi-
tional outcome Ci. However, this additional data is part of Eve’s side information Ei and thus
does not affect the no-signaling condition necessary to apply the GEAT. More specifically,

trAiBiQAi
QBi
◦Mi = Ei ◦ trQAi−1 QBi−1

(4)

where this identity is easily visualized in Fig. 4 and where Ei is a map from Ei−1 to CiEi. The
map Mi is thus non-signaling in the sense that tracing out Alice’s and Bob’s output quantum
and classical registers AiBiQAi

QBi
, yields a map on Eve’s systems that do not depend on the

input systems QAi−1 and QBi−1 of Alice and Bob. This no-signalling condition in the quantum
measurement phase Mi of rDIQKD protocols allows the GEAT to be applied just in the same
way as it would in DIQKD protocols and as outlined in [AFDF+18, AFRV19], ensuring that the
no-signaling conditions of the maps Pi describing the intermediary EA protocol are satisfied.

2.5 Asymptotic key rate computation
Consider a rDIQKD protocol where, according to the honest, ideal implementation, the source
produces in each round the state ρAB and the devices A, T, and B perform the POVMs Ax =
{Aa|x}a, Tz = {Tc|z}c, and By = {Bb|y}b, respectively, giving rise to the correlations p(a, c|x, z)
and p(a, b|x, y) in (1).

2Strictly speaking in any given round of the protocol, either the output Ci is generated if Si = 0, or the output
Bi is generated if Si = 1. However, we can always assume that values are assigned both to Ci and Bi at each step i.
For instance, we can set Ci =⊥ if Si = 1 and Bi =⊥ if Si = 0.
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Figure 4: (a) The map trAiBiQAi
QBi

◦Mi obtained by tracing out the map in Fig. 3 over the output
systems of Alice and Bob. As depicted in (b), it does not depend anymore on the input registers QAi−1
and QBi−1 , i.e., it is of the form Ei ◦ trQAi−1 QBi−1

, where Ei is a map from Ei−1 to CiEi corresponding to
Eve’s box.

The above discussion implies, as in the standard DIQKD setting, that the asymptotic key rate
of such a rDIQKD protocol, assuming one-way public communication from Alice to Bob, is given
by the i.i.d. Devetak-Winter rate [DW05]

r = H(A|XE)−H(A|B) , (5)

where H(A|XE) is the conditional von Neumann entropy of Alice’s output A conditioned on the
eavesdropper information E and Alice’s input X, and H(A|B) is the Shannon entropy of Alice’s
output conditioned on Bob’s. Both entropies are computed by averaging over the input choices
used for key generation, which are typically a subset K ⊆ X ×Y of all possible input pairs of Alice
and Bob.

The term H(A|B) captures the cost of error correction and can straightforwardly be computed
from the distribution p(a, b|x, y) fixed by the honest quantum strategy. The term H(A|XE) cap-
tures Eve’s uncertainty about the measurement outcomes of Alice’s measurements used for key
generation. It is hard to compute because, in a DI setting where the devices are untrusted, it
must be determined by taking the worst-case value over all possible quantum strategies compatible
with the correlations p(a, c|x, z) and p(a, b|x, y) (which may differ from the honest strategy on the
right-hand side of (1)).

We briefly explain how H(A|XE) can be lower-bounded using NPO [NPA07, NPA08, PNA10]
and the BFF method [BFF21a]. We use this method in Section 3 to provide numerical lower
bounds on the key rate of various rDIQKD protocols of interest. The same techniques can be used
to obtain min-tradeoff functions and determine finite-size corrections to the Devetak-Winter rate.

We start by modeling the general behavior of the devices and Eve (in the setup of Fig. 2a),
which may differ from the honest implementation. This is depicted in Fig. 5. The source first
produces a state ρ̂ABE , where subsystem A goes to Alice’s device, subsystem B will eventually
go to Bob’s device (if the switch setting is s = 1) and subsystem E characterizes Eve’s initial
quantum correlations with A and B3. Subsystem A is measured by device A through a measurement
Âx = {Âa|x}a. If s = 1, subsystem B is similarly measured by device B through a measurement
B̂y = {B̂b|y}. If s = 0, on the other hand, Eve, who holds the measurement device T performs a
measurement T̂z = {T̂c|z}c that acts jointly on subsystems B and E, as this is the most general
thing she can do to simulate the honest correlations between A and T. This potentially produces
a post-measurement state for Eve, but a description of this state is unnecessary for our purposes;
since no key is extracted from a round where s = 0, Eve’s side information from such rounds is
irrelevant to the analysis.

Without loss of generality, we can assume the initial state ρ̂ABE to be a pure state |Ψ̂ABE⟩, as
any purifying system can be included in subsystem E. We can also assume that the measurements
Âx, B̂y and T̂z are all projective, if necessary by considering enlarged systems. Finally, one might
consider the possibility for Eve to do a joint operation on subsystems B and E, depending on the
value of the switch setting s, before proceeding as above. Without loss of generality, we can assume
that these operations are unitary Ûs

BE , again by enlarging the Hilbert space if necessary. But then

3Unlike the sequential depiction in Fig. 3, there is no need to account for input and output quantum registers for
either Alice or Bob, as we are focusing on a single round of an i.i.d. scenario. Furthermore, we address separately
the cases where the switch input is s = 0 and s = 1. This simplifies the description of Eve’s potential strategies
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Figure 5: Quantum model of Eve’s strategies used to compute the single-round H(A|E) bound.

we can absorb the unitary Û1
BE in the definition of the initial state, |Ψ̂ABE⟩ ← Û1

BE |Ψ̂ABE⟩, and
redefine the measurements at T as Tc|z ← Û1

BEÛ
0†
BETc|zÛ0

BEÛ
1†
BE . There is thus actually no need

to consider the operations Ûs
BE explicitly in the modeling of the devices and Eve’s strategies.

Altogether, the possible quantum strategies Q̂ = {|Ψ̂ABE⟩, Âa|x, B̂b|y, T̂c|z} that Eve can use are
fully characterized by the initial state |Ψ̂ABE⟩, and the projective measurements {Âa|x}a, {B̂b|y}b,
and {T̂c|z}c. These should be constrained by the fact that they return the honest correlations
p(a, c|x, z) and p(a, b|x, y):

p(a, c|x, z) = ⟨Ψ̂ABE | Âa|x ⊗ T̂c|z |Ψ̂ABE⟩ , (6)
p(a, b|x, y) = ⟨Ψ̂ABE | Âa|x ⊗ B̂b|y ⊗ IE |Ψ̂ABE⟩ , (7)

where we remind that T̂c|z acts jointly on subsystems B and E.
To each strategy Q̂, we can associate the post-measurement state σAXE

σAXE =
∑
ax

p(x) |ax⟩⟨ax| ⊗ σa,x
E , (8)

where
σa,x

E = trAB(|Ψ̂ABE⟩⟨Ψ̂ABE | (Âa|x ⊗ IB ⊗ IE)) , (9)
is the unnormalized state held by Eve conditioned on Alice’s input x and output a. The conditional
min-entropy can then be computed as

H(A|XE) = inf
Q̂|p

H(A|XE)σAXE
,

where the optimization runs over all quantum strategies Q̂ compatible with the honest correlations
p(a, c|x, z) and p(a, b|x, y).

Notice now that the above optimization problem is almost identical to the optimization problem
in a corresponding standard DIQKD protocol where Bob uses the input set T ×Y and performs the
measurements {T̂z}×{B̂y}. The only difference with a regular DIQKD scenario is that the subset
of measurements {T̂z} act on the joint systems BE, instead of just B. The BFF method [BFF21a]
based on NPO [NPA07, NPA08, PNA10] can then be used for lower bounding the conditional
entropy H(A|XE) in rDIQKD in almost the same way as in DIQKD. Since operators acting on
different systems are replaced by commuting operators in NPO, the only difference with a standard
BFF computation for DIQKD is that no commutation relations should be imposed between the
Tz measurements and the BFF operators acting on Eve’s system. We detail the NPO formulation
corresponding to rDIQKD in Appendix A.

3 Numerical results
Using the numerical technique discussed in the previous section, we now compute lower bounds
on the key rate of several simple rDIQKD protocols. We are interested in an rDIQKD setup in
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which the devices A and T have high detection efficiencies, i.e., are situated close to the source. For
simplicity, we assign them identical (high) efficiencies, ηA = ηT ≡ ηS. Conversely, since we want to
establish key over long distances, Bob’s device B must be situated far away and consequently has
a lower efficiency, ηB ≡ ηL ≪ ηS. For a given short-path efficiency ηS, we compute lower bounds on
the asymptotic key rate r as a function of the long-path detection efficiency ηL.

In computing the key rate, we can use the Devetak-Winter formula corresponding to one-way
communication from Alice to Bob, as in (5), or from Bob to Alice given by r = H(B|Y E)−H(B|A).
The entropy H(B|Y E) quantifies how well Eve can guess Bob’s outcome. As Bob’s device has a
lower efficiency than Alice’s, we expect that this will typically be easier for her than to guess Alice’s
outcome. Furthermore, since Bob holds a simple untrusted measurement device, Eve can apply to
it the convex-combination attacks based on joint-measurability introduced in [MS24], which imply
particularly stringent limits on the minimal efficiency ηL required to distill a secret key. We carried
out numerical exploratory tests that confirm that the key rate is lower when computing it using
one-way communication from Bob to Alice instead of the other direction. In the following, we thus
compute all key rates using the bound (5) holding for one-way communication from Alice to Bob.

Nondetection events ∅ corresponding to the situation where a detector fails to click can either be
treated as separate measurement outcomes or binned with one of the other outcomes, say ∅ 7→ +1.
This choice need not be the same in testing and key generation rounds and may also differ between
the devices A, T and B. Binning the outcomes of Alice’s device A in key generation rounds decreases
the entropies H(A|E) and H(A|B). However, numerical tests indicate that the decrease in H(A|B)
is more pronounced than for H(A|E) and thus the net effect on the key rate is positive. This is also
what one observes in standard DIQKD protocols. Conversely, binning the outcomes of the device
B in key generation rounds increases H(A|B), as it decreases the information available to Bob for
error correction, and thus lowers the key rate. In the following, we will therefore always bin the
outcomes of A and keep the outcomes of B unbinned in key generation rounds, i.e., in computing
the entropies H(A|E) and H(A|B), the random variable A corresponds to the binned version of
Alice’s outcome and the random variable B to the unbinned version of Bob’s outcome.

The bound on H(A|E) computed from the BFF method depends on the correlations p(a, b|x, y)
and p(a, c|x, z) in testing rounds through the constraints (6) and (7). Binning the outcomes of the
devices A, T, and B for testing rounds induces fewer restrictions on these correlations, yielding
potentially lower values of H(A|E). Unfortunately, keeping no-click events separate in testing
rounds substantially increases the size of the SDP relaxation problem used to compute H(A|E).
For these reasons, we focus on protocols in which the outcomes of the devices A and T are always
binned in testing rounds. For the outcomes of B, we consider both situations where they are
binned or not. Although the latter scenario should yield higher key rates, binning the outcomes
could enable us to implement SDP relaxation of the BFF NPO problem at a higher level, possibly
resulting in improved key rates.

Besides detection efficiency, another important consideration in any experimental implementa-
tion is the impact of noise. We will consider a simple noise model, in which the state ρ distributed
by the source is mixed with white noise ρnoise = νρ+ (1− ν)1/4, where ν is the visibility.

3.1 A family of CHSH-BB84 type protocols
We study a family of protocols where on Alice’s side X = {0, 1}, Z = {0, 1} and, in the honest
implementation, the shared state is the two-qubit maximally entangled state |ϕ+⟩ and the mea-
surements are X = {σz, σx}, Z = {σz±σx√

2 }. Thus the A/T correlations are CHSH correlations and
perfectly self-test the honest implementation when the efficiency ηS = 1 and the visibility ν = 1.

The protocols in our family only differ in the measurements of Bob and the subset of measure-
ments used for key generation. We list the protocols we consider in Table 1.

The protocol rCHSH is the routed version of the standard DIQKD CHSH protocol introduced
in [ABG+07], the only difference being the added T measurements in the routed version. Bob has
three inputs {0, 1, 2} where the first one is used to establish the raw key shared with Alice and
the rest are used to estimate the CHSH violation between Alice and Bob. To simplify the SDP
relaxation used to compute H(A|XE), we do not include the probabilities p(ab|xy) corresponding
to the inputs y = 0 in the NPO problem detailed in Appendix A.

The protocol rBB84 is the routed version of the standard BB84 protocol, in which the key is
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Protocol Y Ideal measurements K y in SDP
rCHSH {0, 1, 2} {σz,

σz±σx√
2 } {(0, 0)} {1, 2}

rBB84 {0, 1} {σz, σx} {(0,0)} {0,1}
rCHSH-BB84 {0, 1, 2, 3} {σz, σx,

σz±σx√
2 } {(0,0)} {0,1,2,3}

2-basis rBB84 {0, 1} {σz, σx} {(0,0),(1,1)} {0,1}

Table 1: Family of routed rDIQKD protocols considered in this work. For each protocol, we indicate in
each column: the inputs Y of Bob, the corresponding ideal measurements in the honest implementation,
the settings K used for key generation, and finally which inputs are included in the SDP relaxation for
H(A|XE).

built from the (x, y) = (0, 0) inputs. This protocol is insecure in the DIQKD setting since the
corresponding correlations admit a local model. However, the rBB84 correlations are LRQ for
sufficiently high efficiencies ηS and ηL, and visibility ν [LPP23]. We will show that they lead to a
positive key rate in the rDIQKD setting for a range of parameters. We also studied a two-basis
version of the rBB84 protocol in which the key is built from the inputs (x, y) ∈ {(0, 0), (1, 1)}. While
in principle, it could give an improvement over the one-basis version, the size of the corresponding
SDP relaxation was too large to run it at the same level as the one-basis version and we did not
observe this improvement. We therefore do not consider this protocol further in the following.

Finally, the rCHSH-BB84 protocol is a combination of the rCHSH and rBB84 protocols in
which Bob performs the measurements appearing both in the rCHSH and rBB84 protocols.

We note that the rDIQKD protocols that we analyze have not only a corresponding DIQKD
version, obtained by removing the intermediate T measurements but also a semi-DIQKD prepare-
and-measure analogue. Indeed, the A/T CHSH test effectively self-tests that Alice is remotely
preparing the BB84 states when the efficiency ηS = 1 and the visibility ν = 1. In this ideal case, all
the above protocols are thus equivalent to a semi-DI prepare-and-measure (PM) version in which
Alice’s preparation is trusted to prepare the BB84 states and in which Bob’s measurements are fully
untrusted. In particular, the security of the rBB84 protocol in this ideal case is then equivalent
to the security of the BB84 PM protocol in the one-sided DI setting [May01, BCC+10, Woo16,
MS24]. However, the rBB84 protocol has the advantage that it is fully device-independent, with
the measurements performed at T certifying the BB84 preparations, while these preparations are
instead assumed to be the correct ones in the one-sided DI PM version. When the efficiency ηS < 1
and/or the visibility ν < 1, the rBB84 then can be thought of as a semi-DI BB84 protocol in which
Alice’s preparation is non-ideal and only partly trusted. Similarly, the rCHSH protocol can be
seen to be related to the semi-DI PM CHSH protocol considered in [WP15] and the rCHSH-BB84
protocol to the semi-DI PM CHSH-BB84 protocol of [WLP12].

We computed bounds on the key rates for each of the protocols listed in Table 1 for different
values of the short-path detection efficiency ηS and the long-path detection efficiency ηL and different
visibilities ν using the BFF method and SDP relaxations. These results, as well as the codes used
to generate them, are available at [Git]. Below, we discuss several interesting aspects of the results.

Binning vs not binning
We first compare the key rates for every routed protocol with and without binning for the mea-
surements at B in testing rounds (remember that we always view the no-click outcome ∅ of Bob
as a separate outcome in key generation rounds and that we always bin the outcomes of A and
T). In every case, we find that the key rate is significantly better when Bob does not bin. This is
consistent with the findings of [LPP23], where it was shown that keeping no-click outcomes signifi-
cantly decreases the critical efficiency at which correlations become SRQ. We plot the comparison
in Fig. 6 for the rCHSH and rBB84 protocols for visibility ν = 1.
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(a) rCHSH protocol.
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(b) rBB84 protocol.

Figure 6: Binning vs no binning for B. Lower bounds on the asymptotic key rate r as a function of ηL for
different values of ηS with binning (dashed curves) and without binning (solid curves) and visibility ν = 1.
Bounds are obtained at NPA level 2 + ABZ + AZB + AABZ + AAZB.

Comparison to non-routed protocols
Let us now compare routed protocols to their non-routed counterparts. There are two natural
ways to do so. First, we can simply consider the effect of removing the device T from the routed
protocols on the key rate. We plot the key rate of the rCHSH and rCHSH-BB84 protocols against
their non-routed versions in Fig. 7 for visibility ν = 1. In both cases, we see that the introduction
of a testing device T significantly improves the key rate. In particular, for ηS = 0.99, we obtain
a critical detection efficiency of respectively ηL ∼ 0.72 and ηL ∼ 0.61 for the rCHSH and rCHSH-
BB84 protocols, which represents an ∼ 11% and ∼ 31% improvement over their corresponding
non-routed protocols. However, this improvement declines rapidly for lower values of ηS due to the
fact that the testing device T is less effective in certifying the correlations when the short-path test
is of lower quality.

The above comparison between DIQKD and rDIQKD protocols is not meaningful for the rBB84
protocol, since BB84 correlations are local without the testing device T and thus cannot be used for
DIQDK. A second way to compare rDIQKD to DIQKD protocols is to view the routed protocols
as a DIQKD protocol in which some of the measurements of Bob used for testing rounds have been
moved closer to the source, to the T device. The rBB84 protocol can be seen in this way as orig-
inating from a standard CHSH-BB84 DIQKD protocol in which the remote σz±σx√

2 measurements
of Bob are moved to the T device. While this increases the quality of these measurements due to
improved detection efficiency at shorter distances, it comes at the cost of revealing to Eve that
certain rounds are only used for testing. We clearly see this tradeoff in Fig. 8. For high values of ηS
and low values of ηL, the routed protocol performs better due to the advantage gained in certifying
Alice’s devices. But as ηS decreases and ηL increases, the non-routed protocol improves and even-
tually outperforms the routed one, as it reveals less information to Eve about which measurements
Bob’s device is performing. At ηS = 0.96, the non-routed protocol outperforms the routed protocol
for all values of ηL, while at ηS = 1, the routed protocol outperforms the non-routed protocol for
all values of ηL.

Comparison of different protocols
We compare in Fig. 9 the key rates for the different routed protocols listed in Table 1, in the case
where the outcomes of B are not binned. For high-quality short-range tests, the rBB84 protocol
performs better than the rCHSH protocol, but this performance decreases more rapidly with ηS.
The best performance should be obtained from the rCHSH-BB84 protocol since the key rates for
this protocol are in principle at least as good as the ones obtained for the rCHSH and rBB84
protocols. Though we do find that the rCHSH-BB84 protocol always outperforms the rCHSH
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(a) CHSH vs rCHSH protocols.

0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

ηL

ke
y

ra
te

r

ηS = 1
ηS = 0.99
ηS = 0.98
ηS = 0.96

(b) CHSH-BB84 vs rCHSH-BB84 protocols.

Figure 7: Comparison to standard DIQKD protocols. Lower bounds on the asymptotic key rate r for
routed (solid curves) and non-routed (dashed curves) protocols. In all protocols, Bob does not bin and
visibility ν = 1. The bounds for CHSH and rCHSH protocols were obtained at NPA level
2 + ABZ + AZB + AABZ + AAZB, whereas the bounds for CHSH-BB84 and rCHSH-BB84 were
obtained at level 2 + ABZ + AZB
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Figure 8: Comparison of the standard CHSH-BB84 protocol to rBB84. Lower bounds on the asymptotic
key rate r as a function of ηL for different values of ηS for rBB84 and CHSH-BB84 with binning of the
outcomes of B and visibility ν = 1. Bounds are obtained at NPA level 2 + ABZ + AZB + AABZ + AAZB.

protocol, we see that there exist regions of the parameter (when ηL is low), where our rBB84
bounds are higher than the rCHSH-BB84 bounds. This is due to the fact that the rCHSH-BB84
bounds were computed at a lower level of the NPA hierarchy than the other protocols due to the
bigger SDP size. We thus expect that the key rates for the rCHSH-BB84 protocol could be greatly
improved by computing them at a higher level of the NPA hierarchy.

We showcase the effect of finite visibility ν in Fig. 9b for ηS = 0.98. We see that the key rate
is very sensitive to finite visibility, but the effect is more pronounced for the rBB84 protocol. This
is consistent with our previous observations: the rBB84 protocol performs best when the A/T test
is of high quality (ν = 1), while the rCHSH protocol is more robust to noise (ν = 0.99).
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Figure 9: Comparison of different protocols. Lower bounds on the asymptotic key rate r as a function of
ηL for the different routed protocols in Table 1 in the case where Bob does not bin. Bounds for
rCHSH-BB84 (rCHSH and rBB84) are obtained at NPA level 2 + ABZ + AZB(+AABZ + AAZB).

Additional remarks
We finish with several additional remarks on the results obtained. First, as we explained earlier, in
the limiting case where ηS = 1, the A/T correlations effectively self-test the BB84 preparations. The
rBB84 protocol is then equivalent to the one-sided PM BB84 protocol where Bob’s measurement
is fully untrusted. If the only information used in parameter estimation, assuming Bob bins his
outcomes, is the standard quantum bit-error rate (QBER) qx in the σx basis (the σz basis is used
for key generation) then the asymptotic key rate is given by the Shor-Preskill rate [SP00, Woo16]
r = 1−h(qx)−H(A|B), where h(·) is the binary entropy. A simple calculation gives qx = 1−ηL

2 and
H(A|B) = 1−ηL, implying r = 1−h

( 1−ηL
2

)
− (1−ηL). We verified numerically that we recover this

rate if we impose in the BBF method, besides the ideal CHSH A/T correlations, only the QBER
value for the A/B correlations. We then find that the key rate is positive as long as ηL ≥ 65.9%.

Interestingly, when we compute the key rate by fixing the full set of A/B correlations and not
only the QBER in the σx basis, we find as illustrated in Fig. 6b that for ηS = 1, the key rate
in the rBB84 protocol is positive for ηL ≳ 58.5% when binning B outcomes and ηL ≳ 50% when
non-binning B outcomes. These results, due to the equivalence mentioned above, also apply to
one-sided PM BB84 protocols and imply that the Shor-Preskill rate can be significantly improved
by taking into account the full set of A/B correlations. This is consistent with the recent results
of [MS24].

We also observe that the thresholds of ηL ≳ 58.5% (binning) and ηL ≳ 50% (non-binning)
at which the key rate of the rBB84 vanished correspond precisely to the point where the rBB84
correlations become SQR [LPP23]. This is to be contrasted with DIQKD protocols in which the
key rate typically vanishes well before the underlying correlations become local.

Finally, the ηL ≳ 50% threshold for rBB84 obtained in the case of non-binning is optimal
according to the upper bound (3) and the general attacks of [MIB+24]. Though the same upper
bound applies to DIQKD protocols, it is not clear if it can be achieved with a simple qubit-based
protocol as in the routed case.

4 Conclusion and outlook
We considered routed DIQKD protocols based on the recently introduced routed Bell configu-
ration [LPP23, CVP24]. Our work is motivated by the finding that introducing an additional
measurement device close to the source, allowing for improved testing of quantum correlations at
short distance, effectively lowers the visibility and detection efficiency requirements for certifying
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long-range quantum correlations [LPP23], which are a prerequisite for DI security.
We outlined how the GEAT applies to rDIQKD protocols, essentially in the same way the EAT

applies to DIQKD protocols, enabling reducing the security analysis to a single-round. We then
applied the Brown-Fawzi-Fawzi method [BFF21a] combined with semidefinite relaxation hierarchies
[NPA07, NPA08, PNA10] to numerically compute lower bounds on the asymptotic key rate for
several routed DIQKD protocols.

We focused on a simple family of two-qubit rDIQKD protocols, in which Alice’s device A
and Bob’s device B establish CHSH correlations, BB84 correlations, or a combination of both.
In all cases, the additional short-range testing device T is used to generate CHSH correlations
with A, thus enabling in the ideal case a perfect self-test of the source and Alice’s measurements.
Consistent with the previous study on quantum correlations in routed Bell scenarios [LPP23], we
find that for low noise A/T correlations (i.e., high detection efficiencies at short distance), rDIQKD
protocols based on BB84 correlations between A and B, whose nonlocality can be certified in routed
setups, tolerate the lowest detection efficiency for the long-range device B. When the short-range
devices are ideal, rBB84 protocols can be secure up to the theoretical limit [LPP23, MIB+24]
of ηL ≳ 50% for the long-range device B. On the other hand, rCHSH protocols have absolute
higher detection efficiency requirements for B, but they are more robust to imperfections in the
A/T correlations. A combined CHSH-BB84 protocol is expected to perform best in both regimes,
though clearly establishing this would likely require computing the key rates at a higher level of
the SDP hierarchy.

While the advantages of routed protocols are significant, enabling to lower the detection effi-
ciency of Bob’s device B up to ∼ 30% compared to non-routed protocols, they crucially depend on
the ability to generate high-quality short-range correlations between Alice’s device A and the addi-
tional testing device T. This is further complicated by the need for a switch to implement routing
to either the testing device T or Bob’s device B, which can be actively controlled at a sufficiently
high rate, leading to additional noise and inefficiencies. Nevertheless, given that routed proto-
cols can be implemented modularly in existing DIQKD setups at relatively minimal experimental
overhead, they may facilitate the prospects of a full photonic implementation of DIQKD.

Our work suggests several interesting directions for future work. First, it would be interesting
to study more general rDQIKD protocols, particularly with more inputs/outputs, to overcome the
ultimate limitations implied by convex-combination attacks based on joint-measurability [MIB+24].
Second, it would be interesting to consider more complicated topologies, featuring multiple switches
and testing devices, which could potentially provide more robust certification of the device B.
Along this line, we note that the DIQKD protocol introduced in [LPT+13] can be seen as a routed
protocol with an additional Bell-state measurement between Alice and Bob to further limit the
effect of losses in the channel. The numerical methods used in this work could possibly be improved
to provide better bounds on the key rate of this protocol or study variants of it. Finally, it would be
interesting to explicitly model imperfections in the switch and explore the experimental feasibility
of routed DIQKD protocols with current technology.

On a more conceptual level, the link between rDIQKD protocols and one-sided PM protocols
is particularly interesting and deserves to be further explored. In particular, we note that the
threshold ηL ≳ 50% for the rBB84 protocol when the A/T correlations perfectly self-test the BB84
preparations imply that the traditional BB84 protocol can be secure up to this threshold in a
one-sided setting where Bob’s device is fully untrusted [May01, BCC+10, Woo16]. This finding,
consistent with a similar observation in [MS24], shows that the Shor-Preskill rate for the one-
sided PM BB84 protocol can be significantly improved by taking into account the full set of A/B
correlations and keeping non-detection events as a separate outcome.

Note added: While completing this work, we were made aware of similar work by E. Tan and
R. Wolf [TW24].
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A Explicit formulation of BFF-NPO for lower bounding the conditional
entropy H(A|XE)

The Brown-Fawzi-Fawzi (BFF) method [BFF21b] provides a hierarchy of successively tighter ap-
proximations to the von Neumann entropy. As explained in the main text, we can use it in the
context of rDIQKD in the same way it is used in DIQDK, modulo the introduction of operators
T̂c|z that act on the joint systems BE, and hence do not commute with the BFF operators Za act-
ing on Eve’s system E. Explicitly, the BFF-NPO formulation for lower-bounding the conditional
entropy H(A|XE) is as follows. For simplicity, we only present it in the case where the raw key of
Alice is composed of the outcome of a single input x = x∗.

Let Vi be the solutions to the following NPO problems, where ti and wi are the nodes and
weights of an m-point Gauss-Radau quadrature on [0, 1] with an endpoint at tm = 1, and αi =
3
2 max{ 1

ti
, 1

1−ti
}:

Vi = inf
∑

a

⟨ψ|Aa|x∗(Za + Z∗
a + (1− ti)Z∗

aZa) + tiZaZ
∗
a |ψ⟩

s.t. ⟨ψ|Aa|xBb|y |ψ⟩ = p(a, b|x, y), ∀a, b, x, y,
⟨ψ|Aa|xTc|z |ψ⟩ = p(a, c|x, z), ∀a, c, x, z,
Aa|xAa′|x = δaa′Aa|x, ∀a, a′, x,

Bb|yBb′|y = δbb′Bb|y, ∀b, b′, y,

Tc|zTc′|z = δcc′Tc|z, ∀c, c′, z,

[Aa|x,Bb,y] = [Aa|x,Tc,z] = 0, ∀a, b, c, x, y, z,
[Aa|x, Z

(∗)
a′ ] = [Bb|y, Z

(∗)
a ] = 0, ∀a, a′, b, x, y,

Z∗
aZa ≤ αi, ∀a,

ZaZ
∗
a ≤ αi, ∀a, ,

where the minimization is over the state |ψ⟩ and the Hermitian operators Aa|x, Bb|y, Tc|z, and
non-Hermitian operators Za. The von Neumann entropy is then lower bounded by [BFF21b],

H(A|E,X = x∗) ≥
m−1∑
i=1

wi

ti ln 2(1 + Vi) .

We can compute a lower bound on the NPO optimums Vi, hence on H(A|E,X = x∗), by relaxing
them to semidefinite programs [NPA07, NPA08, PNA10]. The numerical results presented in this
work have been computed using m = 12 points in Gauss-Radau quadrature and SDP relaxations
corresponding to level 2 and some additional monomials, as detailed in the main text.
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