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Abstract. We present a formally verified proof of the correctness and IND-CCA security of
ML-KEM, the Kyber-based Key Encapsulation Mechanism (KEM) undergoing standardization
by NIST. The proof is machine-checked in EasyCrypt and it includes: 1) A formalization of the
correctness (decryption failure probability) and IND-CPA security of the Kyber base public-key
encryption scheme, following Bos et al. at Euro S&P 2018; 2) A formalization of the relevant variant
of the Fujisaki-Okamoto transform in the Random Oracle Model (ROM), which follows closely
(but not exactly) Hofheinz, Hövelmanns and Kiltz at TCC 2017; 3) A proof that the IND-CCA
security of the ML-KEM specification and its correctness as a KEM follows from the previous
results; 4) Two formally verified implementations of ML-KEM written in Jasmin that are provably
constant-time, functionally equivalent to the ML-KEM specification and, for this reason, inherit
the provable security guarantees established in the previous points. The top-level theorems give
self-contained concrete bounds for the correctness and security of ML-KEM down to (a variant of)
Module-LWE. We discuss how they are built modularly by leveraging various EasyCrypt features.

1 Introduction

The Module-Lattice-Based Key Encapsulation Mechanism (ML-KEM) is a post-quantum key-encapsulation
mechanism that is currently being standardized by NIST as future standard FIPS-203 [54]. ML-KEM is
based on Kyber [10,25] which was selected by NIST in 2022 after round 3 of their multi-year post-quantum
cryptography standardization process [1]. Following NIST’s announcement, major cryptographic libraries
and widely used applications are already transitioning to post-quantum KEMs. Notably, Cloudflare,
Google Chrome, and Signal are already using Kyber. It is expected that, once the FIPS-203 standard is
ready, these deployments will migrate from Kyber to ML-KEM—for details of the differences between
the two see below—and that the number of applications using ML-KEM will rapidly increase.

In this context, it is critically important to ensure that implementations of ML-KEM achieve the
targeted security. At a high level, this means that we need to ensure the correctness of security reductions
that link the IND-CCA security of Kyber to the module learning with errors (MLWE) problem; we need
to ensure that implementations actually match the algorithm specification that has been proven secure;
we need to give guarantees about implementation security; and finally we need to make sure that the
underlying MLWE problem is indeed hard to solve for the concrete parameters used in ML-KEM.

In this paper we embrace the methods and tools of computer-aided cryptography [11] to give rigorous
statements with regards to the first three aspects of this analysis. Concretely, we present a computer-
verified proof of IND-CCA security of the ML-KEM draft standard specification down to a variant of



2 Almeida et al.

the MLWE assumption. We furthermore connect the machine-readable version of the ML-KEM draft
specification used in this proof to two efficient implementations in the Jasmin programming language [5,7].
These implementations are proven functionally correct with respect to the specification and are proven to
follow the “constant-time” programming paradigm. Overall, we obtain machine-verified proofs of ML-KEM
reaching from the IND-CCA security notion down to the assembly level of highly optimized constant-time
software.

The proofs are formalized and machine-checked in the EasyCrypt proof assistant [18]. EasyCrypt is
tailored to code-based game-playing cryptographic proofs and supports many common proof techniques,
including equivalence up to failure events, lazy sampling, hybrid arguments, and plug and pray. It has
been used for proving security of a broad range of cryptographic constructions, and to connect security
proofs with implementations (see related work below).

Security Proof. Our main theorem intuitively states the following—the full statement of Theorem 6 is
given in Section 6.

Theorem 6 (Informal). The ML-KEM specification is an IND-CCA secure KEM when the key-
derivation hash is modeled as a random oracle, under a variant of the MLWE assumption where matrices
are sampled pseudorandomly using SHAKE-128 and assuming that SHAKE-256 behaves as a pseudorandom
function. The failure probability of ML-KEM can be bounded as described in [25].

Our proof consolidates and strengthens prior work in three dimensions: first, our proof is fully machine-
checked, and as such provides higher guarantees than pen-and-paper proofs. Second, our proof applies
to a (machine-readable) specification of the very recently published ML-KEM draft standard. Third,
our proof clarifies the underlying computational assumptions for ML-KEM and streamlines the overall
structure of the security analysis. In particular, our work provides a machine-checked proof of the relevant
variant of the Fujisaki-Okamoto transform, which we instantiate for the particular case of ML-KEM with
concrete parameters. To this end, we lay down and verify all the details related to sampling noise using
the non-trivial pseudorandom generation algorithms specified by ML-KEM, under the assumption that
various algorithms in the SHA-3 family can be used as pseudorandom functions.

Technically, the security proof is decomposed in two steps. In the first step, we prove security of an
abstract ML-KEM specification written in the EasyCrypt proof assistant. This applies to all ML-KEM
variants. In the second step, we instantiate our abstract result with a fully concrete specification of the
ML-KEM draft standard, with parameters fixed for ML-KEM-768. The final theorem provides a detailed
bound for the IND-CCA security of the construction, showing that it is tightly related to a variant of the
MLWE problem. This variant of MLWE is tailored to allow plugging in the security proof of the base
PKE into the FO transform.12 In the end our theorem reflects the practical security of ML-KEM-768
closely: MLWE is assumed to be hard when the underlying matrix is sampled exactly as prescribed in the
draft standard. For a detailed discussion, see Sections 4 and 5. Extending these results to other ML-KEM
variants is straightforward and will be done when verified implementations are available.

Functional Correctness. It is notoriously hard to develop practical implementations of cryptographic
constructions. Subtle discrepancies between specifications, on which security proofs generally reason, and
implementations, may have catastrophic security consequences. We provide two Jasmin implementations
of ML-KEM-768, and prove that:

The reference and vectorized Jasmin ML-KEM implementations are constant-time and func-
tionally equivalent to the ML-KEM specification.

To obtain this result, we upgrade the two Jasmin implementations of Kyber from [8] to ML-KEM
and adapt the proofs of functional correctness to establish the link to the EasyCrypt specification of
ML-KEM. With this, we provide an end-to-end computer-verified proof that the highly optimized assembly
code from [8] (with our adaptations) implements an IND-CCA secure KEM. In order to validate that
this KEM is indeed most likely what NIST specified as the draft of ML-KEM, we confirmed that the
implementations generate the extensive test vectors recently published by Schmieg from her independent
implementation of ML-KEM (see Section 7). Finally, to ensure that we follow best practices on mitigating
timing side-channel attacks, we used the Jasmin specialized type system to prove that our implementations
follow the constant-time discipline.

12 Proving IND-CPA security of the PKE down to standard MLWE is possible assuming that the matrix sampling
procedure is a random oracle [44], but this then makes it hard (in a mechanized proof setting) to see the
resulting PKE as a deterministic construction that can be plugged into the FO transform.
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Relevance. The provable security of Kyber has been scrutinized extensively during the NIST competi-
tion. However, the algorithm has undergone several tweaks since the original round-1 submission [61] and
the ML-KEM specification has introduced further modifications. Therefore, it is important to consolidate
the security proofs during the standardization process. In this work we confirm to a high-level of assurance
that the various modifications introduced in Kyber and, more recently in ML-KEM, allow for a proof
of security that follows from well-known results published in the literature. We review the evolution of
Kyber and the modifications introduced by ML-KEM in Section 3.2.

We also contend that connecting security proofs to implementations is necessary to ensure that security
guarantees apply to deployed code. Gaps between specifications and implementations can lead to security
issues, and arise in practice. For example, early implementations of Kyber computed the “rejection key”
used for the implicit rejection in the FO transform, but also returned a non-zero return value in case
of rejection, which makes implicit-rejection FO proofs inapplicable. Another example are discrepancies
between the specification and implementations of Saber [27] pointed out in [34, Sec. 5.4]. These meant
that security proofs in the QROM did not apply to the implemented algorithms.

It is equally important to prove formally that implementations do not leak through timing side
channels. For example, it was recently reported by Bhargavan, Kiefer, and Tamvada13 (and independently
by Bernstein), and by Kannwischer and Ravi14 that some compilers with certain optimization flags
translate the reference implementations for Kyber and ML-KEM made available by the Kyber team
to binaries containing variable-time DIV instructions operating on secret inputs. Our implementations
have been verified to correctly implement the draft standard and to avoid secret branch conditions, secret
memory addresses, and variable-time DIV and MOD instructions on secret inputs.

Limitations. We point out four important limitations of our work. First, our security proof is classical.
An important direction for future work is to prove security of ML-KEM against quantum adversaries.
This will require using an extension of EasyCrypt for reasoning about security in the Quantum Random
Oracle Model [24]. Second, our guarantees are currently limited to the code generated by the Jasmin
compiler. In the future, we plan to extend the security and functional correctness guarantees to other
implementations using equivalence checking. Third, the complexity bounds of the reductions have been
conducted manually. Fourth, our results for failure probability do not go all the way to formally verifying
the numbers claimed in [62]. Our proof gives a precise specification of the noise distribution that needs
to be computed to obtain such numbers, but refer to [25] for the analytical method to (heuristically)
compute this bound. The details are given in Section 4.

Related work. There is extensive prior work on security proofs of lattice-based KEMs and related
proof techniques (see, e.g., [63,60,45,67,22,30,42,50]), cryptanalysis of the underlying assumptions (see,
e.g., [56,52,19,3,28,4,35,2,29]), and side-channel attacks (see, e.g., [58,36,37,57,55,39,38]). However, since
the focus and novelty of this paper lie in the field of computer-aided cryptography (CAC), we summarize
relevant related work in this field.

One unifying goal of CAC is to deliver machine-checked proofs of security for practical cryptographic
implementations. Almeida et al [6] provide a general approach to decompose this goal into more classical
tasks of functional correctness and side-channel protection of implementation and provable security of
specification. This approach has been used successfully for proving indifferentiability from ROM of a
Jasmin implementation of SHA3 [9]. Beringer et al [20] and Ye et al [66] use a similar approach for
proving security of HMAC and HMAC-DRBG implementations. In addition, there is a large body of work
that establishes either security or functional correctness [11,23]. Some of these works explicitly target
lattice-based constructions. In particular, Hülsing, Meijers and Strub [44] use EasyCrypt to prove CPA
security of Saber; Barbosa et al [14] use EasyCrypt to prove unforgeability of XMSS; and Barbosa et
al [12] use EasyCrypt for proving unforgeability of the Dilithium signature scheme. Similarly, Almeida et
al use EasyCrypt for proving functional correctness of reference and vectorized Jasmin implementations
of Kyber [8], and Kreuzer [46] uses the Isabelle proof assistant for proving correctness and IND-CPA
security of Kyber.

Most works in CAC establish security against classical adversaries. However, an increasing number of
works considers security against quantum adversaries. AutoLWE [17] is an automated tool for proving
security of lattice-based cryptographic constructions. It has been used to prove security of several case
studies, including Dual Regev encryption [33] and the Micciancio-Peikert encryption scheme [51]. However,
constructions such as ML-KEM are outside the scope of AutoLWE. EasyPQC [13] is an extension of
EasyCrypt for mechanizing security proofs against quantum adversaries. EasyPQC supports some (but not
13 See https://cryspen.com/post/ml-kem-implementation/.
14 See https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/ldX0ThYJuBo.

https://cryspen.com/post/ml-kem-implementation/
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/ldX0ThYJuBo
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K-PKE

<latexit sha1_base64="JMZnwr/UBN1ewu2pER3uouwhYG4=">AAAB+nicbVDLTgIxFO3gC/E16NJNI5jghsyQ+FiiblhiIo+EmZBO6UBDp520HQ0Z+RQ3LjTGrV/izr+xwCwUPMlNTs65N/feE8SMKu0431ZubX1jcyu/XdjZ3ds/sIuHbSUSiUkLCyZkN0CKMMpJS1PNSDeWBEUBI51gfDvzOw9EKir4vZ7ExI/QkNOQYqSN1LeL5WvoDYlWsFHx5Eiclft2yak6c8BV4makBDI0+/aXNxA4iQjXmCGleq4Taz9FUlPMyLTgJYrECI/RkPQM5Sgiyk/np0/hqVEGMBTSFNdwrv6eSFGk1CQKTGeE9EgtezPxP6+X6PDKTymPE004XiwKEwa1gLMc4IBKgjWbGIKwpOZWiEdIIqxNWgUTgrv88ipp16ruRfX8rlaq32Rx5MExOAEV4IJLUAcN0AQtgMEjeAav4M16sl6sd+tj0Zqzspkj8AfW5w/X/pJz</latexit>

A H(⇢)

<latexit sha1_base64="JMZnwr/UBN1ewu2pER3uouwhYG4=">AAAB+nicbVDLTgIxFO3gC/E16NJNI5jghsyQ+FiiblhiIo+EmZBO6UBDp520HQ0Z+RQ3LjTGrV/izr+xwCwUPMlNTs65N/feE8SMKu0431ZubX1jcyu/XdjZ3ds/sIuHbSUSiUkLCyZkN0CKMMpJS1PNSDeWBEUBI51gfDvzOw9EKir4vZ7ExI/QkNOQYqSN1LeL5WvoDYlWsFHx5Eiclft2yak6c8BV4makBDI0+/aXNxA4iQjXmCGleq4Taz9FUlPMyLTgJYrECI/RkPQM5Sgiyk/np0/hqVEGMBTSFNdwrv6eSFGk1CQKTGeE9EgtezPxP6+X6PDKTymPE004XiwKEwa1gLMc4IBKgjWbGIKwpOZWiEdIIqxNWgUTgrv88ipp16ruRfX8rlaq32Rx5MExOAEV4IJLUAcN0AQtgMEjeAav4M16sl6sd+tj0Zqzspkj8AfW5w/X/pJz</latexit>

A H(⇢)

<latexit sha1_base64="wKkFkFB5MDz9POubge9l2cdt7do=">AAACFXicbVDLSgMxFM3UV62vUZdugq1QQcpMwceyKog7K9oHdGrJpJk2NJMZkoxQhv6EG3/FjQtF3Aru/BvT6QjaeiBwcs693HuPGzIqlWV9GZm5+YXFpexybmV1bX3D3NyqyyASmNRwwALRdJEkjHJSU1Qx0gwFQb7LSMMdnI/9xj0Rkgb8Vg1D0vZRj1OPYqS01DEPCqfQ6REloeMj1ZdefIP8kJHR3c+/eXUxKjqiH+wXOmbeKlkJ4CyxU5IHKaod89PpBjjyCVeYISlbthWqdoyEoljPyDmRJCHCA9QjLU058olsx8lVI7inlS70AqEfVzBRf3fEyJdy6Lu6Mll12huL/3mtSHkn7ZjyMFKE48kgL2JQBXAcEexSQbBiQ00QFlTvCnEfCYSVDjKnQ7CnT54l9XLJPiodXpfzlbM0jizYAbugCGxwDCrgElRBDWDwAJ7AC3g1Ho1n4814n5RmjLRnG/yB8fENwMmelA==</latexit>

A SampleXOF(⇢)

K-PKE
<latexit sha1_base64="JMZnwr/UBN1ewu2pER3uouwhYG4=">AAAB+nicbVDLTgIxFO3gC/E16NJNI5jghsyQ+FiiblhiIo+EmZBO6UBDp520HQ0Z+RQ3LjTGrV/izr+xwCwUPMlNTs65N/feE8SMKu0431ZubX1jcyu/XdjZ3ds/sIuHbSUSiUkLCyZkN0CKMMpJS1PNSDeWBEUBI51gfDvzOw9EKir4vZ7ExI/QkNOQYqSN1LeL5WvoDYlWsFHx5Eiclft2yak6c8BV4makBDI0+/aXNxA4iQjXmCGleq4Taz9FUlPMyLTgJYrECI/RkPQM5Sgiyk/np0/hqVEGMBTSFNdwrv6eSFGk1CQKTGeE9EgtezPxP6+X6PDKTymPE004XiwKEwa1gLMc4IBKgjWbGIKwpOZWiEdIIqxNWgUTgrv88ipp16ruRfX8rlaq32Rx5MExOAEV4IJLUAcN0AQtgMEjeAav4M16sl6sd+tj0Zqzspkj8AfW5w/X/pJz</latexit>

A H(⇢)

<latexit sha1_base64="wKkFkFB5MDz9POubge9l2cdt7do=">AAACFXicbVDLSgMxFM3UV62vUZdugq1QQcpMwceyKog7K9oHdGrJpJk2NJMZkoxQhv6EG3/FjQtF3Aru/BvT6QjaeiBwcs693HuPGzIqlWV9GZm5+YXFpexybmV1bX3D3NyqyyASmNRwwALRdJEkjHJSU1Qx0gwFQb7LSMMdnI/9xj0Rkgb8Vg1D0vZRj1OPYqS01DEPCqfQ6REloeMj1ZdefIP8kJHR3c+/eXUxKjqiH+wXOmbeKlkJ4CyxU5IHKaod89PpBjjyCVeYISlbthWqdoyEoljPyDmRJCHCA9QjLU058olsx8lVI7inlS70AqEfVzBRf3fEyJdy6Lu6Mll12huL/3mtSHkn7ZjyMFKE48kgL2JQBXAcEexSQbBiQ00QFlTvCnEfCYSVDjKnQ7CnT54l9XLJPiodXpfzlbM0jizYAbugCGxwDCrgElRBDWDwAJ7AC3g1Ho1n4814n5RmjLRnG/yB8fENwMmelA==</latexit>

A SampleXOF(⇢)

<latexit sha1_base64="wKkFkFB5MDz9POubge9l2cdt7do=">AAACFXicbVDLSgMxFM3UV62vUZdugq1QQcpMwceyKog7K9oHdGrJpJk2NJMZkoxQhv6EG3/FjQtF3Aru/BvT6QjaeiBwcs693HuPGzIqlWV9GZm5+YXFpexybmV1bX3D3NyqyyASmNRwwALRdJEkjHJSU1Qx0gwFQb7LSMMdnI/9xj0Rkgb8Vg1D0vZRj1OPYqS01DEPCqfQ6REloeMj1ZdefIP8kJHR3c+/eXUxKjqiH+wXOmbeKlkJ4CyxU5IHKaod89PpBjjyCVeYISlbthWqdoyEoljPyDmRJCHCA9QjLU058olsx8lVI7inlS70AqEfVzBRf3fEyJdy6Lu6Mll12huL/3mtSHkn7ZjyMFKE48kgL2JQBXAcEexSQbBiQ00QFlTvCnEfCYSVDjKnQ7CnT54l9XLJPiodXpfzlbM0jizYAbugCGxwDCrgElRBDWDwAJ7AC3g1Ho1n4814n5RmjLRnG/yB8fENwMmelA==</latexit>

A SampleXOF(⇢)

<latexit sha1_base64="vsxcVWe223GsPhG+6rbOvKQ86xo=">AAACGHicbVDLTgIxFO3gC/GFunRTBRMXBmdIfCyNblxiImhCkXRKgcZOO2nvGMlkPsONv+LGhca4deffWJCFgufmJifn3Jv2njCWwoLvf3m5mdm5+YX8YmFpeWV1rbi+0bA6MYzXmZba3ITUcikUr4MAyW9iw2kUSn4d3p0P/et7bqzQ6goGMW9FtKdEVzAKTmoXD8rE9DUmPQ6WbI8qCvVDSkCoASblDJPU3w9IdptWD4+ycrtY8iv+CHiaBGNSQmPU2sVP0tEsibgCJqm1zcCPoZVSA4JJnhVIYnlM2R3t8aajikbcttLRYRnedUoHd7VxrQCP1N8bKY2sHUShm4wo9O2kNxT/85oJdE9aqVBxAlyxn4e6icSg8TAl3BGGM5ADRygzwv0Vsz41lIHLsuBCCCZPniaNaiU4qhxeVkunZ+M48mgL7aA9FKBjdIouUA3VEUOP6Bm9ojfvyXvx3r2Pn9GcN97ZRH/gfX4DjSOeNg==</latexit>

⇢ ${0, 1}256

<latexit sha1_base64="vsxcVWe223GsPhG+6rbOvKQ86xo=">AAACGHicbVDLTgIxFO3gC/GFunRTBRMXBmdIfCyNblxiImhCkXRKgcZOO2nvGMlkPsONv+LGhca4deffWJCFgufmJifn3Jv2njCWwoLvf3m5mdm5+YX8YmFpeWV1rbi+0bA6MYzXmZba3ITUcikUr4MAyW9iw2kUSn4d3p0P/et7bqzQ6goGMW9FtKdEVzAKTmoXD8rE9DUmPQ6WbI8qCvVDSkCoASblDJPU3w9IdptWD4+ycrtY8iv+CHiaBGNSQmPU2sVP0tEsibgCJqm1zcCPoZVSA4JJnhVIYnlM2R3t8aajikbcttLRYRnedUoHd7VxrQCP1N8bKY2sHUShm4wo9O2kNxT/85oJdE9aqVBxAlyxn4e6icSg8TAl3BGGM5ADRygzwv0Vsz41lIHLsuBCCCZPniaNaiU4qhxeVkunZ+M48mgL7aA9FKBjdIouUA3VEUOP6Bm9ojfvyXvx3r2Pn9GcN97ZRH/gfX4DjSOeNg==</latexit>

⇢ ${0, 1}256

<latexit sha1_base64="JMZnwr/UBN1ewu2pER3uouwhYG4=">AAAB+nicbVDLTgIxFO3gC/E16NJNI5jghsyQ+FiiblhiIo+EmZBO6UBDp520HQ0Z+RQ3LjTGrV/izr+xwCwUPMlNTs65N/feE8SMKu0431ZubX1jcyu/XdjZ3ds/sIuHbSUSiUkLCyZkN0CKMMpJS1PNSDeWBEUBI51gfDvzOw9EKir4vZ7ExI/QkNOQYqSN1LeL5WvoDYlWsFHx5Eiclft2yak6c8BV4makBDI0+/aXNxA4iQjXmCGleq4Taz9FUlPMyLTgJYrECI/RkPQM5Sgiyk/np0/hqVEGMBTSFNdwrv6eSFGk1CQKTGeE9EgtezPxP6+X6PDKTymPE004XiwKEwa1gLMc4IBKgjWbGIKwpOZWiEdIIqxNWgUTgrv88ipp16ruRfX8rlaq32Rx5MExOAEV4IJLUAcN0AQtgMEjeAav4M16sl6sd+tj0Zqzspkj8AfW5w/X/pJz</latexit>

A H(⇢)
<latexit sha1_base64="JMZnwr/UBN1ewu2pER3uouwhYG4=">AAAB+nicbVDLTgIxFO3gC/E16NJNI5jghsyQ+FiiblhiIo+EmZBO6UBDp520HQ0Z+RQ3LjTGrV/izr+xwCwUPMlNTs65N/feE8SMKu0431ZubX1jcyu/XdjZ3ds/sIuHbSUSiUkLCyZkN0CKMMpJS1PNSDeWBEUBI51gfDvzOw9EKir4vZ7ExI/QkNOQYqSN1LeL5WvoDYlWsFHx5Eiclft2yak6c8BV4makBDI0+/aXNxA4iQjXmCGleq4Taz9FUlPMyLTgJYrECI/RkPQM5Sgiyk/np0/hqVEGMBTSFNdwrv6eSFGk1CQKTGeE9EgtezPxP6+X6PDKTymPE004XiwKEwa1gLMc4IBKgjWbGIKwpOZWiEdIIqxNWgUTgrv88ipp16ruRfX8rlaq32Rx5MExOAEV4IJLUAcN0AQtgMEjeAav4M16sl6sd+tj0Zqzspkj8AfW5w/X/pJz</latexit>

A H(⇢)

K-PKE

<latexit sha1_base64="JMZnwr/UBN1ewu2pER3uouwhYG4=">AAAB+nicbVDLTgIxFO3gC/E16NJNI5jghsyQ+FiiblhiIo+EmZBO6UBDp520HQ0Z+RQ3LjTGrV/izr+xwCwUPMlNTs65N/feE8SMKu0431ZubX1jcyu/XdjZ3ds/sIuHbSUSiUkLCyZkN0CKMMpJS1PNSDeWBEUBI51gfDvzOw9EKir4vZ7ExI/QkNOQYqSN1LeL5WvoDYlWsFHx5Eiclft2yak6c8BV4makBDI0+/aXNxA4iQjXmCGleq4Taz9FUlPMyLTgJYrECI/RkPQM5Sgiyk/np0/hqVEGMBTSFNdwrv6eSFGk1CQKTGeE9EgtezPxP6+X6PDKTymPE004XiwKEwa1gLMc4IBKgjWbGIKwpOZWiEdIIqxNWgUTgrv88ipp16ruRfX8rlaq32Rx5MExOAEV4IJLUAcN0AQtgMEjeAav4M16sl6sd+tj0Zqzspkj8AfW5w/X/pJz</latexit>

A H(⇢)

<latexit sha1_base64="vsxcVWe223GsPhG+6rbOvKQ86xo=">AAACGHicbVDLTgIxFO3gC/GFunRTBRMXBmdIfCyNblxiImhCkXRKgcZOO2nvGMlkPsONv+LGhca4deffWJCFgufmJifn3Jv2njCWwoLvf3m5mdm5+YX8YmFpeWV1rbi+0bA6MYzXmZba3ITUcikUr4MAyW9iw2kUSn4d3p0P/et7bqzQ6goGMW9FtKdEVzAKTmoXD8rE9DUmPQ6WbI8qCvVDSkCoASblDJPU3w9IdptWD4+ycrtY8iv+CHiaBGNSQmPU2sVP0tEsibgCJqm1zcCPoZVSA4JJnhVIYnlM2R3t8aajikbcttLRYRnedUoHd7VxrQCP1N8bKY2sHUShm4wo9O2kNxT/85oJdE9aqVBxAlyxn4e6icSg8TAl3BGGM5ADRygzwv0Vsz41lIHLsuBCCCZPniaNaiU4qhxeVkunZ+M48mgL7aA9FKBjdIouUA3VEUOP6Bm9ojfvyXvx3r2Pn9GcN97ZRH/gfX4DjSOeNg==</latexit>

⇢ ${0, 1}256

<latexit sha1_base64="KgHIRbrE5dDoVgZT0SekBCw9e/g=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSxC3ZREfC2LbtxZpS9oQplMJ+3QmUmYmQgl1I2/4saFIm79C3f+jdM0C209cOFwzr3ce08QM6q043xbC4tLyyurhbXi+sbm1ra9s9tUUSIxaeCIRbIdIEUYFaShqWakHUuCeMBIKxheT/zWA5GKRqKuRzHxOeoLGlKMtJG69r6EXp9oBT2O9ECF6f3tuFsv8+OuXXIqTgY4T9yclECOWtf+8noRTjgRGjOkVMd1Yu2nSGqKGRkXvUSRGOEh6pOOoQJxovw0+2AMj4zSg2EkTQkNM/X3RIq4UiMemM7szllvIv7ndRIdXvopFXGiicDTRWHCoI7gJA7Yo5JgzUaGICypuRXiAZIIaxNa0YTgzr48T5onFfe8cnZ3Wqpe5XEUwAE4BGXgggtQBTegBhoAg0fwDF7Bm/VkvVjv1se0dcHKZ/bAH1ifP4c7lk8=</latexit>

r  ROT (m)
<latexit sha1_base64="gQdazFexn0r0ZChhY4YZR7/qlCI=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSxC3ZREfC2LbgQXVjFtoQlhMp20Q2eSMDMRSqgbf8WNC0Xc+hfu/BunaRbaeuDC4Zx7ufeeIGFUKsv6NubmFxaXlksr5dW19Y1Nc2u7KeNUYOLgmMWiHSBJGI2Io6hipJ0IgnjASCsYXI791gMRksbRvRomxOOoF9GQYqS05Ju719DtESWhy5HqyzC7uxn5TpUf+mbFqlk54CyxC1IBBRq++eV2Y5xyEinMkJQd20qUlyGhKGZkVHZTSRKEB6hHOppGiBPpZfkHI3iglS4MY6ErUjBXf09kiEs55IHuzO+c9sbif14nVeG5l9EoSRWJ8GRRmDKoYjiOA3apIFixoSYIC6pvhbiPBMJKh1bWIdjTL8+S5lHNPq2d3B5X6hdFHCWwB/ZBFdjgDNTBFWgAB2DwCJ7BK3gznowX4934mLTOGcXMDvgD4/MHSiWWKQ==</latexit>

K  ROU (m)

<latexit sha1_base64="oQhGGrt0QzyA3OLEAgkeg2B43Jo=">AAACA3icbVDLSgMxFM34rPU16k43wSK0IGVGfC2LbgQXVrEP6JSSSTNtaJIZkoxQhoIbf8WNC0Xc+hPu/BvT6Sy09cCFwzn3cu89fsSo0o7zbc3NLywuLedW8qtr6xub9tZ2XYWxxKSGQxbKpo8UYVSQmqaakWYkCeI+Iw1/cDn2Gw9EKhqKez2MSJujnqABxUgbqWPvFq8PZQl6PaIV9DjSfRUkdzejIi917IJTdlLAWeJmpAAyVDv2l9cNccyJ0JghpVquE+l2gqSmmJFR3osViRAeoB5pGSoQJ6qdpD+M4IFRujAIpSmhYar+nkgQV2rIfdOZXjntjcX/vFasg/N2QkUUayLwZFEQM6hDOA4EdqkkWLOhIQhLam6FuI8kwtrEljchuNMvz5L6Udk9LZ/cHhcqF1kcObAH9kERuOAMVMAVqIIawOARPINX8GY9WS/Wu/UxaZ2zspkd8AfW5w/zPJZ4</latexit>

(K, r) RO(m)

<latexit sha1_base64="oQhGGrt0QzyA3OLEAgkeg2B43Jo=">AAACA3icbVDLSgMxFM34rPU16k43wSK0IGVGfC2LbgQXVrEP6JSSSTNtaJIZkoxQhoIbf8WNC0Xc+hPu/BvT6Sy09cCFwzn3cu89fsSo0o7zbc3NLywuLedW8qtr6xub9tZ2XYWxxKSGQxbKpo8UYVSQmqaakWYkCeI+Iw1/cDn2Gw9EKhqKez2MSJujnqABxUgbqWPvFq8PZQl6PaIV9DjSfRUkdzejIi917IJTdlLAWeJmpAAyVDv2l9cNccyJ0JghpVquE+l2gqSmmJFR3osViRAeoB5pGSoQJ6qdpD+M4IFRujAIpSmhYar+nkgQV2rIfdOZXjntjcX/vFasg/N2QkUUayLwZFEQM6hDOA4EdqkkWLOhIQhLam6FuI8kwtrEljchuNMvz5L6Udk9LZ/cHhcqF1kcObAH9kERuOAMVMAVqIIawOARPINX8GY9WS/Wu/UxaZ2zspkd8AfW5w/zPJZ4</latexit>

(K, r) RO(m) <latexit sha1_base64="yv/QDfMJMIxyj5ICvtywd7pUZU8=">AAACEHicbVDLTsJAFJ36RHyhLt1MJEZIlLQo6hJ1Q+IGozwS2pDpMIUJM20zMzWShk9w46+4caExbl26828coAsFT3KTk3Puzb33uCGjUpnmtzE3v7C4tJxaSa+urW9sZra26zKIBCY1HLBANF0kCaM+qSmqGGmGgiDuMtJw+1cjv3FPhKSBf6cGIXE46vrUoxgpLbUzBzlxeJ2HdpcoCW2OVE968W3l4nhoczd4iI+GJauY4/l2JmsWzDHgLLESkgUJqu3Ml90JcMSJrzBDUrYsM1ROjISimJFh2o4kCRHuoy5paeojTqQTjx8awn2tdKAXCF2+gmP190SMuJQD7urO8cnT3kj8z2tFyjt3YuqHkSI+nizyIgZVAEfpwA4VBCs20ARhQfWtEPeQQFjpDNM6BGv65VlSLxas00Lp5iRbvkziSIFdsAdywAJnoAwqoApqAINH8AxewZvxZLwY78bHpHXOSGZ2wB8Ynz/TfZs3</latexit>

(r, K) SHA3-512(m)

<latexit sha1_base64="yv/QDfMJMIxyj5ICvtywd7pUZU8=">AAACEHicbVDLTsJAFJ36RHyhLt1MJEZIlLQo6hJ1Q+IGozwS2pDpMIUJM20zMzWShk9w46+4caExbl26828coAsFT3KTk3Puzb33uCGjUpnmtzE3v7C4tJxaSa+urW9sZra26zKIBCY1HLBANF0kCaM+qSmqGGmGgiDuMtJw+1cjv3FPhKSBf6cGIXE46vrUoxgpLbUzBzlxeJ2HdpcoCW2OVE968W3l4nhoczd4iI+GJauY4/l2JmsWzDHgLLESkgUJqu3Ml90JcMSJrzBDUrYsM1ROjISimJFh2o4kCRHuoy5paeojTqQTjx8awn2tdKAXCF2+gmP190SMuJQD7urO8cnT3kj8z2tFyjt3YuqHkSI+nizyIgZVAEfpwA4VBCs20ARhQfWtEPeQQFjpDNM6BGv65VlSLxas00Lp5iRbvkziSIFdsAdywAJnoAwqoApqAINH8AxewZvxZLwY78bHpHXOSGZ2wB8Ynz/TfZs3</latexit>

(r, K) SHA3-512(m)

<latexit sha1_base64="yv/QDfMJMIxyj5ICvtywd7pUZU8=">AAACEHicbVDLTsJAFJ36RHyhLt1MJEZIlLQo6hJ1Q+IGozwS2pDpMIUJM20zMzWShk9w46+4caExbl26828coAsFT3KTk3Puzb33uCGjUpnmtzE3v7C4tJxaSa+urW9sZra26zKIBCY1HLBANF0kCaM+qSmqGGmGgiDuMtJw+1cjv3FPhKSBf6cGIXE46vrUoxgpLbUzBzlxeJ2HdpcoCW2OVE968W3l4nhoczd4iI+GJauY4/l2JmsWzDHgLLESkgUJqu3Ml90JcMSJrzBDUrYsM1ROjISimJFh2o4kCRHuoy5paeojTqQTjx8awn2tdKAXCF2+gmP190SMuJQD7urO8cnT3kj8z2tFyjt3YuqHkSI+nizyIgZVAEfpwA4VBCs20ARhQfWtEPeQQFjpDNM6BGv65VlSLxas00Lp5iRbvkziSIFdsAdywAJnoAwqoApqAINH8AxewZvxZLwY78bHpHXOSGZ2wB8Ynz/TfZs3</latexit>

(r, K) SHA3-512(m)

<latexit sha1_base64="ijmBphNWlO2hQwmdddZWFv8kd9Q=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVwVRLxtSy6ceGign1AG8pkOkmHTmbCzI0SQv0VNy4UceuHuPNvnLZZaPXAhcM593LvPUHCmQbX/bJKS8srq2vl9crG5tb2jr2719YyVYS2iORSdQOsKWeCtoABp91EURwHnHaC8dXU79xTpZkUd5Al1I9xJFjICAYjDexq/0aKiNMQFItGgJWSDwO75tbdGZy/xCtIDRVoDuzP/lCSNKYCCMda9zw3AT/HChjhdFLpp5ommIxxRHuGChxT7eez4yfOoVGGTiiVKQHOTP05keNY6ywOTGeMYaQXvan4n9dLIbzwcyaSFKgg80Vhyh2QzjQJZ8gUJcAzQzBRzNzqkBFWmIDJq2JC8BZf/kvax3XvrH56e1JrXBZxlNE+OkBHyEPnqIGuURO1EEEZekIv6NV6tJ6tN+t93lqyipkq+gXr4xt6C5VT</latexit>()

<latexit sha1_base64="K3hhthJmabLxiBbxK74ro8kGBMw=">AAAB+HicbVDLSgNBEJyNrxgfWfXoZTAInsKu+DoGvXjwEME8IFnC7GQ2GTI7s8z0KnHJl3jxoIhXP8Wbf+Mk2YNGCxqKqm66u8JEcAOe9+UUlpZXVteK66WNza3tsruz2zQq1ZQ1qBJKt0NimOCSNYCDYO1EMxKHgrXC0dXUb90zbbiSdzBOWBCTgeQRpwSs1HPL3RsWgeaDIRCt1UPPrXhVbwb8l/g5qaAc9Z772e0rmsZMAhXEmI7vJRBkRAOngk1K3dSwhNARGbCOpZLEzATZ7PAJPrRKH0dK25KAZ+rPiYzExozj0HbGBIZm0ZuK/3mdFKKLIOMySYFJOl8UpQKDwtMUcJ9rRkGMLSFUc3srpkOiCQWbVcmG4C++/Jc0j6v+WfX09qRSu8zjKKJ9dICOkI/OUQ1dozpqIIpS9IRe0Kvz6Dw7b877vLXg5DN76Becj287dpN7</latexit> ,
<latexit sha1_base64="K3hhthJmabLxiBbxK74ro8kGBMw=">AAAB+HicbVDLSgNBEJyNrxgfWfXoZTAInsKu+DoGvXjwEME8IFnC7GQ2GTI7s8z0KnHJl3jxoIhXP8Wbf+Mk2YNGCxqKqm66u8JEcAOe9+UUlpZXVteK66WNza3tsruz2zQq1ZQ1qBJKt0NimOCSNYCDYO1EMxKHgrXC0dXUb90zbbiSdzBOWBCTgeQRpwSs1HPL3RsWgeaDIRCt1UPPrXhVbwb8l/g5qaAc9Z772e0rmsZMAhXEmI7vJRBkRAOngk1K3dSwhNARGbCOpZLEzATZ7PAJPrRKH0dK25KAZ+rPiYzExozj0HbGBIZm0ZuK/3mdFKKLIOMySYFJOl8UpQKDwtMUcJ9rRkGMLSFUc3srpkOiCQWbVcmG4C++/Jc0j6v+WfX09qRSu8zjKKJ9dICOkI/OUQ1dozpqIIpS9IRe0Kvz6Dw7b877vLXg5DN76Becj287dpN7</latexit> ,

<latexit sha1_base64="pab0B+ndEPEcvTDhyP6kDC+uW6Q=">AAAB8nicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8co5gGbJcxOZpMhszPLTK8SQj7DiwdFvPo13vwbJ8keNFrQUFR1090VpYIb9Lwvp7C0vLK6VlwvbWxube+Ud/eaRmWasgZVQul2RAwTXLIGchSsnWpGkkiwVjS8nvqtB6YNV/IeRykLE9KXPOaUoJWCzh3vD5BorR675YpX9WZw/xI/JxXIUe+WPzs9RbOESaSCGBP4XorhmGjkVLBJqZMZlhI6JH0WWCpJwkw4np08cY+s0nNjpW1JdGfqz4kxSYwZJZHtTAgOzKI3Ff/zggzjy3DMZZohk3S+KM6Ei8qd/u/2uGYUxcgSQjW3t7p0QDShaFMq2RD8xZf/kuZJ1T+vnt2eVmpXeRxFOIBDOAYfLqAGN1CHBlBQ8AQv8Oqg8+y8Oe/z1oKTz+zDLzgf35RbkXc=</latexit> )
<latexit sha1_base64="pab0B+ndEPEcvTDhyP6kDC+uW6Q=">AAAB8nicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8co5gGbJcxOZpMhszPLTK8SQj7DiwdFvPo13vwbJ8keNFrQUFR1090VpYIb9Lwvp7C0vLK6VlwvbWxube+Ud/eaRmWasgZVQul2RAwTXLIGchSsnWpGkkiwVjS8nvqtB6YNV/IeRykLE9KXPOaUoJWCzh3vD5BorR675YpX9WZw/xI/JxXIUe+WPzs9RbOESaSCGBP4XorhmGjkVLBJqZMZlhI6JH0WWCpJwkw4np08cY+s0nNjpW1JdGfqz4kxSYwZJZHtTAgOzKI3Ff/zggzjy3DMZZohk3S+KM6Ei8qd/u/2uGYUxcgSQjW3t7p0QDShaFMq2RD8xZf/kuZJ1T+vnt2eVmpXeRxFOIBDOAYfLqAGN1CHBlBQ8AQv8Oqg8+y8Oe/z1oKTz+zDLzgf35RbkXc=</latexit> )

<latexit sha1_base64="pab0B+ndEPEcvTDhyP6kDC+uW6Q=">AAAB8nicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8co5gGbJcxOZpMhszPLTK8SQj7DiwdFvPo13vwbJ8keNFrQUFR1090VpYIb9Lwvp7C0vLK6VlwvbWxube+Ud/eaRmWasgZVQul2RAwTXLIGchSsnWpGkkiwVjS8nvqtB6YNV/IeRykLE9KXPOaUoJWCzh3vD5BorR675YpX9WZw/xI/JxXIUe+WPzs9RbOESaSCGBP4XorhmGjkVLBJqZMZlhI6JH0WWCpJwkw4np08cY+s0nNjpW1JdGfqz4kxSYwZJZHtTAgOzKI3Ff/zggzjy3DMZZohk3S+KM6Ei8qd/u/2uGYUxcgSQjW3t7p0QDShaFMq2RD8xZf/kuZJ1T+vnt2eVmpXeRxFOIBDOAYfLqAGN1CHBlBQ8AQv8Oqg8+y8Oe/z1oKTz+zDLzgf35RbkXc=</latexit>

)

<latexit sha1_base64="pab0B+ndEPEcvTDhyP6kDC+uW6Q=">AAAB8nicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8co5gGbJcxOZpMhszPLTK8SQj7DiwdFvPo13vwbJ8keNFrQUFR1090VpYIb9Lwvp7C0vLK6VlwvbWxube+Ud/eaRmWasgZVQul2RAwTXLIGchSsnWpGkkiwVjS8nvqtB6YNV/IeRykLE9KXPOaUoJWCzh3vD5BorR675YpX9WZw/xI/JxXIUe+WPzs9RbOESaSCGBP4XorhmGjkVLBJqZMZlhI6JH0WWCpJwkw4np08cY+s0nNjpW1JdGfqz4kxSYwZJZHtTAgOzKI3Ff/zggzjy3DMZZohk3S+KM6Ei8qd/u/2uGYUxcgSQjW3t7p0QDShaFMq2RD8xZf/kuZJ1T+vnt2eVmpXeRxFOIBDOAYfLqAGN1CHBlBQ8AQv8Oqg8+y8Oe/z1oKTz+zDLzgf35RbkXc=</latexit>

) Sec. 3

Sec. 4

Sec. 5

Sec. 5

Sec. 6
Sec. 3

<latexit sha1_base64="uEhJugWWD6FfG1absZ0Da5VxoLU=">AAACEHicbVDLSgMxFM34rPU16tJNsIhuLDPVqghC1U131kcf0BlKJs20oZkHSUYsw3yCG3/FjQtF3Lp059+YtiNo64HAyTn3cu89TsiokIbxpU1Nz8zOzWcWsotLyyur+tp6TQQRx6SKAxbwhoMEYdQnVUklI42QE+Q5jNSd3sXAr98RLmjg38p+SGwPdXzqUoykklr6juUh2RVufH2ZwJNT+PO9KZ/tJ5bnBPfxXlI0Cy09Z+SNIeAkMVOSAykqLf3Tagc48ogvMUNCNE0jlHaMuKSYkSRrRYKECPdQhzQV9ZFHhB0PD0rgtlLa0A24er6EQ/V3R4w8IfqeoyqH+457A/E/rxlJ99iOqR9Gkvh4NMiNGJQBHKQD25QTLFlfEYQ5VbtC3EUcYakyzKoQzPGTJ0mtkDcP88Wrg1zpPI0jAzbBFtgFJjgCJVAGFVAFGDyAJ/ACXrVH7Vl7095HpVNa2rMB/kD7+AZMsJwf</latexit>

RO := SHA3-512
<latexit sha1_base64="dmhSf9/9wnzxOwEa9V2cAYY5sbA=">AAACCnicbVDLSgMxFM3UV62vUZduokVwVWbEF4JQFKQ7K9oHtLVk0kwbmmSGJCOUoWs3/oobF4q49Qvc+Tem0xG09UDg5Jx7k3uPFzKqtON8WZmZ2bn5hexibml5ZXXNXt+oqiCSmFRwwAJZ95AijApS0VQzUg8lQdxjpOb1L0Z+7Z5IRQNxqwchaXHUFdSnGGkjte3tEjw9g02OdE/58Q3iISPDu597/epy2LbzTsFJAKeJm5I8SFFu25/NToAjToTGDCnVcJ1Qt2IkNcXm8VwzUiREuI+6pGGoQJyoVpysMoS7RulAP5DmCA0T9XdHjLhSA+6ZymTGSW8k/uc1Iu2ftGIqwkgTgccf+RGDOoCjXGCHSoI1GxiCsKRmVoh7SCKsTXo5E4I7ufI0qe4X3KPC4fVBvniexpEFW2AH7AEXHIMiKIEyqAAMHsATeAGv1qP1bL1Z7+PSjJX2bII/sD6+AcCGmlk=</latexit>

H := SampleXOF

Sec. 6

Correctness IND-CPA

<latexit sha1_base64="pab0B+ndEPEcvTDhyP6kDC+uW6Q=">AAAB8nicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8co5gGbJcxOZpMhszPLTK8SQj7DiwdFvPo13vwbJ8keNFrQUFR1090VpYIb9Lwvp7C0vLK6VlwvbWxube+Ud/eaRmWasgZVQul2RAwTXLIGchSsnWpGkkiwVjS8nvqtB6YNV/IeRykLE9KXPOaUoJWCzh3vD5BorR675YpX9WZw/xI/JxXIUe+WPzs9RbOESaSCGBP4XorhmGjkVLBJqZMZlhI6JH0WWCpJwkw4np08cY+s0nNjpW1JdGfqz4kxSYwZJZHtTAgOzKI3Ff/zggzjy3DMZZohk3S+KM6Ei8qd/u/2uGYUxcgSQjW3t7p0QDShaFMq2RD8xZf/kuZJ1T+vnt2eVmpXeRxFOIBDOAYfLqAGN1CHBlBQ8AQv8Oqg8+y8Oe/z1oKTz+zDLzgf35RbkXc=</latexit>

)

T RO

K-PKE
<latexit sha1_base64="JMZnwr/UBN1ewu2pER3uouwhYG4=">AAAB+nicbVDLTgIxFO3gC/E16NJNI5jghsyQ+FiiblhiIo+EmZBO6UBDp520HQ0Z+RQ3LjTGrV/izr+xwCwUPMlNTs65N/feE8SMKu0431ZubX1jcyu/XdjZ3ds/sIuHbSUSiUkLCyZkN0CKMMpJS1PNSDeWBEUBI51gfDvzOw9EKir4vZ7ExI/QkNOQYqSN1LeL5WvoDYlWsFHx5Eiclft2yak6c8BV4makBDI0+/aXNxA4iQjXmCGleq4Taz9FUlPMyLTgJYrECI/RkPQM5Sgiyk/np0/hqVEGMBTSFNdwrv6eSFGk1CQKTGeE9EgtezPxP6+X6PDKTymPE004XiwKEwa1gLMc4IBKgjWbGIKwpOZWiEdIIqxNWgUTgrv88ipp16ruRfX8rlaq32Rx5MExOAEV4IJLUAcN0AQtgMEjeAav4M16sl6sd+tj0Zqzspkj8AfW5w/X/pJz</latexit>

A H(⇢)

<latexit sha1_base64="KgHIRbrE5dDoVgZT0SekBCw9e/g=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSxC3ZREfC2LbtxZpS9oQplMJ+3QmUmYmQgl1I2/4saFIm79C3f+jdM0C209cOFwzr3ce08QM6q043xbC4tLyyurhbXi+sbm1ra9s9tUUSIxaeCIRbIdIEUYFaShqWakHUuCeMBIKxheT/zWA5GKRqKuRzHxOeoLGlKMtJG69r6EXp9oBT2O9ECF6f3tuFsv8+OuXXIqTgY4T9yclECOWtf+8noRTjgRGjOkVMd1Yu2nSGqKGRkXvUSRGOEh6pOOoQJxovw0+2AMj4zSg2EkTQkNM/X3RIq4UiMemM7szllvIv7ndRIdXvopFXGiicDTRWHCoI7gJA7Yo5JgzUaGICypuRXiAZIIaxNa0YTgzr48T5onFfe8cnZ3Wqpe5XEUwAE4BGXgggtQBTegBhoAg0fwDF7Bm/VkvVjv1se0dcHKZ/bAH1ifP4c7lk8=</latexit>

r  ROT (m)

<latexit sha1_base64="6Pz+s+vc98zcUvLE4If4VTILdio=">AAAB+HicbVDLSgNBEOyNrxgfWfXoZTAInsKu+DoGvXjwEME8IFnC7GQ2GTI7s8zMKnHJl3jxoIhXP8Wbf+Mk2YNGCxqKqm66u8KEM20878spLC2vrK4V10sbm1vbZXdnt6llqghtEMmlaodYU84EbRhmOG0niuI45LQVjq6mfuueKs2kuDPjhAYxHggWMYKNlXpuuXsjxUCxwdBgpeRDz614VW8G9Jf4OalAjnrP/ez2JUljKgzhWOuO7yUmyLAyjHA6KXVTTRNMRnhAO5YKHFMdZLPDJ+jQKn0USWVLGDRTf05kONZ6HIe2M8ZmqBe9qfif10lNdBFkTCSpoYLMF0UpR0aiaQqozxQlho8twUQxeysiQ6wwMTarkg3BX3z5L2keV/2z6untSaV2mcdRhH04gCPw4RxqcA11aACBFJ7gBV6dR+fZeXPe560FJ5/Zg19wPr4BQ1iTgA==</latexit>

=)

Th. 2

<latexit sha1_base64="6Pz+s+vc98zcUvLE4If4VTILdio=">AAAB+HicbVDLSgNBEOyNrxgfWfXoZTAInsKu+DoGvXjwEME8IFnC7GQ2GTI7s8zMKnHJl3jxoIhXP8Wbf+Mk2YNGCxqKqm66u8KEM20878spLC2vrK4V10sbm1vbZXdnt6llqghtEMmlaodYU84EbRhmOG0niuI45LQVjq6mfuueKs2kuDPjhAYxHggWMYKNlXpuuXsjxUCxwdBgpeRDz614VW8G9Jf4OalAjnrP/ez2JUljKgzhWOuO7yUmyLAyjHA6KXVTTRNMRnhAO5YKHFMdZLPDJ+jQKn0USWVLGDRTf05kONZ6HIe2M8ZmqBe9qfif10lNdBFkTCSpoYLMF0UpR0aiaQqozxQlho8twUQxeysiQ6wwMTarkg3BX3z5L2keV/2z6untSaV2mcdRhH04gCPw4RxqcA11aACBFJ7gBV6dR+fZeXPe560FJ5/Zg19wPr4BQ1iTgA==</latexit>

=)Th. 1

OW-CPA Th. 3

Sec. 4

Sec. 4

Sec. 4

Th. 5 + 6

Th. 4

Fig. 1. Bird’s eye view of development. Equivalence symbols represent functional correctness results. Implication
symbols represent security and cryptographic correctness (failure probability) proofs.

all) common reasoning principles for QROM [24], and has been used for proving QROM security of the
Full Domain Hash signature and of the Gentry-Peikert-Vaikuntanathan identity-based encryption [33].
Unfortunately, the current version of EasyPQC cannot be used for proving QROM security of Kyber.
qrhl-tool is a tool for mechanizing security proofs of classical and quantum cryptographic constructions.
The tool, which is implemented on top of the Isabelle proof assistant, is based on a relational Hoare
logic for quantum programs [64]. The tool has been used for proving security of the same variant of the
Fujisaki-Okamoto transformation we use in this paper [65] in the QROM, but it establishes incomparable
bounds to our classical proof. Furthermore, these proofs are not connected to a security proof of a
Kyber or ML-KEM specification, nor to an implementation. Finally, recent work, see e.g. [26], studies
post-quantum applicability of automated tools for protocol verification. However, these tools cannot be
used for verifying ML-KEM.

2 Bird’s Eye View of Development

Figure 1 depicts the global structure of the formally verified development we present throughout the
paper. We briefly describe it next.

On the top left, we show the results described in Section 4. There we prove that K-PKE, the public-key
encryption scheme underlying Kyber and ML-KEM is IND-CPA secure and δ-correct. The IND-CPA
proof shows that security holds under a variant of the MLWE assumption, which we call Hashed MLWE,
where the matrix A is sampled using a deterministic procedure H, which is seeded with a uniform random
seed ρ. The δ-correctness proof shows that the probability of a decryption failure can be upper-bounded
by computing the probability of a noise distribution (independently of any adversarial action) producing
a value that exceeds a predefined threshold.

On the right-hand side of the diagram, we show the functional correctness results described in Section 7:
two Jasmin implementations of ML-KEM-768 are proved to be functionally equivalent to the ML-KEM
specification in EasyCrypt. These implementations then give rise to functionally correct and constant-time
assembly code via the Jasmin compiler. All of the artifacts on the right-hand side of the diagram are
machine-checked representations of the ML-KEM draft standard at different levels of abstraction. In
particular, they use SHA3-512 to compute the random coins r and the shared key K required by the FOK

transform. Furthermore, they use a complex sampling procedure SampleXOF based on the SHAKE-128
XOF to generate a random-looking matrix from a small seed ρ.

The middle of the diagram shows machine-checked cryptographic proofs for ML-KEM, as described in
Sections 5 and 6. At the top, MLKEM_Op represents the ML-KEM specification with two modifications.
The first modification moves the proof to the Random Oracle Model by idealizing the SHA3-512 hash
computation for the fixed input size that is used when computing the Fujisaki-Okamoto hash. The
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second modification is merely syntactic to facilitate the machine-checked proof: we replace the sampling
procedure SampleXOF with an operator we simply call H. This second modification does not introduce
a gap between the ML-KEM specification and the security proof: we prove that the semantics of H is
precisely the semantics of SampleXOF. This allows, in particular, basing our entire proof on the variant of
Hashed MLWE that results from fixing H in this way. We guarantee that, indeed, the idealization of
SHA3-512 is the only difference between MLKEM_Op and the ML-KEM specification by showing that
the two are equivalent when the RO is simply taken to be SHA3-512.

As shown in the middle of the diagram, in Section 6 we prove that the IND-CCA security of MLKEM_Op
follows from the IND-CCA security of a fully instantiated FOK transform (Theorems 5 and 6). A full
instantiation means plugging in the results described above for K-PKE proved in Section 4 and making
the algebraic setting concrete for a set of ML-KEM parameters. FOK uses a single random oracle to
obtain random coins r and the session key K, whereas the modularized Fujisaki-Okamoto transform
T ◦ U̸⊥m uses two independent random oracles to do this. We also prove in Section 5, that the IND-CCA
security of FOK follows from the IND-CCA security of T◦ U̸⊥m (Theorem 4). In turn, the security of T◦U ̸⊥m
relies on the proof of the T transform (Theorem 2). This theorem shows that one can obtain a OW-secure
derandomized public-key encryption scheme starting from an IND-CPA secure one. Finally, as shown on
the bottom left of the diagram, we also prove Theorem 1—not used in the proof of ML-KEM—showing
that the T transform also works when applied to a randomized OW-secure public-key encryption scheme.

Artifact. This paper is accompanied by an artifact that permits independently checking the EasyCrypt
proofs. The artifact includes a Readme with instructions and the file locations for the EasyCrypt lemmas
matching theorems in this paper.

3 Preliminaries

We now briefly discuss the mechanized reasoning tools we use for our proofs and give an overview of
ML-KEM and how it evolved from Kyber. The cryptographic definitions and notation we use are fairly
standard and are given in Appendix A.

3.1 The EasyCrypt proof assistant

EasyCrypt15 [16] is a proof assistant for formalizing proofs of cryptographic properties. Its primary feature
is the Probabilistic Relational Hoare Logic (pRHL), which we use throughout to prove equivalences
between games, sometimes conditioned by the non-occurrence of a failure event. We call such conditional
equivalence steps up-to-bad reasoning in later section. pRHL is designed to support reasoning about
equivalences of probabilistic programs while reasoning only locally (within oracles) and without reasoning
about the distribution of specific variables—essentially keeping track only of the fact that variables in
one program are distributed identically to variables in the other, but not keeping track of what that
distribution may be. This logic has proved highly expressive for the bulk of cryptographic proof work.
However, some steps require more global reasoning (about the entire execution) or keeping track of the
distribution of individual variables. Logical rules to support such reasoning steps are implemented in
EasyCrypt, but are often unwieldy to apply in concrete context. The EasyCrypt team has, over the years,
developed a number of generic libraries that abstract those more complex reasoning rules into “game
transformations” or equivalence results that can be instantiated as part of other proofs.

Our proof makes extensive use of three of those generic libraries, which we outline below and discuss
more in depth in Appendix B:

plug-and-pray provides a formalized generic argument for bounding the security loss of reductions that
guess an instance, session or query (among a bounded-sized set) will lead to a successful run;

hybrid provides a formalized and generic argument for bounding the distance between two games that
differ only in one oracle, but where the transition must be done query-by-query for the purpose of the
proof;

PROM provides a generic argument, initially intended to apply to programmable random oracles, that
encapsulates the widely used argument that a “value is random and independent of the adversary’s
view”.

15 https://easycrypt.info

https://easycrypt.info
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Algorithm 1 K-PKE.KeyGen(): key generation

Output: Secret key sk ∈ Rk
q and public key pk ∈ R̂q

k × {0, 1}256
1: d←$ {0, 1}256
2: (ρ, σ)← G(d)
3: Â← Parse(XOF(ρ))
4: s, e← CBDη1(PRFσ) ▷ s, e ∈ Rk

q

5: ŝ← NTT(s)
6: ê← NTT(e)
7: t̂← Â ◦ ŝ+ ê
8: return sk = ŝ and pk = (t̂, ρ)

Algorithm 2 K-PKE.Enc(pk ,m): encryption
Input: Public key pk = (t̂, ρ) ∈ Rk

q × {0, 1}256, message m ∈ {0, 1}256
Output: Ciphertext c ∈ Rk

du ×Rdv

1: r ←$ {0, 1}256
2: Â← Parse(XOF(ρ))
3: r← CBDη1(PRFr) ▷ r ∈ Rk

q

4: e1, e2 ← CBDη2(PRFr) ▷ e1 ∈ Rk
q , e2 ∈ Rq

5: r̂← NTT(r)
6: u← NTT−1(ÂT ◦ r̂) + e1

7: v ← NTT−1(t̂T ◦ r̂) + e2 + ToPoly(m)
8: c1 ← Compressq(u, du)
9: c2 ← Compressq(v, dv)

10: return c = (c1, c2)

3.2 Background on ML-KEM

From Kyber to ML-KEM. The original NIST PQC round-1 submission of Kyber described the
scheme as a two-stage construction consisting of a module-lattice instantiation of the IND-CPA-secure
LPR encryption scheme [47,48] and a “slightly tweaked” Fujisaki-Okamoto (FO) transform [31,32] to
build an IND-CCA-secure KEM. The reduction linking IND-CPA security of the encryption scheme to
MLWE was not spelled out in the NIST submission document. For the proof of IND-CCA security of the
full scheme the submission mostly referred to previous work on the security of the FO transform, most
notably [40] and [59]. Less than two months after the submission documents were made public, D’Anvers
pointed out16 that there are major obstacles to proving IND-CPA security from MLWE in Kyber. The
reason is that unlike the original LPR scheme, round-1 Kyber included a public-key-compression step,
which invalidates an assumption in the LPR proof. As a consequence, the Kyber submission team decided
to tweak the submission for round 2 of NIST PQC by removing the public-key compression (and adjusting
some other parameters to obtain similar performance); some more tweaks to parameters were proposed
for the round-3 version of Kyber.

Through the further course of the NIST PQC project, issues were identified also in the second part of
Kyber’s security argument, which establishes IND-CCA security through a “tweaked” FO transform.
It turned out that existing QROM proofs of the FO transform, e.g., from [40], did not apply and that
proving the particular variant of the FO transform is not straightforward [34, Sec. 5.4]. Although Kyber’s
variant of the FO transform was eventually proven secure [50,15], NIST decided, after discussion on the
pqc-forum mailing list, to revert to a more “vanilla” version of the FO transform for ML-KEM.

16 See https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/PX_Wd11BecI.

Algorithm 3 K-PKE.Dec(sk , c): decryption
Input: Secret key sk = ŝ ∈ Rk

q and ciphertext c = (c1, c2) ∈ Rk
du ×Rdv

Output: Message m ∈ {0, 1}256
1: ũ← Decompressq(c1, du)
2: ṽ ← Decompressq(c2, dv)

3: m← ToMsg(ṽ − NTT−1(ŝT ◦ NTT(ũ)))
4: return m

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/PX_Wd11BecI
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Algorithm 4 ML-KEM.KeyGen(): key generation

Output: Secret key sk = (sk ′, pk ,H(pk), z) ∈ Rk
q × (R̂q

k × {0, 1}256)× {0, 1}256 × {0, 1}256 and public key
pk ∈ R̂q

k × {0, 1}256
1: (pk , sk ′)← K-PKE.KeyGen()
2: z ← {0, 1}256
3: sk ← (sk ′∥pk∥H(pk)∥z)
4: return (sk , pk)

Algorithm 5 ML-KEM.Encap(pk): encapsulation

Input: Public key pk ∈ R̂q
k × {0, 1}256

Output: Ciphertext c ∈ Rk
du ×Rdv and shared key K ∈ {0, 1}256

1: m← {0, 1}256
2: (K, r)← G(m∥H(pk)) ▷ (K, r) ∈ {0, 1}256 × {0, 1}256
3: c← K-PKE.Enc(pk ,m, r)
4: return (c,K)

Our mechanized proof validates the final outcome of these evolutions, which led to the draft specification
of ML-KEM. In our models we do not include the public-key validation step at the beginning of
encapsulation, which NIST introduced in the ML-KEM draft standard. The reason is that, as far as we
know, this is the last major open discussion topic for the final standard and it seems rather unlikely that
it will be included in the final version of ML-KEM.

Technical description of ML-KEM. We give high-level algorithmic descriptions of K-PKE, the
IND-CPA-secure public-key encryption scheme underlying ML-KEM, in Algorithms 1 to 3 and of the
full IND-CCA-secure KEM in Algorithms 4 to 6. For a more implementation-oriented description that
operates on byte arrays, see [54, Algs. 12–14].

ML-KEM works in the ring Rq = Zq[X]/(Xn + 1) with q = 3329 and n = 256. The core operations
are on small-dimension vectors and matrices over Rq; the dimension depends on the parameter k, which is
different for different parameter sets of ML-KEM: ML-KEM (NIST security level 1) uses k = 2, ML-KEM
(NIST security level 3) uses k = 3, and ML-KEM (NIST security level 5) uses k = 4. We denote elements
in Rq with regular lower-case letters (e.g., v); vectors over Rq with bold-face lower-case letters (e.g., u),
and matrices over Rq with bold-face upper-case letters (e.g., A).

In these descriptions, XOF is an extendable output function that in ML-KEM is instantiated with
SHAKE-128 [53]. Parse interprets outputs of XOF as sequence of 12-bit unsigned integers and runs rejection
sampling to obtain coefficients that look uniformly random modulo q. The function H is instantiated
with SHA3-256, G is instantiated with SHA3-512 and J is instantiated with SHAKE256 with output
length fixed to 32 bytes. CBDη denotes sampling coefficients from a centered binomial distribution
with parameter η;17 extension from coefficients to (vectors of) polynomials is done by sampling each
coefficient independently from CBDη. For example, ML-KEM-768 uses η1 = η2 = 2. The sampling routine
is parameterized by a pseudorandom function PRFk with key k. NTT is the number-theoretic transform
of a polynomial in Rq. Both input and output of NTT can be written as a sequence of 256 coefficients in
Zq and typical implementations perform the transform inplace. However, output coefficients do not have
any meaning as a polynomial in Rq. We therefore denote the output domain as R̂q; we apply the same

17 This means we have B(n, p) with p = 1/2, n = 2η and expected value shifted to 0.

Algorithm 6 ML-KEM.Decap(c, sk): decapsulation

Input: Ciphertext c ∈ Rk
du ×Rdv and secret key sk = (sk ′, pk ,H(pk), z) ∈ Rk

q × (R̂q
k × {0, 1}256)× {0, 1}256 ×

{0, 1}256
Output: Shared key K ∈ {0, 1}256
1: m′ ← K-PKE.Dec(sk ′, c)
2: (K′, r′)← G(m′∥H(pk))
3: c′ ← K-PKE.Enc(pk ,m′, r′)
4: K− ← J(z∥c)
5: if c = c′ then K ← K′ else K ← K− ▷ Requires branch-free conditional
6: return K
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notation for elements in R̂q, e.g., û = NTT(u). Application of NTT to vectors and matrices over Rq is
done element-wise. Compressq compresses elements in Rq (or Rk

q ) by rounding coefficients to a smaller
modulus dv (or du). Decompressq is an approximate inverse of Compressq. ToPoly maps 256-bit strings to
elements in Rq by mapping a zero bit to a zero coefficient and mapping a one bit to a q

2 coefficient; ToMsg
rounds coefficients to bits to recover a message from a noisy version of a polynomial generated by ToPoly.

4 K-PKE correctness and IND-CPA security

Our proof of ML-KEM has the same structure as proposed originally for Kyber in [25]. It starts from an
IND-CPA public-key encryption scheme and then instantiates a variant of the Fujisaki-Okamoto transform.
In this section we look at the underlying public-key encryption scheme, which we call K-PKE as in the
ML-KEM draft [54]. We prove IND-CPA security down to a variant of the MLWE assumption; we prove
correctness down to the probability of a statistical event that is defined over the randomness space of
public-key generation and encryption but, crucially, not the adversary’s.

Our presentation in this section uses EasyCrypt notation because the specifications and theorem
statements are relatively non-verbose. Later in the paper, we switch to a more concise mathematical
notation and point to the artifact for the EasyCrypt formulations. In our presentation we highlight how
EasyCrypt allows us to construct the proof modularly. The specification of K-PKE over which we carry
out the proof is parametric on all noise distributions, serialization and compression operations, and vector
and matrix dimensions. This means it applies to all ML-KEM variants. However, to complete the proof
we need a series of hypotheses on these abstract parameters. These are stated as axioms at this level,
which means that EasyCrypt will force us to discharge them as proof obligations when we want to use
these results for concrete instantiations. Indeed, as we will see in Section 6, all the axioms in this section
are proved to hold when we apply these general results to the EasyCrypt specification of ML-KEM-768.

4.1 The Hashed Module LWE assumption

The computational hardness assumption underlying the security of K-PKE is formalized in our development
by first considering an abstract ring R and matrices and vectors over elements in R. We obtain these
types, called matrix and vector, and operations over them directly from the Matrix theory that exists in the
EasyCrypt library, and then define distributions over them as follows.

op [lossless uniform full] duni_R : R distr.
op [lossless] dshort_R : R distr.
op duni = dvector duni_R.
op dshort = dvector dshort_R.

Here, the lossless, uniform and full attributes automatically generate axioms that represent assumptions
on these distributions. A full uniform distribution assigns the same non-zero probability to all values in
the support type. In a lossless distribution, the probability of the trivial event true is 1.18 The dvector
operator generalizes a distribution D over ring elements to distributions over (column) vectors by defining
distributions that sample each vector element independently from D. Note that we have two distributions
over ring elements and vectors thereof: the uniform distribution and an arbitrary distribution that we
call short. In the variant of the MLWE assumption used in K-PKE this corresponds to sampling ring
elements by choosing each polynomial coefficient independently from a centered binomial distribution
with p = 1/2 and n = 2 or n = 3, depending on the security parameters.

We define the relevant variant of the MLWE problem, which we call MLWE_H for Hashed MLWE, using
the experiment in Figure 2 (left). There are several differences to the standard MLWE assumption [25].
First and foremost, matrix A is not sampled uniformly at random, but rather created using a deterministic
sampling procedure H that expands A from a small seed.

type seed.
op H : seed → matrix.
op [lossless] dseed : seed distr.

Sampling A in this way is what K-PKE does in practice and, since our purpose is to connect our security
proof to an exact specification of ML-KEM (and from there to an implementation) we cannot go around
this aspect as in [46]. Note that, as in [44], we could still prove the security of K-PKE down to the

18 EasyCrypt’s distr type represents subdistributions.
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module MLWE_H(Adv : HAdv_T) = {
proc main(tr b : bool) : bool = {

sd $←− dseed; s $←− dshort; e $←− dshort;
_A ← if tr then (H sd)T else (H sd);
u0 ← _As + e;

u1 $←− duni;

t $←− duni;

e' $←− dshort_R;
v0 ← tTs + e';

v1 $←− duni_R;
b' ← Adv.guess(sd, t, if b

then (u1,v1)
else (u0,v0));

return b';
}

}.

module MLWE_PKE_HASH_PROC : Scheme = {
proc kg() : pkey ∗ skey = {

sd $←− dseed; s $←− dshort; e $←− dshort;
t ← (H sd)s + e;
return (pk_encode (sd,t),sk_encode s);

}

proc enc(pk : pkey, m : plaintext) : ciphertext = {
(sd,t) ← pk_decode pk;

r $←− dshort; e1
$←− dshort; e2

$←− dshortR;
u ← (H sd)Tr + e1;
v ← tTr + e2 + (m_encode m);
return c_encode (u,v);

}

proc dec(sk : skey, c : ciphertext) : plaintext option = {
(u,v) ← c_decode c;
return (Some (m_decode (v − (sk_decode skTu))));

} }.

Fig. 2. Hashed MLWE assumption (left). K-PKE (right).

standard notion of MLWE by assuming that H is a random oracle. However, this would create another
problem: when using K-PKE to instantiate the FO transform in the next section in a modular way, we
must have a version of K-PKE that is derandomizeable. Modeling H as a random oracle would make it
impossible to plug-in the K-PKE security and correctness results (where H is a random oracle) to the FO
formalization (where H must be a deterministic function). We note that, in practice, the computational
assumption underlying ML-KEM is closer to the one we formalize here: one assumes that MLWE holds
when A is expanded via a deterministic rejection-sampling procedure based on SHAKE-256.

Another minor difference in our formalization of MLWE_H to the standard MLWE assumption is that,
rather than having an MLWE assumption that allows a matrix with a configurable number of rows, our
formalization of MLWE fixes A to be square (for some dimensions k × k) and then consider an additional
row tT explicitly. This allows us to have a simpler formalization and reuse our MLWE_H experiment
for both the case where we only need to assume that the output vector u is pseudorandom, and the
case where we need to assume that both u and an additional ring element v are (jointly) pseudorandom.
Finally, because we sample A as H(sd), we need to have two variants of the definition for the case where
the challenge is computed over A and AT.

4.2 The K-PKE construction.

K-PKE [25] is a variant of a construction introduced by Lyubashevsky, Peikert, and Regev [47,49]
(LPR). We present our (abstract) specification in Figure 2 (right). This construction introduces several
new operators: m_encode and m_decode that map plaintexts to ring elements and vice-versa; pk_encode
and pk_decode that represent serialization procedures for the public key; sk_encode and sk_decode that
represent serialization procedures for the secret key; and, finally, c_encode and c_decode that represent a
combination of compression by rounding and serialization for K-PKE ciphertexts. For the security of
this construction what these operators do is irrelevant: the IND-CPA security experiment only uses the
encoding operators and, if they lose information, this can never hurt security. However, for correctness,
we require additional properties that we will introduce later.

Security of K-PKE. We briefly discuss how we prove that K-PKE is IND-CPA secure under the
standard EasyCrypt library definition.19 This formalizes the notion given in Figure 16. The security proof
uses the Hashed MLWE assumption twice to carry out two game hops. The first transformation modifies
the key-generation procedure to obtain MLWE_PKE_HASH1 as follows:

proc kg() : pkey ∗ skey = {

sd $←− dseed; s $←− dshort; t $←− duni; return (pk_encode (sd,t), sk_encode s); }

In this new game, the t component in the public key is now a uniform vector. We construct an attacker
B1 against the Hashed MLWE game that bridges the game hop by running the K-PKE attacker A in a
way that perfectly interpolates between the two games. In particular we show:

Pr[CPA[MLWE_PKE_HASH_PROC,A]( )⇒ 1] = Pr[MLWE_H[B1(A)](false, false)⇒ 1]
Pr[CPA[MLWE_PKE_HASH1,A]( )⇒ 1] = Pr[MLWE_H[B1(A)](false, true)⇒ 1]

19 Line 24 in https://github.com/EasyCrypt/easycrypt/blob/main/theories/crypto/PKE.ec

https://github.com/EasyCrypt/easycrypt/blob/main/theories/crypto/PKE.ec
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Here, notation M[·] means the parametrization of module/algorithm M with one or more modules/algo-
rithms. In the proof, B1 attacks Hashed MLWE in the version where the matrix is not transposed (first
argument to MLWE_H) and it just uses the first part of the Hashed MLWE challenge in its attack, which
is a vector, and simply discards the additional ring element.

The next modification to the game constructs MLWE_PKE_HASH2 where the encryption procedure
now simply uses uniformly distributed values to construct the ciphertext as follows:

proc enc(pk : pkey, m : plaintext) : ciphertext = {
_A ← m_transpose (H (pk_decode pk)1);

u $←−duni; v $←−duni_R;
return c_encode (u,v + m_encode m); }

Using a similar strategy as before, but reducing to the variant of MLWE_H that uses a transposed
matrix, we obtain

Pr[CPA[MLWE_PKE_HASH1,A]( )⇒ 1] = Pr[MLWE_H[B2(A)](true, false)⇒ 1].
Pr[CPA[MLWE_PKE_HASH2,A]( )⇒ 1] = Pr[MLWE_H[B2(A)](true, true)⇒ 1].

Adversary B2 uses the full Hashed MLWE challenge to justify the pseudorandomness of the u and v
ciphertext components. Finally, we can use the properties of abstract ring R to show that the ciphertext
provided to the adversary is uniformly distributed and therefore independent of m, so that:

Pr[CPA[MLWE_PKE_HASH2,A]( )⇒ 1] = 1/2 .

The security result states that, for all A, we have:

Pr[CPA[MLWE_PKE_HASH_PROC,A]( )⇒ 1]− 1/2 =

Pr[MLWE_H[B1(A)](false, false)⇒ 1]− Pr[MLWE_H[B1(A)](false, true)⇒ 1]

+ Pr[MLWE_H[B2(A)](true, false)⇒ 1]− Pr[MLWE_H[B2(A)](true, true)⇒ 1].

Correctness of K-PKE. The correctness experiment we use is the standard definition when analyzing
post-quantum secure KEMs using the Fusijaki-Okamoto transform and stated in [40,41].20 This is given
in Figure 14.In this experiment, a correctness adversary gets a freshly challenged key pair, including both
public and secret key, and tries to find a message m for which the encryption scheme fails to decrypt
correctly, i.e., encryption of m followed by decryption does not produce m. The advantage the adversary
is given by δ, an upper bound on the failure probability, so that the probability of correct decryption is
above 1− δ.

The correctness proof for K-PKE outlined in [25] consists of two steps:

1. Showing that δ can be expressed as the probability that a (complex) noise distribution produces a
value above a predefined threshold.

2. Computing the aforementioned probability using an analytic procedure implemented in Python and
given in [25].21

As noted in [25] and [46], the connection between points (1) and (2) for Kyber and ML-KEM is, so
far, heuristic. Indeed, the Python script given in (2) simplifies the analysis of the failure probability by
assuming that the distribution of errors introduced by compression can be computed as if the compressed
values come from a uniform distribution. This seems to follow from the Hashed MLWE assumption but,
in fact and to the best of our knowledge, a formal proof that justifies the heuristic bound has not been
given in the literature.22 Our proof of correctness establishes point (1). We state and prove the following
claim for all correctness adversaries A:

Pr[CorrectnessAdv[MLWE_PKE_HASH_PROC, A]( )⇒ 1] ≤
Pr[CorrectnessBound( )⇒ 1].

The CorrectnessBound experiment is defined as follows. This experiment has no adversary: it computes a noise
value that follows a particular distribution and checks whether this noise value is above a certain bound—
concretely, the check is whether any coefficient of the noise polynomial is above max_noise−cv_bound_max.
20 As of this work, this is also included in the standard EasyCrypt library: Line 172 in https://github.com/

EasyCrypt/easycrypt/blob/main/theories/crypto/PKE.ec
21 The Python script was provided with the Kyber submission to the NIST Post Quantum competition: https:

//github.com/pq-crystals/security-estimates/blob/master/Kyber.py
22 A reduction to MLWE is possible by expressing the failure probability as a disjunction of events that are simpler

to analyze, but this results in significantly worse bounds than the one computed heuristically.

https://github.com/EasyCrypt/easycrypt/blob/main/theories/crypto/PKE.ec
https://github.com/EasyCrypt/easycrypt/blob/main/theories/crypto/PKE.ec
https://github.com/pq-crystals/security-estimates/blob/master/Kyber.py
https://github.com/pq-crystals/security-estimates/blob/master/Kyber.py
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lemma noise_exp_val _A s e r e1 e2 m :
noise_exp _A s e r e1 e2 m =
let t = _As + e in
let u = _ATr + e1 in
let v = tTr + e2 + (m_encode m) in
let cu = rnd_err_u u in
let cv = rnd_err_v v in

eTr − sTe1 − sTcu + e2 + cv.

module CorrectnessAdvNoise(A : CORR_ADV) = {
proc main() = {

sd $←− dseed; _A ← H sd;

r $←− dshort; s $←− dshort; e $←− dshort;

e1
$←− dshort; e2

$←− dshort_R;
m ← A.find(pk_encode (sd,_As + e),sk_encode s);
n ← noise_exp _A s e r e1 e2 m;
return (¬under_noise_bound n max_noise);

}
}.

Fig. 3. Noise expression (left) and restated correctness experiment (right).

module CorrectnessBound = {
proc main() = {

sd $←− dseed; _A ← H sd; r $←− dshort; s $←− dshort;

e $←− dshort; e1
$←− dshort; e2

$←− dshort_R;
u ← m_transpose _Ar + e1;
cu ← rnd_err_u u;
n ← eTr − sTe1 + e2 − sTcu.
return (¬under_noise_bound n (max_noise − cv_bound_max));

} }.

So, in short, what our theorem states is that K-PKE is δ-correct according to the definition in Appendix A,
where δ is the probability that the noise distribution, described in experiment CorrectnessBound, produces
a value that is above a certain threshold. We explain how we derive this result next. For this, we need to
introduce additional definitions and hypotheses. The first requirement is that the serialization operators
for public keys and secret keys commute, i.e., that decoding inverts encoding.

axiom pk_encodeK : ∀ pk, pk_decode (pk_encode pk) = pk.
axiom sk_encodeK : ∀ sk, sk_decode (sk_encode sk) = sk.

Next we need to describe the errors introduced by compression and decompression of the ciphertext
as additive noise. We do this by introducing two operators that have precisely this semantics. Note that
the semantics of these operators is easy to define when c_encode, c_decode and the ring R are concrete.

op rnd_err_v : R → R.
op rnd_err_u : vector → vector.

axiom encode_noise u v :
c_decode (c_encode (u,v)) = (u + rnd_err_u u, v + rnd_err_v v).

Finally we need to fix an upper bound for the noise, below which it is guaranteed that the decoded
message matches the originally encrypted message.

op max_noise : int.
op under_noise_bound : R → int → bool.

axiom good_decode m n :
under_noise_bound n max_noise ⇒ m_decode (m_encode m + n) = m.

With these operators we can define the full noise expression for K-PKE and restate the correctness
experiment in terms of a noise threshold as in Figure 3.

In the next step of the correctness proof, we over-approximate the adversary’s winning probability by
splitting it as the sum of the probability of two (not necessarily disjoint) events. One event failprob2
corresponds to the possibility that the compression error associated with the v component in the ciphertext
(cv in the noise expression) is above a certain bound cv_bound. The other event failprob1 is that all the
other terms in the noise expression are above max_noise − cv_bound.

To remove the adversary’s influence in the probability of failure, we take the value of cv_bound that
guarantees failprob2 = 0. We call this cv_bound_max and note that, in practice, this is much smaller than
max_noise (around 10%).



12 Almeida et al.

type randomness.
op [uniform full lossless]drand :

randomness distr.
op prg_kg : randomness →

seed ∗ vector ∗ vector.
op prg_enc : randomness →

vector ∗ vector ∗ R.

op kg(r : randomness) : pkey ∗ skey =
let (sd,s,e) = prg_kg r in
let t = (H sd)s + e in

(pk_encode (sd,t),sk_encode s).

op enc(rr : randomness, pk : pkey, m : plaintext) : ciphertext =
let (sd,t) = pk_decode pk in
let (r,e1,e2) = prg_enc rr in
let u = m_transpose (H sd)r + e1 in
let v = tTr) + e2 + (m_encode m) in

c_encode (u,v).

op dec(sk : skey, c : ciphertext) : plaintext option =
let (u,v) = c_decode c in

Some (m_decode (v − (sk_decode sk)Tu)).

Fig. 4. De-randomized K-PKE.

op cv_bound_max : int.
axiom cv_bound_valid _A s e r e2 m :

s∈ dshort ⇒ e∈ dshort ⇒ r∈ dshort ⇒ e2 ∈ dshort_R ⇒
let t = _As + e in
let v = (tTr) + e2 + (m_encode m) in

under_noise_bound (rnd_err_v v) cv_bound_max.

At this point we can move to a correctness game where the probability of failure does not depend on the
adversary and is simply failprob1. This game is CorrectnessBound that we use in our theorem statement.
To summarize, we formally verify that K-PKE is δ-correct, according to the definition in Section A, for
δ = failprob1.

We finally note that by “maxing-out” the adversary’s contribution to the noise, we do not need to
consider the distribution of cv at all. However, the distribution of cu to the noise expression computed in
game CorrectnessBound still does not match the one in the heuristic computation proposed in [25], where
cu results from compressing a uniform u. Justifying this simplification using (Hashed) MLWE is not
immediate because r and e1 occur elsewhere in the noise expression, so an efficient reduction that does
not get r and e1 cannot check for the failure event.

4.3 Derandomizing K-PKE

Looking at the K-PKE specification in Section 3, we see that the key generation and encryption algorithms
take small random seeds as inputs and then use complex procedures to convert these seeds into the
required noise values. Note also that these procedures internally use hash functions that we will later
model as pseudorandom functions to expand the input seeds into longer sequences of pseudorandom bits.
To bridge this gap to the abstract specification of K-PKE that we introduced in this section, and also
to allow connecting K-PKE to the Fujisaki-Okamoto transform, we specify an alternative definition of
K-PKE that explicitly uses abstract deterministic procedures to expand small seeds of type randomness
into the required noise values. This is shown in Figure 4.

It is not hard to see that the correctness and security of derandomized K-PKE follow—and we prove
this in EasyCrypt—from the results we proved earlier in this section, under the assumption that prg_kg
and prg_enc produce distributions that are computationally close to the following ideal randomness
distributions.

op prg_kg_ideal = dseed `∗` dshort `∗` dshort.
op prg_enc_ideal = dshort `∗` dshort `∗` dshort_R.

Where d1 `∗` d2 represents the product of the distributions d1 and d2.
In the next section we discuss how we formalized the Fujisaki-Okamoto transform used in ML-KEM.

When we instantiate it, we will use the derandomized K-PKE we just defined. Then, in Section 6, when
we apply the result to a fully concrete specification of K-PKE, we prove that the procedures in ML-KEM
that instantiate prg_kg and prg_enc are indeed producing distributions computationally close to the
ideal ones, under the assumption that the underlying hash functions have standard pseudorandomness
properties. This will allow us to have a bound for ML-KEM expressed as a function of the Hashed MLWE
assumption, the δ-correctness of K-PKE as defined in the previous section, and the pseudorandomness of
algorithms in the SHA3 family.
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Enc1(pk,m):
1: c← Enc(pk,m;G(m))
2: return c

Dec1((pk, sk), c):
1: m′ ← Dec(sk, c)
2: if m′ = ⊥ or Enc(pk,m′;G(m′)) ̸= c
3: return ⊥
4: else return m′

Fig. 5. The T transform: algorithms for T[PKE,G] for PKE = (Gen,Enc,Dec). Gen1 runs Gen and sets the secret
key to be (pk, sk).

5 Formalizing the FO Transform used in ML-KEM

Hofheinz, Hövelmanns and Kiltz [40,41] (HHK) give a modular treatment of the Fujisaki-Okamoto (FO)
transform [31,32] that splits it into two constructions presented and analyzed independently: the T and
the U transforms.

The T transform (Fig. 5) constructs an actively OW-secure deterministic PKE scheme (active in the
sense that the adversary is given access to both a ciphertext validity oracle and to a plaintext checking
oracle—see Definition 1), from a passively secure probabilistic PKE scheme (one can start from IND-CPA
or OW-CPA). HHK [41, Theorems 3.1 and 3.2] bound the insecurity of this construction.

The U transform (Fig. 6) constructs an IND-CCA-secure KEM from a OW-secure PKE scheme (for
example, such as that constructed by T). It operates by encrypting (using the PKE scheme), a random
message m which is treated as a pre-key from which a shared key k is derived through a random oracle.
HHK describe four variants of U: U⊥, U ̸⊥, U⊥m and U̸⊥m. The superscript denotes whether rejection
when the underlying PKE fails to recover a pre-key is explicit (⊥), or implicit ( ̸⊥) (that is, it returns
a random-looking shared key instead of an error). The subscript indicates whether the key derivation
step includes only the pre-key m, or also the ciphertext (no subscript). HHK [41, Theorems 3.3-3.6]
demonstrate the IND-CCA security of the KEM resulting from the different versions of the U transform,
with varying one-wayness assumptions on the underlying PKE based on the U variant used. For example,
it is convenient to assume one-wayness in the presence of a ciphertext validity oracle when the KEM does
explicit rejection.

Each of the transforms uses a random oracle. Following HHK, in this section, we call these random
oracles G (used by T) and H (used by U). These are distinct from the oracles H and G used in other
sections, and in particular in the description of ML-KEM in Section 3.

Overview of our results on FO. ML-KEM can be seen as an instance of the composed transform
U̸⊥m ◦ T. However, we do not follow the purely modular proof structure introduced by HHK [40,41]. As
pointed out in various works [21,43], the abstraction boundary introduced between the T and U transforms
in [40,41] makes the proof of the U transform unnecessarily complex. For example, the U transform
requires a property called rigidity23 from the underlying PKE, which is guaranteed by the T transform
by construction.

In our formalization we consider the U ̸⊥m transform specifically in the case where it is composed
with the T transform. This eases some proof steps, in particular when query counting must across the
abstraction boundary.

5.1 The T transform

Let PKE = (Gen,Enc,Dec) be a derandomized (as in Section 4) public-key encryption scheme with
message space M and randomness space R, and G : M → R be a random oracle. The T transform
defines a new public-key encryption scheme PKE1 = T[PKE,G] = (Gen1,Enc1,Dec1), where algorithms
Gen1, Enc1 and Dec1 are shown in Figure 5.

Our formal verification of the ML-KEM IND-CCA security proof includes a machine-checked proof of
the following security and correctness theorem for the T transform.

Theorem 1. Assume PKE to be δ-correct and γ-spread. Then PKE1 = T[PKE,G] is (qG + 1) · δ-correct,
where qG is the number of random oracle queries placed by the correctness attacker. Furthermore, for any
OW-PCVA adversary B that issues at most qG queries to the random oracle G, qP queries to a plaintext

23 The PKE must guarantee consistent re-encryption unless decryption outputs ⊥.
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checking oracle Pco, and qV queries to a validity checking oracle Cvo, there exists a OW-CPA adversary
A whose running time is about that of B, and such that

AdvOW−PCVA
PKE1

(B) ≤ (qG + qP + 2) · δ + qV · 2−γ + (qG + qP + 1) · AdvOW-CPA
PKE (A)

The theorem statement differs from that given in HHK [40,41, Theorem 3.1] only in that there is an
extra additive δ term in the correctness bound, and an extra 2 · δ additive term in the security bound.
In both cases, the high-level proof is identical to those given by HHK, except for the fact that our
δ-correctness reductions make one additional call to the random oracle before terminating, to ensure that
a specific message is in the random oracle table. This simplifies some intermediate steps in the proof. We
sketch the proof next, highlighting the steps that were more challenging to formalize in EasyCrypt.

Proof (Formalization Sketch). The correctness proof, which takes a paragraph to write [40,41], is surpris-
ingly involved in EasyCrypt. Its intuition is easy to understand: if the adversary finds a correctness error
for the T transform, then there must be some message in the random oracle table for which the underlying
PKE has failed. Writing this in game-based form requires: 1) wrapping the correctness adversary to ensure
the problematic message is in the random oracle table; 2) guessing which of the adversary’s queries to the
random oracle will be problematic; 3) proving that, if a correct guess is made, the probability of error
in T is the same as in the base PKE. Step 3) is particularly laborious in EasyCrypt: it entails moving a
randomness sampling that occurs due to an adversarial call to the random oracle, in order to place it at
the beginning of the game. This aligns the problematic sampling with the single randomness sampling
that occurs in the correctness game for PKE. An instance of the PROM library(App. B) forms the core of
the argument, but remains difficult to instantiate since we cannot predict the inputs the adversary will
query the random oracle on. Step (2) is performed using the generic plug-and-pray argument(App. B).

The security proof generally follows along the steps outlined by HHK [40,41]. The first game hop
(Game 1) changes the ciphertext validity oracle to reject all ciphertexts that cannot be reconstructed
using a prior query to G. This hop is summarized in the handwritten proof as following from a union
bound over all queries to the validity oracle. In EasyCrypt this must be expressed as a rather intricate
hybrid argument that handles one query at a time. This is formalized using the existing generic hybrid
argument.

The next step (Game 2) removes the use of the secret key from both the ciphertext validity and the
plaintext checking oracles. Both checks are replaced by re-encryption; an inconsistency can occur only if
the correctness of the T transform itself fails. This hop is formalized as a simple up-to-bad argument,
followed by (tightly) bounding the probability of the failure event—a failure in the correctness of T—using
the existing result on T correctness. This reduction places at most (qG + qP + 1) queries to its random
oracle, which justifies the δ-correctness term in the security theorem statement.

The final game (Game 3) is reached by declaring the adversary a loser if she queries the OW challenge
message to G—an event we call QUERY. Since the secret key is not used in any of the oracles at this
point, the probability of success in the final game follows from a simple reduction from the one-wayness of
the underlying PKE. Formally bounding the probability of the QUERY event is harder, since it once again
involves guessing which random-oracle query made by the adversary will actually break the one-wayness
of the underlying PKE. This is resolved using a similar argument as that deployed in the correctness
proof.

Combined, the two reductions from one-wayness yield the (qG + qP + 1) · AdvOW-CPA
PKE (A) term in the

theorem, where (qG + qP ) is the guessing loss. ⊓⊔

Theorem 1 does not directly apply to the ML-KEM construction, which starts from an IND-CPA
—rather than OW-CPA —encryption scheme. For this reason, we extend the proof of Theorem 1 to obtain
the analogous of [40,41, Theorem 3.2], as follows.

Theorem 2. Assume PKE to be δ-correct and γ-spread. Then, for any OW-PCVA adversary B that issues
at most qG queries to the random oracle G, qP queries to a plaintext checking oracle Pco, and qV queries
to a validity checking oracle Cvo, there exists an IND-CPA adversary A whose running time is about that
of B and such that

AdvOW−PCVA
PKE1

(B) ≤ (qG + qP + 3) · δ + qV · 2−γ +
2(qG + qP + 1)

|M| + 4 · AdvIND-CPA
PKE (A)

Proof (Sketch). There are two differences to the proof of Theorem 1, where we replace the reductions
from OW-CPA with reductions from IND-CPA. However, as discussed by HHK [40,41], here we can
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Gen2( ):
1: s←$K
2: (pk, sk)←$Gen1( )
3: return (pk, (sk, s))

Enc2(pk):
1: m←$M
2: c← EncG1 (pk,m)
3: k ← H(m)
4: return (k, c)

Dec2((sk, s), c):

1: m′ ← DecG1 (sk, c)
2: if m′ ̸= ⊥
3: return H(m′)
4: else return J(s, c)

Fig. 6. The U̸⊥
m transform.

proc kg() : pkey ∗ skey = {

(pk,sk) $←− kg;

k $←− dK;
return (pk, ((pk,sk),k));

}

proc enc(pk : pkey)
: ciphertext ∗ key = {

m $←− dplaintext;
c ←TT(HT).enc(pk,m);
k ← HU.get(m);
return (c,k); }

proc dec(sk : skey, c : ciphertext)
: key option = {

m' ← TT(HT).dec(sk[1],c);
if (m' = None) { k ← J sk[2] c; }
else { k ← HU.get(oget m'); }
return (Some k); }

Fig. 7. EasyCrypt specification of KEM̸⊥
m = U̸⊥

m[PKE1,H].

take advantage of the fact that IND-CPA is a stronger property than OW-CPA, in which the attacker
controls almost fully the encrypted message, to obtain a tighter reduction. In particular, IND-CPA security
implies a multi-guess version of one-wayness where the OW-CPA adversary outputs a list of guesses. This
(Lemma 1) is proved generically in EasyCrypt. It enables us to more tightly bound the probability of
QUERY, constructing a OW adversary that outputs the full contents of the random oracle table rather
than trying to guess which of its entries is the correct one. Our formalization is structured so that the
core arguments in the proofs of Theorem 1 and 2 are proven once and used twice, rather than repeated.

Remark. We use Lemma 1 twice to derive Theorem 2. The most intuitive use is in tightly bounding
QUERY, as we described above. However, we also use it to convert the OW adversary constructed for
Game 3 in the proof of Theorem 1 into an IND-CPA adversary in a black-box way by making it return a
list of size 1. This second use justifies the minor difference to the bound given by HHK [40,41].

5.2 The U̸⊥
m transform.

Let PKE1 = (Gen,Enc1,Dec1) be a deterministic PKE scheme that relies on a random oracle G. The U ̸⊥m
transform uses a new random oracle H :M→ {0, 1}n and a pseudorandom function J : K×M→ {0, 1}n,
where K is the key space, to define a new key encapsulation mechanism KEM ̸⊥m = U ̸⊥m[PKE1,H] =
(Gen2,Enc2,Dec2) whose algorithms are shown in Figure 6. We note an important difference to the
version of U given by HHK [40,41]: we use a PRF primitive rather than a random oracle to generate
(random-looking) shared keys when performing implicit rejection in decapsulation. This simplifies the
proof and implies that our bounds include PRF distinguishing advantage terms rather than concrete
probability terms to account for the possibility that the adversary exploits a weakness in J in its attack.

Also note that, if one does not fix a concrete instance for PKE1, then one must treat the interaction
with G generically in the proof. For example, in [40,41, Theorem 3.6], the bound is given as a function of
the maximum number of queries placed by Enc1 and Dec1 to G. This reasoning is possible in EasyCrypt,
but it would significantly complicate the proof. For this reason, we consider explicitly the case where
PKE1 = T[PKE,G]. The EasyCrypt specification of this composed transform is given in Figure 7. We
prove the following result in EasyCrypt, which is the analogue of HHK’s Theorem 3.6 [40,41] in this more
concrete setting.

Theorem 3. If PKE1 = T[PKE,G] is δ1(·)-correct, where δ1 is parameterized by the number of queries
of a correctness adversary to G, then KEM ̸⊥m is δ1(0) correct. Furthermore, for any IND-CCA adversary B
against KEM ̸⊥m, issuing at most qD queries to the decapsulation oracle, and at most qG, and qH queries to
its random oracles G and H respectively, there exist a OW-CPA adversary A against PKE1 and a PRF
adversary D against J whose running times are about that of B and such that

AdvIND-CCA
KEM̸⊥

m
(B) ≤ AdvOW-CPA

PKE1
(A) + AdvPRFJ (D) + 2 · δ1(qG + qH + 2)

Adversary A makes at most qH + qG + 1 queries to G.

Since the proof of Theorem 3.6 is not given in detail by HHK [40,41], we provide the full details. The
proof is close, at a high level, to that of Theorem 3.5 [40,41], with simplifications that come from our
specific setting.
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Game 1 Game 2
Decaps(c):
1: If c = c∗ return ⊥
2: m′ ← Dec(sk, c)
3: if m′ = ⊥ or Enc(pk,m′;G(m′)) ̸= c
4: return J(c)
5: else return H(m′)

H(m):
1: if m ∈ TH return TH[m]
2: k ←$ {0, 1}n
3: TH[m]← k
4: return k

Decaps(c):
1: If c = c∗ return ⊥
2: If c ∈ LD return LD[c]
3: k ←$ {0, 1}n
4: LD[c]← k
5: return k

H(m):
1: if m ∈ TH return TH[m]
2: c← Enc(pk,m;G(m))
3: if Dec(sk, c) = ⊥ or Dec(sk, c) ̸= m
4: bad2 ← 1
5: if m = m∗ and Dec(sk, c∗) = m∗

6: bad3 ← 1
7: if c ∈ LD then k ← LD[c]
8: else k ←$ {0, 1}n; LD[c]← k
9: TH[m]← k

10: return k

Fig. 8. Game 1 to Game 2 hop. In blue: bad event for Game 3.

Proof. The correctness proof is straightforward. The KEM correctness experiment (see Section A)has no
adversary, which means that we can construct an adversary against the correctness of PKE1 by simply
sampling a random message and outputting it. The resulting PKE1 correctness game is identical to the
KEM correctness game. Correctness follows from the fact that this PKE1 adversary makes no calls to G.

For the security proof, we construct a sequence of games. The first hop (Game 1) simply replaces J
with a random function, that is outside of the adversary’s view, with the same name J :M→ {0, 1}n.
The proof of this hop is a direct reduction (D in Theorem 3) from the PRF property of J.

The jump to Game 2 modifies the decapsulation oracle to rely only on a table LD. If the input
ciphertext c is not in that table, a fresh shared key k is sampled and returned to the adversary; LD is
updated to ensure consistent simulation of later queries. We also modify random oracle H to guarantee
consistency with LD: whenever a fresh message m is queried to H, we check whether its encryption under
PKE1 is in LD. If so, then we program H consistently with the corresponding entry in LD. Otherwise, we
lazily sampling a fresh key k, and update both LD and H. We also set a bad2 flag in oracle H whenever a
correctness error occurs in PKE that would lead to an inconsistency in LD, and declare the adversary a
loser if bad2 ever occurs. Figure 8 shows pseudocode for Games 1 and 2.

Interestingly, we can show that the probability of bad2 can be bounded by the correctness of PKE1,
which allows us to avoid performing once again an intricate reduction that involves dealing with random
oracle G. Our reduction places at most qH + qG + 2 queries to its G oracle: 2 queries from the KEM
challenge, qH queries to simulate the H oracle as in Game 2, and qG queries to forward A’s G queries. This
hop accounts for one of the δ1 terms in Theorem 3.

It is less straightforward to prove that the two games are, in fact, identical until bad2 occurs. It implies
proving that there are only two possible cases for entries in LD created during a call to the decapsulation
oracle:

– Those that produce keys that would correspond to implicit rejections;
– Those that would lead to the decapsulation oracle calling H to return a valid shared key, in which

case the patching done inside H leads to an adversarial view that is identical to the previous game.

We prove this step by working over a version of the games where random oracle G is eagerly sampled
as a random function that is fixed throughout both games—this is done by instantiating the PROM
library (Appendix B). Eagerly sampling random oracle outputs is important in the proof, as it allows us to
consider PKE1 as a fully deterministic scheme (rather than a scheme that merely appears deterministic),
which is one of the requirements of HHK’s Theorem 3.6 [40,41]. It is also very convenient from a formal
verification point of view, as it permits writing an intuitive, yet non-trivial, invariant that keeps track of
the case analysis above. (See Figure 9.) Note that this invariant only needs to hold until bad2 occurs. We
distinguish the variables in Games 1 and 2 by denoting them with {1} and {2}, respectively, and capture
with goodc(c, sk,G) the fact that a ciphertext is consistent under re-encryption (as defined by sk and G).
Here is a breakdown of the invariant point by point:
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∀c, c ∈ lD{2} ∧ ¬goodc(c, sk,G)⇒ c ∈ J{1} (1)
∧ ∀c, c ∈ J{1} ⇒ LD{2}[c] = J{1}[c] (2)
∧ ∀c, c ∈ LD{2} ∧ goodc(c, sk,G)⇒ Dec1(sk, c) ∈ H{1} (3)
∧ ∀m, m ∈ H{2} ⇒ Enc(m, pk,G(m)) ∈ LD{2} (4)

∧ LD{2}[Enc(m, pk,G(m))] = H{2}(m) (5)
∧ H{1}(m) = H{2}(m) (6)

∧ ∀m, m ∈ H{1} ∧m /∈ H{2} ⇒ LD{2}[Enc(m, pk,G(m))] = H{1}(m) (7)

Fig. 9. Invariant for Game 1 to Game 2 hop in the proof of Theorem 3.

GenK( ):
1: s←$K
2: (pk, sk)←$Gen( )
3: return (pk, (sk, s))

EncK(pk):
1: m←$M
2: (r, k)← GH(m)
3: c← Enc(pk,m; r)
4: return (k, c)

DecK((sk, s), c):
1: m′ ← Dec(sk, c)
2: (r, k)← GH(m′)
3: k′ ← J(s, c)
4: if m′ = ⊥ or Enc(pk,m′; r) ̸= c
5: return k′

6: else return k

Fig. 10. The FO transform used in ML-KEM, denoted FOK .

– Equations 1 and 2: There is a consistency between invalid ciphertexts in LD in Game 2 and the values
stored in J in Game 1.

– Equations 3,6 and 7: There is a consistency between valid ciphertexts in LD in Game 2 and the values
stored in H in Game 1, which may include ciphertexts not yet synchronized with H2 in Game 2.

– Equations 4,5,6: H2 in Game 2 guarantees consistency with H1 and Decaps in Game 1 via LD.

Game 3 is modified to create the challenge encapsulation without calling H, sampling the shared key
uniformly at random. In this game the adversary has no advantage in distinguishing the challenge
encapsulation key from a random one. This claim is relatively straightforward to verify in EasyCrypt
using probabilistic Hoare logic. It remains to bound the distance between Games 2 and 3.

Again, this is done by an up-to-bad argument: the two games are identical unless H is queried on the
message m∗ encrypted under PKE1 in the challenge encapsulation. This is shown as bad3 in Figure 8,
and we note that we actually capture a more fine-grained event that is closer to the winning condition
of the OW-CPA game for PKE1, as given in Definition 1. Proving that the two games are identical until
bad3 occurs is straightforward using the logics of EasyCrypt, and relying on the fact that the adversary
can only win at this point if no correctness error has occurred due to the action of bad2.

It remains to bound the probability of bad3 occurring, using a reduction from the OW security of PKE1.
The reduction, of course, cannot directly check whether bad3 has occurred using the secret key, and instead
simply checks whether a solution to the OW challenge is found by checking that Enc(pk,m;G(m)) = c∗.
There is therefore a small gap between the probability of the reduction winning the one-wayness game
and the occurrence of bad3: this occurs if the challenge ciphertext decrypts to something other than m∗.
We carry out a final up-to-bad analysis of our reduction, and show that it does break the one-wayness of
the underlying scheme, except if there is a correctness error in PKE1. This accounts for the remaining δ1
terms in Theorem 3. ⊓⊔

5.3 The FO transform in ML-KEM

The FO transform used in ML-KEM, FOK , is shown in Figure 10. It uses a single random oracle GH, but
it is identical to the KEM ̸⊥m transform considered above if one sees GH as the product of two independent
random oracles G× H. Using exactly this intuition, we prove the following theorem in EasyCrypt.

Theorem 4. Assume PKE to be δ-correct. Then FOK is δ-correct. Furthermore, for any IND-CCA
adversary B against FOK , issuing at most qD queries to the decapsulation oracle, and at most qGH queries
to its random oracle GH, there exist an IND-CPA adversary A against PKE and a PRF adversary D
against J s.t.

AdvIND-CCA
FOK

(B) ≤ AdvPRFJ (D) +Q · δ + 2(2qGH + 2)

|M| + 4 · AdvIND-CPA
PKE (A)
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for Q = 3 · (2qGH + 3) + 1 and the running times of A and D are about that of B.

Proof (Sketch). Both the correctness and the security statements follow from the correctness and security
of KEM ̸⊥m by direct reductions. These reductions perfectly simulate calls to GH by calling both G and
H. A simple invariant in EasyCrypt then permits showing that all values that B has seen in GH exactly
match those queried by the reduction to G and H. Furthermore, this invariant is preserved on every fresh
call by arguing that a sample at the output (r, k) of GH of type R×K is identically distributed to the
value that results from grouping (r, k) coming from independent (guaranteed to be fresh) calls to G and
H. Using this invariant, it is straightforward that the reductions perfectly simulate FOK while attacking
KEM ̸⊥m with the same advantage as B. Then, the theorem follows from instantiating Theorem 3 with the
bound in Theorem 2. ⊓⊔

6 Main result: Security of ML-KEM

The main theorem in our machine-checked proof of ML-KEM applies to an EasyCrypt specification
of the ML-KEM draft standard [54], obtained with minor and necessary adaptations from the Kyber
specification used in [8]. This choice allows us, in Section 7, to combine the algorithmic security result in
this section with the implementation equivalence proofs [8] (again with minor adaptations) and connect
the security theorems we prove here to concrete assembly implementations of ML-KEM.

6.1 Instantiating FOK with K-PKE

We first instantiate the results on FOK obtained in Section 5 with those obtained in Section 4. This
instantiation is straightforward in EasyCrypt, which easily supports purely modular results. Note, however
that, at this point, correctness is still conditional on the assumptions about the encoding and decoding
operators introduced in Section 4.

Theorem 5. Let δ be the maximum probability that experiment CorrectnessBound returns 1, and ϵkg
and ϵenc denote the pseudorandomness advantage against the derandomizing of key generation and
encryption algorithms in K-PKE, as defined in Section 4. Then, FOK [K-PKE, J] is (δ + ϵkg + ϵenc)-correct.
Furthermore, let ϵMLWE_H denote the maximum advantage of the reductions against Hashed MLWE
constructed Section 4.24

Then for any IND-CCA adversary B against FOK [K-PKE, J], issuing at most qD queries to the decap-
sulation oracle, and at most qGH queries to its random oracle GH, there exists a PRF adversary D against
J such that

AdvIND-CCA
FOK [K-PKE,J](B) ≤ AdvPRFJ (D) +Q · (δ + ϵkg + ϵenc) +

2(2qGH + 2)

|M| + 8 · ϵMLWE_H

for Q = 3 · (2qGH + 3)+ 5 and the running times of the reductions to Hashed MLWE and D are about that
of B.

6.2 Connection to the ML-KEM specification

The ML-KEM-768 specification can be found in the artifact that accompanies this paper under crypto-specs/mlkem.
It is, for the most part, identical to the specification of Kyber described in detail in [8]. The only difference
resides in the file that implements the top-level KEM construction, where the hashing pattern of the
Fusijaki-Okamoto transform was modified to match the change introduced in the ML-KEM draft standard
and briefly discussed in Section 3.2. Let us denote the EasyCrypt module that fully specifies ML-KEM
by MLKEM and note that the key generation and encryption algorithms are given in derandomized form,
i.e., taking all randomness as explicit additional input. We obtain a security theorem that applies to this
specification in four steps:

1. Instantiate Theorem 5 by making concrete all remaining abstractions, and discharging assumptions.
These proofs reuse some lemmas on the NTT and other operations from [8].

24 In this section we simplify the theorem statements by using quantities such as ϵMLWE_H to denote the maximum
advantage among a small number of fully defined reductions to the same assumption. They do not represent
the computation of a maximum advantage over all adversaries in a class.
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op pk_encode(pk : W8.t Array32.t ∗ polyvec) : pkey =
(encode12_vec (toipolyvec (nttv pk[2])), pk[1]).

op pk_decode(pk : pkey) = (pk[2], invnttv (ofipolyvec (sem_decode12_vec (pk[1])))).
op sk_encode(sk : polyvec) : skey = encode12_vec_aux (toipolyvec (nttv sk)).
op sk_decode(sk : skey) = invnttv (ofipolyvec (sem_decode12_vec sk)).
op m_encode(m : plaintext) : poly = decompress_poly 1 (sem_decode1 m).
op m_decode(p : poly) : plaintext = encode1 (compress_poly 1 p).
op c_encode(c : polyvec ∗ poly) : ciphertext =

(encode10_vec (compress_polyvec 10 c[1]), encode4 (compress_poly 4 c[2])).
op c_decode(c : ciphertext) =

(decompress_polyvec 10 (sem_decode10_vec c[1]),
decompress_poly 4 (sem_decode4 c[2])).

op rnd_err_v = compress_poly_err 4.
op rnd_err_u = mapv (compress_poly_err 10).
op max_noise = q %/ 4 − 1.
op under_noise_bound (p : poly) (b : int) = all (fun cc ⇒ | as_sint cc| ≤ b) p.
op cv_bound_max : int = 104.

Fig. 11. Snippet of the instantiation of Theorem 5.

2. Define an alternative version of MLKEM, which we call MLKEM_Op below, where we introduce two
modifications: 1) the hash function used in the FO transform is turned into an oracle, aligning with the
GH oracle in FOK ; and 2) the rejection sampling procedures for the matrix A used in key generation
and encapsulation are replaced by a deterministic function H.25

3. Prove that, when H is implemented as in ML-KEM, and when GH is instantiated with SHA3-512,
MLKEM_Op is the same as MLKEM. This step clarifies how our results apply to MLKEM: GH is modeled
as a random oracle, and the matrix sampling procedure fixes the concrete parameters of the Hashed
MLWE assumption.

4. Prove that MLKEM_Op is a secure KEM when the random coins of key generation and key encapsula-
tion are sampled uniformly at random. This is done by showing that the advantage of any attacker in
breaking MLKEM_Op in the ROM can be bounded using (the concrete version of) Theorem 5.

We now discuss each of these steps next.

Refining Theorem 5. We refine Theorem 5 via theory cloning and parameter instantiation: some of
the types and operators left abstract in Section 4 are given concrete definitions, and all axioms about
them are discharged. The abstract parameters we instantiate here include the polynomial ring, matrix
and vector dimensions, the types of keys, ciphertexts, shared keys, etc., the randomness distributions and
the randomness expansion operators, the compression and serialization procedures, the noise thresholds
required for bounding the failure probability, and the type of the RO.

Figure 11 shows (some) of the concrete instantiations. For example, the pk_encode and sk_encode
operations make it explicit that public keys and secret keys are encoded in the NTT domain, so proving
the correctness of deserialization implies reasoning about the cancellation of the NTT. Important lemmas
discharged at this point include the proof that rnd_err_v and rnd_err_u correctly describe compression
errors as additive noise, the proof that decode_msg correctly recovers an encoded message as long as all
the coefficients are affected by a noise value under q/4, and the proof that the maximum rounding error
occurring in a coefficient of v is cv_bound_max = 104.

MLKEM_Op and Relation to MLKEM. Figure 12 shows MLKEM_Op, an operator-based ML-KEM
specification that we use to connect the security theorem we obtain above to the ML-KEM specification.
We prove that MLKEM_Op is equivalent to MLKEM when H is defined as the semantics of the matrix
sampling procedure specified by MLKEM, and when the random oracle passed to MLKEM_Op is instantiated
with SHA3-512.

The proof is mostly boiler plate; it implies providing functional descriptions of serialization routines
and randomness expansion procedures and then proving that these operators are correctly expressing the
25 Note that we see SHA3-512 as a random oracle only for the fixed input size used in the FO transform, which

includes a message and the hash of the public-key. When SHA3-512 is used in K-PKE with a different input
size—to smooth the key generation randomness—we model it as a stateless, fixed-length, pseudorandom
generator.



20 Almeida et al.

module InnerPKE_Op = {
proc kg_derand(coins: W8.t Array32.t)

: pkey ∗ skey = {
(rho,s,e) ← prg_kg coins;
a ← nttm (H rho); s ← nttv s; e ← nttv e;
t ← ntt_mmul a s + e;
tv ← encode12_vec_aux (toipolyvec t);
sv ← encode12_vec_aux (toipolyvec s);
return ((tv,rho),sv); }

proc enc_derand(pk : pkey, m : plaintext,
r : W8.t Array32.t) : ciphertext = {

(rv,e1,e2) ← prg_enc r; (tv,rho) ← pk;
thati ← decode12_vec_aux tv;
that ← ofipolyvec thati;
aT ← nttm (trmx (H rho));
rhat ← nttv rv;
u ← invnttv (ntt_mmul aT rhat) + e1;
mp ← decode1 m;
v ← invntt (ntt_dotp that rhat) +

e2 + decompress_poly 1 mp;
c1 ← encode10_vec_aux (compress_polyvec 10 u);
c2 ← encode4 (compress_poly 4 v);
return (c1,c2); }

proc dec(sk : skey, cph : ciphertext)
: plaintext option = {

(c1,c2) ← cph;
ui ← decode10_vec_aux c1;
u ← decompress_polyvec 10 ui;
vi ← decode4 c2;
v ← decompress_poly 4 vi;
si ← decode12_vec_aux sk;
s ← ofipolyvec si;
mp ← v + ((−) (invntt (ntt_dotp s (nttv u))));
m ← encode1 (compress_poly 1 mp);
return Some m; }

}.

module (MLKEM_Op : Scheme) (O : POracle) = {
proc kg_derand(coins : W8.t Array32.t ∗ W8.t Array32.t)

: publickey ∗ secretkey = {
kgs ← coins[1]; z ← coins[2];
(pk, sk) ← InnerPKE_Op.kg_derand(kgs);
hpk ← H_pk pk;
return (pk, (sk, pk, hpk, z));

}

proc kg() : publickey ∗ secretkey = {

coins $←− srand; k $←− srand;
(pk, sk) ← kg_derand((coins,k));
return (pk,sk); }

proc enc_derand(pk : publickey, coins : W8.t Array32.t)
: ciphertext ∗ sharedsecret = {

m ← coins; hpk ← H_pk pk;
(_K, r) ← O.get(m,hpk);
c ← InnerPKE_Op.enc_derand(pk, m, r);
return (c, _K); }

proc enc(pk : publickey)
: ciphertext ∗ sharedsecret = {

coins $←− srand; (c, _K) ← enc_derand(pk,coins);
return (c,_K); }

proc dec(sk : secretkey, cph : ciphertext)
: sharedsecret option = {

(skp, pk, hpk, z) ← sk;
m ← InnerPKE_Op.dec(skp, cph);
(_K, r) ← O.get(oget m,hpk);
_K' ← J z cph;
c ← InnerPKE_Op.enc_derand(pk, oget m, r);
if (c ̸= cph) _K ← _K';
return (Some _K);

}
}.

Fig. 12. Operator-based version of the ML-KEM specification.

semantics of the corresponding MLKEM procedures. This proof applies to the derandomized entry points
kg_derand, enc_derand, and dec. However, when we analyze correctness and security of MLKEM_Op, we
use the entry points kg and enc for key generation and encapsulation that simply sample the necessary
coins uniformly at random before calling the derandomized entry points.

Security Theorem for MLKEM_Op. Having defined MLKEM_Op, we can prove the following theorem.

Theorem 6 (Main Theorem). Define for notation conciseness the following quantities:

– let δ be the maximum probability that experiment CorrectnessBound returns 1
– let ϵprf denote the pseudorandomness advantage against the PRF used in the noise sampling procedure

of ML-KEM, which is SHAKE-256 with a fixed output size of 128 bytes,
– let ϵJ denote the pseudorandomness advantage against the PRF used in the implicit rejection step of

ML-KEM, which is SHAKE-256 with a fixed output size of 32 bytes,
– let ϵhs denote the pseudorandomness advantage against the smoothing function G_coins used in

ML-KEM key generation, and
– let ϵMLWE_H denote the advantage against Hashed MLWE, when H is defined as the matrix rejection

sampling procedure defined by ML-KEM.

Then, MLKEM_Op is (δ + ϵhs + 2ϵprf)-correct. Furthermore, for any IND-CCA adversary B against
MLKEM_Op, issuing at most qD queries to the decapsulation oracle, and at most qGH queries to its
random oracle GH, we have that

AdvIND-CCA
MLKEM_Op(B) ≤ ϵJ +Q · (δ + ϵhs + 2ϵprf) +

2(2qGH + 2)

|M| + 8 · ϵMLWE_H

for Q = 3 · (2qGH + 3) + 5, |M| = 2256 and the running times of all reductions are about that of B.

Proof (Sketch). The proof of this theorem in EasyCrypt has two parts. The first part is technically
a simple equivalence. We show that any attacker B against MLKEM_Op is actually executing in an
environment which is identical to that of an attacker against (the instantiated version of) Theorem 5.
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proc prg_kg(coins:W8.t Array32.t)
: W8.t Array32.t ∗ polyvec ∗ polyvec = {

(rho, noiseseed) ← G_coins coins;
PRF.k ← noiseseed;
_N ← 0; i ← 0;
while (i < kvec) {

c ← CBD2_PRF(PRF).sample(_N);
noise1 ← noise1[i←c];
_N ← _N + 1; i ← i + 1; }

i ← 0;
while (i < kvec) {

c ← CBD2_PRF(PRF).sample(_N);
noise2 ← noise2[i←c];
_N ← _N + 1; i ← i + 1; }

return (rho,noise1,noise2);
}

proc prg_enc(noiseseed:W8.t Array32.t)
: polyvec ∗ polyvec ∗ poly = {

PRF.k ← noiseseed;
_N ← 0; i ← 0;
while (i < kvec) {

c ← CBD2_PRF(PRF).sample(_N);
noise1 ← noise1[i←c];
_N ← _N + 1; i ← i + 1; }

i ← 0;
while (i < kvec) {

c ← CBD2_PRF(PRF).sample(_N);
noise2 ← noise2[i←c];
_N ← _N + 1; i ← i + 1; }

e2 ← CBD2_PRF(PRF).sample(_N);
return (noise1,noise2, e2);

}

Fig. 13. Randomness expansion procedures for ML-KEM.

Again, proving this step is mostly boiler-plate, showing that the operations on both experiments
exactly match semantically, even though they may be written in a slightly different way.

The second part is a bit more challenging and much more interesting. Note that Theorem 5 talks about
the pseudorandomness properties of operators prg_kg and prg_enc that expand the coins passed to key
generation and encapsulation to approximate the distributions specified by the underlying Hashed MLWE
assumption. However, the theorem we are proving states the final advantage expression as a function of
the pseudorandomness security bounds offered by SHAKE-256. The prg_kg and prg_enc operators are
defined as follows:
op prg_kg(coins : W8.t Array32.t) : W8.t Array32.t ∗ polyvec ∗ polyvec =

((G_coins coins)[1],
offunv (fun i ⇒ cbd2sample (PRF (G_coins coins)[2] (W8.of_int i))),
offunv (fun i ⇒ cbd2sample (PRF (G_coins coins)[2] (W8.of_int (i + 3))))).

op prg_enc(coins : W8.t Array32.t) : polyvec ∗ polyvec ∗ poly =
(offunv (fun i ⇒ cbd2sample (PRF coins (W8.of_int i))),
offunv (fun i ⇒ cbd2sample (PRF coins (W8.of_int (i + 3)))),
cbd2sample (PRF coins (W8.of_int 6))).

They are the functional counterparts of the procedures in Figure 13, which we use in an intermediate
step of the proof that MLKEM_Op and MLKEM are equivalent (i.e., in the first part of this proof). We
omit from Figure 13 the details of procedure CBD2_PRF(PRF).sample that specifies the procedure CBDη

procedure introduced in Section 3 for η = 2. However, it was proved in [8] that this procedure generates
the correct distribution of binomial noise when the output of PRF is replaced with uniform random bytes
on each call. This allows us to show that the sampling procedures in Figure 13, when fed with uniform byte
strings, generate distributions that are computationally close to those specified by operators prg_kg_ideal
and prg_enc_ideal in Section 4. The proof for prg_enc is a direct reduction to the pseudorandomness of
PRF, whereas the proof for prg_og requires us to first replace the output of G_coins with random byte
strings, which gives us a uniform rho, and then mimic the prg_enc proof to justify the noise distribution.
To the best of our knowledge, these low-level details of the operation of ML-KEM, although intuitive,
have never been laid down in a concrete security bound. In our theorem, these are accounted for as the
(ϵhs+2ϵprf) terms, which make it explicit that a randomness expansion advantage term must be accounted
for every time K-PKE correctness and security are used in the FO proof. ⊓⊔

7 Connecting to ML-KEM implementations

Provably secure specifications are good; provably secure implementations are better. Following [8] and
the methodology first outlined in [6], we 1) adapt the Kyber implementation from [8] to implement
ML-KEM; 2) prove that the resulting implementation is functionally correct with respect to the ML-KEM
specification from Section 6; and 3) prove that the implementation is “cryptographic constant-time”. This
last task is carried out using Jasmin’s type system, which ensures that well-typed code does not branch
on secrets, does not access memory at secret locations, and uses basic operations which are not constant
time—like division and modulo—on public arguments only. We note that our security proof allows us to
clarify the assumptions that justify constant-time security of the implementations.26 We can therefore
26 For example, our proof of constant-time explicitly requires us to declassify the public seed ρ that gives rise to

the matrix A. This σ is generated as (ρ, σ)← G(d) in key generation. Here, σ is used to generate the secret
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state that the implementations are as secure as the ML-KEM specification itself: an adversary interacting
with the implementation can be converted into one that attacks the specification with the same success
probability, as long as the attacker is not exploiting implementation leakage beyond what we consider in
the constant-time paradigm.

Finally, we test that the test vectors produced by these implementations match those produced by the
reference implementation of the draft standard available from the pq-crystals/kyber code package27

and most of the more extensive test vectors that were made available by Schmieg28. The only mismatch
between the test vectors by our implementations and the ones by Schmieg’s implementation are relating
to public-key validation, which Schmieg implements, but we deliberately do not (see Section 3.2). Also,
the C function-call ABI used by the Jasmin implementations passes keys trough pointers; it is the caller’s
responsibility to ensure that those pointers point to memory regions of appropriate length and the callee
has no way of checking this. We thus skip the tests with keys and ciphertexts of wrong length from
Schmieg’s set of test vectors.

The Jasmin compiler is certified to preserve semantics through compilation. Hence, through our
proof of equivalence between EasyCrypt specification and Jasmin implementations, we conclude that our
specification of ML-KEM is correct with respect to the test vectors used by library developers. Dually,
we conclude that the assembly implementations produced by the Jasmin compiler correctly implement
the EasyCrypt specification of the ML-KEM standard, and thus satisfy IND-CCA security down to
cryptographic assumptions.
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Game COR:
1: (pk, sk)←$Gen( )
2: m←$A(pk, sk)
3: c←$Enc(pk,m)
4: return (m ̸= Dec(sk, c))

Game COR-RO:
1: (pk, sk)←$Gen( )
2: m←$AG(pk, sk)
3: c←$EncG(pk,m)
4: return (m ̸= DecG(sk, c))

Fig. 14. Correctness of a PKE in the standard model and ROM.

computing a randomized algorithms by fixing its random coins r, we write: y ← A(x; r). For the most
part of this section we follow [40,41].

Pseudorandomness. Let f : K ×X → Y be a function. We define the PRF advantage of an adversary
A as

AdvPRFf (A) =
∣∣∣Pr[APRF(K,·) ⇒ 1 : K ←$K]− Pr[AF(·) ⇒ 1 : F←$ (X → Y)]

∣∣∣ .
When this advantage is small for all efficient adversaries, we say f is a pseudorandom function. Let
g : K → Y be a function. We define the PRG advantage of an adversary A as

AdvPRGg (A) = |Pr[A(y)⇒ 1 : K ←$K; y ← g(K)]− Pr[A(y)⇒ 1 : y ←$Y] | .

When this advantage is small for all efficient adversaries, we say g is a pseudorandom generator.

Public-Key Encryption. A public-key encryption scheme consists of three algorithms PKE =
(Gen,Enc,Dec) and a finite message space M. The key generation algorithm Gen outputs a key pair
(pk, sk). The encryption algorithm Enc, on input pk and a message m ∈ M, outputs a ciphertext
c←$Enc(pk,m). If necessary to derandomize encryption, we writing c← Enc(pk,m; r), where r ←$R and
R is the randomness space. The decryption algorithm Dec, on input sk and a ciphertext c, outputs either
a message m← Dec(sk, c) ∈M or a special symbol ⊥/∈M to indicate that c is not a valid ciphertext.

Correctness. Correctness of a PKE is defined as in Figure 14. We give both a standard model definition
(left) and a definition in the random oracle model (ROM, right). Note that the adversary gets the secret
key as an input. In the standard model, δ-correctness means that for all (possibly unbounded) adversaries
A, Pr[CORAPKE ⇒ 1] ≤ δ. In the ROM, we extend the definition so that δ is parameterized by an upper
bound on the number of queries placed by A to its random oracle.

Ciphertext Spreadness. We say that PKE is γ-spread if, for every key pair (pk, sk) ←$Gen( ) and
every ciphertext c, Prr←$R[c = Enc(pk,m; r)] ≤ 2−γ .

Security. We now define several security notions for public-key encryption.

Definition 1 (OW-Atk). Let PKE = (Gen,Enc,Dec) be a public-key encryption scheme with message
spaceM. For Atk ∈ {CPA,PCVA}, we give the OW-Atk security games in Figure 15. Note that, if Atk=CPA,
we have O = ∅; and if Atk=PCVA, we have O = {Pco,Cvo}. We define the OW-Atk advantage function
of an adversary A against PKE as AdvOW-Atk

PKE (A) = Pr[OW-AtkAPKE ⇒ 1].

Note that the adversary wins the one-way game if it guesses the result of decrypting the challenge
ciphertext, rather than the standard definition of finding the message that is originally encrypted. The
two games have statistical distance δ, if PKE is δ-correct. We also define the more standard notion,
allowing the adversary to output a list of guesses.

Definition 2. OWL-CPA Let PKE = (Gen,Enc,Dec) be a public-key encryption scheme with message
spaceM. We give the OWL-CPA security game in Figure 15. We define the OWL-CPA advantage function
of an adversary A against PKE as AdvOWL-CPA

PKE (A) = Pr[OW-CPAAPKE ⇒ 1].

We conclude this section with the standard definition of IND-CPA security for a PKE.

Definition 3. IND-CPA Let PKE = (Gen,Enc,Dec) be a public-key encryption scheme with message
space M. We define the IND-CPA game as in Figure 16, and the IND-CPA advantage function of an
adversary A = (A1, A2) against PKE as AdvIND-CPA

PKE (A) = |Pr[IND-CPAAPKE ⇒ 1]− 1/2|.

In the proof of the FO transform (see Section 5) we use this general lemma that is verified in EasyCrypt.
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Game OW-Atk:
1: (pk, sk)←$Gen( )
2: m∗ ←$M
3: c∗ ←$Enc(pk,m∗)
4: m′ ← AO(pk, c∗)
5: return Pco(m′, c∗)

Oracle Pco(m ∈M, c):
1: return (m = Dec(sk, c))

Oracle Cvo(c ̸= c∗):
1: m← Dec(sk, c)
2: return m ̸=⊥

Game OWL-CPA:
1: (pk, sk)←$Gen( )
2: m∗ ←$M
3: c∗ ←$Enc(pk,m∗)
4: L← A(pk, c∗)
5: return m∗ ∈ L

Fig. 15. One-wayness of a PKE.

Game IND-CPA:
1: (pk, sk)←$Gen( )
2: (m0,m1, st)←$A1(pk)
3: b←$ {0, 1}
4: c∗ ←$Enc(pk,mb)
5: b′ ←$A2(st, c

∗)
6: return b′ = b

Game IND-CCA:
1: (pk, sk)←$Gen( )
2: (k0, c

∗)←$Enc(pk)
3: k1 ←$K
4: b←$ {0, 1}
5: b′ ←$ADecaps(pk, c∗, kb)
6: return b′ = b

Oracle Decaps(c):
1: If c = c∗ return ⊥
2: k ← Dec(sk, c)
3: return k

Fig. 16. IND-CPA security of a PKE and IND-CCA security for a KEM.

Lemma 1. For all OWL-CPA adversary B returning a list of size at most Max, there exists an IND-CPA
adversary A such that

AdvOWL−CPA
PKE (B) ≤ 2 ·

(
Max
|M| + AdvIND-CPA

PKE (A)
)

Proof (Sketch of formalization). We define an IND-CPA adversary A that uses the OWL-CPA adversary
B in the obvious way: i. choose challenge IND-CPA messages (m0,m1) uniformly at random and run B
on the challenge ciphertext; ii. if the list output by B contains mb, but not m¬b, return b; iii. otherwise
return a random bit b′.

We re-express the IND-CPA advantage using the standard form that conditions on the hidden bit, and
get that:

2 · AdvIND-CPA
PKE (A) =

∣∣∣Pr[CPAPKE
A (1)⇒ 1]− Pr[CPAPKE

A (0)⇒ 1]
∣∣∣

We then define a bad event in both experiments on the right-hand side of the above equation, which
corresponds to A returning random bit b′. Clearly, this event occurs with the same probability in both
experiments, and the output of both experiments are identically distributed when this event does occur.
This means that

2 · AdvIND-CPA
PKE (A) = |Pr[CPAPKE

A (1)⇒ 1 ∧ ¬bad]− Pr[CPAPKE
A (0)⇒ 1 ∧ ¬bad]|

The next step in the proof shows that

Pr[CPAPKE
A (0)⇒ 1 ∧ ¬bad] ≤Max/|M| .

which follows from the fact that m1 is information theoretically hidden from B. A similar argument allows
us to show that ∣∣∣AdvOWL-CPA

PKE (B)− Pr[CPAPKE
A (1)⇒ 1 ∧ ¬bad]

∣∣∣ ≤Max/|M| .

The lemma follows from the above inequalities. The arguments above are also good examples of game-
hopping proofs that the EasyCrypt logic was designed to handle. ⊓⊔

Key Encapsulation Mechanisms. A key encapsulation mechanism KEM = (Gen,Enc,Dec) consists of
three algorithms. The key generation algorithm Gen outputs a key pair (pk, sk), where pk also defines
a finite key space K. The encapsulation algorithm Enc, on input pk, outputs a tuple (k, c) where c
is said to be an encapsulation of the key k which is contained in key space K. The deterministic
decapsulation algorithm Dec, on input sk and an encapsulation c, outputs either a key k ← Dec(sk, c) ∈ K
or a special symbol ⊥/∈ K to indicate that c is not a valid encapsulation. We call KEM δ-correct if
Pr[Dec(sk, c) ̸= k | (pk, sk)←$Gen; (k, c)←$Enc(pk)] ≤ δ. Note that the above definition does not include
a correctness adversary—and for this reason also makes sense in the random oracle model—because KEM
ciphertexts do not depend on maliciously chosen messages.

Security. We now define indistinguishability under chosen ciphertext attacks (IND-CCA) for a KEM.
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Definition 4. IND-CCA. We define the IND-CCA game also in Figure 16 and the IND-CCA advantage
function of an adversary A against KEM as

AdvIND-CCA
KEM (A) =

∣∣∣Pr[IND-CCAAKEM ⇒ 1]− 1/2
∣∣∣ .

B Generic EasyCrypt Arguments

We now describe more in depth the generic arguments we make use of in our formal proofs, and some of
the issues faced in applying them to the specific ML-KEM proof.

B.1 Plug-and-Pray

The first generic result we use heavily in this proof is a plug-and-pray argument. In this argument, a
parametric reduction Ri—for example, a reduction that simulates the ith query to an oracle in a specific
way—is replaced, with some security loss, with a reduction R that 1) makes a uniformly random guess as
to the value of the parameter i (within a bounded-size set S of possible values); 2) runs the parametric
reduction Ri; and 3) returns its result.

In such a setting, and for any event E, we will have, for every possible value j of the index

Pr[R : E] = |S| · Pr[R : E ∧ i = j]

The plug-and-pray library formalizes the argument generically, allowing arbitrary instantiations or
the reduction, guess and event, and further allowing the value of the index to be derived from the state of
the experiment, instead of being externally quantified.

B.2 Hybrids

The second result we heavily rely on in our ML-KEM proof is a generic hybrid argument, which captures
generically union bound-style results in indistinguishability steps.

Consider two oracles Ol and Or of the same type, and a distinguisher D trying to distinguish them in
at most q queries. Our generic hybrid proves (entirely generically) that, for some distinguisher D1 that
makes at most 1 query to its oracle, we have

|Pr[D(Ol)]− Pr[D(Or)]| ≤ q · |Pr[D1(Ol)]− Pr[D(Or)]|
The hybrid library formalizes the argument generically, allowing arbitrary instantiations of the oracle

and distinguisher types, and also supporting the result where the oracle being replaced shares state with
oracles that do not change from one side to the other.

B.3 PROM

The final generic result we use formally captures the cryptographic argument that "a value is random
and independent of the adversary’s view." This was initially produced as part of the formalization of
indifferentiability from a random oracle for SHA3 [9], and is therefore framed as an indistinguishability
result between two different implementations of a programmable random oracle interface. This result
shows that no context (or unbounded adversary) can distinguish between the eager and lazy versions of
the oracles presented in Figure 17, where the latter omits line 1 of the sample algorithm. These oracles
allow for globally initializing or resetting (init), or locally observing associated values (get), programming
the random oracle (set), or eagerly (resp. lazily) sampling values associated with given entries (sample).
In essence, the library establishes generically that sampling unused values can be deferred until they (or
some behavior that depends on them) first become visible to the adversary or context.

The result itself is quite general, and hides away some of the complex program logics involved in
proving it, allowing less expert users to more easily formalize complex proofs. However, its application
in our setting, where we need to identify a specific query which will be sampled eagerly, is somewhat
complex: we cannot simply sample the entire random function eagerly over an infinite domain, and neither
can we predict the values of the queries the adversary will make. Most of the applications we make of this
result in the ML-KEM proof first involve an indirection mapping query values to their index (essentially,
and up to repeat queries, the first query would have index 1, the second query would have index 2, and
so on), and eagerly sampling a map from integers (between 1 and the maximum number of queries). This
essentially allows to partially sample the outputs of the function and later assign them to particular
inputs as the adversary makes queries.
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Oracle init():
1: m← ∅
2: return ()

Oracle get(x):
1: If(x /∈ m) m[x]←$R
2: return m[x]

Oracle set(x, r):
1: m[x]← r
2: return ()

Oracle sample(x):

1: If(x /∈ m) m[x]←$R

2: return ()

Fig. 17. PROM oracles, in the lazy version the dashed box is removed
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