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Abstract

We start with a mathematical model which describes the sliding contact of a

viscoelastic body with a moving foundation. The contact is frictional and the

wear of the contact surfaces is taken into account. We prove that this model

leads to a differential variational inequality in which the unknowns are the

displacement field and the wear function. Then, inspired by this model, we

consider a general differential variational inequality in reflexive Banach spaces,

governed by four parameters. We prove the unique solvability of the inequality

as well as the continuous dependence of its solution with respect to the pa-

rameters. The proofs are based on arguments of monotonicity, compactness,

convex analysis and lower semicontinuity. Then, we apply these abstract re-

sults to the mathematical model of contact for which we deduce the existence

of a unique solution as well as the existence of optimal control for an asso-

ciate optimal control problem. We also present the corresponding mechanical

interpretations.
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1 Introduction

The Mathematical Theory of Contact Mechanics deals with the variational analysis of

systems of partial differential equations which describes contact phenomena between

a deformable body and an obstacle, the so-called foundation. It provides results of

existence, uniqueness, control and numerical approximation of the weak solution of

the corresponding models which, usually, are expressed in terms of variational or

hemivariational inequalities. References in the field include the books [3, 5, 6, 10, 12,

22, 23, 24] and, more recently, [29, 30].

Contact processes with elastic, viscoelastic or viscoplastic bodies abound in indus-

try and in everyday life. They are accompanied by a number of phenomena among

which the main one is the friction. Nevertheless, more is involved in contact than

just friction. Indeed, during a contact process, elastic or plastic deformations of the

surface asperities may happen. Also, some or all of the following may take place:

squeezing of oil or other fluids, breaking of the asperities’ tips and production of

debris, motion of the debris, formation or welding of junctions, creeping, fracture,

etc. Moreover, frictional contact is associated with heat generation, material dam-

age, wear and adhesion of contacting surfaces. References on the evolution of damage

in solids are [13, 20], for instance. There, the “flow rule” for the damage parameter

is rate-independent. A comprehensive reference to the theory of rate-independent

systems with applications to inelastic processes such as plasticity, damage, phase

transformations, or adhesive-type contacts both at small strains and at finite strains,

is [19]. There, a rigorous mathematical treatment of the corresponding problems is

provided, by using the concept of energetic solution, among others.

Due to its crucial role, there exists an considerable interest in study of contact

models with wear, both in the engineering and mathematical literature. References

in the field are [1, 4, 7, 8, 11, 14, 26, 27, 31, 32, 33], among others. Wear in sliding

systems is often very slow but it is persisting, continuous and cumulative. There may

be increase in the conformity of the surfaces and their smoothness, or increase of the

surface roughness, fogging of the surface, generation of scratches and grooves, initia-

tion of cracks and generation of debris which may change the contact characteristics.

This motivates the study of contact with wear, in the engineering literature. On the

other hand, taking into account the wear of the contact surfaces leads to a weak for-

mulation which is in the form of a so-called differential variational inequality, i.e., a

system which couples a variational or hemivariational inequality for the displacement

field with a differential equation for the wear function. Differential variational in-

equalities have been introduced by Aubin and Cellina in [2] and intensively studied in

[2, 9, 15, 17, 18, 21, 25, 28], for instance. In particular, the results in [17] concern the

existence of a unique solution for a class of differential variational inequality. They

have completed in [28] with the study of an associated optimal control problem and

an application in the study of a contact model with viscoelastic materials. Moreover,

results on history-dependent differential variational-hemivariational inequalities with
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applications to contact problems with wear can be found in [16].

Our aim in this paper is two folds. The first one is to prove the analysis and control

of a new model of frictional contact with wear for viscoelastic materials. Taking into

account the wear of the contact surface leads to a weak formulation of the model

which is in a form of new type of differential variational inequality, governed by a

history-dependent operator, for which the abstract results in [17, 28] do not work.

Therefore, motivated by this contact model, our second aim is to provide a study this

kind of differential variational inequality, in an abstract framework. Extending the

results in [17, 28] to a new class of differential variational inequalities represents the

first trait of novelty of our work. The second novelty is that, in contrast with various

results in the literature, in the current paper we consider a new model of contact with

viscoelastic materials and, in addition, besides its unique weak solvability, we present

results on its optimal control, which could be of interest in real world applications.

The rest of the manuscript is organized as follows. In Section 2 we present our

mathematical model of contact, list the assumption on the data and derive a vari-

ational formulation, in a form of differential variational inequality in which the un-

knowns are the wear function and the displacement field. Moreover, we formulate an

optimal control problem associated to this mathematical model. Motivated by this

contact model, in Section 3 we introduce an abstract differential variational inequality

and prove its unique solvability. In Section 4 we study the dependence of the solution

of this inequality with respect to the data and parameters and provide a convergence

result. Finally, in Section 5 we turn back to the contact model introduced in Section

2 and illustrate the applicability of these abstract results in the study of this model.

2 The contact model

We consider a viscoelastic body which occupies a bounded domain Ω ⊂ R
d (d = 2, 3)

with a Lipschitz continuous boundary Γ, divided into three measurable parts Γ1, Γ2

and Γ3 such that meas (Γ1) > 0 and, in addition, Γ3 is plane. The body is subject to

the action of body forces of time-dependent density f 0. It is fixed on Γ1 and surfaces

tractions act on Γ2. On Γ3, the body is in frictional contact with a moving obstacle,

assumed to be made of a hard material covered by a layer of soft material of thickness

g. We denote by v∗ 6= 0 the velocity of the foundation which is supposed to be a

constant vector in the plane of Γ3. The physical setting is depicted in Figure 1.

The friction implies the wear of the foundation that we model with a surface vari-

able, the wear function. Its evolution is governed by a simplified version of Archard’s

law, see [27]. Moreover, we assume that the soft material is deformable and, therefore,

its penetration is allowed. Based on these ingredients, we model the contact with a

normal compliance condition with unilateral constraint, which takes into account the

wear of the foundation. We associate this condition to a sliding version of Coulomb’s

law of dry friction, adopt the framework of the small strain theory and assume that
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Figure 1: The viscoelastic body in contact with a moving foundation.

the contact process is quasistatic and it is studied in the interval of time [0, T ] with

T > 0. In addition, we denote by S
d the space of second order symmetric tensors

on IRd and use the notation “·”, ‖ · ‖, 0 for the inner product, the Euclidian norm

and the zero element on the spaces IRd and S
d, respectively. We denote by ν the

outward unit vector to Γ and use the indices ν and τ to represent the normal and

tangential components of vectors and tensors, respectively. Finally, a dot above will

represent the derivative with respect to the time and, for simplicity, we sometimes

do not indicate explicitly the dependence of various functions on the spatial variable

x ∈ Ω ∪ Γ.

With these preliminaries, the classical formulation of the contact problem under

consideration is the following.

Problem P . Find a stress field σ : Ω × [0, T ] → S
d, a displacement field u :

Ω× [0, T ] → R
d and a wear function w : Γ3 × [0, T ] → R+ such that

σ(t) = Aε(u(t)) + α

∫ t

0

e−(t−s)ε(u(s)) ds in Ω, (2.1)

Divσ(t) + f 0(t) = 0 in Ω, (2.2)

u(t) = 0 on Γ1, (2.3)

σ(t)ν = θ(t)f 2 on Γ2, (2.4)

uν(t) ≤ g, σν(t) + p(uν(t)− w(t)) ≤ 0,

(uν(t)− g)
(
σν(t) + p(uν(t)− w(t))

)
= 0



 on Γ3, (2.5)

−στ (t) = µ p(uν(t)− w(t))n∗ on Γ3, (2.6)

ẇ(t) = k(t)‖v∗‖ p(uν(t)− w(t)) on Γ3, (2.7)

4
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for all t ∈ [0, T ] and, in addition,

w(0) = 0 on Γ3. (2.8)

We now provide a brief explanation for the equations and conditions in Problem P

and we refer to [31] for more details. First, equation (2.1) represents the viscoelastic

constitutive law of the material in which A denotes the elasticity operator and α

represents a relaxation coefficient. Equation (2.2) is the equilibrium equation in which

Div represents the divergence operator for tensor-valued functions. Conditions (2.3)

and (2.4) are the displacement and traction boundary conditions, respectively, in

which θ(t)f 2 denotes the density of surface tractions, assumed to be time-dependent.

The function θ is assumed to be such that θ(0) = 1 and, therefore, f 2 represents the

initial density of surface tractions.

Next, condition (2.5) represents the contact condition in which p is a positive

function which will be described below. Moreover, condition (2.6) represents a slid-

ing version of the classical Coulomb’s law of dry friction in which µ is the friction

coefficient and n∗ is the unitary vector given by

n∗ = −
v∗

‖v∗‖
. (2.9)

This condition was derived in [31] assuming that the velocity of the foundation is

large enough in comparison with the tangential velocity on the body’s surface Γ3.

Finally, the differential equation (2.7) represents a version of Archard’s law in which

k represents the wear coefficient, assumed to be time-dependent. This assumption

makes sense if, for instance, we assume that k depends on the temperature field

which plays the role of a parameter. Note that Archard’s law can be derived by

thermodynamic principles, as explained in [32]. Finally, (2.8) represents the initial

condition for the wear function, which shows that at the initial moment the foundation

is new.

Next, we adopt standard notation for the Lebesgue and Sobolev spaces associated

to Ω and Γ. In particular, the inner products on the Hilbert spaces L2(Ω;Rd) and

L2(Γ;Rd) are given by

(u,v)L2(Ω;Rd) =

∫

Ω

u · v dx, (u,v)L2(Γ;Rd) =

∫

Γ

u · v da

with the associated norms ‖ · ‖L2(Ω;Rd) and ‖ · ‖L2(Γ;Rd), respectively. Moreover, for the

displacement and the stress field we consider the spaces

V = {v ∈ H1(Ω;Rd) : v = 0 on Γ1 }, (2.10)

Q = { τ = (τij) ∈ L2(Ω;R) : τij = τji }. (2.11)

These are real Hilbert spaces endowed with the inner products

(u,v)V =

∫

Ω

ε(u) · ε(v) dx, (σ, τ )Q =

∫

Ω

σ · τ dx,

5
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and the associated norms ‖ · ‖V and ‖ · ‖Q, respectively. Here ε represents the strain

operator given by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i) ∀v ∈ H1(Ω;Rd),

where an index that follows a comma denotes the partial derivative with respect to

the corresponding component of x, i.e., ui,j =
∂ui

∂xj
. Recall that the completeness of the

space (V, ‖ · ‖V ) follows from the assumption meas (Γ1) > 0, which allows the use of

Korn’s inequality. We still use u for the trace of u ∈ V on the boundary Γ. Moreover,

recall that, for any given u ∈ V , the normal and the tangential components of u on

Γ are defined by uν = u · ν, uτ = u − uνν, respectively. In addition, the trace

theorem guarantees that there exists a positive constant ctr which depends on Ω, Γ

and such that

‖u‖L2(Γ;Rd) ≤ ctr ‖u‖V ∀u ∈ V. (2.12)

Finally, for any Banach space X we shall use the notation C([0, T ];X) and

C1([0, T ];X) for the space of continuous and continuously differentiable functions

defined on [0, T ] with values in X, respectively. Recall that C([0, T ];X) is a Banach

space endowed with the norm of the uniform convergence, i.e.,

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X . (2.13)

In the study of Problem P we consider the following assumptions on the data.





(a) A : Ω× S
d → S

d.

(b) There exists LA > 0 such that

‖A(x, ε1)−A(x, ε2)‖ ≤ LA‖ε1 − ε2‖

for all ε1, ε2 ∈ S
d, a.e. x ∈ Ω.

(c) There exists mA > 0 such that

(A(x, ε1)−A(x, ε2)) · (ε1 − ε2) ≥ mA ‖ε1 − ε2‖
2

for all ε1, ε2 ∈ S
d, a.e. x ∈ Ω.

(d) The mapping x 7→ A(x, ε) is measurable on Ω

for all ε ∈ S
d.

(e) A(x,0) = 0 a.e. x ∈ Ω.

(2.14)

α ∈ L∞(Ω) (2.15)

f 0 ∈ C([0, T ];L2(Ω;Rd)). (2.16)

θ ∈ C([0, T ];R), θ(0) = 1. (2.17)

f 2 ∈ L2(Γ2;R
d). (2.18)
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µ ∈ L∞ (Γ3) , µ(x) ≥ 0 a.e. x ∈ Γ3. (2.19)

k ∈ C([0, T ];L∞ (Γ3)), k(x, t) ≥ 0 ∀ t ∈ [0, T ], a.e. x ∈ Γ3. (2.20)

g > 0. (2.21)





(a) p : Γ3 × R → R+.

(b) There exists Lp > 0 such that

|p(x, θ1)− p(x, θ2)| ≤ Lp(|θ1 − θ2|)

for all θ1, θ2 ∈ R, a.e. x ∈ Γ3.

(c) (p(x, θ1)− p(x, θ2))(θ1 − θ2) ≥ 0

for all θ1, θ2 ∈ R, a.e. x ∈ Γ3.

(d) The mapping p(·, θ) is measurable on Γ3

for all θ ∈ R.

(e) p(x, θ) = 0 for all θ ≤ 0, a.e. x ∈ Γ3.

(2.22)

Consider the set K given by

K = {u ∈ V : uν ≤ g a.e. on Γ3}. (2.23)

Using standard arguments we obtain that, if σ, u, w represent a smooth solution to

Problem P , then

u(t) ∈ K, (σ(t), ε(v)− ε(u(t)))Q +

∫

Γ3

p(uν(t)− w(t))(vν − uν(t)) da

+

∫

Γ3

µ p(uν(t)− w(t))n∗ · (vτ − uτ (t)) da

≥

∫

Ω

f 0(t) · (v − u) dx+

∫

Γ2

θ(t)f 2 · (v − u) da ∀ v ∈ K, t ∈ [0, T ]. (2.24)

We now substitute the constitutive law (2.1) in (2.24) and gather the resulting inequal-

ity with (2.7) and (2.8) to obtain the following variational formulation of Problem

P .

Problem PV . Find a displacement field u : [0, T ] → K and a wear function w :

[0, T ] → L2(Γ3) such that

(Aε(u(t)), ε(v)− ε(u(t)))Q + (α

∫ t

0

e−(t−s)ε(u(s)) ds, ε(v)− ε(u(t)))Q

+

∫

Γ3

p(uν(t)− w(t))(vν − uν(t)) da+

∫

Γ3

µ p(uν(t)− w(t))n∗ · (vτ − uτ (t)) da

≥

∫

Ω

f 0(t) · (v − u) dx+

∫

Γ2

θ(t)f 2 · (v − u) da ∀v ∈ K, t ∈ [0, T ], (2.25)

ẇ(t) = k(t) ‖v∗‖p(uν(t)− w(t)) ∀ t ∈ [0, T ], (2.26)

w(0) = w0. (2.27)
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Our first aim in the study of Problem PV is to prove its unique solvability. Our

second aim is to minimize the wear of the deformable layer at the end of the contact

process. More precisely, we would like to find a minimizer for the cost functional

L(f 2) =

∫

Γ3

w2(T ) da (2.28)

where f 2 represents the initial density of surface tractions, on which the solution

(u, w) depends. The answer of these two questions will be provided in Section 5. It

is based on abstract existence, uniqueness and continuous dependence results which

we present in Sections 3 and 4 of this manuscript.

We end this section with an additional comments on our contact model. Assume

that (2.1)–(2.8) has a classical solution. Then, since k and p are positive functions,

it follows from (2.7) that ẇ(t) ≥ 0 for all t, i.e. the wear is nondecreasing, in each

point of the contact surface. Moreover, if at a moment t0 we have w(t0) = g, then,

using equation (2.7), the constraint uν(t) ≤ g and the property (2.22) of the function

p, it can be easily proved that w(t0) = g for all t ≥ t0. This behavior shows that the

wear of the foundation is limited by the constraint w(t) ≤ g, which means that rigid

layer of the foundation does not wear.

3 An abstract differential variational inequality

Note that Problem PV represents a system which couples a history-dependent varia-

tional inequality for the displacement field, (2.25), with a differential equation, for the

wear function, (2.26)–(2.27). Therefore, using the terminology in the Introduction, it

represents a differential variational inequality. Inspired by this contact model, in this

section we consider an abstract differential variational inequality for which we prove

an existence and uniqueness result.

The functional framework that we adopt here and in the next section is the fol-

lowing. First, X is a Banach spaces, V is a reflexive Banach space and Z is a Hilbert

space endowed with the inner product (·, ·)Z . The norm on these spaces will be de-

noted by ‖ · ‖X , ‖ · ‖V and ‖ · ‖Z , respectively. The strong topological dual space

of V is denoted by V ∗ and the duality paring of V and V ∗ is denoted by 〈·, ·〉. The

symbols ”⇀” and ”→” will represent the weak and strong convergence in various

normed spaces to be specified. All the limits, upper and lower limits are considered

as n → ∞, even if we do not mention it explicitly. Finally, T > 0 and the dot above

represent the derivative with respect to the time.

Let F : [0, T ] ×X × V → X, S : C([0, T ];V ) → C([0, T ];V ∗), A : X × V → V ∗,

j : X × V × V → R, π : V → Z, f : [0, T ] → Z and K ⊂ V . Then, the abstract

problem we consider in this section is stated as follows.

8
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Problem Pa. Find x ∈ C1([0, T ];X) and u ∈ C([0, T ];K) such that

ẋ(t) = F (t, x(t), u(t)) ∀ t ∈ [0, T ], (3.1)

x(0) = x0, (3.2)

〈A(x(t), u(t)) + Su(t), v − u(t)〉+ j(x(t), u(t), v)− j(x(t), u(t), u(t))

≥ (f(t), πv − πu(t))Z ∀ v ∈ K, t ∈ [0, T ]. (3.3)

Note that here and below for any u ∈ C([0, T ];V ) we use the symbol Su(t) to

represent the value of the function S(u) at the point t ∈ [0, T ]. Moreover, inclusion

u ∈ C([0, T ];K) means that u ∈ C([0, T ];V ) and u(t) ∈ K for all t ∈ [0, T ].

In the study of Problem Pa we consider the following assumptions on the data.





F : [0, T ]×X × V → X is such that:

(a) F (·, x, u) is continuous on [0, T ] for all x ∈ X, u ∈ V.

(b) There exists LF > 0 such that

‖F (t, x1, u1)− F (t, x2, u2)‖X ≤ LF (‖x1 − x2‖X + ‖u1 − u2‖V )

for all x1, x2 ∈ X, u1, u2 ∈ V, t ∈ [0, T ].

(3.4)

x0 ∈ X. (3.5)

K is a nonempty closed convex subset of V. (3.6)





A : X × V → V ∗ is such that:

(a) There exists LX
A > 0 such that

‖A(x1, u)− A(x2, u)‖V ∗ ≤ LX
A‖x1 − x2‖X

for all x1, x2 ∈ X, u ∈ V.

(b) There exists LV
A > 0 such that

‖A(x, u1)− A(x, u2)‖V ∗ ≤ LV
A‖u1 − u2‖V

for all x ∈ X, u1, u2 ∈ V.

(c) There exists mA > 0 such that

〈A(x, u1)− A(x, u2), u1 − u2〉 ≥ mA‖u1 − u2‖
2
V

for all x ∈ X, u1, u2 ∈ V.

(3.7)





S : C([0, T ];V ) → C([0, T ];V ∗) and there exists lS, LS > 0 such that

‖Su1(t)− Su2(t)‖V ∗ ≤ lS ‖u1(t)− u2(t)‖V + LS

∫ t

0

‖u1(s)− u2(s)‖V ds

for all u1, u2 ∈ C([0, T ];V ), t ∈ [0, T ].

(3.8)

9
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j : X × V × V → R is such that:

(a) For all x ∈ X, and u ∈ V, j(x, u, ·) is convex

and lower semicontinuous (l.s.c) on V.

(b) There exists αj > 0 and βj > 0 such that

j(x1, u1, v2)− j(x1, u1, v1) + j(x2, u2, v1)− j(x2, u2, v2)

≤ αj‖x1 − x2‖X‖v1 − v2‖V + βj‖u1 − u2‖V ‖v1 − v2‖V ,

for all x1, x2 ∈ X, u1, u2 ∈ V, v1, v2 ∈ V.

(3.9)

mA − βj > lS. (3.10)

f ∈ C([0, T ];Z). (3.11)
{

π : V → Z is a linear continuous operator, i.e.,

there exists c0 > 0 such that ‖πv‖Z ≤ c0 ‖v‖V ∀ v ∈ V.
(3.12)

Our first result in the section is the following.

Theorem 3.1. Assume (3.4)–(3.12). Then, Problem Pa has a unique solution (x, u) ∈

C1([0, T ];X)× C([0, T ];K).

Note that Problem Pa was studied in [28] in the particular case when S vanishes.

Therefore, in order to avoid repetition, we skip the details and resume the proof of

Theorem 3.1 in three steps, as follows.

Proof. Step i). Using Theorem 2.1 in [28], it follows that for any η ∈ C([0, T ];V ∗),

there exists a unique couple of functions xη ∈ C1([0, T ];X), uη ∈ C([0, T ];K) such

that

ẋη(t) = F (t, xη(t), uη(t)) ∀ t ∈ [0, T ], (3.13)

xη(0) = x0, (3.14)

〈A(xη(t), uη(t)), v − uη(t)〉+ j(xη(t), uη(t), v)− j(xη(t), uη(t), uη(t))

≥ 〈η(t), v − uη(t)〉 ∀ v ∈ K, t ∈ [0, T ]. (3.15)

Moreover, if (xi, ui) represents the solution of problem (3.13)–(3.15) with η = ηi ∈

C([0, T ];V ∗), i = 1, 2, then by standard arguments we find that

‖x1(t)− x2(t)‖X ≤ LF

(∫ t

0

‖x1(s)− x2(s)‖Xds+

∫ t

0

‖u1(s)− u2(s)‖V ds
)
,

‖u1(t)− u2(t)‖V ≤
LX
A + αj

mA − βj

‖x1(t)− x2(t)‖X +
1

mA − βj

‖η1(t)− η2(t)‖V ∗

for all t ∈ [0, T ]. We now add these inequalities, use a Gronwall argument and, after

some algebra we find that

‖u1(t)− u2(t)‖V ≤
1

mA − βj

‖η1(t)− η2(t)‖V ∗ + C

∫ t

0

‖η1(t)− η2(t)‖V ∗ ds (3.16)
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for any t ∈ [0, T ], with a constant C > 0 which does not depend on t.

Step ii). We now define the operator Λ : C([0, T ];V ∗) → C([0, T ];V ∗) by equality

〈Λη(t), v〉 = (f(t), πv)Z − 〈Suη(t), v〉 ∀ η ∈ C([0, T ];V ), t ∈ [0, T ]. (3.17)

We use (3.16) and (3.17) and the properties of the operators S and π to see that there

exists C ′ > 0 such that

‖Λη1(t)− Λη2(t)‖V ∗ ≤
lS

mA − βj

‖η1(t)− η2(t)‖V ∗ + C ′

∫ t

0

‖η1(s)− η2(s)‖V ∗ds

for all η1, η2 ∈ C([0, T ];V ), t ∈ [0, T ]. This inequality combined with the smallness

assumption (3.10) allows us to use Theorem 25 in [30, p. 41] in order to deduce that

Λ has a unique fixed point η∗ ∈ C([0, T ];V ).

Step iii). We use (3.13)–(3.15), the definition (3.17) of the operator Λ and equality

Λη∗ = η∗ to see that

ẋη∗(t) = F (t, xη∗(t), uη∗(t)) ∀ t ∈ [0, T ],

xη∗(0) = x0,

〈A(xη∗(t), uη∗(t)) + Suη∗(t), v − uη∗(t)〉+ j(xη∗(t), uη∗(t), v)

− j(xη∗(t), uη∗(t), uη∗(t)) ≥ (f(t), πv − πuη∗(t))Z ∀ v ∈ K, t ∈ [0, T ].

We conclude from here that (xη∗ , uη∗) is the solution of Problem Pa. This proves the

existence part of Theorem 3.1. The uniqueness part follows from the uniqueness of

the fixed point of the operator Λ, guaranteed by Theorem 25 in [30].

4 A convergence result

The solution (x, u) to Problem Pa depends on the data F, x0, A, S, K, j and f . Its

behaviour with respect to perturbations of all these data can be studied, by using

arguments similar to those used in our previous paper [28]. Nevertheless, since our

main interest is to provide tools in the study of the contact problem P , we restrict

ourselves to study the behaviour of the solution with respect to perturbations of

F, S, K and f . To this end for each n ∈ N we consider a function Fn, a set Kn, an

operator Sn and a function fn that satisfy the assumptions (3.4), (3.6), (3.8), (3.11)

respectively, with constants LFn
, lSn

, LSn
. To avoid any confusion, we use notation

(3.4)n, (3.6)n, (3.8)n, (3.10)n, (3.11)n when we refer to these assumptions for the

perturbation data.

The sequences {LFn
}, {lSn

} and {LSn} are assumed to be bounded and, therefore,

without the loss of generality we assume that

LFn
≤ LF , lSn

≤ lS, LSn
≤ LS (4.1)
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for all n ∈ N. Then, for each n ∈ N we consider the following problem.

Problem Pn
a . Find xn ∈ C1([0, T ];X) and un ∈ C([0, T ];Kn) such that

ẋn(t) = Fn(t, xn(t), un(t)) ∀ t ∈ [0, T ], (4.2)

xn(0) = x0, (4.3)

〈A(xn(t), un(t)) + Snun(t), v − un(t)〉+ j(xn(t), un(t), v)

− j(xn(t), un(t), un(t)) ≥ (fn(t), πv − πun(t))Z ∀ v ∈ Kn, t ∈ [0, T ], (4.4)

The unique solvability of Problem Pn
a is a direct consequence of Theorem 3.1.

To study the behavior of the solution (xn, un) as n → ∞, we consider the following

additional assumptions.




There exists {Γn} ⊂ R+ such that :

(a) ‖Fn(t, x, u)− F (t, x, u)‖X ≤ Γn (‖x‖X + ‖u‖V + 1)

∀ t ∈ [0, T ], x ∈ X, u ∈ V, n ∈ N.

(b) lim Γn = 0.

(4.5)





The sequence {Kn} converges to K in the sense of Mosco, i.e.,

(a) for any v ∈ K there exists a sequence {vn} such that

vn ∈ Kn ∀n ∈ N and vn → v in V.

(b) for any sequence {vn} ⊂ X such that

vn ∈ Kn ∀n ∈ N and vn ⇀ v in V we have v ∈ K.

(4.6)





There exists {∆n} ⊂ R+ such that :

(a) ‖Snu− Su‖C([0,T ];V ∗) ≤ ∆n

(
‖u‖C([0,T ];V ) + 1

)

∀ u ∈ C([0, T ];V ), n ∈ N.

(b) lim ∆n = 0.

(4.7)





(a) There exists γj ≥ 0 such that

j(x, u, v1)− j(x, u, v2) ≤ γj(‖x‖X + ‖u‖V + 1)‖v1 − v2‖V

∀ x ∈ X, u ∈ V, v1, v2 ∈ V.

(b) For any x ∈ X and any sequences {un} ⊂ V, {vn} ⊂ V

such that un ⇀ u in V and vn → v in V, we have

lim sup
n→∞

[j(x, un, vn)− j(x, un, un)] ≤ j(x, u, v)− j(x, u, u).

(4.8)

fn(t) ⇀ f(t) in Z for all t ∈ [0, T ]. (4.9)
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{
For any sequence {vn} ⊂ V such that

vn ⇀ v in V, we have πvn → πv in Z.
(4.10)

Our main result in this section. is the following.

Theorem 4.1. Assume (3.4)–(3.12), (3.4)n, (3.6)n, (3.8)n, (3.11)n for each n ∈ N,

(4.1) and (4.5)–(4.10). Then, the sequence {(xn, un)} of solutions for Problem Pn
a

converges to the solution (x, u) of Problem Pa at any time time moment, i.e.,

xn(t) → x(t) in X and un(t) → u(t) in V,

for each t ∈ [0, T ].

The proof of Theorem 4.1 will be divided into several steps that we present in

what follows. To this end, everywhere below we keep the assumptions of Theorem

4.1, even if we do not mention it explicitly. We start with the following result of

Minty type for time-dependent quasivariational inequalities.

Lemma 4.2. Let (x, u) ∈ C1([0, T ];X) × C([0, T ];V ). Then, there exists a unique

function ũ ∈ C([0, T ];K) such that

〈A(x(t), ũ(t)) + Su(t), v − ũ(t)〉+ j(x(t), ũ(t), v)− j(x(t), ũ(t), ũ(t))

≥ (f(t), πv − πũ(t))Z ∀ v ∈ K, t ∈ [0, T ]. (4.11)

Moreover, ũ ∈ C([0, T ];K) is the solution of inequality (4.11) if and only if

〈A(x(t), v) + Su(t), v − ũ(t)〉+ j(x(t), ũ(t), v)− j(x(t), ũ(t), ũ(t))

≥ (f(t), πv − πũ(t))Z ∀ v ∈ K, t ∈ [0, T ]. (4.12)

Proof. The first part of the lemma is the direct consequence of Lemma 2.1 in [28].

Moreover, it follows from the monotonicity of the operator A that for any v ∈ V and

t ∈ [0, T ] we have

〈A(x(t), v), v − ũ(t)〉 ≥ 〈A(x(t), ũ(t)), v − ũ(t)〉,

which implies that any solution of problem (4.11) is also the solution of problem

(4.12).

Assume now that ũ ∈ C([0, T ];K) is solution of problem (4.12). Let t ∈ [0, T ],

w ∈ K and s ∈ (0, 1] and denote v = ũ(t) + s(w − ũ(t)). Then v ∈ K and (4.12)

yields

〈A(x(t), ũ(t) + s(w − ũ(t))) + Su(t), s (w − ũ(t))〉+ j(x(t), ũ(t), ũ(t) + s(w − ũ(t)))

− j(x(t), ũ(t), ũ(t)) ≥ s(f(t), πw − πũ(t))Z . (4.13)

We use assumption (3.9)(a) to see that

j(x(t), ũ(t), ũ(t) + s(w − ũ(t))) ≤ sj(x(t), ũ(t), w) + (1− s)j(x(t), ũ(t), ũ(t))
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and, therefore, (4.13) implies that

s〈A(x(t), ũ(t) + s(w − ũ(t))) + Su(t), w − ũ(t)〉+ sj(x(t), ũ(t), w)

− sj(x(t), ũ(t), ũ(t)) ≥ s(f(t), πw − πũ(t))Z .

We now divide this inequality with s > 0, then we pass to the limit as s → 0 and

use the assumption (3.7)(b) to see that inequality (4.11) holds, which completes the

proof of the lemma.

Remark 1. Let (x, u) ∈ C1([0, T ];X) × C([0, T ];K) be the solution of Problem Pa

and let ũ ∈ C([0, T ];K). Then, Theorem 3.1 and Lemma 4.2 imply that u = ũ if and

only if ũ satisfies the inequality (4.12).

Next, for each n ∈ N, we use the solution (x, u) ∈ C1([0, T ];X) × C([0, T ];K) of

Problem Pa, to construct the following auxiliary problem.

Problem P̃n. Find ũn ∈ C([0, T ];Kn) such that

〈A(x(t), ũn(t)) + Snu(t), v − ũn(t)〉+ j(x(t), ũn(t), v)− j(x(t), ũn(t), ũn(t))

≥ (fn(t), πv − πũn(t))Z ∀ v ∈ Kn, t ∈ [0, T ]. (4.14)

The next step of the proof is the following.

Lemma 4.3. For each n ∈ N, Problem P̃n has a unique solution ũn ∈ C([0, T ];V ).

Moreover, there exists a constant C > 0 such that

‖ũn(t)‖V ≤ C ∀n ∈ N, t ∈ [0, T ]. (4.15)

Proof. The unique solvability of Problem P̃n is the direct consequence of Lemma 4.2.

To prove the second part of the lemma we fix n ∈ N, t ∈ [0, T ] and u0 ∈ K. We

conclude from (4.6) that there exists a sequence {un} such that

un ∈ Kn ∀n ∈ N and un → u0 in V.

Taking v = un ∈ Kn in (4.14), one has

〈A(x(t), ũn(t)), ũn(t)− un〉 ≤ 〈Snu(t), un − ũn(t)〉+ j(x(t), ũn(t), un)

− j(x(t), ũn(t), ũn(t)) + (fn(t), πũn(t)− πun)Z

and, therefore,

〈A(x(t), ũn(t))− A(x(t), un), ũn(t)− un〉 ≤ 〈A(x(t), un) + Snu(t), un − ũn(t)〉

+ j(x(t), ũn(t), un)− j(x(t), ũn(t), ũn(t)) + (fn(t), πũn(t)− πun)Z .

14

Accepted Manuscript



Using now assumption (3.7)(c) on A we have

mA‖ũn(t)− un‖
2
V ≤ 〈A(x(t), un) + Snu(t), un − ũn(t)〉

+ j(x(t), ũn(t), un)− j(x(t), ũn(t), ũn(t)) + (fn(t), πũn(t)− πun)Z . (4.16)

On the other hand, since un → u in V , we can find D > 0 such that

‖un‖V ≤ D, ‖x(t)‖X ≤ D, ‖u(t)‖V ≤ D. (4.17)

Here and below D, D′, D′′, D′′′ and D0 are positive constants which do not depend

on t and n. Then, using assumptions (3.7) and (4.7) we deduce that there exists a

constant D′ such that

‖A(x(t), un) + Snu(t)‖V ∗ ≤ D′. (4.18)

Moreover, conditions (3.9)(b) and (4.8)(a) imply that

j(x(t), ũn(t), un)− j(x(t), ũn(t), ũn(t))

≤ j(x(t), un, un)− j(x(t), un, ũn(t)) + βj‖un − ũn(t)‖
2
V

≤ γj(‖x(t)‖X + ‖un‖V + 1)‖un − ũn(t)‖V + βj‖un − ũn(t)‖
2
V .

and, using (4.17) we find that that there exists D′′ > 0 such that

j(x(t), ũn(t), un)− j(x(t), ũn(t), ũn(t))

≤ D′′‖un − ũn(t)‖V + βj‖un − ũn(t)‖
2
V . (4.19)

Finally assumptions (4.9) and (3.12) guarantee that there exists D′′′ > 0 such that

(fn(t), πũn(t)− πun)Z ≤ D′′′‖un − ũn(t)‖V . (4.20)

We now gather the bounds (4.16), (4.18)–(4.20) so see that

(mA − βj)‖ũn(t)− un‖
2
V ≤ (D′ +D′′ +D′′′)‖ũn(t)− un‖V .

This inequality combined with the smallness condition mA − βj > ls ≥ 0, implied by

(3.10), shows that there exists a constant D0 such that ‖ũn(t)− un‖V ≤ D0. We now

use the bound (4.17) to conclude the proof.

The next step is the following.

Lemma 4.4. The sequence ũn of solutions for Problem P̃n converges weakly to u at

any time moment , i.e.,

ũn(t) ⇀ u(t) in V, ∀ t ∈ [0, T ].
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Proof. Let t ∈ [0, T ]. The reflexivity of V and Lemma 4.3 guarantee that there exists

a subsequence of {ũn(t)} still denoted by {ũn(t)}, and an element ũ(t) ∈ V such that

ũn(t) ⇀ ũ(t) in V . Moreover, since ũn(t) ∈ Kn for each n ∈ N, assumption (4.6)(b)

implies that ũ(t) ∈ K. We only need to prove that ũ(t) = u(t) and, from Remark 1 it

is enough to prove that the following inequality holds:

〈A(x(t), v) + Su(t), ũ(t)− v〉

≤ j(x(t), ũ(t), v)− j(x(t), ũ(t), ũ(t)) + (f(t), πũ(t)− πv)Z ∀ v ∈ K. (4.21)

Let v ∈ K and let {vn} ⊂ V such vn ∈ Kn for each n ∈ N and vn → v in V . Let

n ∈ N. We use (4.14) to see that

〈A(x(t), ũn(t)) + Snu(t), ũn(t)− vn〉 ≤ j(x(t), ũn(t), vn)− j(x(t), ũn(t), ũn(t))

+ (fn(t), πũn(t)− πvn)Z

and, using the inequality

A(x(t), vn), ũn(t)− vn〉 ≤ A(x(t), ũn(t)), ũn(t)− vn〉,

guaranteed by assymption (3.7)(c), we find that

〈A(x(t), vn) + Snu(t), ũn(t)− vn〉 ≤ j(x(t), ũn(t), vn)− j(x(t), ũn(t), ũn(t))

+ (fn(t), πvn − πũn(t))Z . (4.22)

Then, writing

Su(t) = Su(t)− Snu(t) + Snu(t)

and using (4.22) we deduce that

〈A(x(t), vn) + Su(t), ũn(t)− vn〉

= 〈Snu(t)− Su(t), vn − ũn(t)〉+ 〈A(x(t), vn) + Snu(t), ũn(t)− vn〉

≤ 〈Snu(t)− Su(t), vn − ũn(t)〉+ j(x(t), ũn(t), vn)− j(x(t), ũn(t), ũn(t))

+(fn(t), πũn(t)− πvn)Z . (4.23)

We now estimate each term of the right hand side above.

First, we use (4.7) to find that

〈Snu(t)− Su(t), vn − ũn(t)〉 ≤ ∆n

(
‖u‖C([0,T ];V ) + 1

)
‖vn − ũn(t)‖V . (4.24)

Since the sequence {vn} and {ũn(t)} are bounded in V , inequality (4.24) and (4.7)(b)

imply that

lim sup 〈Snu(t)− Su(t), vn − ũn(t)〉 ≤ 0. (4.25)

On the other hand, since vn → v and ũn(t) ⇀ ũ(t) in V , assumption (4.8) (b) shows

that

lim sup
[
j(x(t), ũn(t), vn)− j(x(t), ũn(t), ũn(t))

]

≤ j(x(t), ũ(t), v)− j(x(t), ũ(t), ũ(t)). (4.26)
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Finally, note that

(fn(t), πũn(t)− πvn)Z

= (fn(t), πũn(t)− πũ(t))Z + (fn(t), πũ(t)− πv)Z + (fn(t), πv − πvn)Z

≤ ‖fn(t)‖Z‖πũn(t)− πũ(t)‖Z + (fn(t), πũ(t)− πv) + ‖fn(t)‖Z‖πv − πvn‖Z .

Thus, using the convergences vn → v and ũn(t) ⇀ ũ(t), both in V , and assumptions

(4.9), (4.10), we deduce that

lim sup (fn(t), πũn(t)− πvn)Z ≤ (f(t), πũ(t)− πv)Z . (4.27)

We now pass to the upper limit in (4.23) and use inequalities (4.25)–(4.27) to

obtain that

lim sup 〈A(x(t), vn) + Su(t), ũn(t)− vn〉

≤ j(x(t), ũ(t), v)− j(x(t), ũ(t), ũ(t)) + (f(t), πũ(t)− πv)Z . (4.28)

On the other hand, from the Lipschitz continuity (3.7)(b) of the operator A and the

convergences vn → v, ũn(t) ⇀ ũ(t) in V , it follows that

lim sup 〈A(x(t), vn) + Su(t), ũn(t)− vn〉

= 〈A(x(t), v) + Su(t), ũ(t)− v〉. (4.29)

We now use (4.28) and (4.29) to find that (4.21) holds, which concludes the proof.

We now prove the following strong convergence result.

Lemma 4.5. The sequence {ũn} of solutions for Problem P̃n converges strongly to u

at any time moment, i.e.,

ũn(t) → u(t) in V ∀ t ∈ [0, T ].

Proof. Let t ∈ [0, T ] and let {vn} ⊂ V be a sequence such that vn ∈ Kn for all n ∈ N

and vn → u(t) in V . Let n ∈ N. We use (4.14) to see that

〈A(x(t), ũn(t)), ũn(t)− vn〉

≤ 〈Snu(t)− Su(t), vn − ũn(t)〉+ 〈Su(t), vn − ũn(t)〉+ j(x(t), ũn(t), vn)

− j(x(t), ũn(t), ũn(t)) + (fn(t), πũn(t)− πvn)Z

and, therefore,

〈A(x(t), ũn(t)), ũn(t)− u(t)〉

≤ 〈A(x(t), ũn(t)), vn − u(t)〉+ 〈Snu(t)− Su(t), vn − ũn(t)〉+ 〈Su(t), vn − ũn(t)〉

+ j(x(t), ũn(t), vn)− j(x(t), ũn(t), ũn(t)) + (fn(t), πũn(t)− πvn)Z . (4.30)
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for all vn ∈ Kn. This inequality and arguments similar to those used to obtain

(4.25)–(4.27) yield

lim sup 〈A(x(t), ũn(t)), ũn(t)− u(t)〉 ≤ 0

and, therefore,

lim sup 〈A(x(t), ũn(t))− A(x(t), u(t)), ũn(t)− u(t)〉

≤ lim sup 〈A(x(t), u(t)), u(t)− ũn(t)〉 = 0. (4.31)

It follows now from condition (3.7)(c) and inequality (4.31) that

lim sup ‖ũn(t)− u(t)‖V ≤ 0,

which concludes the proof.

We are now in a position to provide the proof of Theorem 4.1.

Proof. Let t ∈ [0, T ]. We test in (4.4) and (4.14) with v = ũn(t) and v = un(t),

respectively, and then we add the resulting inequalities to deduce that

〈A(xn(t), un(t))− A(x(t), ũn(t)), un(t)− ũn(t)〉

≤ 〈Snu(t)− Snun(t), un(t)− ũn(t)〉+ j(xn(t), un(t), ũn(t))

−j(xn(t), un(t), un(t)) + j(x(t), ũn(t), un(t))− j(x(t), ũn(t), ũn(t)).

It follows from here that

〈A(x(t), un(t))− A(x(t), ũn(t)), un(t)− ũn(t)〉

≤ 〈A(x(t), un(t))− A(xn(t), un(t)), un(t)− ũn(t)〉

+〈Snu(t)− Snun(t), un(t)− ũn(t)〉+ j(xn(t), un(t), ũn(t))

−j(xn(t), un(t), un(t)) + j(x(t), ũn(t), un(t))− j(x(t), ũn(t), ũn(t)).

Therefore, using conditions (3.7), (3.8)n, (3.9) and (4.1) we find that

mA‖un(t)− ũn(t)‖
2
V

≤
(
‖A(x(t), un(t))− A(xn(t), un(t))‖V ∗ + ‖Snu(t)− Snun(t)‖V ∗

)
‖un(t)− ũn(t)‖V

+αj‖xn(t)− x(t)‖X‖ũn(t)− un(t)‖V + βj‖un(t)− ũn(t)‖
2
V

≤
(
LX
A‖xn(t)− x(t)‖X + lS‖u(t)− un(t)‖V

+LS

∫ t

0

‖u(s)− un(s)‖V ds
)
‖un(t)− ũn(t)‖V

+αj‖xn(t)− x(t)‖X‖ũn(t)− un(t)‖V + βj‖ũn(t)− un(t)‖
2
V ,
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which implies that

(mA − βj)‖un(t)− ũn(t)‖V ≤ (LX
A + αj)‖xn(t)− x(t)‖X (4.32)

+lS‖un(t)− u(t)‖V + LS

∫ t

0

‖u(s)− un(s)‖V ds.

We now write

‖un(t)− u(t)‖V ≤ ‖un(t)− ũn(t)‖V + ‖ũn(t)− u(t)‖V ,

multiply this inequality by mA − βj > 0 and use (4.32) together with the smallness

assumption (3.10) to deduce that

‖un(t)− u(t)‖V ≤ C1

(
‖xn(t)− x(t)‖X + ‖ũn(t)− u(t)‖V

)

+C2

∫ t

0

‖un(s)− u(s)‖V ds. (4.33)

Here and below in this paper Ci, i = 1, . . . , 8 represent positive constants which may

depend on x, u and T , but do not depend on n and t.

On the other hand, (3.1)–(3.2) and (4.2)–(4.3) imply that

x(t) = x0 +

∫ t

0

F (s, x(s), u(s)) ds, xn(t) = x0 +

∫ t

0

Fn(s, xn(s), un(s)) ds

and so

‖xn(t)− x(t)‖X ≤

∫ t

0

‖Fn(s, xn(s), un(s))− F (s, x(s), u(s))‖X ds. (4.34)

We now use the hypotheses (3.4)n(b), (4.5) and (4.1) to see that

‖Fn(s, xn(s), un(s))− F (s, x(s), u(s))‖X

≤ ‖Fn(s, xn(s), un(s))− Fn(s, x(s), u(s))‖X

+‖Fn(s, x(s), u(s))− F (s, x(s), u(s))‖X

≤ LF

(
‖xn(s)− x(s)‖X + ‖un(s)− u(s)‖V

)

+Γn

(
‖x(s)‖X + ‖u(s)‖X + 1

)
, (4.35)

for any s ∈ [0, T ]. Then, inequalities (4.34) and (4.35) show that

‖xn(t)− x(t)‖X ≤ C3Γn + LF

∫ t

0

hn(s) ds, (4.36)

where hn : [0, T ] → R is the function defined by

hn(s) = ‖xn(s)− x(s)‖X + ‖un(s)− u(s)‖X ∀ s ∈ [0, T ]. (4.37)
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We now combine inequalities (4.33) and (4.36) to see that

‖un(t)− u(t)‖V ≤ C4(Γn + ‖ũn(t)− u(t)‖V ) + C5

∫ t

0

hn(s) ds. (4.38)

Finally, we add inequalities (4.36) and (4.38) to deduce that

hn(t) ≤ C6(Γn + ‖ũn(t)− u(t)‖V ) + C7

∫ t

0

hn(s) ds. (4.39)

and, after using the Gronwall argument yields

hn(t) ≤ C8

(
Γn + ‖ũn(t)− un(t)‖V +

∫ t

0

‖ũn(s)− u(s)‖V ds
)
. (4.40)

We now use (4.40), assumption (4.5)(b), Lemmas 4.5 and 4.3 and the Lebesgue

dominated convergence theorem to deduce that

hn(t) → 0 as n → ∞. (4.41)

We now combine (4.41) and (4.37) to conclude the proof.

5 Analysis and control of the contact model

In this section we apply the abstract results in Sections 3 and 4 in the study of

Problem PV . To this end, everywhere below we use the space V and the set K

defined by (2.10) and (2.23), respectively. The unique solvability of this problem is

given by the following existence and uniqueness result.

Theorem 5.1. Assume (2.14)–(2.22) and, in addition, assume that

mA > Lpctr‖µ‖L∞(Γ3). (5.1)

Then, Problem PV has a unique solution (w,u) ∈ C1([0, T ];L2(Γ3)) × C([0, T ];K).

Moreover, the solution depends continuously on the data α, f 2, k and g, that is, if

for each n ∈ N, (wn,un) represent the solution of Problem PV with the data αn, f 2n,

gn and kn which satisfy (2.15), (2.18), (2.20) and (2.21) and

αn → α in L∞(Ω), (5.2)

f 2n ⇀ f̃ 2 in L2(Γ2,R
d), (5.3)

kn → k in C([0, T ];L∞(Γ3)), (5.4)

gn → g in R (5.5)

then, for each t ∈ [0, T ], following convergences hold:

wn(t) → w(t) in L2(Γ3), un(t) → u(t) in V. (5.6)
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Proof. We use Theorems 3.1 and 4.1 withX = L2(Γ3) and Z = L2(Ω;Rd)×L2(Γ2;R
d).

To this end we consider the operators A : L2(Γ3) × V → V ∗, S : C([0, T ];V ) →

C([0, T ];V ∗), π : V → Z, and the functions F : [0, T ]×X×V → X, j : X×V ×V →

R, f : [0, T ] → Z defined by the equalities

〈A(w,u),v〉 = (Aε(u), ε(v))Q +

∫

Γ3

p(uν − w)vνda (5.7)

∀u, v ∈ V, w ∈ X, (5.8)

〈Su(t),v〉 = (α

∫ t

0

et−sε(u(s)) ds, ε(v))Q (5.9)

∀u ∈ C([0, T ];V ), v ∈ V, t ∈ [0, T ], (5.10)

F (t, w,u) = k(t)‖v∗‖p(uν − w) ∀w ∈ X, u ∈ V, t ∈ [0, T ], (5.11)

j(w,u,v) =

∫

Γ3

µp(uν − w)n∗ · vτ da ∀w ∈ X, u,v ∈ V, (5.12)

πv = (v,v|Γ2
) ∀v ∈ V, (5.13)

f(t) = (f 0(t), θ(t)f 2) ∀ t ∈ [0, T ]. (5.14)

Then, it is easy to see that Problem PV is equivalent to finding a pair (w,u) ∈

C1(I;X)× C(I;K) such that

ẇ(t) = F (t, w(t),u(t)) ∀ t ∈ I, (5.15)

w(0) = 0, (5.16)

〈A(w(t),u(t)) + Su(t),v − u(t)〉+ j(w(t),u(t),v)− j(w(t),u(t),u(t))

≥ (f(t), πv − πu(t))Z ∀v ∈ K, t ∈ [0, T ]. (5.17)

Using assumptions (2.14)–(2.22), we obtain that conditions (3.4)–(3.12) hold with

LF = Lp‖k‖C([0,T ];L∞(Γ3))‖v
∗‖(ctr + 1), LV

A = LA + Lpc
2
tr, LX

A = Lpctr, m = mA,

lS = 0, LS = ‖α‖L∞(Ω)e
T , αj = Lpc

2
tr‖µ‖L∞(Γ3), βj = Lpctr‖µ‖L∞(Γ3), c0 = 1 + ctr.

For instance, the regularity (3.11) can be derived from (2.16) and (2.18) and the

smallness condition (3.10) follows from (5.1). Then, it follows from Theorem 3.1 that

there exists a unique (w,u) ∈ C1([0, T ];X) × C([0, T ];K) such that (5.15)–(5.17)

hold. This proves the first part of the Theorem.

For the second part we assume that αn, f 2n, gn and kn have the regularities (2.15),

(2.18), (2.20) and (2.21), respectively, and, moreover, (5.2), (5.3), (5.4) and (5.5) hold.

Then, it follows that there exists a unique pair (wn,un) ∈ C1([0, T ];X)×C([0, T ];Kn)
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such that

ẇn(t) = Fn(t, wn(t),un(t)) ∀ t ∈ [0, T ], (5.18)

wn(0) = 0, (5.19)

〈A(wn(t),un(t)) + Snun(t),v − un(t)〉+ j(wn(t),un(t),v)

− j(wn(t),un(t),un(t)) ≥ (f(t), πv − πun(t))Z ∀v ∈ Kn, t ∈ [0, T ], (5.20)

where the set Kn, the operator Sn : C([0, T ];V ) → C([0, T ];V ∗) and the functions

Fn : [0, T ]×X × V → X, fn : [0, T ] → Z are defined by the equalities

Kn = {v ∈ V v ≤ gn on Γ3 }, (5.21)

〈Snu(t),v〉 = (αn

∫ t

0

(
et−sε(u(s))

)
ds , ε(v))Q

∀u ∈ C([0, T ];V ), v ∈ V, t ∈ [0, T ], (5.22)

Fn(t, w,u) = kn(t)‖v
∗‖p(uν − w) ∀w ∈ X, u ∈ V, t ∈ [0, T ], (5.23)

fn(t) = (f 0(t), θ(t)f 2n) ∀ t ∈ [0, T ]. (5.24)

Then, using the properties of the function p and the compactness of the trace

operator, it is routine to check that conditions (4.5)–(4.10) hold. For instance, the

validity of condition (4.6) follows from equality Kn = gn
g
K and the smallness condi-

tion (3.10) follows from (5.1) since, in our case, lS = 0. To conclude, the convergence

result (5.6) is a direct consequence of Theorem 4.1.

Besides the mathematical interest in the convergence result in Theorem 4.1 it is

important from mechanical point of view. Indeed, it shows that at each time moment

the solution of the viscoelastic frictional contact with wear depends continuously

on the relaxation coefficient α, the initial density of surface tractions f 2, the wear

coefficient k and the thickness of the soft layer g. In particular if α vanishes the

convergence (5.6) shows that the solution of the elastic contact problem with wear

can be approached by the solution of the viscoelastic problem with wear; if k vanishes

it follows from (5.6) that the solution of the viscoelastic contact problem without wear

can be approached by the solution of a viscoelastic problem with wear; finally, if g

vanishes, (5.6) shows that the solution of the viscoelastic contact problem with a rigid

obstacle can be approached by the solution of the viscoelastic problem with wear and

a rigid-deformable obstacle.

In addition, Theorem 4.1 allows us to consider various optimal control problems

associated to the contact model (2.1)–(2.8). Here we restrict ourselves to consider

an optimal control problem associated to the cost functional (2.28) which, recall,

represents a measure of the wear of the deformable layer at the end of the contact

process. Our approach is as follows. First, note that, under assumptions of Theorem

4.1, the solution of Problem PV depends on f 2 and, therefore, we denote it in what
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follows by (uf
2

, wf
2

). Moreover, we recall the regularity wf
2

∈ C(0, T ;L2(Γ3)). Let

M2 > 0 and let

W2 = {f 2 ∈ L2(Γ2;R
d) : ‖f 2‖L2(Γ2;Rd) ≤ M2 }. (5.25)

Then, the optimal control problem we consider is the following.

Problem Q. Find f ∗

2 ∈ W2 such that

∫

Γ3

w2

f
∗

2

(T ) da ≤

∫

Γ3

w2

f
2

(T ) da ∀f 2 ∈ W2. (5.26)

Our main result in the study of this problem is the following.

Theorem 5.2. Assume (2.14)–(2.17), (2.19)–(2.22) and (5.1). Then, the optimal

control problem Q has at least one solution f ∗

2.

Proof. Let L : W2 → R be the cost function given by

L(f 2) =

∫

Γ3

w2

f
2

(T ) da ∀f 2 ∈ W2. (5.27)

Using Theorem 5.1 it is easy to see that L is a weakly continuous function and,

therefore, it is weakly lower semicontinuous. On the other hand, the set W2 is a

bounded nonempty weakly closed subset of the reflexive Banach space L2(Γ2;R
d).

The existence of at least one solution for Problem Q is now a direct consequence of

the Weierstrass theorem.

The mechanical interpretation of Problem Q is the following: given a contact pro-

cess described by the boundary value problem (2.1)–(2.8) and a constant M2 > 0,

we are looking for an initial density of surface tractions f 2 ∈ L2(Γ2);R
d) with

‖f 2‖L2(Γ2;Rd) ≤ M2 such that the corresponding wear of the foundation at the end of

the contact process is as small as possible. Such kind of problems could have rele-

vant applications in various industrial settings and, in particular, in the automotive

industry.
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