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Abstract 

Food safety is the foundation of trust for food stakeholders. Contamination, especially from 

biological sources, at food processing plants can threaten this foundation, resulting in negative 

impacts on consumer health and substantial economic losses. Therefore, a rapid, effective, 

and noninvasive method for detecting bacteria in the food industry is essential. In this study, 

Raman micro-spectroscopy with advanced statistical tools is proposed as a mean of detecting 

and differentiating between various types of bacteria. This approach circumvents the 

complexities of traditional culture-based detection methods. Specifically, fifty-two bacterial 

strains of 39 different genera were analyzed using Raman spectroscopy. As a result, about 

2,563 Raman spectra were generated and integrated into the database. This huge amount of 

spectral data was analyzed using several chemometric tools, including principal component 

analysis (PCA), factorial discriminant analysis (FDA) k-nearest neighbors’ algorithm (KNN), 

and convolutional neural network (CNN). Our multivariate data analysis showed that the 

developed method is rapid and capable of distinguishing several strains. While, FDA models 

showed mediocre performances, KNN models provided good bacterial classification for most 

of the analyzed strains (average correct classification 90–95%). In comparison, CNN achieved 

a higher classification accuracy, of 97%, compared with other models. Combining Raman 

spectroscopy with chemometric tools yields a robust bacterial assessment method that is 

simple, rapid, and efficient.  

Keywords: Bacteria, Chemometric tools, Classification, Raman spectroscopy 
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1. Introduction 

 
Foodborne diseases (FBD) triggered by pathogenic bacteria are still considered a significant 

cause of morbidity and mortality worldwide. According to the World Health Organization 

(WHO), at least 420 thousand deaths occur every year due to the consumption of 

contaminated food, based on their “Estimates of the global burden of foodborne diseases” 

report [1]. Furthermore, these diseases can also be an economic burden, with recent estimates 

showing an annual cost of up to 90 billion dollars in the United States [2]. Although, current 

pathogen detection methods, including enzyme-linked immunosorbent assay (ELISA) [3], 

loop-mediated isothermal amplification (LAMP) [4], and conventional biochemical detection 

[5], are reliable, they are lengthy procedures that cannot produce test results rapidly. 

Therefore, for food quality testing, a fast and accurate detection tool for foodborne pathogens 

is needed. 

Over recent years, advancements in Raman spectroscopy have opened new research avenues 

by allowing rapid and non-destructive analysis. This optical method uses the inelastic 

scattering of light to produce a structural fingerprint of high specificity. The molecular 

vibrations caused by the interaction of light with the target sample reveal almost all chemical 

components, including nucleic acids, carbohydrates, lipids, and proteins [6, 7]. The high 

sensitivity of this technique allows it to identify organisms at the level of single cells [8, 9]. 

However, like many other modern analytical instruments, Raman spectroscopy produces a 

significant amount of information (variables) for a large number of samples in a relatively 

short time. This results in multivariate data matrices that require the use of chemometric tools 

to extract the maximum useful information. 

The most common chemometric tools used to explore the potential features and classify 

Raman signals are principal component analysis (PCA), linear discriminant analysis, support 

vector machines (SVMs), and deep learning methods such as convolutional neural networks 
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(CNN) [10, 11]. However, due to the complexity of microbial composition, large datasets 

acquired during Raman analyses mean that unsupervised methods are no longer adequate for 

data analysis [12]. In fact, PCA is widely used in processing Raman spectra, but can only 

perform dimensionality reduction, which may not be helpful for some discrimination 

situations. In addition, processing Raman spectra by PCA in groups results in low-efficiency 

data usage and many essential features cannot be easily identified using scatterplots or other 

PCA output [13]. In comparison with unsupervised methods (PCA), supervised learning 

algorithms, such as factorial discriminant analysis (FDA), K-nearest neighbors (KNN), and 

CNN, rely on model training.  This is done by presenting known samples to identify features 

and employing them to perform classification. Machine learning methods have been 

successfully applied in clustering, regression, and classification tasks on large data matrices, 

especially for the differentiation and identification of bacterial organisms [5, 8, 9]. For 

example, Tang et al.[14] used ten supervised machine learning methods, including KNN and 

CNN, to analyze 117 Staphylococcus strains and found CNN to have the highest accuracy, at 

98.22%, followed by KNN, at 96.22%. In addition, Ho et al. [9] utilized CNN to identify 30 

common bacterial pathogens, with an accuracy above 82%. 

This study aims to enrich the Raman database with a diverse range of food-contaminating 

bacterial species (n = 52) from various families and genera., In terms of the number of species 

included, this study has the highest diversity compared to other studies done in the same field 

[5,8,9,14]. Furthermore, this paper reports two strategies for the rapid identification of 

bacteria, utilizing several chemometric tools such as FDA, KNN, and CNN. These two 

strategies meet all the requirements for the rapid differentiation of the presented bacterial 

species, including reduced time (with minimal sample preparation and atomization) and 

analysis costs (with minimal use of reagents). 
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2. Materials and methods 

2.1 Culture medium 

The M92 medium was made by adding 30 g of trypticase (Difco, ref. 211825, France) and 3 g 

of yeast extract (Thermo Fisher, ref. 212750, US) to 1 L of distilled water. The pH was 

verified and adjusted to 7.0–7.2 with HCl (1M) or NaOH (1M). For agar plates, 15 g of agar 

(Biokar diagnostics, ref. A1012HA, France) was added to M92 medium (1 L). The solutions 

were autoclaved at 121°C for 20 minutes and aliquoted into sterile Petri dishes or stored in an 

amber glass bottle at 4°C until use. 

2.2 Bacterial strains 

Fifty-two bacterial species belonging to 22 different families were used in this study. These 

families are divided into 39 genera, including 25 Gram-positive and 27 Gram-negative 

species. Fig. 1 and Table S1 summarize all the strains analyzed. 

All strains were inoculated from cryogenic tubes stored at -80°C in trypticase soy yeast 

extract medium (M92) (Difco, ref. 211825, France) with a cryoprotectant (15 v/v of sterile 

glycerol). The precultures were carried out in flasks (100 ml) containing 10 ml of M92 and 

incubated overnight at 30°C with stirring at 250 rpm (Innova® 42R, Eppendorf, France). The 

precultures were used to inoculate each bacterial strain in triplicate in 250 ml flasks 

containing 50 ml of culture medium. The starting optical density (OD) was equal to 0.1 for 

the cultures, which were grown in triplicates (UV-Vis spectrophotometer, Helios Ɛ, UVE 

082917, France). Bacterial growth was followed by measuring the optical density at 620 nm 

over time (h). At the exponential growth phase, 15 ml of each culture was centrifuged at 6,000 

g for 5 minutes (Awel, MF 20-R, France), and 10 µl of the biomass obtained was used for 

Raman analysis, as described in an earlier study [15]. 
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 Fig. 1 Family tree of the 52 bacterial species involved in this study. These species belong to 22 different families 
divided into 39 genera, including 25 Gram positive and 27 Gram negative species 
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2.3 Raman micro-spectroscopy measurements 

A Raman spectrometer (Senterra, Bruker Optics, France) driven by Opus software (Bruker 

Optics GmBH, V 7.2, Germany) was used to acquire the Raman spectra. This spectrometer is 

equipped with two gratings (400 and 1200 lines/mm), a CCD camera cooled to -60°C, and a 

BX51 Olympus microscope with multiple objectives (the objective LCLanN50x/0.5 was used 

in these analyses, the laser spot = 1.91 μm). The analyzes were performed at 785 nm with a 

laser power of 25 mW on the samples. The spectral resolution was approximately equal to 8 

cm-1. Five acquisitions of 10 seconds each were necessary for each spectrum. In total, 45 

spectra were obtained on each bacterial deposit. The Raman spectrometer was automatically 

calibrated by the patented SureCalTM technology as reported in a previous study [16]. 

Gold surfaces were prepared according to Assaf et al., 2014 and Kanso et al., 2008 [15,17]. 

Briefly, the glass microscope slides (ISO 8037, ref. RS, France) were cut into rectangular 

areas (26x9x1 mm) and cleaned with Piranha solution (70% v/v H2SO4 and 30% v/v H2O2) 

at 70 °C for 30 minutes. Then the slide surfaces were washed several times with deionized 

water and ethanol (Labogros, ref. 9006902). After drying, a 30 nm chromium layer (Sigma 

Aldrich, ref. 266264) and a 100 nm gold layer (Goodfellow, ref. AU005160/72) were 

deposited onto surfaces by Physical Vapor Deposition using Alcatel-built machine [15]. 

2.4 Spectral preprocessing  

Raman spectra were processed using Opus software (Bruker optics GmBH, V 7.2, Germany). 

The spectral range 250–3100 cm-1 was used in this study for the classification of bacteria. All 

spectra were baseline corrected using an elastic concave method (64° and ten iterations) and 

then normalized using min-max normalization. The selection of good-quality spectra was 

directed by choosing the spectra of bacteria in the exponential phase, especially those with a 

high DNA/RNA ratio at 780–820 cm-1, as reported in a previous study [15]. 
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2.5 Data analysis  

Two strategies were implemented before starting the data analysis. The first strategy involved 

creating an FDA (based on PCA scores) [18] and a KNN model for each level of bacterial 

classification, based on the Gram family of the species. The objective was to reduce 

computational costs, improve the testing parameters, and avoid overfitting.  

The second strategy, using a deep learning network, involved the direct classification of 

bacteria at the species level, irrespective of the Gram family. 

2.5.1 Principal Component Analysis (PCA) 

PCA is considered one of the most widely used exploration methods in the data sciences [19]. 

PCA uses an orthogonal transformation to represent the initial data matrix X (original matrix) 

by a product of two new matrices, T and P, respectively the scores matrix and the loading 

matrix while maintaining the maximum variance [20]. 

TPt + E = X                                         (1) 

where Pt corresponds to the transposed matrix of P, and E is the residuals matrix.  

A PCA model with an initial X data matrix of 2925 × 5641 was made. All data were 

normalized using the standard normal variate (SNV) before running the PCA. Six principal 

components (PCs) were extracted, covering 93.7% of the total variance, whereas the first two 

components accounted for 72.8% of the variability in the dataset. The number of selected PC 

components was determined using a scree plot. 

2.5.2 Factorial discriminant analysis (FDA) 

Stepwise factorial discriminant analysis (FDA) was done according to Bertrand et al. [18]. 

The basic idea of this method is to assess a factorial discriminant analysis on the scores of a 

previous PCA computed on the initial X data matrix. The most discriminating PC scores were 

selected based on the maximization of the trace of T-1B, where T is the total variance–
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covariance matrix, and B is part of the T matrix describing the variability among the groups. 

The fda2 function of the SAISIR® package was used to execute the FDA [21]. The first 10 

PC scores were used in the calculation, and the displayed results of the FDA were the average 

of 100-fold iterations. The data was divided into a calibration and validation set where the 

latter compromised ¼ of the total spectrum (640 spectra). It is worth mentioning that the 

replicates from each sample were maintained in the same dataset to ensure that the cross-

dispatching of replicates does not impact the validation model. 

2.5.3 K-nearest neighbors (KNN) 

KNN is a supervised machine learning distance-based algorithm first developed by Fix and 

Hodges [22] and improved by many authors including Coomans and Massart (23). It is used 

to predict a test input according to the k training samples (which are the nearest neighbors to 

the test input), and to assign this test input to the class that has the largest class probability 

[24]. This is called the majority vote procedure. The advantage of the k-nearest-neighbor 

classifier is its simplicity as there are only two parameter choices to be set: the number of 

neighbors, k, and the distance metric to be used.  

Parameter k has a great impact on the classification rate of the KNN model. We determined 

the optimal value of k = 5 during the KNN calibration process. The value k = 5 means that the 

five closest samples were used to assign missing data. The number of neighbors was selected 

by testing the quality of the classifier on a test dataset. For the distance metric, the Euclidean 

distance between Raman spectra was used. Each spectrum is represented by a point in a 

mathematical space with P dimensions defined by the chosen wavelengths (P = number of 

spectral elements). In this space, we can calculate a Euclidean distance between two spectra, a 

and b, from their ordinates, a(i) and b(i), by: 

��,� = �∑  (
� − 
����� )�                                                         (2) 
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Similar strains with very similar spectra will therefore be represented by close points and will 

thus delimit areas in space. Data partitioning was executed in the same way as for the FDA. 

2.5.4 Convolutional neural networks (CNN) 

Deep learning networks such as recurrent neural networks, deep neural networks, and 

convolutional neural networks are a branch of machine learning. They have been applied in 

numerous fields, including text analysis [25], speech recognition [26], drug design [27], 

image analysis [28], etc. The function of such networks is to automatically learn associations 

and extract abstract features from big data [29]. The term "deep" in deep learning refers to the 

use of multiple layers in the network. Here, a multilayer CNN model (13 layers) was designed 

to classify 52 bacterial species, as shown in Fig. 1. The overall structure of the CNN model is 

made up of two convolutional layers, two max-pooling layers, a dropout layer, two full 

connection layers, and a softmax layer [30]. 

A one-dimensional vector (1 × 5641) containing the entire Raman spectrum range was used as 

input to the CNN. This transformation is crucial to adjust to the next layer since it is a 2D 

convolutional layer [30]. Each convolutional layer applies convolution to its input (as in 

Equation 2) followed by batch normalization and relu layer, 

�� = � ∗ �� + 
�                                                                             (3) 

where �� represents the output calculated by the i-th convolutional kernel �� in the 

convolutional layer and the corresponding bias 
�. X is the input spectrum (1 × 5641).  

The filter size of both convolutional layers was set at [1,3]. The number of filters was set at 32 

for the first convolutional layer and 64 for the second convolutional layer.  

CNN is known to be a hungry model that requires a large volume of data. For this reason, we 

used the additive white Gaussian noise function in MATLAB for data augmentation. White 

Gaussian noise with signal-to-noise ratios of 15, 25, and 30 were added to the original matrix. 

After augmentation, the total number of Raman spectra was 5126. Sixty percent of the 



11 

 

Fig 2. Raman spectra of some of the bacterial 
species present in this study. (See Fig.S1 for all 
52 bacterial species) 

augmented spectral dataset (3076 spectra) was used for training (making sure that the 

replicates of the same sample were indeed in the same dataset), 20% of the data (1025 

spectra) was used for validation, and 20% of the data (1025 spectra) was used for prediction. 

The prediction set was set aside, and the remaining sets were used for model training and 

validation. To train the model, five-fold cross-validation was performed and, based on the 

results of several preliminary tests, the following hyperparameters were selected: stochastic 

gradient descent with momentum (SGDM) optimizer; learning rate = 0.001; L2 regularizer = 

0.005; batch size = 64.  

The PCA and FDA models were computed using the SAISIR Package [21] while the KNN 

and CNN models were done in MATLAB using the Matlab Statistics and Machine Learning 

Toolbox (version R2019b, MathWorks Inc, Natick, MA, USA). All classification models 

were run on an NVIDIA Quadro P400 GPU (NVIDIA Corporation, Santa Clara, CA, USA). 

3. Results and Discussion 

Raman spectroscopy is an effective tool for 

identifying bacterial species as it provides 

valuable information on the chemical bonds 

present in bacteria. For instance, Fig. 2 

shows the Raman spectra for some of the 

bacterial species present in this study, while 

Table S2 provides an overview of the 

various molecular vibrations present in a 

bacterium’s spectrum. The Raman bands at 

around 657, 720, 850, and 1000 cm-1 are 

associated with the stretching vibrations of the C-C and C-N bonds in the amino acid residues 
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Fig. 3 A view of PCA scores (A) and loadings (B) for discriminating spectra of Gram (+) from 
Gram (-) bacteria. (B) Loading 1provided interesting information on the structural differences
of Gram bacteria, specifically the bands at 550 and 2933 cm-1(highlighted by an Asterix).
However, loadings 2 and 3 presented insufficient information to validate the discrimination of 
bacteria at the Gram level. 

of bacterial proteins. Another band at around 1650 cm-1 is attributed to the amide I vibration. 

Other prominent Raman bands in bacteria include those corresponding to nucleic acids (779 

and 810 cm-1), lipids (2880, 2933 cm-1) and carbohydrates (550 cm-1) [31,32]. Although 

visually differentiating between bacterial species based on their molecular vibration is 

difficult (Fig.2 and Fig.S1), the bacterial spectra were utilized in conjunction with 

chemometric tools using two strategies to facilitate the identification of bacterial species. 

3.1 Strategy 1 – Level-by-level identification  

This strategy enables the identification of bacterial species level-by-level, tracing them from 

the Gram level to the species level. Three chemometric tools were used in this scenario: PCA, 

FDA and KNN. PCA was applied exclusively at the Gram family (+ or -) level. FDA was 

conducted on the PCA scores and applied to each level of bacterial classification. KNN was 

carried out on the initial data matrix and also applied as a level-by-level bacterial classifier.  

3.1.1. PCA 

PCA was performed to provide an overview of the Raman spectra under study (Fig.2 & Fig 
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S1) and visualize whether the bacteria could be discriminated at the Gram family level. The 

PCA analysis shown in Fig. 3 indicates that the discrimination of bacteria strains is possible, 

to some extent, at the Gram level with respect to our Raman analytical conditions; however, 

the Gram (+)/Gram (-) separation is not complete. Principal component 1 (PC1) accounts for 

60% of the variability, while PC2 and PC3 account for 8.1% and 5.8%, respectively. Taking a 

closer look at PC1 reveals two sets of bacteria. The first set, with positive PC1 scores, belongs 

mainly to Gram (+), while the second set of bacteria, with negative PC1 scores, is composed 

mostly of Gram (-) bacteria (Figure 3A). The main contributions for PC1 were from the 

carbohydrate band (550 cm-1) correlating with a positive sign of loadings (Figure 3B) and 

from the lipid band (2933 cm-1), correlating with a negative sign of loadings (Figure 3B). 

These results are consistent with the structural differences between Gram (+) and Gram (-) 

bacteria. Gram (+) bacteria have a thick peptidoglycan layer (carbohydrates), while Gram (-) 

bacteria have a thinner peptidoglycan layer sandwiched between two lipid layers [33]. 

Furthermore, examination of PC1 revealed a significant variation among the Gram (+) 

bacterial species in contrast to the more clustered distribution of Gram (-) species based on 

their positions along PC2 and PC3. This vast variation made it challenging to use other 

Raman bands (Table S2) to explain in depth the difference between Gram (+) and Gram (-) 

(Fig. 3). These results suggest that the structure can be even more intricate depending on the 

phenotypic variation in the data. PCA, in this study, remains an informative tool that gives an 

initial impression of the existing clusters in the data. Therefore, to improve the discriminating 

capabilities of PCA, it can be combined with a more powerful supervised classification 

method, such as FDA, to additionally consider the variation within each group rather just the 

total variation.  

3.1.2. FDA 
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Fig. 4 Selecting the optimal number of PCs to 
determine the Gram group of the bacterial 
species 

FDA was performed to maximize the 

ratio of variability between classes and 

minimize the ratio of variability within 

classes. However, before conducting 

this FDA, it was necessary to perform a 

step of variable reduction using PCA. 

This step ensures that the number of 

variables does not exceed the number 

of samples, thus avoiding the 

impossibility of computing the required 

Mahalanobis distance and overfitting problems [18, 34]. 

After the generation of orthogonal eigenvectors and the corresponding sample scores for each 

level of classification, the PCA scores (PCs) were incorporated into the FDA model in such a 

way as to maximize its discriminant ability. For each model, the optimum number of scores 

was selected [35]. For instance, Fig. 4 shows the weight of each successive PC on the 

percentage of samples correctly classified by FDA at the Gram classification level for the 

dataset of bacterial species. The percentage of correct classification steadily increased with 

the number of PCs before reaching a plateau. This means that additional PCs would not offer 

any improvement and the optimal number of PCs had been detected (Fig. 4 & Table 1).  All 

models showed a medium classification performance with a calibration percentage ranging 

from 75.65 to 93.21 and a validation percentage ranging from 72.06 to 81.01. The best 

classification of bacterial species using PCA / FDA was obtained at the Gram level. The 

correct classification rates were 91.46% for calibration and 91.01% for validation. This result 

mimics those of the PCA and indicates that the best discrimination was obtained with the first 

two discriminant scores (PC1 and PC2). This moderate performance may be due to the 
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complexity of the data under study as in Raman spectra or to the similarities between bacterial 

species belonging to different/same families and genera. Also, the features extracted by PCA 

were not sufficiently suitable or informative for the FDA, leading to only medium 

classification accuracy.  

Table 1 Capabilities of FDA and KNN to classify microorganisms using the Raman database 

*Optimum number of PCA scores allowed to enter in the FDA model 

3.1.3. KNN 

Machine learning methods such as KNN were also applied to improve the bacterial 

classification. In the same way as FDA, KNN was used at each level of bacterial 

classification. Table 1 shows the great improvement offered by KNN compared with FDA. As 

mentioned above, the calibration and validation percentages increased for all levels of 

classification.  

The KNN model with the highest accuracy corresponded to the Gram level of identification. 

This model, therefore, allows us to detect the Gram family of the species. This means that if 

the bacterial species detected by the model is Gram (-), the other 25 Gram (+) species are 

eliminated. Based on the latter result, a list of families is then proposed, and another KNN 

model is applied (at the family level). This model had an accuracy of 95–98%. If the family 

 FDA KNN 

 Level of 

Classification 

Number of 

groups 

Calibration 

(%) 

Validation 

(%) 

Calibration 

(%) 

Validation 

(%) 

Gram  2 91.41 (6*)  91.01 99.69 99.28 

G
ra

m
 (

+
) Family 10 81.96 (9) 77.99 98.28 94.85 

Genus  15 88.75 (6) 76.98 99.22 98.37 

Species 25 88.77 (6) 77.51 97.05 95.57 

G
ra

m
 (

-)
 Family 12 83.22(8) 81.5 99.38 98.23 

Genus  24 82.49 (10) 79.07 98.03 95.82 

Species 27 87.26 (10) 81.01 95.92 90.05 
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determined by the KNN identifies the strain in question, the strain is confirmed. Otherwise, 

we would apply the genus and species KNN models to decide. The KNN genus model also 

showed an excellent classification performance with a validation percentage of 95.82% for 

Gram (-) and 98.37% for Gram (+) strains.  

However, when KNN was applied at the species level, the classification accuracy only 

reached about 90%. This was attributed to the exceptionally high level of resemblance among 

strains, especially in the case of Gram (-) ones. This level-by-level recognition process would 

allow us to identify the Gram classification, family, genus, and species of the strain with an 

excellent classification performance, always greater than 90% and mostly higher than 95%. 

3.2 Strategy 2 – Direct bacterial classification 

The second strategy, aided by CNN, aims to classify bacteria at the species level. CNN 

achieved the highest performance among the tested methods, as shown in Table 2, with a 

calibration accuracy of 99.71%, a validation accuracy of 98.93%, and a prediction accuracy of 

97.95%.  

Table 2 Recognition accuracy of microbes using Raman spectra with CNN 

CNN 

Level of  

Classification 

Number of species Calibration 

(%) 

Validation  

(%) 

Prediction 

(%) 

Species 52 99.71 98.93 97.95 
 

To verify the performance of the model, the receiving operating characteristic (ROC), 

accuracy-epoch, and loss-epoch curves were introduced (Fig. 5). The CNN model achieved an 

accuracy above 95% after 33 epochs and the training loss fell below 0.5 after 26 epochs.  

As for the ROC, the area under the curve (AUC) was 0.99. Thus, the CNN model achieved a 

high performance at classifying the 52 bacterial species through Raman spectra.  
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Fig. 5 Receiving operating characteristic (ROC), accuracy and loss curves of CNN 

Meanwhile, the confusion matrix provided the classification details of CNN, as shown in Fig. 

6. This matrix can help evaluate the performance of CNN for every class of bacteria and find 

the types of bacteria where the model has the weakest recognition capabilities. The diagonal 

of  

 

the confusion matrix represents the percentage of correctly predicted species, while the off 

diagonals show the percentage of misprediction for each species. For example, the model in 

question has the lowest accuracy for Pseudomonas fluorecens. This bacterium was 

misclassified as Aeromonas bestiarum (30% of cases), Leclercia adecarboxylata, and 

Leuconostoc mesnteroides. Another misclassification (30%) was that of the Photobacterium 

leiognathi with Salmonella enterica. These two bacteria share the same Gram family (Gram -) 

which might lead to misprediction by the model. Fig. 6 and Fig. S2 also show the 

misprediction of Salmonella enterica with Escherichia coli. This is due to the DNA similarity 

between the two species as this can reach up to 90% [36]. All remaining species were highly 

predictable by the model with accuracy ranging from 90% to 100%.  

3.3 The debate (Strategy I vs Strategy II) 
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Both strategies seem to handle bacterial classification well. The leads of this debate, KNN and 

CNN, achieved a classification accuracy higher than 90 %. However, selecting the best tool 

requires consideration of other factors as each chemometric tool has its own advantages and 

disadvantages. KNN is a simple technique with an easy and effective algorithm that does not 

require training time. However, choosing the value of k involves making an expensive 

estimate. In contrast, CNN has high classification accuracy but requires a great deal of 

training data and has a high computational cost [37]. Numerous studies have investigated the 

use of different machine learning algorithms for bacterial classification, and have found both 

KNN and CNN to be effective methods. For instance, H. Tang et al. [14] found that both 

KNN and CNN achieved high accuracy in classifying bacterial species using Raman 

spectroscopy data, while Uysal et al. [38] found that KNN had a classification accuracy of 

97.8% for bacterial classification using Raman spectroscopy. Ho et al. [9] also reported that 

CNN performed well, with an identification accuracy of 97 %, in classifying bacterial species.  

As for FDA/PCA, this model did not have an adequate classification performance, except at 

the Gram level. The database comprising 52 different outputs showed a high level of 

difficulty with in-class learning for this model, even though the bacterial species were 

grouped to ease the classification process. However, the discriminating ability of FDA/PCA 

can be improved by variable selection Nonetheless, this feature was avoided in our study as it 

included a neural network. To maximize the neural network’s potential, it is necessary to 

maintain a large number of variables in the initial data, and we wanted to keep the possibility 

of comparing the two strategies by having the same variables at the start. 
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Fig. 6 Confusion matrix of the developed neural network in the prediction set (see Fig. S2 for a closer look at the mispredictions) 
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4. Conclusion 

The chemometric tools implemented in this study showed a very good successful 

classification rate when applying both strategies. Despite FDA/PCA exhibiting a medium 

classification performance, it proved to be exceptional in bacterial classification at the Gram 

level. Additionally, our results show that CNN and KNN provided the best classification 

models. However, the choice of tool and its usage mainly depends on the end goal of the user. 

Although the neural approach once again showed superiority over the factorial approach, 

particularly when the number of classes is higher than three or four, KNN and other 

nonparametric techniques that rely on distance calculations, can compete rather well with 

neural networks. Many chemometric tools are worth exploring for Raman analysis and 

combining these tools with Raman spectroscopy, could enable more complex applications, 

such as analyzing bacterial pools in food samples. Overall, our study provides valuable 

insights into the use of chemometric tools for bacterial classification and highlights the 

potential of Raman spectroscopy as a powerful analytical technique in the field of 

microbiology. 
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