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A B S T R A C T

This article documents surprising learning patterns that can occur under model misspecification. An agent
resorts to predictive regressions and fails to take into account autocorrelation in the dependent variable.
Remarkably, when the dependent and independent variables are uncorrelated, we find cases for which the
resulting out-of-sample 𝑅2 is well above zero, which benefits the agent, in spite of the erroneous model. We
refer to them as instances of unexpected opportunity. When both variables exhibit high levels of persistence, we
reveal the existence of counter-intuitive configurations for which the 𝑅2 increases when the absolute correlation
between the series decreases. Our theoretical results are confirmed by extensive simulations and complemented
by an empirical exercise of equity premium prediction for which we use 15 predictors commonly referenced
in the economic literature.
1. Introduction

Predictive regressions (PRs) are the most elementary forecasting
models. Nevertheless, the apparent simplicity of their formulation
masks the complexity of the underlying statistical machinery. Nu-
merous studies have warned scholars and practitioners to be careful
when relying on simple estimates stemming from PRs.1 Since the
seminal paper of Stambaugh (1999), it is for instance known that when
regressors are autocorrelated, the OLS estimators of PRs are biased and
should be corrected.

From an inferential standpoint, other issues arise when the de-
pendent variable is also autocorrelated, which occurs for instance in
finance when returns are computed over long horizons (Campbell,
2001; Lanne, 2002).2 In this case, test statistics are artificially larger by
construction (Boudoukh et al., 2008; Valkanov, 2003), which gives rise
to false positive results. This is partly linked to the notion of spurious
correlation (Granger & Newbold, 1974). Indeed, even if the two series

✩ Disclaimer: the findings, interpretations, and conclusions expressed in this paper are entirely those of the authors. They do not necessarily represent the
views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of the Executive Directors of the World
Bank or the governments they represent.
∗ Corresponding author.

E-mail addresses: coqueret@em-lyon.com (G. Coqueret), rdeguest@worldbank.org (R. Deguest).
1 A selective list is: Deng (2014), Ferson et al. (2003) and Phillips (2015).
2 Indeed, since Fama and French (1988a, 1988b), it has been widely documented that statistical significance is empirically more pronounced when return

horizons are large (e.g. Bandi and Perron (2008) and Sizova (2013)) though this phenomenon vanishes beyond 12 to 15 years (Bandi et al., 2019). Two notable
exceptions are Ang and Bekaert (2007) and Torous et al. (2004), where the authors argue that predictability can be a short-term phenomenon.

3 Indeed, this topic is abundantly covered, whether in product pricing in supply/demand models (Cooper et al., 2015; Nambiar et al., 2019), derivative pricing
(Coqueret & Tavin, 2016; Lazar & Qi, 2022), decision science (Cerreia-Vioglio et al., 2020), financial risk management (Barrieu & Scandolo, 2015; Wu & Olson,
2010), or expected utility evaluation (Blanchet & Murthy, 2019).

are completely independent random walks, it is possible to uncover
significant coefficients, where there should be none.

In this paper, we are interested in the risk that an agent faces whilst
using PRs for forecasting purposes whilst the actual data generating
process does not correspond to a typical PR model. Our analysis does
not focus on inference but on predictive accuracy. In this setting, the
major hurdle is not spurious correlation, but model misspecification.
The latter is ubiquitous in the operations and management science
literature.3

Our contributions are threefold. First, we derive analytical identities
and properties for the mean quadratic error of strongly misspecified
PRs, i.e., when PRs are used despite the absence of a direct link between
the two variables. Importantly, our formulae hold when estimates are
based on finite samples, whereas most results in statistical inference
are obtained asymptotically. They are therefore of particular relevance
for decision-makers who resort to small samples (𝑇 < 100, approxi-
mately), either because they have to (when data is scarce), or because
vailable online 29 May 2024
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they choose to. The latter case can occur when data becomes rapidly
obsolete so that only the most recent samples are used for estimation
and prediction purposes, e.g., in rapidly changing environments.

As is often the case when analyzing regression coefficients, our
results rely heavily on moments of ratios of quadratic forms of mul-
tivariate Gaussian distributions. This particular topic is reviewed in
Appendix B of Bao and Kan (2013) and in Paolella (2018). In a similar
vein, Kan and Wang (2010) use an elegant characterization of eigenval-
ues to derive moments for the sample estimator of the autocorrelation,
while Kan and Pan (2021) derive finite sample properties of estimators
in predictive regressions, but from an inferential standpoint. These
recent results, as well as ours, build on the work of Magnus (1990) who
proposes expressions based on simple integral formulas for nontrivial
exponents. This contribution generalizes previous work on the subject
(Magnus, 1986; Sawa, 1972 notably).

Second, from the theoretical formula obtained for the mean
quadratic error, we derive a key relationship between the out-of-sample
𝑅2 of the regression and the correlation 𝜌 between the innovations
f the two autoregressive processes. This result shows that the 𝑅2

s a symmetric function of 𝜌 and allows us to introduce the notion
f unexpected gain, which comes in two varieties. More precisely, we
all unexpected gain of Type I the case when the out-of-sample 𝑅2 is
trictly positive, despite a zero correlation between innovations (and
rocesses). On the other hand, unexpected gains of Type II occur counter-
ntuitively when the 𝑅2 is increasing when |𝜌|, the absolute value of
he correlation between innovations, decreases. These two types of
orecasting anomalies are confirmed via simulations which reveal that
hey occur for high levels of persistence in the dependent variable. The
irst type also requires small sample sizes while the second type a high
ersistence in the predictors as well. The fact that predictive accuracy
ay be obtained in spite of model misspecification has already been
ocumented in a different context in Nelson (1992) and Nelson and
oster (1995).

Finally, our third contribution contextualizes our findings in an
mpirical study of return predictability for which the dependent vari-
ble is the S&P500 index returns, and the predictors are taken from
he studies from Novy-Marx (2014) and Welch and Goyal (2008). It
onfirms the stylized results obtained in the numerical section. Notably,
ur conclusions corroborate the impact of the persistence of both the
ependent variable and the predictor on the 𝑅2 together with the
nfluence of the sample size. Our last study pertains to the short-term
redictability of the S&P500 forward volatility (VIX) and concludes that
or persistent dependent variables, short training samples yield large
ositive 𝑅2. Because this stylized fact is hard to rationalize, we attribute
t to unexpected gains of Type I.

These results are undoubtedly linked to the abundant empirical lit-
rature on the predictability of asset returns. While some contributions
rgue in favor of predictability (Cochrane, 2008; Lewellen, 2004), or
gainst (Bossaerts & Hillion, 1999; Ferson et al., 2003; Goyal & Welch,
003; Welch & Goyal, 2008), some studies take a more unifying stance
y concluding that the relationship is likely time-varying (Dangl &
alling, 2012; Farmer et al., 2021; Zhu, 2015). Similarly, our con-
lusions are not clear-cut, because we do not arbitrate for or against
redictability. Rather, we detail the econometric configurations under
hich predictive regressions are likely to deliver unintended out-of-

ample accuracy. It is important to underline that while our empirical
tudy is focused on asset pricing, the theoretical results of the paper
an be valuable to other disciplines.

Lastly, the present paper contributes to the literature on unexpected
atterns in statistical learning. Recent results in the machine learning
ield document such occurrences for arbitrarily large samples, e.g., with
enign overfitting and the double descent effects (see Bartlett et al. (2020)
nd Hastie et al. (2022) among many others). In contrast, the results
e obtain are most surprising for small samples, as if imperfect learning

rom few observations was able to partly mitigate the handicap of
687

isspecification. We also point to Berk et al. (2014), who propose to m
learn from imperfect regression models, and who hence recommend to
abandon the search for the correct one.

The remainder of the paper is structured as follows. In Section 2, we
formulate our research problem, provide all the required notations, lay
out our analytical results, and propose our definitions of unexpected
gains. Section 3 is dedicated to numerical analyses and illustrates the
phenomenon of spurious accuracy over simulated data. In Section 4, we
confirm our theoretical conclusions on empirical financial data, while
Section 5 concludes. All the technical details and proofs are located in
Appendix.

2. Problem and theoretical results

2.1. Data generating process (DGP)

We assume that the data 𝒛∗𝑡 =
[

𝒙∗𝑡
𝒚∗𝑡

]

is generated by a bivariate first

order and stationary vector-autoregression (VAR(1)), with

𝒛∗𝑡+1 = 𝒂𝑧 + 𝑩𝑧𝒛∗𝑡 + 𝝐𝑡+1, (1)

where 𝒂𝑧 and 𝑩𝑧 are respectively a 2 × 1 vector and a 2 × 2 matrix. The
distributional properties of errors 𝝐𝑡+1 will be discussed subsequently.
Our notations are such that processes written with stars, e.g. 𝒛∗𝑡 , have
nonzero means, while those written without stars, e.g. 𝒛𝑡, have zero-
mean. In most of our analysis, means will play no role, which is why
we will omit the stars later on, without any loss of generality.

Autoregressive models are ubiquitous in several fields, including
economics (Hsiao, 1981; Stock & Watson, 2001) and finance (Campbell
et al., 1997; Hsu et al., 2022; Piatti & Trojani, 2020), and are also
sometimes used in logistics (Eroglu & Hofer, 2011; Levi et al., 2008;
Luong, 2007; Sobel & Babich, 2012) and even politics (Freeman et al.,
1989). In finance, for example, modeling independent predictors as
autocorrelated processes is commonplace, see, e.g., Campbell and Yogo
(2006), Stambaugh (1999), and Van Binsbergen and Koijen (2010), to
cite but a few. For instance, at the aggregate level, dividend yields,
stock variance, and book-to-market ratios are all persistent. Therefore,
autocorrelation has become the norm in papers that propose solu-
tions to biased estimators (e.g., Hjalmarsson (2011), Stambaugh (1999)
and Xu (2020)).

When the off-diagonal terms in 𝑩𝑧 are nonzero, we can rewrite the
dynamics of 𝑦∗ as4

𝑦∗𝑡+1 = [𝒂𝑧]2 + [𝑩𝑧]2,1 𝑥∗𝑡 + [𝑩𝑧]2,2 𝑦∗𝑡 + error term,

and see that both 𝑥∗𝑡 and 𝑦∗𝑡 have a direct effect on the future value 𝑦∗𝑡+1.
On the other hand, if the off-diagonal terms in 𝑩𝑧 are zero, then the
model boils down to two strictly stationary first-order auto-regressive
(AR(1)) processes 𝑥∗ and 𝑦∗:

𝑥∗𝑡+1 = 𝛼𝑥 + 𝜌𝑥𝑥
∗
𝑡 + 𝑒𝑥∗ ,𝑡+1, (2)

𝑦∗𝑡+1 = 𝛼𝑦 + 𝜌𝑦𝑦
∗
𝑡 + 𝑒𝑦∗ ,𝑡+1, (3)

with constants 𝛼𝑥 and 𝛼𝑦, autocorrelations 𝜌𝑥 and 𝜌𝑦 satisfying |𝜌𝑥| < 1
and |𝜌𝑦| < 1, and correlated Gaussian white noise processes 𝑒𝑥∗ and 𝑒𝑦∗

ith variances 𝜎2𝑥 and 𝜎2𝑦 and correlation 𝜌 satisfying |𝜌| < 1. As we
ill show, when 𝑩𝑧 is diagonal, 𝑥∗ and 𝑦∗ are nevertheless correlated,
ecause of 𝜌, which characterizes the dependence in the error terms.

Henceforth, we will impose that 𝑩𝑧 be diagonal for two reasons:

1. The first reason is analytical tractability. Our theoretical results
and their proofs when 𝑩𝑧 is diagonal are cumbersome. The
general case when 𝑩𝑧 has non-zero off-diagonal terms is pro-
hibitively complex and does not allow for closed-form formulae.

4 We write [𝑴]𝑖,𝑗 for the element located at the 𝑖th row and 𝑗th column for
atrix 𝑴 with similar notation for vectors.
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2. The second reason is that we want to assume that the agent
makes a modeling error. If the DGP is such that the link between
𝑦∗ and 𝑥∗ is direct, then working with a predictive regression
(see Section 2.2 below) implies that the choice of the model
is correct ex-ante, which will likely yield deceptively favorable
results. But in practice, outstanding forecasting performance
rarely occurs. As White (2014) puts it: ‘‘Owing to the complexity
of economic phenomena, it is perhaps more realistic that the re-
lationship between 𝑋𝑡 and 𝑌𝑡 is unknown’’. Imposing a diagonal
𝑩𝑧 introduces a disconnect between the agents’ beliefs and the
actual realizations of the world.

Nevertheless, even if the DGP assumes no direct link between 𝑥∗ and
∗, the agent will still be able to (sometimes) benefit from the non-zero
orrelation between the two processes.

.2. Agent model

In the present paper, the agent (e.g., economist, asset manager,
ogistics analyst) seeks to forecast the future value of 𝑦∗, but ignores the
rue DGP and decides instead to rely on a simple predictive regression
sing 𝑥∗ in order to build such a forecast. The agent therefore assumes
he following relationship:
∗
𝑡+𝑘 = 𝑎 + 𝑏 𝑥∗𝑡 + 𝑒𝑡+𝑘, (4)

here the current level of the predictor 𝑥∗𝑡 aims to predict the 𝑘-step
head value of the dependent variable 𝑦∗𝑡+𝑘. In multiple disciplines,
xamples for the predictor include industrial output, stock levels, credit
nd term spreads, and dividend yield, while instances of the dependent
ariable encompass GDP growth, inventory levels, lot sizes, and future
arket returns. In Eq. (4), we consider predictive regression models in a

trict sense, meaning that the past of 𝑦∗ is not included in the prediction.
Therefore, this implies that the agent makes an error in her assumptions
which is at the root of the model misspecification.

Plainly, in Eq. (4), 𝑎 is the intercept and 𝑏 the slope. In practice,
these two parameters must be estimated from a dataset, which we will
call the training sample, as is customary in the machine learning (ML)
jargon. If we denote with 𝑇 the size of this training sample ∗

𝑡 =
{(𝑥∗𝑡−𝑘−𝑇+1, 𝑦

∗
𝑡−𝑇+1),… , (𝑥∗𝑡−𝑘, 𝑦

∗
𝑡 )}, then the canonical expressions for the

Ordinary Least Squares (OLS) estimator are

�̂�(∗
𝑡 ) =

∑𝑇−1
𝑠=0 (𝑥

∗
𝑡−𝑘−𝑠 − �̄�∗)(𝑦∗𝑡−𝑠 − �̄�∗)

∑𝑇−1
𝑠=0 (𝑥

∗
𝑡−𝑘−𝑠 − �̄�∗)2

(5)

�̂�(∗
𝑡 ) = �̄�∗ − �̂�(∗

𝑡 )�̄�
∗, (6)

ith sample means �̄�∗ = 1
𝑇
∑𝑇−1

𝑠=0 𝑥∗𝑡−𝑘−𝑠 and �̄�∗ = 1
𝑇
∑𝑇−1

𝑠=0 𝑦∗𝑡−𝑠. One
important feature of the training sample is naturally the time shift
between 𝑥∗ and 𝑦∗ due to the forecasting objective. The variable 𝑥∗𝑡
is exploited to forecast the variable 𝑦∗𝑡+𝑘 that will only be measured 𝑘
periods in the future. Moreover, in the traditional statistics literature,
it is customary to make assumptions on the errors 𝑒𝑡+𝑘 in the model, es-
pecially for inference purposes. In the present paper, we are interested
in the ex-post consequences of the modeling choice of the agent, that
is, the potential cost of model misspecification.

In the present paper, we work under this hypothesis of model
misspecification in order to provide a realistic evaluation of loss and
risk from the agent’s perspective. This corresponds to a scenario where
the agent models a direct link between 𝑥∗ and 𝑦∗ and ignores the
autoregressive component on 𝑦∗ whereas the underlying DGP is only
utoregressive and contains no explicit link between 𝑥∗ and 𝑦∗ beyond

correlation.
More generally, this model misspecification falls under the umbrella

of what Chambers et al. (2018) call ‘‘automatic or blind use of regression
models’’,5 which is made possible by the fact that regression routines

5 ‘‘Misuse’’ and ‘‘abuse’’ (see Box (1966)) are others terms that denote
mproper use of regression models.
688
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are readily accessible in all data analysis tools, from Excel, SPSS or
STATA to R, Python, Julia and Matlab. This has long been documented
in various fields, including economics (Angrist & Pischke, 2010) and
policy decision making (Porter et al., 1981), but also in the medical sci-
ences (Porter, 1999), in physics and chemistry (Badertscher & Pretsch,
2006; Exner, 1997), and in the agricultural sciences (Mitchell, 1997).

Overlooking the properties of predictors and dependent variables
is common in forecasting practice also because accuracy matters more
than inference. Consequently, it is the out-of-sample strength of the
link between 𝑦 and 𝑥 that is sought by forecasters.6 In fact, in recent
machine learning contributions, large linear models are considered
without necessarily focusing on the properties of predictors. We point
to Bartlett et al. (2020) and Hastie et al. (2022) for theoretical results
on (high-dimensional) linear models.

We can thus summarize the framework as follows:

1. The agent is not sophisticated and opts for standard predictive
regression modeling.

2. But, by nature, the underlying data generating process is au-
toregressive. Our specification precludes direct links between 𝑥∗

and 𝑦∗ while at the same time allowing for correlations via the
innovation terms.

We use the following notations in the paper. Vectors 𝒗 and matrices
𝑴 are written with bold fonts. For square matrices, we simplify the
notation and use only one subscript: 𝑰𝑇 , 𝟎𝑇 and 𝟏𝑇 denote the 𝑇 dimen-
ional identity, zero (filled with 0) and unit (filled with 1) matrices,
espectively, while 𝟎𝑁,𝑀 and 𝟏𝑁,𝑀 are (𝑁 × 𝑀) matrices filled with
eros and ones. 𝒗′ and 𝑴 ′ are the transpose of the corresponding vector
nd matrix. Finally, tr(⋅) is the trace that operates on the set of square
atrices and yields the sum of diagonal elements.

.3. A first look at squared errors

One focal quantity in the present article is the mean squared error
f the prediction, also called quadratic loss in ML parlance and defined
y E[𝑒2𝑡+𝑘]. First, we derive the conditional loss for the agent, based on
ll the information available at time 𝑡, namely ∗

𝑡 and 𝑥∗𝑡 . It can be
erived as follows, with E𝑡[⋅] being the expectation, conditional on the
ata at time 𝑡:

𝑡 ∶= 𝐿(𝑘, 𝛼𝑦, 𝜌𝑦, 𝜎2𝑦 ,
∗
𝑡 , 𝑥

∗
𝑡 ) (7)

= E𝑡

[

(

𝑦∗𝑡+𝑘 − �̂�(∗
𝑡 ) − �̂�(∗

𝑡 )𝑥
∗
𝑡
)2]

= E𝑡

[

(

𝑦∗𝑡+𝑘 − E𝑡[𝑦∗𝑡+𝑘]
)2
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
var𝑡(𝑦∗𝑡+𝑘)

+
(

E𝑡[𝑦∗𝑡+𝑘] − �̂�(∗
𝑡 ) − �̂�(∗

𝑡 )𝑥
∗
𝑡
)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
bias2𝑡

= E𝑡

⎡

⎢

⎢

⎣

(𝑘−1
∑

𝑠=0
𝜌𝑠𝑦𝑒𝑦∗ ,𝑡+𝑘−𝑠

)2
⎤

⎥

⎥

⎦

+

(

𝛼𝑦
𝑘−1
∑

𝑠=0
𝜌𝑠𝑦 + 𝜌𝑘𝑦𝑦

∗
𝑡 − �̂�(∗

𝑡 ) − �̂�(∗
𝑡 )𝑥

∗
𝑡

)2

= 𝜎2𝑦

𝑘−1
∑

𝑠=0
𝜌2𝑠𝑦 +

(

𝛼𝑦
𝑘−1
∑

𝑠=0
𝜌𝑠𝑦 + 𝜌𝑘𝑦𝑦

∗
𝑡 − �̄�∗ + �̂�(∗

𝑡 )(�̄�
∗ − 𝑥∗𝑡 )

)2

. (8)

All items in the last equation are either model parameters or ele-
ents of the training sample. More interestingly, this paper is focused

n the unconditional loss, which depends only on model parameters
nd is equal to

∶= 𝐿(𝑇 , 𝑘, 𝛼𝑥, 𝛼𝑦, 𝜌𝑥, 𝜌𝑦, 𝜌, 𝜎2𝑥, 𝜎
2
𝑦 ) = E

[

𝐿𝑡
]

= E
[

(

𝑦∗𝑡+𝑘 − �̂�(∗
𝑡 ) − �̂�(∗

𝑡 )𝑥
∗
𝑡
)2] . (9)

6 Modern tools such as neural networks and tree ensembles are known to be
ffective forecasting engines. However, when only one predictor is considered,
s in the present paper, sophisticated tools have less forecasting edge.
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Our first result is the computation of the loss 𝐿 when the slope
and intercept 𝑎 parameters of the linear prediction model (4) are

nown by the agent. We also provide the expression of the minimal
alue achieved by the loss in that specific framework.

emma 1. Consider two AR(1) processes with correlated innovations given
y (2) and (3), and the predictive regression model (4). The quadratic loss
of the predictive model satisfies the following properties:

1. If the intercept 𝑎 and slope 𝑏 are known, then

𝐿𝑎𝑏 =
𝜎2𝑦

1 − 𝜌2𝑦
− 2𝑏𝜌𝑘𝑦

𝜌𝜎𝑥𝜎𝑦
1 − 𝜌𝑥𝜌𝑦

+ 𝑏2
𝜎2𝑥

1 − 𝜌2𝑥
(10)

2. The minimal value of 𝐿𝑎𝑏 is achieved for

𝑏𝑜 =
cov(𝑥𝑡, 𝑦𝑡+𝑘)

var(𝑥𝑡)
= 𝜌𝑘𝑦

𝜌𝜎𝑥𝜎𝑦
1 − 𝜌𝑥𝜌𝑦

1 − 𝜌2𝑥
𝜎2𝑥

, (11)

and is equal to

𝐿𝑜 =
𝜎2𝑦

1 − 𝜌2𝑦

(

1 − 𝜌2𝑘𝑦
𝜌2

(1 − 𝜌𝑥𝜌𝑦)2
(1 − 𝜌2𝑥)(1 − 𝜌2𝑦)

)

. (12)

In practice, the slope 𝑏 is not known but estimated using the
training sample ∗

𝑡 which makes the computation of the loss much
more cumbersome. Nevertheless, elementary results such as the ones
above allow us to capture salient properties of the model. For in-
stance, from Eq. (11), we infer that actual predictability of 𝑦𝑡+𝑘 using
𝑥𝑡 (i.e. 𝑏𝑜 ≠ 0) requires that both 𝜌 and 𝜌𝑦 be nonzero, i.e., both
correlations in innovations and persistence in 𝑦𝑡+𝑘 should be non-null.

The aim of the following sections is to provide tractable and ana-
lytical formulae for 𝐿 when 𝑎 and 𝑏 are unknown and to characterize
its sensitivity to key parameters. As will be proven later on, some
parameters of the data generating processes (2) and (3) have little
interest because either they have no impact on the loss or their impact
is straightforward. In order to focus on the most relevant parameters
of the underlying DGP, we will work with an alternative formulation
which we specify below.

2.4. Reformulation of the problem

Replacing �̂�(∗
𝑡 ) with its expression in Eq. (9) leads to

𝐿 = E
[

(

𝑦∗𝑡+𝑘 − �̄�∗ − �̂�(∗
𝑡 )(𝑥

∗
𝑡 − �̄�∗)

)2] . (13)

The differences 𝑦∗𝑡+𝑘−�̄�
∗ and 𝑥∗𝑡 −�̄�

∗ in the two processes seem to indicate
that the drift terms 𝛼𝑥 and 𝛼𝑦 will cancel out and that 𝐿 will not be
affected by these terms. Also, the slope term �̂�(∗

𝑡 ) is linear in the 𝑦
process and inversely proportional to the 𝑥 process, loosely speaking.
Hence we expect that 𝐿 will be linearly dependent on 𝜎2𝑦 , but insensitive
to 𝜎2𝑥. These claims are formally proven in our first theorem below.

Taking into account these observations, Eq. (9) can be simplified to
the equivalent definition

𝐿 ∶= 𝐿(𝑇 , 𝑘, 𝜌𝑥, 𝜌𝑦, 𝜌, 𝜎2𝑦 ) = 𝜎2𝑦 E
[

(

𝑦𝑡+𝑘 − �̂�(𝑡) − �̂�(𝑡)𝑥𝑡
)2] , (14)

where (𝑥𝑡, 𝑦𝑡+𝑘) and the training sample 𝑡 = {(𝑥𝑡−𝑘−𝑇+1, 𝑦𝑡−𝑇+1),… ,
(𝑥𝑡−𝑘, 𝑦𝑡)} are obtained from the two simplified auto-regressive pro-
cesses 𝑥 and 𝑦 defined by

𝑥𝑡+1 = 𝜌𝑥𝑥𝑡 + 𝑒𝑥,𝑡+1, (15)

𝑦𝑡+1 = 𝜌𝑦𝑦𝑡 + 𝑒𝑦,𝑡+1, (16)

with autocorrelations 𝜌𝑥 and 𝜌𝑦 and correlated Gaussian white noise
processes 𝑒𝑥 and 𝑒𝑦 with variances equal to 1 and correlation 𝜌.

The definitions of the estimators �̂� and �̂� remain the same as in (5)
and (6), but applied to the new training sample 𝑡. This means that,
even though the constants of the two processes 𝑥 and 𝑦 are now equal
689

to 0, the agent does not know that the constant are equal to 0 and
therefore still uses the sample means �̄� and �̄� of processes 𝑥 and 𝑦 in
the computation of �̂�(𝑡) and �̂�(𝑡).

The new formulation (14) leads to

𝐿 = 𝜎2𝑦 E
[

(

𝑦𝑡+𝑘 − �̄� − �̂�(𝑡)(𝑥𝑡 − �̄�)
)2] (17)

= 𝜎2𝑦 E
[

(𝑦𝑡+𝑘 − �̄�)2
]

− 2E
[

(𝑦𝑡+𝑘 − �̄�)(𝑥𝑡 − �̄�)�̂�(𝑡)
]

+ E
[

(𝑥𝑡 − �̄�)2�̂�(𝑡)2
]

= 𝜎2𝑦 E

[

�̄�′𝑬�̄� − 2(�̄�′𝑪�̄�)
(

�̄�′𝑨�̄�
�̄�′𝑩�̄�

)

+ (�̄�′𝑫�̄�)
(

�̄�′𝑨�̄�
�̄�′𝑩�̄�

)2
]

, (18)

= 𝜎2𝑦

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

E
[

�̄�′𝑬�̄�
]

⏟⏞⏟⏞⏟
variance of 𝑦𝑡+𝑘−�̄�

−2E
[

(�̄�′𝑪�̄�)
(

�̄�′𝑨�̄�
�̄�′𝑩�̄�

)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
cross term

+E

[

(�̄�′𝑫�̄�)
(

�̄�′𝑨�̄�
�̄�′𝑩�̄�

)2
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
quadratic term

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (19)

here �̄� = 𝑵𝒛 = [𝑥𝑡−𝑘−𝑇+1−�̄�,… , 𝑥𝑡−𝑘−�̄�, 𝑥𝑡−�̄�, 𝑦𝑡−𝑇+1−�̄�,… , 𝑦𝑡−�̄�, 𝑦𝑡+𝑘−
�̄�]′ is a Gaussian vector built from linear combinations of all the random
ariables of the system stacked in vector 𝒛 = [𝑥𝑡−𝑘−𝑇+1,… , 𝑥𝑡−𝑘, 𝑥𝑡,
𝑡−𝑇+1,… , 𝑦𝑡, 𝑦𝑡+𝑘]′ and where 𝑵 is defined by

=
[

𝑵𝑇+1 𝟎𝑇+1
𝟎𝑇+1 𝑵𝑇+1

]

with 𝑵𝑇+1 =

[

𝑴𝑇 𝟎𝑇 ,1
− 1

𝑇 𝟏1,𝑇 1

]

and

𝑴𝑇 = 𝑰𝑇 − 1
𝑇
𝟏𝑇 .

We note that 𝑴𝑇 is a demeaning (i.e. centering) operator. Matrices 𝑨,
𝑩, 𝑪, 𝑫 and 𝑬 in Eq. (19) are given below:

𝑨 = 1
2

[

𝟎𝑇+1 𝑱 𝑇+1
𝑱 𝑇+1 𝟎𝑇+1

]

, 𝑩 =
[

𝑱 𝑇+1 𝟎𝑇+1
𝟎𝑇+1 𝟎𝑇+1

]

𝑪 = 1
2

[

𝟎𝑇+1 𝑲𝑇+1
𝑲𝑇+1 𝟎𝑇+1

]

=
[

𝑲𝑇+1 𝟎𝑇+1
𝟎𝑇+1 𝟎𝑇+1

]

, 𝑬 =
[

𝟎𝑇+1 𝟎𝑇+1
𝟎𝑇+1 𝑲𝑇+1

]

here

𝑇+1 =
[

𝑰𝑇 𝟎𝑇 ,1
𝟎1,𝑇 0

]

and 𝑲𝑇+1 = 𝑰𝑇+1 − 𝑱 𝑇+1 =
[

𝟎𝑇 𝟎𝑇 ,1
𝟎1,𝑇 1

]

.

𝒛 is a stationary Gaussian vector with mean 𝟎2(𝑇+1) and covariance
atrix 𝜮 given by the following block form

=

[

𝜮𝒙
𝑇+1

(

𝜮𝒙𝒚
𝑇+1

)′

𝜮𝒙𝒚
𝑇+1 𝜮𝒚

𝑇+1

]

, (20)

here 𝜮𝒙
𝑇+1 and 𝜮𝒚

𝑇+1 are the two autocorrelation matrices of 𝒙 =
𝑥𝑡−𝑘−𝑇+1,… , 𝑥𝑡−𝑘, 𝑥𝑡]′ and 𝒚 = [𝑦𝑡−𝑇+1,… , 𝑦𝑡, 𝑦𝑡+𝑘]′ and 𝜮𝒙𝒚

𝑇+1 the co-
ariance matrix between 𝒙 and 𝒚. In the following, we will use subscript

and denote with 𝜮𝒙
𝑇 (resp. 𝜮𝒚

𝑇 ) the covariance matrix of the first
elements [𝑥𝑡−𝑘−𝑇+1,… , 𝑥𝑡−𝑘]′ of vectors 𝒙 (resp. the first 𝑇 ele-

ents [𝑦𝑡−𝑇+1,… , 𝑦𝑡]′ of vector 𝒚). Moreover, we will denote with
𝒙 (resp. 𝝐𝒚) the covariance vector of 𝑥𝑡 with the first 𝑇 elements
𝑥𝑡−𝑘−𝑇+1,… , 𝑥𝑡−𝑘]′ (resp. the covariance vector of 𝑦𝑡+𝑘 with the first

elements [𝑦𝑡−𝑇+1,… , 𝑦𝑡]′). Therefore we can write7

𝒙
𝑇+1 =

[

𝜮𝒙
𝑇 𝝐𝒙

𝝐′𝒙 (1 − 𝜌2𝑥)
−1

]

with 𝝐𝒙 = (1 − 𝜌2𝑥)
−1 [𝜌𝑘+𝑇−1𝑥 ,… , 𝜌𝑘𝑥

]′ ,

nd where 𝜮𝒙
𝑇 and 𝜮𝒚

𝑇 are Toeplitz symmetric definite positive matrices
hose elements on row 𝑖 and column 𝑗 are equal to (1 − 𝜌2𝑥)

−1 × 𝜌|𝑖−𝑗|𝑥
nd (1 − 𝜌2𝑦)

−1 × 𝜌|𝑖−𝑗|𝑦 respectively.

7 The same notations will be used for 𝑦.
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Matrix 𝜮𝒙𝒚
𝑇+1 is a bit more complicated but can be written as

𝜮𝒙𝒚
𝑇+1 =

𝜌
1 − 𝜌𝑥𝜌𝑦

[

𝜩𝒙𝒚
𝑇 𝝃𝟏
𝝃′𝟐 𝜌𝑘𝑦

]

with 𝝃𝟏 =
[

𝜌𝑇−1𝑥 ,… , 𝜌𝑥, 1
]′ and

𝝃𝟐 =
[

𝜌2𝑘+𝑇−1𝑦 ,… , 𝜌2𝑘𝑦
]′
, (21)

and the element on row 𝑖 and column 𝑗 of matrix 𝜩𝒙𝒚
𝑇 corresponds to

the covariance between 𝑥𝑡−𝑘−𝑇+𝑗 and 𝑦𝑡−𝑇+𝑖 and is given by

[

𝜩𝒙𝒚
𝑇
]

𝑖,𝑗 =

{

𝜌𝑖+𝑘−𝑗𝑦 for 𝑖 + 𝑘 ≥ 𝑗

𝜌𝑗−𝑖−𝑘𝑥 for 𝑗 ≥ 𝑖 + 𝑘
.

Finally, we denote with �̄� the covariance matrix 𝑵𝜮𝑵 ′ of the Gaussian
vector �̄� = 𝑵𝒛 built from the linear combination 𝑵 applied to all the
random variables of the system stacked in vector form such that 𝒛 =
[𝑥𝑡−𝑘−𝑇+1,… , 𝑥𝑡−𝑘, 𝑥𝑡, 𝑦𝑡−𝑇+1,… , 𝑦𝑡, 𝑦𝑡+𝑘]′. We write 𝛬𝑖 the eigenvalues
of 𝑩�̄�𝑩 and 𝜦 is the diagonal matrix that contains these values.

With all of these notations, we are equipped to proceed to our
theoretical results.

2.5. Main results

Our first result holds in all generality. The first three points are
simple yet useful properties of the quadratic loss, while the last item
is its core decomposition, which we obtain by using the main theorem
of Magnus (1990), which is recalled in Appendix I. Except for the
last proposition and lemma, our theoretical results are mostly hard
to interpret at first, but they can be confirmed and illustrated with
numerical exercises. This will be the purpose of the next section.

Theorem 2. Consider two AR(1) processes with correlated innovations
given by (2) and (3), and the predictive regression model (4). The bias
(average error) is equal to zero and the quadratic loss 𝐿, defined in (9),
satisfies the following properties:

1. 𝐿 is independent of the two constants 𝛼𝑥 and 𝛼𝑦.
2. 𝐿 is independent of 𝜎2𝑥, the variance of innovations in the predictor

process 𝑥∗.
3. 𝐿 is proportional to 𝜎2𝑦 , the variance of innovations in the predicted

process 𝑦∗.
4. 𝐿 is equal to

𝐿(𝑇 , 𝑘, 𝜌𝑥, 𝜌𝑦, 𝜌, 𝜎2𝑦 ) = 𝜎2𝑦

(

tr(𝑬�̄�) + ∫

∞

0
|𝜟|

(

𝑡 𝑓2(𝑡) − 2𝑓1(𝑡)
)

𝑑𝑡
)

,

(22)

where |𝜟| denotes the determinant of matrix 𝜟 = (𝑰2(𝑇+1)+2𝑡𝜦)−1∕2,
and the two functions 𝑓1 and 𝑓2 are given by

𝑓1(𝑡) = tr(𝑨∗)tr(𝑪∗) + 2tr(𝑨∗𝑪∗), (23)
𝑓2(𝑡) = 2tr(𝑨∗𝑨∗)tr(𝑫∗) + 8tr(𝑨∗𝑨∗𝑫∗) + tr(𝑨∗)2tr(𝑫∗)

+ 4tr(𝑨∗)tr(𝑨∗𝑫∗), (24)

with 𝑨∗ = 𝑨�̄�𝑾 , 𝑪∗ = 𝑪�̄�𝑾 and 𝑫∗ = 𝑫�̄�𝑾 where 𝑾 =
(𝑰2(𝑇+1) + 2𝑡𝑩�̄�)−1.

The three terms we obtain in Eq. (22) pertain to the decomposition
obtained in (19), i.e. tr(𝑬�̄�) is the matrix representation of the variance
of 𝑦𝑡+𝑘 − �̄�, while 𝑓1 relates to the cross term, and 𝑓2 stems from the
quadratic term.8

In the literature on predictive models, a common yardstick for
accuracy assessment is the out-of-sample 𝑅2 which, in our setting, is

8 When the means of processes 𝑥∗ and 𝑦∗ are known, we can replace the
sample means �̄�∗ and �̄�∗ in Eq. (13) by the true means or equivalently replace
the sample means �̄� and �̄� in Eq. (17) by 0. Therefore, Theorem 2 remains true
but with the simplification �̄� = 𝜮, which is equivalent to taking 𝑵 = 𝑰 .
690

2(𝑇+1)
equal to 𝑅2 ∶= 1 − 𝐿∕var(𝑦∗𝑡+𝑘). Replacing the variance of 𝑦∗𝑡+𝑘 with its
expression, item 4 of Theorem 2 leads to

𝑅2(𝑇 , 𝑘, 𝜌𝑥, 𝜌𝑦, 𝜌) = 1 − (1 − 𝜌2𝑦)
(

tr(𝑬�̄�) + ∫

∞

0
|𝜟|

(

𝑡 𝑓2(𝑡) − 2𝑓1(𝑡)
)

𝑑𝑡
)

,

(25)

so that the 𝑅2 does not depend on 𝜎2𝑦 . In the sequel of the paper, we will
focus on the 𝑅2 as it is independent of 𝜎2𝑦 , but it can easily be translated
into the loss 𝐿. Typically, if both the intercept 𝑎 and the slope 𝑏 of the
linear model are known, the optimal 𝑅2 is equal to

𝑅2
𝑜 ∶= 𝑅2

𝑜(𝜌𝑥, 𝜌𝑦, 𝜌, 𝑘) = 𝜌2𝑘𝑦
𝜌2

(1 − 𝜌𝑥𝜌𝑦)2
(1 − 𝜌2𝑥)(1 − 𝜌2𝑦), (26)

which is simply an affine transform of Eq. (12). There are two natural
takeaways from this formula. First, 𝑅2

𝑜 is never negative for stationary
processes and 𝑅2

𝑜 = 0 when 𝜌 = 0. Intuitively, if both processes are
uncorrelated, there is not much to learn from one another. The second
important property is that 𝑅2

𝑜 increases with |𝜌|: when the link between
the two processes intensifies, the precision of predictions improves.
Motivated by these two observations (along with our empirical results
below), we introduce two definitions for ‘‘unexpected gains’’ for the
agent which we will henceforth use in the remainder of the paper.

Definition 3. With the out-of-sample 𝑅2(𝑇 , 𝑘, 𝜌𝑥, 𝜌𝑦, 𝜌) defined in
Eq. (25), we say that the agent benefits from ‘‘unexpected gains’’ of:

Type I: if 𝑅2(𝑇 , 𝑘, 𝜌𝑥, 𝜌𝑦, 0) > 0 when 𝜌 = 0;
ype II: if 𝑅2(𝑇 , 𝑘, 𝜌𝑥, 𝜌𝑦, 𝜌) increases when |𝜌| decreases.

Our definitions of unexpected gains differ from those of spurious
regressions studied in the econometrics literature when regressing an
independent random walk (RW) on another uncorrelated one yields a
statistically significant linear relationship. In our study, we focus on
stationary processes although the autocorrelation parameters can be
close to 1 to recover RW-type behaviors.

Contrary to Eq. (26) where the expression of the 𝑅2 is simple when
the parameters 𝑎 and 𝑏 of the predictive regression are known, in the
present paper, these parameters have to be estimated with a finite
sample of size 𝑇 , leading to a far more complex expression for the 𝑅2.
The theorem below sheds light on the behavior of the 𝑅2 with respect
to the correlation 𝜌 between the two innovations.

Before we can formulate the result, we need to specify a matrix
decomposition at the heart of some simplifications. If we denote with
�̄�𝒙

𝑻+𝟏 the covariance matrix 𝑵𝑻+𝟏𝜮𝒙
𝑻+𝟏𝑵

′
𝑻+𝟏 of the first 𝑇 +1 elements

of the Gaussian vector �̄�, then a direct computation shows that

�̄�𝒙
𝑻+𝟏 =

[

�̄�𝒙
𝑇 �̄�𝒙

�̄�′𝒙 �̄�2𝑥

]

,

where the components are given by

�̄�𝒙
𝑇 = 𝑴𝑇𝜮𝒙

𝑇𝑴𝑇 ,

𝝐𝑥 = 𝑴𝑇

(

𝝐𝒙 − 1
𝑇
𝜮𝒙

𝑇 𝟏𝑇 ,1
)

,

�̄�2𝑥 = 1
𝑇 2

𝟏1,𝑇𝜮𝒙
𝑇 𝟏𝑇 ,1 −

2
𝑇
𝟏1,𝑇 𝝐𝒙 + (1 − 𝜌2𝑥)

−1.

With these notations at hand, we can proceed to our second major
result.

Theorem 4. Under the same assumptions as those of Theorem 2, the
accuracy of the predictive model measured by the 𝑅2, defined in (25), is
a symmetric quartic function of the correlation 𝜌 between the innovations
of the predictor 𝑥∗ and the predicted 𝑦∗ processes and takes the following
form:

𝑅2(𝑇 , 𝑘, 𝜌𝑥, 𝜌𝑦, 𝜌)

= 1 − (1 − 𝜌2𝑦)
(

�̄�2𝑦 +
∞
|𝜟𝑇 |

(

𝑔4(𝑡)𝜌4 + 𝑔2(𝑡)𝜌2 + 𝑔0(𝑡)
)

𝑑𝑡
)

(27)
∫0
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where |𝜟𝑇 | denotes the determinant of matrix 𝜟𝑇 = (𝑰𝑇 + 2𝑡𝜦𝑇 )−1∕2 built
rom the diagonal matrix 𝜦𝑇 containing the eigenvalues of �̄�𝒙

𝑇 , and the
unctions 𝑔4, 𝑔2 and 𝑔0 only depend on the sample size 𝑇 , the lag 𝑘 and the
wo auto-correlations 𝜌𝑥 and 𝜌𝑦.

Similar to Eq. (25) where 𝑎 and 𝑏 are known, this result confirms
hat, when these parameters are unknown and estimated with a finite
ample size, the 𝑅2 is also a symmetric function of 𝜌 and more precisely
second order polynomial of 𝜌2. It also justifies our choice to focus on
ositive values for 𝜌 in the numerical section below.

Our definition of unexpected gains of Type I focuses on positive
evels of 𝑅2 in regressions when the innovations between the two pro-
esses is equal to 0, implying that the processes are also uncorrelated.
herefore, the proposition below underlines the simplifications that
ccur in the absence of correlation. In particular, we are able to derive
impler explicit expressions for |𝜟𝑇 | and for the functions 𝑓1 and 𝑓2.

roposition 5. Under the same assumptions as those of Theorems 2 and
but with the additional assumption that the two processes 𝑥∗ and 𝑦∗ have

ncorrelated innovations, i.e., 𝜌 = 0, the accuracy of the predictive model
easured by the 𝑅2, defined in (25), satisfies the following properties:

1. 𝑅2 is given by

𝑅2(𝑇 , 𝑘, 𝜌𝑥, 𝜌𝑦) = 1 − (1 − 𝜌2𝑦)
(

�̄�2𝑦 + ∫

∞

0
|𝜟𝑇 |

(

𝑡 𝑓2(𝑡) − 2𝑓1(𝑡)
)

𝑑𝑡
)

,

(28)

where the two functions 𝑓1 and 𝑓2 simplify into

𝑓1(𝑡) = �̄�′𝒙𝜴�̄�𝒚 , (29)

𝑓2(𝑡) = tr(�̄�𝒙
𝑇𝜴�̄�𝒚

𝑇 )
(

�̄�2𝑥 − 2𝑡 �̄�′𝒙𝜴�̄�𝒙
)

+ 2�̄�′𝒙𝜴�̄�𝒚
𝑇𝜴�̄�𝒙, (30)

where 𝜴 = (𝑰𝑇 + 2𝑡�̄�𝒙
𝑇 )

−1.
2. If we denote with 𝑷 𝑇 the orthogonal matrix such that �̄�𝒙

𝑇 =
𝑷 𝑇𝜦𝑇𝑷 ′

𝑇 and with 𝜆1,… , 𝜆𝑇 the eigenvalues of �̄�𝒙
𝑇 stacked on the

diagonal of 𝜦𝑇 , then the determinant of 𝜟𝑇 and the functions 𝑓1 and
𝑓2 defined in Eqs. (29) and (30) are equal to

|𝜟𝑇 | =
𝑇
∏

𝑗=1

(

1 + 2𝑡𝜆𝑗
)− 1

2 (31)

𝑓1(𝑡) =
𝑇
∑

𝑗=1

𝑝𝑗𝑞𝑗
1 + 2𝑡𝜆𝑗

, (32)

𝑓2(𝑡) =
𝑇
∑

𝑗=1

𝑄𝑗𝑗𝜆𝑗
1 + 2𝑡𝜆𝑗

(

�̄�2𝑥 − 2𝑡
𝑇
∑

𝑗=1

𝑝2𝑗
1 + 2𝑡𝜆𝑗

)

+ 2
𝑇
∑

𝑖=1

𝑇
∑

𝑗=1

𝑄𝑖𝑗𝑝𝑖𝑝𝑗
(

1 + 2𝑡𝜆𝑖
) (

1 + 2𝑡𝜆𝑗
) , (33)

where the two vectors 𝒑 and 𝒒 denote the quantities 𝑷 ′
𝑇 �̄�𝒙 and 𝑷 ′

𝑇 �̄�𝒚
respectively and matrix 𝑸 denotes the product 𝑷 ′

𝑇 �̄�
𝒚
𝑇𝑷 𝑇 .

The results9 of Proposition 5 and especially Eqs. (32) and (33) are
of particular interest. Indeed, we see that Eq. (28) involves quantities
of the form 𝐼 = ∫ ∞

0 ℎ(𝑡)𝑑𝑡 and, splitting the integral into two terms
𝐼 = ∫ 𝑢

0 ℎ(𝑡)𝑑𝑡+∫ ∞
𝑢 ℎ(𝑡)𝑑𝑡 allows us to compute the first part via Riemann

trapezoidal sums and, if 𝑢 is large enough, to approximate the second
term as the integral of a polynomial function of 𝑡 where we infer from
both Eqs. (32) and (33) the behavior of the two integrands when 𝑡
converges to infinity.10

9 When the means of processes 𝑥∗ and 𝑦∗ are known, Proposition 5 still
olds but with the simplifications �̄�𝒙

𝑇+1 = 𝜮𝒙
𝑇+1 and 𝜮𝑦

𝑇+1 = 𝜮𝒚
𝑇+1 or

equivalently �̄�𝒙
𝑇 = 𝜮𝒙

𝑇 , 𝜮𝑦
𝑇 = 𝜮𝒚

𝑇 , �̄�𝑥 = 𝝐𝑥, �̄�𝑦 = 𝝐𝑦, �̄�2𝑥 = (1 − 𝜌2𝑥)
−1 and

�̄�2𝑦 = (1 − 𝜌2𝑦)
−1.

10 More details about the behavior of the two integrands when 𝑡 converges
to infinity are given in Appendix G.
691
Our previous theoretical results involve integrals which are hard to
interpret. It is consequently difficult to understand the impact of the
different parameters on the accuracy measure, 𝑅2. In the following
proposition, we propose to assume that the innovations of the two
processes are uncorrelated, but also that the predictor is a white noise
process, i.e. 𝜌𝑥 = 0. In that case, we will see that the computations are
tractable since we are able to derive a closed-form expression for the 𝑅2

but also there are a set of parameter values, i.e. 𝑇 , 𝑘 and 𝜌𝑦 for which
we observe strong unexpected gains of Type I.

Proposition 6. Consider two AR(1) processes given by (2) and (3) with
uncorrelated innovations (𝜌 = 0), and the predictive regression model (4).
If we assume that the predictor is a white noise process, i.e. 𝜌𝑥 = 0, then the
accuracy of the predictive model measured by the 𝑅2, satisfies the following
properties:

1. 𝑅2 is defined for a sample size 𝑇 > 3 and given by

𝑅2(𝑇 , 𝑘, 𝜌𝑥 = 0, 𝜌𝑦) =
2𝜌𝑘𝑦
𝑇

1 − 𝜌𝑇𝑦
1 − 𝜌𝑦

−
(

1 − 𝑇 + 1
(𝑇 − 1)(𝑇 − 3)

)

× 1
𝑇 2

(

2
𝑇 − 𝑇 𝜌𝑦 + 𝜌𝑇+1𝑦 − 𝜌𝑦

(1 − 𝜌𝑦)2
− 𝑇

)

− 𝑇 + 1
(𝑇 − 1)(𝑇 − 3)

. (34)

2. Asymptotically, using the Landau notation,

𝑅2(𝑇 , 𝑘, 0, 𝜌𝑦) = 𝑂(𝑇 −1), 𝑇 ↑ ∞, (35)

𝑅2(𝑇 , 𝑘, 0, 𝜌𝑦) = 1 + 𝑂(1 − 𝜌𝑦), 𝜌𝑦 ↑ 1, (36)

𝑅2(𝑇 , 𝑘, 0, 𝜌𝑦) = −2 𝑇 − 1
𝑇 (𝑇 − 3)

+ 𝑂(𝜌𝑦), 𝜌𝑦 ↓ 0. (37)

From Eq. (34), we see that the dependence in 𝑘 is simple: as 𝑘
increases, the 𝑅2 decreases (assuming 𝜌𝑦 ∈ (0, 1), which is often the
case empirically). However, the impacts of the sample size 𝑇 and the
dependent variable autocorrelation 𝜌𝑦 are non-trivial. We also observe
that the 𝑅2 can take both negative and positive values where the latter
automatically translates into unexpected gains of Type I. A surprising
result is the convergence of the 𝑅2 to 1 when the autocorrelation in the
dependent variable converges towards 1. This result is independent of
the sample size and of the horizon 𝑘 and illustrates potentially strong
unexpected gains of Type I for highly persistent dependent variables.
Nevertheless, as will be shown subsequently in our empirical results,
the convergence of 𝑅2 to one is both slow and depends on 𝑇 . For
reasonable sample sizes (𝑇 > 10) and for nontrivial horizons (𝑘 > 1),
the 𝑅2 will in fact never be in the vicinity of 1, even when 𝜌𝑦 = 0.96 or
𝜌𝑦 = 0.99,11 and sometimes it will even be well below zero.

In Fig. 1, we plot the 𝑅2 as a function of 𝑇 for several values of 𝑘 and
𝜌𝑦. It clearly shows the parametric regions that give rise to unexpected
gains of Type I. Simply put, the combination of a high autocorrelation
for 𝑦 with a small sample size will most likely lead to unexpected gains
for the agent even when 𝑥 and 𝑦 are uncorrelated. These gains tend to
vanish when 𝑘 increases.

3. Numerical experiments

This section illustrates the sensitivity of the 𝑅2 to the model pa-
rameters and infers the configurations of the underlying DGP for which
the agent’s misspecified predictive regression leads to unexpected gains
using simulated data. First, we validate the analytical formulae from
Section 2.5 by running alternative Monte Carlo simulations and com-
pare the computational efficiency of our closed-form expressions to the
simulations.

11 Results available upon request.
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Fig. 1. Out-of-sample 𝑅2 when 𝜌 = 𝜌𝑥 = 0. We plot the theoretical out-of-sample 𝑅2 as a function of three variables: 𝑘 (for each column of subplots), sample size 𝑇 on the 𝑥-axis
and the persistence of labels, 𝜌𝑦, is shown with colors. Unexpected gains occur when the curves are above the zero threshold, marked with a black dotted horizontal line. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.1. Methods and computational efficiency

We test three numerical routes to calculate the loss defined in
Eq. (9). For simplicity, we will refer to them with one word:

– process: we run 𝑁 simulations of the processes 𝑥∗ and 𝑦∗, based
on the horizon 𝑘 and the sample size 𝑇 . The total number of
points is 𝑇 +2𝑘 and the ‘‘present’’ date is 𝑇 +𝑘 (required to avoid
any forward-looking bias). The in-sample predictors correspond
to the first 𝑇 points. The in-sample predicted variable is indexed
between 𝑘+ 1 and 𝑇 + 𝑘. The estimates (6) and (5) are computed
from these samples. Then, based on these estimated values and
on the present predictor value 𝑥(𝑛)𝑇+𝑘, we predict the 𝑘-period
ahead value �̂�(𝑛)𝑇+2𝑘, which we compare to 𝑦(𝑛)𝑇+2𝑘, which is the
actual simulated value. For each simulation, we compute the
OLS estimates and the related squared error. Then, we average
these errors, which corresponds to the Monte-Carlo estimation
of Eq. (9):

𝑀𝑆𝐸(𝑁, 𝑇 , 𝑘) = 𝑁−1
𝑁
∑

𝑛=1
(�̂�(𝑛)𝑇+2𝑘 − 𝑦(𝑛)𝑇+2𝑘)

2;

– multivariate: we run 𝑁 simulations of the Gaussian variate 𝒛
according to the covariance matrix (20). This allows to sample
the term which is within the expectation of Eq. (18) and which
we call �̂�(𝑛) here for the 𝑛th simulation. We then have

𝑀𝑆𝐸(𝑁, 𝑇 , 𝑘) = 𝜎2𝑦𝑁
−1

𝑁
∑

𝑛=1
�̂�(𝑛);

– integral: we use the pseudo closed-form solution (22) with nu-
merical evaluation of the integral - via Riemann trapezoidal sums.
In the case where the two processes have uncorrelated innova-
tions (i.e. 𝜌 = 0), we can resort to the simpler form of Eq. (28).

The first two methods are straightforward to implement and both
heavily rely on Monte Carlo simulations. The last one requires further
clarification which we provide in Appendix G. One of the purposes of
the integral method is verification. The formulae in the above proposi-
tions and theorems need to be confirmed numerically. As they rely on
one integral, we check if the integral values match the simulation ones.

In Fig. 2, we plot the loss values obtained for different levels
of discretizations (for the integral method) and Monte Carlo (MC)
scenarios (for both the process andmultivariatemethods). The sample
size is equal to 𝑇 = 36 and the lag equal to 𝑘 = 12 in the left
692
panel.12 Given the large number of discretization points, the integral
method yields a constant result. In contrast, the other methods generate
oscillating patterns, which is a clear indication of the superiority of the
integral formulae. In the right panel, we plot the computation times (on
CPU) obtained for different training sample sizes 𝑇 . The multivariate
approach is not shown because it is too slow and not competitive.

Because the speed of convergence of MC averaging is 𝑁−1∕2, the
magnitude of the error is expected to have an order of 10−3 for a
umber of points equal to 106 — which is what we observe to the
ight of the left panel. To further confirm such speed we proceed to a
omplementary exercise in which we repeat the simulation procedures

times, yielding 𝑀 mean squared errors 𝑀𝑆𝐸𝑀 (𝑁, 𝑇 , 𝑘). For each
imulation length 𝑁 , sample size 𝑇 , and horizon 𝑘, we can then
valuate the quantiles of the MSE, across 𝑀 . In the left panel of Figure
1 in Appendix A.1, we depict the 2.5% and 97.5% quantiles which we
btained from 𝑀 = 200 batches of such MSE values. The parameters
re 𝑇 = 36 and 𝑘 = 12. These quantiles form the 95% confidence
ntervals and therefore, the plot confirms both the patterns and orders
f magnitudes from the confidence levels from Fig. 2. Moreover, for the
ake of completeness, we also report in the right panel of Figure S1 the
moothed distributions of the 𝑀𝑆𝐸𝑚(𝑁, 𝑇 , 𝑘) across 𝑚 = 1,… , 200, for
ive values of 𝑁 . As 𝑁 increases, the densities clearly converge to a
irac distribution centered on the true (asymptotic) value of the MSE.

Computation times (CPU) are exceedingly large for the multivari-
te method which is the reason why we discard this method from the
ight panel of Fig. 2 and from the remaining of the paper. One reason
or this is that it involves lengthy matrix operations, which is not the
ase for the process technique. In terms of computation resources, the
ntegral and process are hardly comparable. The fastest one is the
ntegral evaluation, by far, which, as expected, highlights the gains
temming from closed-form expressions.

.2. Unexpected gains

In Theorem 4, we show that the 𝑅2 is linked to 𝜌 via a simple
olynomial form with even degrees, namely
2(𝜌) = 𝑐4𝜌

4 + 𝑐2𝜌
2 + 𝑐0.

ccording to Definition 3, a case of unexpected gains of Type I occurs
hen 𝑅2(0) = 𝑐0 > 0 and a case of Type II happens if (𝑅2)′(𝜌) =

12 Results for other sample sizes are not particularly enlightening. We invite
the interested reader to check the online comparison notebook on the paper’s
website: http://www.gcoqueret.com/PRs.html for further details.

http://www.gcoqueret.com/PRs.html
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Fig. 2. Comparison of methods — speed and accuracy. In the left panel, we plot the values obtained for the MSE as a function of the computational cost 𝑁 expressed by the
number of Monte Carlo simulations (for both the process and multivariate methods) or the number of discretization points in the Riemann integral (for the integral method).
The cost ranges from 𝑁 = 103 up to 𝑁 = 103 × 211 ≈ 2 × 106, with increments of powers of 2 — which explains the logarithmic scale for the 𝑥-axis. We use a training sample
size 𝑇 = 36 — equivalent to 3 years of monthly data. The dotted and dashed lines show the upper and lower bounds of the 95% confidence intervals, defined as ±1.96 times the
standard deviations of simulated squared errors, divided by

√

𝑁 . In the right graph, we show the CPU time as a function of the training sample size 𝑇 using a number of points
equal to 103 for the discretization of the integral method and a number of simulations equal to 105 for the process method. The other parameters are fixed and equal to 𝜌𝑥 = 0.9,
𝑦 = 0.7, 𝜌 = 0 and 𝑘 = 12. For the Integral method, the upper bound for the trapezoidal approximation is taken equal to 𝑢 = 150⌊log(𝑁)⌋ — see Appendix G for more details.
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𝜌(2𝑐4𝜌2 + 𝑐2) < 0 for 𝜌 ∈ (0, 1). Unfortunately, the expressions for the
oefficients 𝑐2 and 𝑐4 are cumbersome to say the least and there is no
imple algebraic way to determine under which conditions they may
e positive or negative.

In Fig. 3, we plot the 𝑅2 as a function of sample size 𝑇 , horizon
, and autocorrelations 𝜌𝑥 and 𝜌𝑦. We restrict the results to the case
= 0 to see if and when the 𝑅2 is nonzero. This is expected to reveal

ases of unexpected gains of Type I. As it turns out, the latter do often
ccur, and there is a clear sample size effect. When 𝑇 is large, the
agnitude of 𝑅2 is small, which is what we would expect from Eq. (26).
hen 𝜌 = 0, the model captures only noise, so the 𝑅2 should be

egligible. However, when 𝑇 is small, the 𝑅2 can be surprisingly large,
ven above 0.5 in some cases when the dependent variable is very
ersistent. Nevertheless, we do also observe negative values for the
2, especially when 𝜌𝑦 is small. As the horizon 𝑘 increases, positive 𝑅2

ecome more scarce. Our results hold for various levels of persistence
𝑥 in the predictor which shows that it has more marginal importance.
inally, when 𝜌𝑥 = 0.1 (leftmost column of graphs), we recover the
atterns of Fig. 1 in which 𝜌𝑥 was equal to zero.

We propose another angle in Fig. 4 by plotting the 𝑅2 as a func-
ion of 𝜌 in order to investigate Type II unexpected gains. While the
urves with the steepest slopes match the expected quadratic or quartic
hape derived in Theorem 4, the surprising feature is that some of
hem are indeed decreasing and this only happens with small samples.
his is somewhat counter-intuitive because these cases correspond to
ituations when decreasing the correlation between the innovations
and hence increasing the misspecification in the predicted regression)
mproves the out-of-sample fit. One common feature between the two
ypes is that they both require a high level of persistence in the
ependent variable: unexpected gains only occur when 𝜌𝑦 is sufficiently
igh. However unexpected gains of Type II also require a level of high
ersistence in the predictor (see both lower panels), which means that
oth the dependent and independent variables should behave like ran-
om walks as for the Grange–Newbold regressions of two independent
andom walks. This shows our definition of unexpected gains of Type
I is similar to the classical spurious regression of independent random
alks studied in the econometrics literature.

We underline that both types of unexpected gains are not incom-
693

atible. When 𝜌𝑦 and 𝜌𝑥 are high and the sample size is small (𝑇 = 6,
= 12), some curves in Fig. 4 corresponding to 𝑘 = 3 and 𝑘 = 6
tart slightly above zero for 𝜌 = 0 and subsequently decrease when 𝜌
ncreases.

.3. Convergence towards theoretical optimality

Our final analysis pertains to the convergence towards asymptotic
alues defined in Eq. (26). This phenomenon is shown in Fig. 3, i.e., as
he sample size increases, the 𝑅2 seems to stabilize towards some
onstant, which in this configuration, is zero (because 𝜌 = 0). In the
eneral case, when 𝑘 increases to +∞, or when 𝜌 or 𝜌𝑦 decrease to
, the asymptotic 𝑅2

𝑜 in Eq. (26) is exactly equal to zero. When the
raining sample increases, we would expect that, despite the absence of
ndependence in the training data set, the estimated coefficient of the
odels is consistent with the classical OLS form defined by Eq. (11) for

̂. The lemma below states a result in this direction.

emma 7. It holds that

̂(∗
𝑡 )

𝑃
⟶

𝑇→+∞
𝑏𝑜,

here
𝑃

⟶ stands for convergence in probability and 𝑏𝑜 is defined in (11).

Under an additional integrability condition, the 𝑅2 is thus expected
o converge to its corresponding value 𝑅2

𝑜 (see Eq. (26)). This is an im-
ortant subject, because most 𝑅2 we report in the previous subsections

are negative, whereas the 𝑅2
𝑜 are not, especially if 𝜌 is far enough from

zero.
Overall, the lines in Fig. 4 reveal a wide array of situations. The

𝑅2 ∶= 𝑅2(𝜌, 𝑇 ) can be locally (depending on 𝑘, 𝜌𝑥 and 𝜌𝑦):

– increasing in 𝜌 and 𝑇 ;
– decreasing in 𝜌 and 𝑇 ;
– increasing in 𝜌 and decreasing in 𝑇 or vice-versa.

For a given set of parameters 𝑘, 𝜌𝑥, 𝜌𝑦 and 𝜌, the value of the 𝑅2 for
the smallest sample size (say 𝑇 = 3) can be either above or below 𝑅2

𝑜 :

𝑅2
𝜌𝑥 ,𝜌𝑦 ,𝜌,𝑘

(3)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

≶ 𝑅2
𝑜(𝜌𝑥, 𝜌𝑦, 𝜌, 𝑘)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

small sample infinite sample
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Fig. 3. Unexpected gains of Type I: the case 𝜌 = 0. We plot the out-of-sample 𝑅2 as a function of four variables: 𝑘 (for each row of subplots), sample size 𝑇 on the 𝑥-axis, and
persistence of the predictor 𝜌𝑥 (columns of subplots). The persistence of labels, 𝜌𝑦, is shown with colors. he points were obtained via the discretization of the integral of Eq. (28).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Depending on the case, smaller or larger samples will be beneficial
because the 𝑅2 will either increase or decrease to the asymptotic values
𝑅2
𝑜 . In the situations when 𝑅2

𝑜 > 0, the estimates are expected to push
the 𝑅2 above zero when the agent is endowed with enough data 𝑇 is
large enough.

The interesting question is then: when will that be the case? While
we cannot provide a definite answer, a reorganization of the results of
Fig. 4 with 𝑇 on the 𝑥-axis gives interesting cues (see Fig. 5). It appears
that the most important parameter is 𝜌𝑦: when it is high, small samples
seem preferable, but when it is small, then long samples yield better
results.

4. Empirical evidence

4.1. Data

One of the academic standards in return predictability is the study
of Welch and Goyal (2008), which was recently updated in Goyal et al.
(2021). Consequently, we resort to the updated version of their dataset
for our empirical analysis.13

Since the main purpose of the paper is to study the impact of
predictor persistence, we remove a few variables because many are
highly autocorrelated. This would generate unnecessary redundancies
in the results. We also complement our dataset with one of the mildly
persistent predictors tested in Novy-Marx (2014): temp, the index of
global temperature anomalies.14 The list of all variables is provided in
Table 1.

13 Available on Amit Goyal’s website: https://sites.google.com/view/
goyal145.
14 The other climate-related variables in Novy-Marx (2014) are highly
ersistent and do not add value, we thus omit them. The Combined Land-
urface Air and Sea-Surface Water Temperature Anomalies can be accessed at
694

ttps://data.giss.nasa.gov/gistemp/tabledata_v4/GLB.Ts+dSST.csv.
Table 1
List of predictors. We list the predictors used in the empirical study, along with their
sources. We keep the same compact notation as in Welch and Goyal (2008), from which
most predictors originate. temp is documented in Novy-Marx (2014).

Short name Brief description Academic source

bm Aggregate book-to-market ratio Welch and Goyal (2008)
de Log of dividend-earnings ratio Welch and Goyal (2008)
dfr Default return spread Welch and Goyal (2008)
dfy Default yield spread (BAA minus AAA) Welch and Goyal (2008)
dp Log of dividend-price ratio Welch and Goyal (2008)
ep Log of earnings-price ratio Welch and Goyal (2008)
ltr Long term rate of bond returns Welch and Goyal (2008)
lty Long term government bond yield Welch and Goyal (2008)
svar Stock variance Welch and Goyal (2008)
temp Global temperature Novy-Marx (2014)
tbl Treasury bill rate Welch and Goyal (2008)
tms Bond term spread Welch and Goyal (2008)

To produce more diversity in autocorrelation, we introduce the
difference in the first three of these variables (dp, ep and de). The new
variables are simply defined by 𝛥𝑥𝑡 = 𝑥𝑡−𝑥𝑡−1. The dependent variables
will be returns on the S&P500 index minus returns on US Treasury bills.
We choose four horizons (𝑘) for these returns: 3 months, 6 months, 12
months, and 24 months. We exclude monthly returns because their au-
tocorrelation is equal to 12%, and as shown in Section 3.2, unexpected
gains only occur for high levels of persistence.

The descriptive statistics of all variables used in the study can be
found in Table 2. In addition, we provide the histograms of estimated
innovations in AR(1) models for all the variables in the study in Figure
S2 of Appendix A.2. The correlation between the innovations of 𝑦 and
𝑥 being an important feature of our study, we plot their (bimodal)
distribution for each horizon of returns in Figure S3 in Appendix A.3.
Finally, we show the link between the correlation of innovations and
the correlation of processes in the right panel of the same figure and

observe that they are both strongly positively linked.

https://sites.google.com/view/agoyal145
https://sites.google.com/view/agoyal145
https://data.giss.nasa.gov/gistemp/tabledata_v4/GLB.Ts+dSST.csv
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Fig. 4. Unexpected gains of Type II: 𝑅2 as a function of 𝜌. We plot the out-of-sample 𝑅2 as a function of five variables: the innovations correlation 𝜌 on the 𝑥-axis, the sample
ize 𝑇 and horizon 𝑘 (rows and columns of subplots), and 𝜌𝑦 is shown with colors and 𝜌𝑥 varies in each panel. Because the 𝑅2 is symmetric in 𝜌, we only show the right part of
he support of 𝜌. The points were obtained from the process simulation method described in Section 3.1. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)
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.2. Baseline results

We briefly describe the protocol we follow. For each predictor 𝑥,
abel 𝑦 (equivalently, horizon 𝑘), sample size 𝑇 , and point in time 𝑡
here the training sample 𝑡 is well defined (i.e., with no missing
oint), we:

1. estimate Eq. (2) for 𝑥 and (3) for 𝑦 over a past sample of 120
months (10 years), this yields �̂�𝑥,𝑡, �̂�𝑦,𝑡, �̂�𝑡, �̂�2𝑥,𝑡 and �̂�2𝑦,𝑡, which
are local estimates for the underlying processes15;

2. estimate Eq. (4) based on the sample 𝑡 of size 𝑇 (and store the
residuals);

3. make a prediction for 𝑦𝑡+𝑘 based on �̂� and �̂�;
4. store the error with respect to the realized 𝑦𝑡+𝑘: 𝑒𝑡(𝑥, 𝑦, 𝑇 ).

15 These estimates do not depend on 𝑇 : very small samples yields estimates
that are too noisy, which is why we resort to ten-year samples by default.
695
From the above quantities, we are able to compute the out-of-
sample 𝑅2, defined as

𝑅2
oos(𝑥, 𝑦, 𝑡) = 1 −

∑𝑆
𝑠=1 𝑒𝑡−𝑠(𝑥, 𝑦, 𝑇 )

2

∑𝑆
𝑠=1(𝑦𝑡−𝑠+𝑘 − �̄�)2

, (38)

where 𝑠 = 1,… , 𝑆 are the indices of the out-of-sample dates pertaining
to the sample. In order to have sufficient granularity, we compute 𝑅2

𝑜𝑜𝑠
for each decade between 1900 and 2019 so that 𝑆 is equal to 120.

We report results for six choices of 𝑇 : 12, 24, 36, 60, 84 and
20 months. Over all combinations of predictors, labels, sample sizes,
nd dates, we obtain 591,840 predictions. In the spirit of Campbell
nd Thompson (2008) and Pettenuzzo et al. (2014), we remove the
redictions that do not make any economic sense (i.e., that are smaller
han −100% or larger than 300%). In Fig. 6, we plot the out-of-

sample 𝑅2 as a function of sample size. However, only the instances
that correspond to negligible �̂� are displayed. Each point relates to an
estimate for �̂� between −0.05 and +0.05. Therefore, the points above
zero (dashed black line) can be considered as cases of unexpected gains
of Type I (see Definition 3). Our results show that while a very large
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Fig. 5. 𝑅2 as a function of 𝑇 . We plot the out-of-sample 𝑅2 as a function of five variables: the sample size 𝑇 on the 𝑥-axis, the correlation in innovations 𝜌 and horizon 𝑘 (rows
nd columns of subplots), and 𝜌𝑦 is shown with colors and 𝜌𝑥 varies in each panel. The points were obtained from the process simulation method described in Section 3.1. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
h

majority of points lie below the zero threshold (see the proportions, in
black), a few cases do point towards the presence of unexpected gains.

In order to compare them with the results of Fig. 3, we recall that
the horizon of returns corresponds to the time lag 𝑘 therein. The low
proportions of positive 𝑅2

𝑜𝑜𝑠 for large horizons (e.g., 𝑘 = 12 months) are
n line with the bottom panels in Fig. 3.

In Fig. 7, we turn to a study focused on unexpected gains of Type
I. The theoretical patterns shown in Fig. 4 suggest that this type of
ain will be more pronounced for persistent predictors, thus we split
he analysis in two. In the top plots, we focus on predictors with low
o moderate autocorrelation, while in the bottom ones, we provide the
raphs for highly persistent independent variables (we refer to Table 2
or the clusters of predictors).

Clearly, there is a marked difference between the upper and lower
anels for the slopes of the fitted linear relationships. While the latter
re all positive in the upper plots (moderately persistent predictors),
everal of them are negative for highly persistent independent vari-
bles, especially for short-term returns and small sample sizes. For the
ake of completeness, we provide in Table 3 the 𝑡-statistics associated
ith the slopes of the linear models fitted in Fig. 7. The statistics
btained are not always significant, meaning that the relationship be-

2
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ween �̂� and the out-of-sample 𝑅 is not clear cut, but the values change
significantly from the class of predictors with low to moderate autocor-
relation in Panel A to the class of predictors with high persistence in
Panel B. Indeed, Panel A shows large positive t-statistics (among which
7 are significant) while Panel B shows 8 negative t-statistics for short
orizons, e.g. when 𝑘 is equal to 3 and 6 months.

4.3. VIX prediction

Our results imply that the presence of unexpected gains of Type
I requires persistence, which is why in the baseline study, monthly
returns are omitted. This prevents us from considering an interesting
case, which combines a short horizon 𝑘 = 1 to a high degree of
persistence in the label. In Fig. 6, it is clear that this combination is
likely to lead to unexpected gains of Type I. In Fig. 7, this is less clear
and would require persistent predictors.

Unlike returns, proxies for turbulence such as realized volatility or
forward-looking measures of risk are easier to predict because they
are autocorrelated by construction (we refer to Paye (2012) on this
topic). When switching to volatility prediction, we thus expect to obtain
much higher 𝑅2 on average, compared to those of Fig. 4. To test this

conjecture, we run PRs in which the one month ahead VIX value is the
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Table 2
Descriptive statistics of the dataset. In the last columns, �̂�𝑣 stands for the sample autoregressive parameter of variable 𝑣, and �̂�2

𝑣 refers to the
variance of the residuals of the corresponding estimation. The increment variables are defined as 𝛥𝑣𝑡 = 𝑣𝑡 − 𝑣𝑡−1 for each variable 𝑣.

Varable Begins Ends Min Max Mean Median std. dev. �̂�𝑣 �̂�2
𝑣

PANEL A: Predictors (features)

Panel A1: High persistence (�̂�𝑥 > 0.9)

bm 1921-03 2020-12 0.463 7.791 2.135 2.038 1.000 0.987 0.028
de12 1871-01 2020-12 −3.965 4.397 −1.752 −1.774 1.000 0.993 0.014
dfy 1919-01 2020-12 0.462 8.139 1.700 1.371 1.000 0.976 0.046
dp12 1871-01 2020-12 −10.183 −4.217 −7.278 −7.108 1.000 0.995 0.012
ep12 1871-01 2020-12 −12.700 −4.385 −7.047 −7.081 1.000 0.990 0.023
lty 1919-01 2020-12 0.229 5.484 1.842 1.560 1.000 0.997 0.007
tbl 1920-01 2020-12 0.003 5.473 1.133 1.012 1.000 0.993 0.014
tms 1920-01 2020-12 −2.819 3.515 1.240 1.244 1.000 0.963 0.072

Panel A2: Moderate persistence

𝛥de 1871-02 2020-12 −19.684 14.195 −0.001 0.000 1.000 0.772 0.405
svar 1885-02 2020-12 0.000 14.122 0.491 0.238 1.000 0.570 0.676
temp 1881-01 2020-12 −0.749 9.483 0.127 −0.037 1.000 0.733 0.490

Panel A3: Low persistence (�̂�𝑥 < 0.3)

𝛥dp 1871-02 2020-12 −7.470 7.015 −0.015 −0.055 1.000 0.144 0.980
𝛥ep 1871-02 2020-12 −9.315 12.578 −0.012 −0.018 1.000 0.290 0.916
dfr 1926-01 2020-12 −6.970 5.263 0.026 0.039 1.000 −0.102 0.990
ltr 1926-01 2020-12 −4.583 6.210 0.199 0.130 1.000 0.043 0.999

PANEL B: Dependent variables (labels)

r03m 1871-04 2020-09 −0.467 0.874 0.006 0.008 0.090 0.683 0.004
r06m 1871-07 2020-06 −0.534 0.959 0.012 0.016 0.125 0.849 0.004
r12m 1872-01 2019-12 −0.716 1.449 0.026 0.031 0.190 0.928 0.005
r24m 1873-01 2018-12 −0.900 1.186 0.054 0.040 0.281 0.965 0.005
Fig. 6. 𝑅2
oos for low innovation correlation. We plot the out-of-sample 𝑅2 as a function of sample sizes. The instances were filtered to keep only those corresponding to an estimated

�̂� ∈ [−0.05, 0.05], which is the interval we choose as a baseline for an absence of correlation between innovations. Before averaging, we remove all outliers in predictions, i.e., those
values that lie outside the [−100%,+300%] interval. Each point corresponds to one predictor and one calendar decade (over which the 𝑅2 is computed). Each vertical panel pertains
o one forecasting horizon, which, in turn, corresponds to one persistence level for the dependent variable. The black numbers at the top indicate the proportion of points above
ero.
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Fig. 7. 𝑅2
oos as a function of �̂�. We plot the out-of-sample 𝑅2 as a function of �̂�, the estimated correlation between innovations. Before averaging the squared errors, we remove all

outliers in predictions, i.e., those values that lie outside the [−100%,+300%] interval. The top panel relates to predictors with low or moderate persistence, as defined in Table 2,
while the bottom one shows the results for the predictors with high auto-correlation. Each point corresponds to one predictor and one calendar decade (over which the 𝑅2 is
computed). Each vertical panel pertains to one forecasting horizon, which, in turn, corresponds to one persistence level for the dependent variable. For each sample size (𝑇 , shown
with colors), we fit a linear model on the points to determine the impact of 𝜌 on the 𝑅2. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)
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ependent variable and is regressed against all other predictors, one by
ne:

IX𝑡+1 = 𝑎 + 𝑏𝑥𝑡 + 𝑒𝑡+1. (39)

nlike the svar variable in our study whose estimated autocorrelation
s only 0.57 and therefore limits the presence of unexpected gains,
he VIX indicator, downloaded from the Federal Reserve of Saint Louis
ata center, has an autocorrelation of 0.82 when sampled at a monthly
requency (from January 1990 onwards).

Predictions are then made accordingly for the next period value
nd the out-of-sample 𝑅2 is derived from January 2000 onwards.
redictions (and the evaluation of their out-of-sample performance)
nly start in 2000 because the 1990–2000 decade is used to estimate
698
he first coefficient (it serves as an initial training sample, which, given
he sample size 𝑇 = 120 months requires a 10-year buffer).

In the left panel of Fig. 8, we represent the distribution of estimated
orrelations between innovations, �̂�. It is interesting to notice the levels
f estimated correlations remain low, i.e. between −15% and +12%,

which is adequate to illustrate the presence of unexpected gains of Type
I but not of Type II.

In the right panel, we show the OOS 𝑅2 clustered by sample size
𝑇 (𝑥-axis). For short samples (𝑇 = 12), the proportion of positive 𝑅2

is 96%, but this figure shrinks to 43% for longer samples (𝑇 = 120).
In any case, there is a substantial fraction of cases that correspond
to unexpected gains of Type I. In addition, there is a clear pattern of
decreasing 𝑅2 with 𝑇 , which is a theoretical prediction from Figs. 1 and
3 (with high 𝜌 ).
𝑦
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Fig. 8. VIX prediction. In the left panel, we show the distribution of estimated correlations between innovations of the VIX and innovations for all other predictors. In the right
panel, we plot the out-of-sample 𝑅2 stemming from PRs in which the VIX is the dependent variable. All other predictors are used, one at a time, except the svar. Before averaging,
we remove all outliers in predictions, i.e, those values that lie outside the [0%,+500%] interval. Each point corresponds to one predictor and one calendar decade (over which the
𝑅2 is computed).
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Table 3
𝑡-statistics of slopes: we provide the 𝑡-statistics of the fitted linear relationships shown
in Fig. 7.

Sample size Return horizon

(months) 3 months 6 months 12 months 24 months

PANEL A: predictors with low or moderate persistence
24 1.084 2.632 2.126 1.990
36 1.286 2.143 2.071 1.714
60 1.365 1.834 1.480 1.187
84 1.040 2.060 2.183 1.753

120 0.901 1.807 1.582 1.364

PANEL B: predictors with high persistence
24 −0.901 −1.337 −0.253 2.699
36 −0.953 −1.107 1.110 1.578
60 −0.298 0.363 0.279 0.836
84 −1.012 0.606 1.226 0.512

120 −1.014 0.460 0.355 0.193

5. Conclusion

In this article, we evaluate the out-of-sample loss that an agent
faces when using a predictive regression subject to a strong model
misspecification. En route, we introduce the concept of unexpected
gains in predictive regressions. We provide two definitions thereof,
based on the level and sensitivity of the out-of-sample 𝑅2. We present
losed-form expressions for the out-of-sample mean squared error (and
2) when regression coefficients are given by the sample OLS estimates.

Our results reveal the parametric configurations in which unin-
ended opportunities may arise and they all involve small sample
izes. First, as in the documented spurious correlation effect, there are
ases for which a zero correlation between the variables is associated
o unexpectedly positive 𝑅2. Second, and again surprisingly, we find
ombinations of parameters for which this out-of-sample 𝑅2 increases
hen the correlation between the processes (and their innovations)
ecreases in absolute value. This is eminently counter-intuitive because
e would presume that a lower correlation be associated with weaker

2
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nformation linkages between the processes and thus with a smaller 𝑅 .
Our theoretical findings are confirmed by many simulation exercises
and illustrated via an empirical study of return predictability where the
dependent variable is the S&P500 index and the predictive variables are
taken from the studies from Novy-Marx (2014) and Welch and Goyal
(2008). Focusing on the prediction of the VIX, we observe that short
training samples yield large 𝑅2 values despite the very low levels of
estimated correlations between innovations, which clearly illustrates an
unexpected opportunity of Type I.

The generalization of our results to higher dimensions is left for
future work. In particular, three extensions are of interest. Predictive
regressions with many predictors are harder to handle analytically
because of the inverse matrix in the sample coefficients, but they seem
to be a promising direction for research. Panel approaches are another
suggestion, as they would allow us to explain dependent variables for
a cross-section of assets. Finally and more generally, the generalization
to nonlinear models (e.g., tree methods and neural networks) is of
interest, though likely out of reach analytically.16 The joint impact of
correlations, variable persistence, and sample size on the performance
of these technical tools remains an open question.
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