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Fock’s dimer model on the Aztec diamond

Cédric Boutillier∗, Béatrice de Tilière†

May 30, 2024

Abstract

We consider the dimer model on the Aztec diamond with Fock’s weights, which
is gauge equivalent to the model with any choice of positive weight function. We
prove an explicit, compact formula for the inverse Kasteleyn matrix, thus extending
numerous results in the case of periodic graphs. We also show an explicit product
formula for the partition function; as a specific instance of the genus 0 case, we
recover Stanley’s formula [Pro97, Yan91]. We then use our explicit formula for the
inverse Kasteleyn matrix to recover, in a simple way, limit shape results; we also
obtain new ones. In doing so, we extend the correspondence between the limit
shape and the amoeba of the corresponding spectral curve of [BB23] to the case of
non-generic weights.

1 Introduction

We consider the dimer model on the Aztec diamond with Fock’s weights [Foc15, BCdT23a].
Our first main result is an explicit expression for the inverse Kasteleyn matrix, which
only uses theta functions, prime forms and local functions in the kernel of the associ-
ated Kasteleyn operator. We also prove that any dimer model on the Aztec diamond
is gauge equivalent to a dimer model with Fock’s weights, thus showing that we ac-
tually treat the dimer model on the Aztec diamond in full generality. Next, building
on an idea of Propp [Pro97], we prove an induction formula for the partition function,
showing that it admits a product form; as a specific case, we recover Stanley’s cele-
brated formula [Yan91]. Finally, we use our explicit formula for the inverse Kasteleyn
matrix to recover and extend, in a simple way, results on limit shapes in genus 0, 1,
and higher, generalizing the geometric correspondence between the limit shape of the
Aztec diamond for periodic weights and the amoeba of the corresponding spectral curve
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proven by Berggren and Borodin [BB23] under some technical assumptions, which are
now lifted.
Let us now be more specific, and give some historical background. This paper aims at,
in some sense, closing a long history of formulas for the inverse Kasteleyn matrix of the
dimer model on the Aztec diamond. This was initiated in [Hel00] in the case of uniform
weights. Then, in [CJY15], Chhita, Johansson and Young consider the case where ver-
tical and horizontal dominos have different weights, also known as 1-periodic weights;
their proof consists in connecting dimer configurations to particle systems together with
a direct check of their guessed formula. Next in [CY14], Chhita and Young treat the
case of 1-periodic weights with a possible volume penalization, and 2-periodic weights;
to prove their result, the authors use generating functions. The 1-periodic weights with
volume penalization is then generalized in [BBC+17] using the connection to Schur pro-
cesses. In [CJ16] Chhita and Johannsson again consider 2-periodic weights; they prove
a simplification of the formula of [CY14], compute asymptotics of the inverse and limit
shapes, in particular they discuss the arctic curves separating the various phases given
by an algebraic curve of degree 8. In [DK21], Duits and Kuijlaars propose a different
approach for the 2-periodic weights of [CY14] using non intersecting lattice paths and
matrix valued orthogonal polynomials; allowing them to compute finer asymptotics us-
ing an associated Riemann-Hilbert problem. A new approach, involving block Toepliz
matrices and the Wiener-Hopf factorization is proposed in [BD19]; it is then extended
to 2 × k-periodic weights in [Ber21]; in particular, the authors give a rigorous proof of
the arctic curves derived in [DFSG14]. In [BD23], Borodin and Duits introduce biased
2× 2 periodic weights; two specific cases are the 1-periodic weights of [CJY15] and the
2-periodic ones of [CY14]; the method used is that of block Toepliz matrices and Wiener-
Hopf factorization. This approach culminates in the paper [BB23], where the authors
consider generic k× l-periodic weights, where generic means that the underlying spectral
curve has maximal genus. Note that weights of the above k× l and 2× k models can be
specified so as to recover the 2-periodic weights of [CY14], but then the weights are not
generic as assumed in the latter papers, so that the setting is actually different.
Our first main result, Theorem 13, encompasses all of the above cases. Here is the
setting, see Sections 2.1, 2.2 for more details. Consider an M-curve Σ of genus g, with
a distinguished real component A0, and a real element t of the Jacobian variety Jac(Σ).
Denote by θ the associated Riemann theta function and by E the prime form. Consider
an Aztec diamond An of size n, with its set of oriented train-tracks ~Tn naturally split
into four, and let α = (αj)

n
j=1, β = (βj)

n
j=1, γ = (γj)

n
j=1, δ = (δj)

n
j=1 be the associated

angles on A0 satisfying the cyclic order conditions α < γ < β < δ. Suppose that edges
of the Aztec diamond are assigned Fock’s weights [Foc15, BCdT23a], meaning that, for
every edge wb with train-track angles α, β, the corresponding coefficient of the Kasteleyn
matrix K is given by:

Kw,b =
E(α, β)

θ(t+ d(f))θ(t+ d(f ′))
,

where f, f ′ are the dual faces adjacent to wb, and d is the discrete Abel map. In Propo-
sition 11, we prove that all dimer models on the Aztec diamond can be re-parameterized
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using Fock’s weights. Then, Theorem 13 can loosely be stated as follows.

Theorem 1. For every pair (b,w) of black and white vertices of An, the coefficient (b,w)
of the inverse Kasteleyn matrix is explicitly given by

K−1
b,w =

1

(2πi)2
1

θ(p)

∫
C2

∫
C1

θ(p+ (v − u))

E(u, v)
gb,0(u)g0,w(v)

n∏
j=1

E(βj , u)

E(δj , u)

E(δj , v)

E(βj , v)
+

− I{b right of w}
1

2πi

∫
C2

gb,w(v), (1)

where C1, C2 are closed contours on Σ used to integrate over u and v, defined in Sec-
tion 3.2; p =

n∑
j=1

(δj − βj) − t − d(0), and g is the form in the kernel of the Kasteleyn

matrix introduced in [BCdT23a], see also Equation (13).

Note that to recover known results on the Aztec diamond requires to identify the asso-
ciated weights in Fock’s form. We do this explicitly in Section 2.3 in the genus 0 case,
which includes Stanley’s weights [Pro97, Yan91], and in the genus 1 case, which includes
the biased 2× 2 periodic case of [BD23].
Our next result, Theorem 16, proves that the partition function admits a product form.
Denote by Zn(α,β,γ, δ; d) the partition function of the Aztec diamond An of size n,
with train-track angle parameters α,β,γ, δ, and value d for the Abel map at the vertex
with coordinates (0, 0). Then, Theorem 16 can be stated as follows.

Theorem 2. For every n ≥ 1, the partition function of the Aztec diamond An with
Fock’s weights satisfies the following recurrence:

Zn(α,β,γ, δ; d) ·
∏

f∈oddn

θ(t+ d(f))

θ(t+ d(f) + α+ β − γ − δ)

∏
f∈bryn

θ(t+ d(f)) =

= Zn−1((αj)
n−1
j=1 , (βj)

n
j=2, (γj)

n−1
j=1 , (δj)

n
j=2; d+ β1 − δ1) ·

[ n∏
j=1

|E(αj , βj)E(γj , δj)|
]
,

with the convention that Z0 = 1.

As specific instances of the genus 0 case, we re-derive that the number of domino tilings
of the Aztec diamond is 2

n(n+1)
2 , see Remark 19 after Corollary 18, and Stanley’s for-

mula [Pro97, Yan91], see Corollary 20.
We then explain in Lemma 23 that the formula for K−1 for the finite Aztec diamond can
be extended in a natural way to an operator J on an infinite minimal graph containing
the Aztec diamond as a subgraph, introduced in [Spe07] and this formula is an inverse
for the Fock Kasteleyn operator on this infinite graph. This operator J does not belong
to the family of inverses defined in [BCdT23a]. It nevertheless carries a probabilistic
meaning and allows to define a Gibbs measure on dimer configurations of this infinite
graph, as stated in Proposition 25. Here is a less formal version:
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Proposition 3. The determinantal process on edges given by J defines a Gibbs measure
on the dimer configurations of the infinite minimal graph, which is supported on config-
urations which are frozen outside the Aztec region and whose marginals on the edges of
the Aztec region coincide with the Boltzmann measure given by Fock’s weights.

The slope in the frozen region is not constant. The operator J is the first inverse on an
infinite minimal graph for which the corresponding probability measure exhibits different
phases (solid/liquid/gas) depending on the location on the same infinite graph.
We end this paper with a section with application to the computation of limit shapes
for the Aztec diamond with weights coming from surfaces of genus 0, 1 or higher.
We give in particular a short derivation of the arctic ellipse theorem for 1-periodic
weights [JPS98, Joh02]. We also explain how to extend results by Berggren and Borodin
from [BB23] obtained under some technical assumption to a more general context, see
also the forthecoming paper [BBS].

Outline of the paper

• In Section 2, we recall the definition of the Aztec diamond graph, and give the
necessary geometric definitions to define Fock’s weights for the dimer model. We
then discuss some known examples which fit this framework in genus 0 and 1.
Proposition 11 establishes that Fock’s weights are gauge equivalent to any choice
of positive weights on the edges.

• In Section 3, we state and give a proof of Theorem 13 giving a compact, explicit
formula for the inverse Kasteleyn matrix.

• Section 4 is devoted to results about the partition function of the dimer model.
It contains the statement and the proof of Theorem 16 showing a product for-
mula for the partition function. Application to the genus 0 case and Stanley’s
formula [Pro97, Yan91] are given.

• In Section 5, we discuss the extension of K−1 to an infinite minimal graph. Lemma 23
gives the structure of this inverse, and Proposition 25 describes the corresponding
Gibbs measure.

• Section 6 is a discussion of applications of the formula for K−1 to derive limit
shapes and limit of local statistics in the thermodynamical limit, recovering and
extending several well-known results on the topic.
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2 Definitions and first result

This section is devoted to introducing and motivating the framework of this paper. In
Section 2.1, we define the dimer model on the Aztec diamond, and in Section 2.2 we
introduce Fock’s weights [Foc15, BCdT23a]. Then, in Section 2.3 we explicitly treat the
genus 0, resp. genus 1, case and prove how to recover Stanley’s weights [Pro97, Yan91],
resp. the biased 2× 2 periodic weights of Borodin-Duits [BD23]. Finally, in Section 2.4,
we prove that all dimer models on the Aztec diamond can be parameterized using Fock’s
weights, implying that we actually study the most general setting of the dimer model
on the Aztec diamond.

2.1 Dimer model on the Aztec diamond

Aztec diamond. The Aztec diamond of size n, denoted by An = (Vn,En), is a sub-
graph of Z2 rotated by π/4 made of n rows and n columns, see Figure 1. This graph is
bipartite and the set of vertices Vn is naturally split into black and white: Vn = BntWn.

α1

β1

γ1 δ1

α2

β2

γ2 δ2

α3

β3

γ3 δ3

α4

β4

γ4 δ4

Figure 1: Aztec diamond An with n = 4. The diamond graph A�
n is represented with light

grey lines, the dual vertices with blue circles, and the four families of oriented train-tracks
in red. This figure also sets the notation for the angles α = (αj)

n
j=1, . . . , δ = (δj)

n
j=1

assigned to train-tracks.

The set of faces of An, denoted by Fn, consists of the inner faces and the boundary faces,
where the latter correspond to all faces of the rotated Z2 adjacent to the boundary of
An. To every face of Fn, one assigns a vertex generically denoted by f; it can be seen as
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a vertex of the dual graph of An modified along the boundary, see Figure 1 (small blue
circles), hence f will be referred to as face or dual vertex.
The Aztec diamond An comes with a natural coordinate system: the dual vertex on the
bottom left is the origin 0 = (0, 0), every white vertex can be written as w = (wx,wy),
with wx ∈ {0, 2, . . . , 2n}, wy ∈ {1, 3, . . . , 2n − 1}, every black vertex can be written as
b = (bx, by), with bx ∈ {1, 3, . . . , 2n−1}, by ∈ {0, 2, . . . , 2n}, every dual vertex f = (fx, fy)
either has both even coordinates, or both odd coordinates.
The vertex set of the diamond graph A�

n consists of the dual vertices of Fn and of the
vertices of Vn, its edges are obtained by joining every vertex of Fn to the vertices of Vn

on the boundary of the face it corresponds to, see Figure 1 (light grey); the diamond
graph is made of quadrilaterals. A train-track of An is a maximal path crossing edges of
the diamond graph so that when it enters a quadrilateral, it exits through the opposite
side. Since the graph An is bipartite, each train-track has a natural orientation such
that white, resp. black, vertices of An, are on its left, resp. right; we let ~Tn denote the
set of oriented train-tracks, see Figure 1 (red). Train-tracks of ~Tn come in four families:
two sets of horizontal train-tracks with left-to-right or right-to-left orientation, and two
sets of vertical train-tracks with bottom-to-top or top-to-bottom orientation.

Dimer model. A dimer configuration of An is a subset M of edges such that each
vertex of An is incident to exactly one edge of M; we let M(An) denote the set of dimer
configurations of An. Assume a positive weight function ν is assigned to edges of An. The
dimer Boltzmann measure, denoted by P, is the probability measure on M(An) defined
by

∀M ∈ M(An), P(M) =
ν(M)

Z(ν)
,

where ν(M) =
∏

e∈M νe, and Z(ν) =
∑

M∈M(An)
ν(M) is the normalizing constant known

as the partition function.
Suppose that we have two positive weight functions ν, ν̃ assigned to edges of An. The
corresponding dimer models are said to be gauge equivalent [KOS06], if there exists a
function ψ defined on Vn such that, for every edge wb of En, we have ν̃wb = ψ(w)νwbψ(b).
Two gauge equivalent dimer models yield the same dimer Boltzmann measure. An
equivalent useful way of defining gauge equivalence is the following: consider an inner
face f of degree 2k of An, and denote by w1, b1, . . . ,wk, bk its boundary vertices in
counterclockwise order, then the face weight Wf(ν) of f is defined as the alternate product
of the weights:

Wf(ν) =
k∏

j=1

νwjbj

νwjbj−1

,

using cyclic notation for vertices. Then, two weight functions ν, ν̃ are gauge equivalent
if and only if, for every inner face f of An, Wf(ν) = Wf(ν̃) [KOS06]. As a consequence
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of [KOS06], we have an explicit relation between partition functions associated to gauge
equivalent weight functions ν and ν̃.

Z(ν̃) =
ν̃(M0)

ν(M0)
Z(ν), (2)

where M0 is any fixed dimer configuration of An.
A key tool for studying the dimer model is the Kasteleyn matrix [Kas61, TF61, Per69].
Instead of defining the original Kasteleyn matrix which uses orientation of the edges, we
define a modified version, introduced by Kuperberg [Kup98], that uses complex phases
assigned to edges. Suppose that every edge wb of En is assigned a modulus one complex
number φwb such that, for every inner face f of degree 2k of An, the Kasteleyn condition
is satisfied:

k∏
j=1

φwjbj

φwjbj−1

= (−1)k+1. (3)

Then, the associated Kasteleyn matrix K is the corresponding weighted adjacency matrix:
rows, resp. columns, of K are indexed by white, resp. black, vertices of An; non-zero
coefficients of K correspond to edges of En and, for every edge wb, the coefficient Kw,b is
defined by

Kw,b = φwbνwb.

Two key results of the dimer model are the expression of the partition function and of
the dimer Boltzmann measure using the determinant of the matrix K and its inverse.
More precisely, we have

Theorem 4. [Kas61, TF61, Per69, Kup98] The dimer partition function is equal to

Z(ν) = |det(K)|.

Theorem 5. [Ken97] The probability of all dimer configurations containing a fixed subset
of edges {e1 = w1b1, . . . , ek = wkbk} of En is explicitly given by

P(e1, . . . , ek) =
k∏

j=1

Kwj ,bj det
(
K−1
bi,wj

)
1≤i,j≤k

.

2.2 Fock’s dimer model on the Aztec diamond

We now turn to the definition of Fock’s weights [Foc15] underlying the dimer model of
interest to this paper. We only highlight the main tools needed, more details can be
found in the paper [BCdT23a] providing a thorough study of this model in the case of
infinite minimal graphs. We first need some tools from Riemannian geometry.
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M-curves. Let Σ be an M-curve, that is a compact Riemann surface endowed with an
anti-holomorphic involution σ whose set of fixed points is given by g+1 topological circles,
where g is the genus of Σ. Fix x0 a real point of Σ and denote by A0 the corresponding
real component and by A1, . . . , Ag the remaining ones. The real locus separates Σ into
two connected surfaces with boundary Σ−,Σ+, and we fix an orientation of the real locus
so that the boundary of Σ+ is equal to A0 − (A1 + · · ·+Ag). We use the same notation
Aj for the oriented cycle in Σ and its homology class in H1(Σ;Z).
There are homology classes B1, . . . , Bg ∈ H1(Σ,Z) with σ∗(Bi) = −Bi such that {A1, . . . ,
Ag, B1, . . . , Bg} forms a basis of H1(Σ,Z) and satisfies, for all i, j ∈ {1, . . . , g},

Ai ∧Aj = 0, Bi ∧Bj = 0, Ai ∧Bj = δi,j ,

where ∧ denotes the intersection form.
The complex vector space of holomorphic differential forms has dimension g. Denote by
~ω = (ω1, . . . , ωg) the basis of this space determined by

∀ i, j ∈ {1, . . . , g},
∫
Ai

ωj = δi,j .

Let Ω be the matrix with entries Ωi,j =
∫
Bi
ωj . This matrix is purely imaginary (in

our case of M-curves), symmetric and its imaginary part is positive definite. The period
matrix

(
Ig Ω

)
generates the full rank lattice Λ = Zg⊕ΩZg in Cg. The Jacobian variety

of Σ is defined to be Jac(Σ) = Cg/Λ.

Abel-Jacobi map. A divisor on Σ is a formal linear combination of points on Σ with
integer coefficients. The set of divisors is endowed with a natural grading Div(Σ) =⊕

n∈ZDivn(Σ), where the degree of a divisor is the sum of its integer coefficients. A
divisor is said to be principal if it represents the zeros and the poles of a non-zero
meromorphic function f on Σ; it thus has degree 0. Two divisors are linearly equivalent if
their difference is a principal divisor; the set of linear equivalence classes of divisors forms
a Z-graded Abelian group, denoted by Pic(Σ) =

⊕
n∈Z Pic

n(Σ). By Abel’s theorem,
there is an injection, the Abel-Jacobi map, from Pic0(Σ) to Jac(Σ) defined by

D =
∑
i

(yi − xi) 7→
∑
i

∫ yi

xi

~ω.

By Jacobi’s inversion theorem, this map induces an isomorphism of Abelian groups
Pic0(Σ) ' Jac(Σ); following standard practice, we use the same notation for the equiv-
alence class of a degree 0 divisor and for its corresponding element in Jac(Σ).

Riemann theta functions. The Riemann theta function θ(z|Ω) associated to Σ is
defined by

∀ z ∈ Cg, θ(z|Ω) =
∑
n∈Zg

eiπ(n·Ωn+2n·z).
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For ( δ′
δ′′) ∈

(
1
2Z
)2g, the theta function with characteristic ( δ′

δ′′), is defined by

θ[ δ
′

δ′′](z|Ω) =
∑
n∈Zg

eiπ[(n+δ′)·Ω(n+δ′)+2(n+δ′)·(z+δ′′)],

so that the theta function with (0
0
) characteristic is the Riemann theta function. A

characteristic ( δ′
δ′′) is said to be even (odd) if 2δ · 2δ′ is even (odd). A theta function with

even (odd) characteristic is an even (odd) function.

Prime form. The prime form is the building block for meromorphic functions on
Σ. We outline the definition and refer to [Mum07] for more details. Consider a non-
degenerate theta characteristic, that is a characteristic ( δ′

δ′′) such that dzθ[ δ
′

δ′′](0) 6= 0, this
implies in particular that it must be odd. Consider also ξ[ δ

′
δ′′] the square root of the

holomorphic form dzθ[ δ
′

δ′′](0) · ~ω. Then, the prime form is defined to be:

∀x, y ∈ Σ, E(x, y) =
θ[ δ

′
δ′′](y − x)

ξ[ δ
′

δ′′](x)ξ[
δ′
δ′′](y)

,

where θ[ δ′
δ′′](y − x) := θ[ δ

′
δ′′](
∫ y
x ~ω). The prime form is independent of the choice of non-

degenerate theta characteristic. Note that, as a function, it is only well defined on the
universal cover Σ̃ of Σ: it has well identified quasi-periods along lifts of the cycles (Aj)
and (Bj). Its main properties are that it is equal to 0 if and only if x = y, it is skew
symmetric and has first order zeros, [Mum07, p. 3.210].

Angles and discrete Abel map. In order to define Fock’s weights, we need another
type of data related to graph properties of the Aztec diamond. A bipartite graph is said
to be minimal [Thu17, GK13] if oriented train-tracks of ~T do not self intersect and do
not form parallel bigons, where a parallel bigon is a pair of train-tracks intersecting more
than once in the same direction; the Aztec diamond is of course a minimal graph.
To every train-track T of ~Tn, we assign an element αT of A0, referred to as its angle. Let
us introduce some notation related to the fact that our set of train-tracks is naturally
split into four: α = (αj)

n
j=1, resp. β = (βj)

n
j=1 are the angles of the left-to-right,

resp. right-to-left, horizontal train-tracks starting from the bottom; and γ = (γj)
n
j=1,

δ = (δj)
n
j=1 are the angles of the bottom-to-top, resp. top-to-bottom, vertical train-tracks

starting from the left, see Figure 1. From now on, we suppose that the angles satisfy
the following condition: for all i, j, k, ` ∈ {1, . . . , n}, the cyclic order αi < γj < βk < δ`
is satisfied on A0. Note that there is no ordering condition on the angles within one of
these subsets. By [BCdT22, Corollary 29], this is a necessary and sufficient condition
for the angles α,β,γ, δ to define a minimal immersion of the natural periodic extension
of the Aztec diamond. We introduce the short notation

α < γ < β < δ, (4)

for angles α,β,γ, δ satisfying the above cyclic ordering on A0.
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Following Fock [Foc15], the discrete Abel map, denoted by d, is a map from the vertices
of A�

n (that is, the dual vertices of Fn and the vertices of Vn) to Pic(Σ), defined as
follows: take as reference dual vertex the origin 0 = (0, 0) and set d(0) = d, for some
d ∈ Pic0(Σ). Then, the discrete Abel map is defined inductively along edges and is
such that along a directed edge of A�

n crossing a train-track T , the value of d formally
increases, resp. decreases, by αT if one arrives at a black vertex or leaves a white vertex,
resp. leaves a black vertex of arrives at a white vertex. This map is well defined [Foc15],
and for every vertex x of A�

n, the degree d(x) ∈ Pic(Σ) is equal to 1, resp. 0, resp. −1,
at every black, resp. dual, resp. white vertex of A�

n. In particular, for every dual vertex
f, the divisor d(f) belongs to Pic0(Σ), and by [BCdT23a, Lemma 15], its image through
the Abel-Jacobi map belongs to (R/Z)g ⊂ Jac(Σ). An example of computation of the
discrete Abel map is given in Figure 4 (right).

Fock’s Kasteleyn matrix. Consider a maximal curve Σ, and angles α,β,γ, δ in A0

assigned to train-tracks of An satisfying the cyclic condition α < γ < β < δ; consider an
additional parameter t ∈ (R/Z)g ⊂ Jac(Σ). Then, Fock’s Kasteleyn matrix, denoted by
K, has rows indexed by white vertices, columns by black ones, and non-zero coefficients
defined by, for every edge wb of An crossed by two train-tracks with angles α, β,

Kw,b =
E(α, β)

θ(t+ d(f))θ(t+ d(f ′))
, (5)

where f, f ′ are the dual faces adjacent to wb, see Figure 2.

w b

f

f′

αβ

Figure 2: Notation used in the definition of Fock’s Kasteleyn matrix.

Entries of this matrix are complex, but we prove in [BCdT23a, Proposition 31] that it is
a Kasteleyn matrix, where recall that this means that it corresponds to a positive weight
function ν multiplied by a complex phase φ satisfying the Kasteleyn condition (3).
Remark 6. We have noted that, seen as a function, the prime form E is only defined
on the universal cover Σ̃ of Σ. Nevertheless, in [BCdT23a, Remark 30], we prove that
for any choice of lifts of the angles α, β in the universal cover Ã0, the corresponding
Kasteleyn operators are gauge equivalent. As a consequence, in the sequel, whenever
results are true up to gauge equivalence, the choice of lifts does not matter; and whenever
results are not of this type, one should keep in mind that a specific choice of lift has to
be made, and that the result is true for any choice of lift. Since these subtle questions
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have been treated in great detail in [BCdT23a], we choose not to re-address them here
and to consider the Kasteleyn operator as directly defined with parameters on the base
surface Σ.

2.3 Examples: genus 0 and genus 1 cases

By way of example, we make the genus 0 and 1 cases explicit and prove that we re-
cover as specific cases well known models, namely the Aztec diamond with Stanley’s
weights (genus 0) [Pro97, Yan91], and Borodin-Duits’ biased 2 × 2 periodic weights
(genus 1) [BD23], see also Figures 3 and 4 below.

α1

β1

γ δ

x1 y1

z1 w1

x1 y1

z1 w1

x1 y1

z1 w1

x2 y2

z2 w2

x2 y2

z2 w2

x2 y2

z2 w2

x3 y3

z3 w3

x3 y3

z3 w3

x3 y3

z3 w3

Figure 3: Aztec diamond with Stanley’s
weights, and choice of reference dimer con-
figuration M0.
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b

1 ab 1 a
b
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2
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2

t
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b

a b a

t + π
2

+ ρ t + ρ t + π
2

+ ρ

ab 1 a
b

1 ab 1

t t + π
2

t t + π
2

1
b

a b a 1
b

a

t + ρ t + π
2

+ ρ t + ρ

a
b

1 ab 1 a
b

1

t + π
2

t t + π
2

t

Figure 4: Aztec diamond with biased 2×2
periodic weights [BD23], and the discrete
Abel map.

Genus 0. The underlying M-curve Σ is the Riemann sphere Ĉ, with involution z 7→ 1
z̄

and A0 = S1 = {z ∈ Ĉ : |z| = 1}. The prime form E(u, v) is equal to v − u, and the
Riemann theta function is the constant function 1, so that the discrete Abel map is not
needed. To a point α ∈ A0 = S1 is assigned in a bijective way an angle ᾱ ∈ Ā0 := R/πZ
defined by α = e2iᾱ; observe that this bijection preserves the cyclic orders on A0 and Ā0.
For α, β ∈ A0, we have E(α, β) = e2iβ̄ − e2iᾱ, and Fock’s Kasteleyn weights are equal to:

Kw,b = β − α = e2iβ̄ − e2iᾱ = 2iei(ᾱ+β̄) sin(β̄ − ᾱ). (6)

Up to a factor i, these are Kenyon’s critical weights on isoradial graphs introduced
in [Ken02].
Let us now prove that, as a specific case, one recovers the dimer model with Stanley’s
weights [Pro97, Yan91] defined as follows: edges are assigned positive weights x =
(xj)

n
j=1,y = (yj)

n
j=1,w = (wj)

n
j=1, z = (zj)

n
j=1 as in Figure 3 (left). On Fock’s weights

side, impose the following condition: choose α1, γ, δ ∈ A0 = S1 satisfying the cyclic
order α1 < γ < δ, and for all j ∈ {1, . . . , n}, set γj = γ, δj = δ.
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Proposition 7. Suppose that we are given x,y, z,w defining Stanley’s weights, and
consider α1, γ, δ ∈ A0 as above. Then, there exists (αj)

n
j=2, (βj)

n
j=1 such that α < γ <

β < δ and such that the dimer model with Fock’s weights α,β,γ ≡ γ, δ ≡ δ in genus 0
is gauge equivalent to the dimer model with Stanley’s weights.

Proof. For the purpose of this proof, let us denote by ν Fock’s weight function and by
ν̃ Stanley’s one. We are given ν̃, that is x,y, z,w, and on Fock’s side we are given
α1, γ, δ ∈ A0 such that α1 < γ < δ. We need to prove that there exist (αj)

n
j=2, (βj)

n
j=1

such that α < γ < β < δ, and such that ν and ν̃ are gauge equivalent. Returning to
Section 2.1, this means that all face weights have to be equal.
For the weight function ν̃, there are two kinds of face weights corresponding to inner
faces with both odd coordinates, resp. both even coordinates

∀ j ∈ {1, . . . , n}, xjwj

yjzj
, resp. ∀ j ∈ {1, . . . , n− 1}, yj+1zj

xj+1wj
.

Note that all face weights along a given row are equal.
Returning to the definition of Fock’s weights with the above specification in the genus 0
case, see Equation (6), we want to have the following equalities

∀ j ∈ {1, . . . , n}, xjwj

yjzj
=

| sin(γ̄ − ᾱj)|
| sin(δ̄ − ᾱj)|

| sin(δ̄ − β̄j)|
| sin(β̄j − γ̄)|

∀ j ∈ {1, . . . , n− 1}, yj+1zj
xj+1wj

=
| sin(δ̄ − ᾱj+1)|
| sin(γ̄ − ᾱj+1)|

| sin(β̄j − γ̄)|
| sin(δ̄ − β̄j)|

.

(7)

The main tool we use is that, for all ū, v̄ ∈ Ā0, the function x̄ ∈ Ā0 7→ | sin(x̄−ū)|
| sin(x̄−v̄)| is

non-negative, has a zero at x̄ = ū, a pole at x̄ = v̄, is continuous except at x̄ = v̄, and
takes all values in [0,∞) on the intervals [ū, v̄), (v̄, ū] of Ā0.
Fix any α1, γ, δ satisfying α1 < γ < δ. Then, by the above there exists β1 ∈ (γ, δ) such
that x1w1

y1z1
= | sin(γ̄−ᾱ1)|

| sin(δ̄−ᾱ1)|
| sin(δ̄−β̄1)|
| sin(β̄1−γ̄)| . Using the same argument, there exists α2 ∈ (δ, γ) such

that y2z1
x2w1

= | sin(δ̄−ᾱ2)|
| sin(γ̄−ᾱ2)|

| sin(β̄1−γ̄)|
| sin(δ̄−β̄1)|

. Again, using this argument, there exists β2 ∈ (γ, δ)

such that x2w2
y2z2

= | sin(γ̄−ᾱ2)|
| sin(δ̄−ᾱ2)|

| sin(δ̄−β̄2)|
| sin(β̄2−γ̄)| , and we continue determining α3 using the second

equation, etc. To solve these equations we need 2n− 1 parameters (αj)
n
j=2, (βj)

n
j=1, and

we can choose them so that α < γ < β < δ.

Remark 8. The fact that there are three parameters (we chose here α1, γ and δ) that
we can fix to arbitrary values is a consequence of the fact that the probability measure
is invariant if we apply to all parameters a Möbius transform preserving the unit circle,
and such Möbius transformations are transitives on triple of points. See e.g. [KO06,
Section 5], and Section 6.1 of the present article.
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Genus 1. The M-curve Σ is the complex torus T(τ) = C/(Z + τZ), for some modu-
lar parameter τ ∈ iR+, where the involution is given by the complex conjugation and
A0 = R/Z. The theta function θ(u|Ω) is the Jacobi theta function θ3(πu|τ), see [Law89,
Equation (1.2.13)], and the prime form E(u, v) is equal to θ1(π(v−u)|τ)

πθ′1(0)
, where θ1 is the

rescaled version of the theta function with characteristic (1/2
1/2

). Whenever no confusion
occurs, the reference to τ is omitted in the notation of the theta functions. As a conse-
quence, Fock’s Kasteleyn weights are equal to

Kw,b =
θ1(π(β − α))

πθ′1(0)θ3(π(t+ d(f)))θ3(π(t+ d(f ′)))
. (8)

We now prove that as a specific case one recovers the biased 2× 2 periodic dimer model
studied by Borodin and Duits [BD23], defined as follows. Consider two parameters
a > 0, b ∈ (0, 1]; the Aztec diamond is naturally made of 2n rows of edges. Row weights
repeat each four rows; a pattern of four rows is given by: (1b , a, b, a + horiz. repetitions),
(ab , 1, ab, 1 + horiz. repetitions), (b, a, 1b , a + horiz. repetitions), (ab, 1, ab , 1 + horiz. repetitions),
see Figure 4 (right). Note that if the Aztec diamond has odd size, the last two columns
and rows contain only half of the pattern; note also that the weights come in periods
of 2 × 2, circled in magenta in Figure 4 (right), hence the name. For Fock’s weights,
impose the following preliminary conditions: for all j ∈ {1, . . . , n}, set αj = α, βj =
β, γj = γ, δj = δ, where α, β, γ, δ ∈ A0 = R/Z are such that α < γ < β < δ; moreover
suppose that β −α = δ− γ = 1

2 , implying that we have γ −α = δ− β := ρ ∈ (0, 12), and
β − γ = α− δ = 1

2 − ρ ∈ (0, 12), so that we have one free angle parameter ρ ∈ (0, 12).

Proposition 9. Suppose that we are given a > 0, b ∈ (0, 1) defining biased 2×2 periodic
weights, and consider α, β, γ, δ ∈ A0 and ρ ∈ (0, 12) as specified above. Then, there exists
ρ ∈ (0, 12) and τ ∈ iR∗

+ such that the dimer model with Fock’s weights in genus 1 for
t = 1

4 is gauge equivalent to the dimer model with biased 2× 2 periodic weights.

Proof. We are given a > 0 and b ∈ (0, 1) and need to prove that there exists ρ ∈ (0, 12),
τ ∈ iR∗

+, such that for a good choice of t, the face weight of each face is the same in
both settings.
The computation of the discrete Abel map is illustrated in Figure 4 (right, blue), tak-
ing into account that the theta function θ3 is π-periodic. Computing the face weights
similarly to the genus 0 case, for each of the weight functions there are four distinct
face weights, which can for instance be computed from the four faces surrounded by the
magenta line of Figure 4. We are looking for ρ, τ, t satisfying the following four equalities:

1

a2
=
θ3(π(t+

1
2))

2

θ3(πt)2
θ1(πρ)

2

θ1(π(
1
2 − ρ))2

,
1

a2
=

θ3(πt)
2

θ3(π(t+
1
2))

2

θ1(πρ)
2

θ1(π(
1
2 − ρ))2

,

(ab)2 =
θ3(π(t+ ρ))2

θ3(π(t+
1
2 + ρ))2

θ1(π(
1
2 − ρ))2

θ1(πρ)2
,

a2

b2
=
θ3(π(t+

1
2 + ρ))2

θ3(π(t+ ρ))2
θ1(π(

1
2 − ρ))2

θ1(πρ)2
.

Since all the quantities involved are positive, we can remove the squares.
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The two equalities on the first line imply that θ3(π(t+ 1
2)) = θ3(πt), so t = ±1

4 . Taking
the product of the first two equalities of both lines yields b = θ3(π(t+ρ))/θ3(π(t+

1
2+ρ)),

which is strictly less than 1 for ρ ∈ (0, 12) only if we choose the plus sign, and set t = +1
4 .

Using that the function θ3 is even, we are looking for ρ, τ satisfying

a =
θ1(

π
2 − πρ)

θ1(πρ)
=
θ2(πρ)

θ1(πρ)
, b =

θ3(π(ρ+
1
4))

θ3(π(ρ− 1
4))

=
θ3(π(ρ+

1
4))

θ4(π(ρ− 1
4))

,

where in both second equalities, we used [Law89, Eq. (1.3.2,1.3.4)]. Let us now express
these functions using Jacobi trigonometric functions sc,dn and their inverses cs,nd,
see [Law89, Chap. 2] for details. Recall the following relations between the parameters
of Jacobi’s trigonometric and theta functions: k = θ2(0)2

θ3(0)2
, k′ =

√
1− k2 = θ4(0)2

θ3(0)2
, K =

π
2 θ3(0)

2, iK ′ = τK, and let us write ρ̃ = 2Kρ. We have, see [Law89, 2.1.1-2.1.3],

sc(ρ̃|k) = θ3(0|τ)
θ4(0|τ)

θ1(πρ|τ)
θ2(πρ|τ)

, dn(ρ̃|k) = θ4(0|τ)
θ3(0|τ)

θ3(πρ|τ)
θ4(πρ|τ)

.

When working with Jacobi’s trigonometric functions, the elliptic modulus k (or k′) is
considered as given; then q = eiπτ can be derived from k and k′, see [Law89, 2.1.12,
2.1.23]. As k decreases from 1 to 0 (or k′ increases from 0 to 1), τ goes from i0 to i∞.
Again, whenever no confusion occurs, we remove k, resp. τ , from the argument of the
Jacobi trigonometric functions, resp. theta functions. As a consequence of the above
discussion, we are looking for ρ and k, or equivalently k′, satisfying

a = (k′)−
1
2 cs(ρ̃) (9)

b = (k′)−
1
2 dn

(
ρ̃+

K

2

)
. (10)

We first use the addition formula [DLMF, 22.8.17], in Equation (10), divide numerator
and denominator by sn(ρ̃) sn(K2 ), giving

b = (k′)
−1
2
cs(ρ̃) dn(K2 )− dn(ρ̃) cs(K2 )

cs(ρ̃) dn(ρ̃)− dn(K2 ) cs(
K
2 )
. (11)

We then, use the identities [DLMF, 22.6.1-22.6.2] to express dn using the function cs

dn(ρ̃) =

√
k′2 + cs2(ρ̃)

1 + cs2(ρ̃)
,

and the special values dn(K2 ) = cs(K2 ) = (k′)
1
2 found for example in [DLMF, Table

22.5.2] to obtain

b =
cs(ρ̃)− dn(ρ̃)

cs(ρ̃) dn(ρ̃)− k′
=

√
k′−1 + a2 −

√
k′−1 + a−2

√
k′ + a2 −

√
k′ + a−2.

(12)
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Figure 5: Left: the plot of ρ as a function of k′ =
√
1− k2 satisfying Equation (9), for

various values of a (of the form 2j/3, with −7 ≤ j ≤ 7). Smaller values of a correspond
to higher curves. Right: the plot of b as a function of k′ for several values of a (of the
form 2j/3, 0 ≤ j ≤ 10). The plot for a < 1 is the same as for 1/a.

This formula, valid for a 6= 1 tends to b =
√
k′ for a → 1, and can thus be extended in

the case a = 1. For a fixed value of a, the formula for b in Equation 12 is a continuous,
increasing function of k′, ranging from 0 to 1 as k′ varies in (0, 1), see the plots on the
right of Figure 5. Thus, for every a > 0, there exists a unique k′ solving this equation.
Let us fix this k′, then we are looking for ρ̃ such that a = (k′)−

1
2 cs(ρ̃) = (k′)

1
2 cs(2Kρ).

The right hand side, seen as a function of ρ, is monotone and takes all values from 0
to ∞ so that, for this fixed k′, such a ρ exists and is unique, see the plots on the left
of Figure 5 to see how ρ varies with k′ for different values of a. Hence, we have proved
that ρ and k′ (thus τ) are determined uniquely from a and b if we want the two models
to give the same face weights.

Remark 10.

• Assuming that the train-track angles are given by α, β, γ, δ (independently of j)
and supposing that β − α = δ − γ = 1

2 imply that Fock’s weights have a period
of size 2 × 2. As a consequence, in the genus 1 case, for general 2 × 2 periodic
weights, on top of the angle parameter ρ and the modular parameter τ , we have
one additional parameter t ∈ R/Z. This parameter is fixed to the value +1

4 in the
case of the biased 2× 2 periodic weights of [BD23].

• Using the notation of the proof of Proposition 9, for every ρ ∈ (0, 12), setting k = 0
(or equivalently k′ = 1), amounting to considering the limit τ → iR∗

+, we obtain
b = 1, a = cot(πρ) ∈ (0,∞). The genus 1 case degenerates to a genus 0 case, and
we recover a parameterization of the 1-periodic weights of [CJY15].
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• Returning to the proof of Proposition 9, for every k′ ∈ (0, 1), choosing a = 1
corresponds to taking ρ = 1

4 , and according to Equation (12), b =
√
k′. We recover

a parameterization of the 2-periodic weights of [CY14].

2.4 Space of parameters

The special form of Fock’s weights, see Equation (5), may seem to be restrictive; we
explain here that this is not the case. More precisely, we prove that given a dimer model
on the Aztec diamond with any positive weight function, it is gauge equivalent to a
dimer model with Fock’s weights. Recall from Section 2.1 that the two dimer models
then yield the same dimer Boltzmann measure.
Proposition 11. For any n ∈ N∗, and any choice of positive edge weights ν on An, there
exists an M-curve Σ of genus g, a parameter t ∈ (R/Z)g, and angles α,β,γ, δ ∈ A0

assigned to oriented train-tracks of An satisfying α < γ < β < δ on A0, such that the
dimer models with Fock’s weights and weight function ν are gauge equivalent.

Proof. Consider for a moment An as a subgraph of the infinite square lattice Z2, and
extend the edge weights ν in a periodic system of weights ν̄ for the whole square lattice.
Following [KOS06], we can construct the spectral curve C associated to the periodic
weights ν̄ as the set of zeros of the characteristic polynomial, see [KOS06, Sections 3.1.3,
3.2.3] for definitions. This algebraic curve is a Harnack curve. Moreover, if a vertex is
distinguished, there is a natural associated standard divisor, where a standard divisor
corresponds to a collection of g points on each oval of C if C has genus g [KO06]; this
defines the spectral data of the model. The dimer spectral theorem by Kenyon and
Okounkov implies that that C together with its standard divisor (the spectral data)
characterize the periodic weights up to gauge transformation. By Remark [BCdT23a,
50.2], which relies on [BCdT23a, Theorem 49] and [GK13, Theorem 7.3], it follows that
there is a t ∈ (R/Z)g and a periodic assignment of angle parameters to the train-tracks,
satisfying the cyclic order condition, such that the corresponding dimer model with
periodic Fock’s weights is gauge equivalent to the original one. When restricting back
to the subgraph An, we get weights of the form (5) which are gauge-equivalent to the
initial weights ν.

Remark 12.

• In Section 2.3, we prove two explicit realizations of Proposition 11 in the case of
Stanley’s weights and of the biased 2 × 2 periodic weights. In general, making
the content of Proposition 11 explicit is not easy because the argument underlying
the proof is a general parameterization theorem. The idea to proceed would be to
compute the associated characteristic polynomial using the weight function ν, and
the associated spectral curve, Newton polygon and amoeba. The genus g is given
by the number of holes in the amoeba, and from the tentacles one can recover
the angles of the train-tracks. However the parameter t is encoded by a standard
divisor on the curve, which is some additional information that needs to be given.
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• Note that, generically, holes in the amoeba are in correspondence with integer
points in the interior of the Newton polygon; a lower number of holes means that
there are isolated singularities on the curve. As a consequence, generically, the
genus g of Proposition 11 increases with n, the size of the Aztec diamond.

3 Explicit formula for the inverse Kasteleyn matrix

The setting is that of Section 2.2: we consider an M-curve Σ of genus g, the associated
Riemann theta function θ and prime form E, and fix a parameter t ∈ (R/Z)g; we suppose
that oriented train-tracks are assigned angles in A0 satisfying condition (4), and consider
the associated discrete Abel map d. In this section we state and prove one of the main
results of this paper, Theorem 13, consisting of an explicit expression for the inverse of the
Kasteleyn matrix with Fock’s weights. Recalling Theorem 5, an immediate consequence
of Theorem 13 is an explicit formula for the dimer Boltzmann measure in the very general
framework of Fock’s weights. As explained in the introduction, Theorem 13 aims at, in
some sense, closing a long history of explicit expressions for the inverse Kasteleyn matrix
of the Aztec diamond; refer to Section 1 for historical background.
This section is organised as follows: in Section 3.1, we give some prerequisites, that is,
the definition of the forms g in the kernel of the Kasteleyn matrix K [BCdT23a], and
Fay’s identity [Fay73]; then in Section 3.2 we state and prove Theorem 13.

3.1 Prerequisites

Forms in the kernel of K. We need the following ingredient from [BCdT23a], namely
forms in the kernel of the Kasteleyn matrix K, defined as follows. Every edge of A�

n

consists of a dual vertex f, and a white or black vertex of An. For every edge of A�
n, and

every u ∈ Σ, define:

gf,w(u) = gw,f(u)
−1 =

θ(t+ u+ d(w))

E(β, u)
(13)

gb,f(u) = gf,b(u)
−1 =

θ(−t+ u− d(b))

E(α, u)
, (14)

where α, resp. β, is the angle of the oriented train-track crossing the edge wf, resp. bf,
see Figure 2. When x, y are two vertices of A�

n, consider a path x = x1, . . . , xn = y of A�
n,

and set

gx,y(u) =
n−1∏
j=1

gxj ,xj+1(u).

This quantity is well defined, i.e., independent of the choice of path in A�
n from x to y.

By [BCdT23a, Lemma 33], see also [Foc15] we know that the forms g are in the kernel
of K for vertices that are not on the boundary; written explicitly we have that, for every
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u ∈ Σ, for every vertex x of A�
n, and every white vertex in the bulk of An,∑

b∼w

Kw,bgb,x(u) = 0. (15)

Fays’ identity. In the course of the proof of Theorem 13, we will need the following
variant of Fay’s identity [Fay73, Proposition 2.10] to expand the product Kw,bgb,w(u),
see also [BCdT23a, Equation (9)],

Kw,bgb,w(u) =
E(α, β)

θ(t+ d(f))θ(t+ d(f ′))

θ(t+ u+ d(w))θ(−t+ u− d(b))

E(α, u)E(β, u)

= ωβ−α +

g∑
`=1

( ∂θ
∂z`

(t+ d(f))− ∂θ

∂z`
(t+ d(f ′))

)
ωj , (16)

where ωβ−α = du log
E(u,α)
E(u,β) is the unique meromorphic 1-form with 0 integral along

A-cycles, and two simple poles at β, resp. α, with residue 1, resp. −1.

3.2 Explicit formula for the inverse Kasteleyn operator

We consider the Kasteleyn matrix K with Fock’s weights, see Equation (5). In order to
state our explicit formula for the inverse matrix, we first define contours of integration.
By assumption, the angles assigned to oriented train-tracks satisfy the cyclic condi-
tion (4): α < γ < β < δ. This implies that the real component A0 of Σ can naturally
be split into four disjoint connected subsets containing all of the angles of one type and
none of the other types. We let C1 be a trivial contour on Σ, oriented counterclockwise,
containing in its interior all of the angles γ = (γj)

n
j=1 and none of the angles α,β, δ.

Similarly C2 is a trivial contour on Σ, oriented counterclockwise, containing in its interior
all of the angles α = (αj)

n
j=1 and none of the others.

Theorem 13. For every pair (b,w) of black and white vertices of An, the coefficient
(b,w) of the inverse Kasteleyn matrix is explicitly given by

K−1
b,w =

1

(2πi)2
1

θ(p)

∫
C2

∫
C1

θ(p+ (v − u))

E(u, v)
gb,0(u)g0,w(v)

n∏
j=1

E(βj , u)

E(δj , u)

E(δj , v)

E(βj , v)
+

− I{b right of w}
1

2πi

∫
C2

gb,w(v), (17)

where C1, resp. C2, is the closed contour defined above used to integrate over u, resp. v,
and p =

n∑
j=1

(δj − βj)− t− d(0).

Before turning to the proof, let us make a few remarks.
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Remark 14.

• The integrand, seen as function of u, resp. v, is a meromorphic 1-form. Indeed,
looking at terms involving prime forms and recalling that the prime form is a
(−1

2 ,−
1
2) form, we have that the integrand is a 1-form. Moreover, an explicit

computation shows that this 1-form has no period when u, resp. v, is translated
by a horizontal/vertical period of the lattice Λ, implying that it is meromorphic.

• In the double integral of (17) the factor gb,0(u)
∏

j
E(βj ,u)
E(δj ,u)

has poles at every γj on
the left of b and every δj on the right of b, and zeros at every αj below b and every
βj above b; similarly for g0,w(v)

∏
j
E(δj ,v)
E(βj ,v)

, where the role of poles and zeros are
exchanged. As a consequence, we can deform the contours of integration without
changing the value of the integral if we do not cross poles. For example, one could
move C1 into another contour C′

1 to also include the βj ’s in its interior, and replace
C2 by C′

2 depicted on Figure 6, which is now oriented clockwise, and contains on
its right the points from γ and β (but not those from α). The relative position
of C1 and C2 is important because of the presence of E(u, v) in the denominator
of the integrand. The contribution of the residue at u = v is exactly given by the
single contour integral in front of the indicator function. We can therefore absorb
this second term inside the double contour integral by indicating that when b is
on the right of w, we require that C′

1 is inside C′
2 (instead of outside).

Figure 6: A possible deformation of integration contours for Formula (17).

• The point 0 = (0, 0) seems to play a particular role in the formula: in the definition
of p and in the arguments of the functions g. This is actually not the case, one
could express p and the product g times the terms involving the prim forms using
another reference point and the geometry of the Aztec diamond.

• Examples of Theorem 13 in specific cases are given after the proof.

Proof. Although our setting is much more general than the paper [CJY15], our inspira-
tion for this proof and choice of notation is inspired by the latter. Consider two white
vertices w,w′; the proof consists in showing that

(KK−1)w,w′ =
∑
b∼w

Kw,bK
−1
b,w′ = I{w=w′}.
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Let us denote by f1, resp. f2, the first, resp. second term of Equation (17):

f1b,w =
1

(2πi)2
1

θ(p)

∫
C2

∫
C1

θ(p+ (v − u))

E(u, v)
gb,0(u)g0,w(v)

n∏
j=1

E(βj , u)

E(δj , u)

E(δj , v)

E(βj , v)
(18)

f2b,w = I{b right of w}
1

2πi

∫
C2

gb,w(v). (19)

The proof requires the following 5 steps. If w,w′ are such that

1. wx 6= 2n and wx 6= w′
x, or wx = w′

x = 2n, then (Kf2)w,w′ = 0.

2. wx 6= 2n and wx = w′
x, then (Kf2)w,w′ = −I{w=w′}.

3. wx 6= 2n, then (Kf1)w,w′ = 0.

4. wx = 2n and wx 6= w′
x, then (Kf1)w,w′ = (Kf2)w,w′ .

5. wx = 2n and wx = w′
x, then (Kf1)w,w′ = I{w=w′}.

Before proving each of the steps, let us show that they indeed allow to end the proof. If
w is such that:

• wx ∈ {0, 2, . . . , 2n−2}, and wx 6= w′
x, then by Point 1. we have (Kf2)w,w′ = 0, and

by Point 3. (Kf1)w,w′ = 0, implying that (KK−1)w,w′ = 0.

• wx ∈ {0, 2, . . . , 2n − 2}, and wx = w′
x, then by Point 2. we have (Kf2)w,w′ =

−I{w=w′}, and by Point 3. (Kf1)w,w′ = 0, implying that (KK−1)w,w′ = I{w=w′}.

• wx = 2n and wx 6= w′
x, then by Point 4, (Kf1)w,w′ = (Kf2)w,w′ , implying that

(KK−1)w,w′ = 0.

• wx = 2n and wx = w′
x then by Point 1. we have (Kf2)w,w′ = 0, and by Point 5.

(Kf1)w,w′ = I{w=w′}, implying that (KK−1)w,w′ = I{w=w′}.

We now turn to the proof of Points 1. to 5.
1. When w′

x > wx, all b-neighbors of w are on the left of w′, so that all terms of type f2
are equal to 0 and (Kf2)w,w′ is trivially equal to 0 (note that there are four neighbors
if wx 6= 0 and two neighbors if wx = 0). If wx = w′

x = 2n, the same holds since then
the two b-neighbors of w are on the left of w′ and there are no right neighbors. When
w′
x < wx and wx 6= 2n, the four b-neighbors of w are now on the right, and there are

four contributions of type f2. We have

(Kf2)w,w′ =
1

2πi

∑
b∼w

∫
C2

Kw,b gb,w′ .

Since the contour C2 in independent of b,w′, the sum can be moved inside the integral,
and we have that (Kf2)w,w′ is equal to 0 by Equation (15).
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2. Suppose that wx = w′
x and wx 6= 2n. Let b1, b2 be the two neighbors of w on the

right, from bottom to top, and f1, f2, f3 be the dual vertices as in Figure 7.

α
γ

β

δ
w

w′

b1

b2

f1

f2

f3 α

γ

β

δ
w

w′

Figure 7: Zeros and poles of gw,w′(v) when wx = w′
x, wx 6= 2n. Left: w′ is above w.

Right: w′ is below w. Angles corresponding to zeros, resp. poles, are pictured in green,
resp. magenta.

Using that the contour of integration C2 is independent of b1, b2,w
′, and using the

product structure of the meromorphic form g, we obtain

(Kf2)w,w′ =
1

2πi

∫
C2

[ 2∑
i=1

Kw,bigbi,w(v)
]
gw,w′(v).

To simplify notation, we write the four angles around w as α, γ, β, δ going cclw starting
from the bottom (omitting indices). From Fay’s identity (16) we have

2∑
i=1

Kw,bigbi,w(v) = ωγ−α +

g∑
`=1

(∂ log θ
∂z`

(t+ d(f3))−
∂ log θ

∂z`
(t+ d(f2))

)
ω`

+ ωβ−γ +

g∑
`=1

(∂ log θ
∂z`

(t+ d(f2))−
∂ log θ

∂z`
(t+ d(f1))

)
ω`

= ωβ−α +

g∑
`=1

(∂ log θ
∂z`

(t+ d(f3))−
∂ log θ

∂z`
(t+ d(f1))

)
ω`. (20)

As a consequence,

(Kf2)w,w′ =
1

2πi

(∫
C2

gw,w′(v)ωβ−α +

g∑
`=1

(∂ log θ
∂z`

(t+ d(f3))−
∂ log θ

∂z`
(t+ d(f1))

)∫
C2

gw,w′(v)ω`

)
.

Returning to the definition of the form g, we know that the zeros, resp. poles, of gw,w′(v)
in C2 are the angles between w and w′ of type
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• (βj) (including β) , resp. (αj) (excluding α), when w′ is above w, see Figure 7
(left),

• (αj) (including α), resp. (βj) (excluding β), when w′ is below w, see Figure 7
(right).

Let us first consider the term 1
2πi

∫
C2
gw,w′(v)ωβ−α .

• when w′ is above w, the pole at β of ωβ−α is cancelled by the zero at β of gw,w′(v),
and the integrand ωβ−α gw,w′(v) has as poles a subset of {α1, . . . , αn}. Since the
contour C2 contains all the angles {α1, . . . , αn}, we obtain 0.

• when w′ is below w, the pole at α of ωβ−α is cancelled by the zero at α of gw,w′(v),
and the integrand has as poles a subset of {β1, . . . , βn}. Since the contour C2

contains none of these poles, we also obtain 0.

• when w = w′, then gw,w(v) = 1, and the contour C2 contains the pole α of ωβ−α,
which yields that 1

2πi

∫
C2
ωβ−α = −1.

Let us now consider the term
∫
C2
gw,w′(v)ω`. The contour C2 either contains all poles

of gw,w′ (when w′ is above w) or none of them (if w′ is below or equal to w), and the
integral of the form ω` around any trivial closed contour is 0, so that the second term is
always equal to 0. Summarizing, we have proved Point 2.

(Kf2)w,w′ =
1

2πi

∫
C2

[ 2∑
i=1

Kw,bigbi,w′(v)
]
= −I{w=w′}. (21)

3. Using that the contours of integration C1,C2 are independent of b,w′, we have, for
every pair of white vertices (w,w′),

(Kf1)w,w′ =

=
1

(2πi)2
1

θ(p)

∑
b∼w

Kw,b

∫
C2

∫
C1

θ(p+ (v − u))

E(u, v)
gb,0(u)g0,w′(v)

n∏
j=1

E(βj , u)

E(δj , u)

E(δj , v)

E(βj , v)

=
1

(2πi)2
1

θ(p)

∫
C2

g0,w′(v)

n∏
j=1

E(δj , v)

E(βj , v)
·

·
∫
C1

θ(p+ (v − u))

E(u, v)

n∏
j=1

E(βj , u)

E(δj , u)

[∑
b∼w

Kw,bgb,0(u)
]
. (22)

As a consequence, when wx /∈ {0, 2n}, this is equal to 0 by Equation (15). When wx = 0,
one can insert a column of black vertices on the left, and an angle δ0 (in the sector contain-
ing {δ1, . . . , δn}). In this way, the white vertex w has its four b-neighbors: b1, b2 present
in the original Aztec diamond, and b3, b4 the two additional ones. Note that defining
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f1bi,w (i ∈ {3, 4}) using Formula (18) gives 0 in this case. Indeed, gbi,0(u) has as poles
δ0 and a subset of the angles (βj), implying that the contour C1 (which contains all of
the angles {γ1, . . . , γn}) contains no pole of the integrand gbi,0(u)

θ(p+(v−u))
E(u,v)

∏n
j=1

E(u,βj)
E(u,δj)

,
yielding 0. The proof can then be concluded using Equation (15) again.
4. Suppose wx = 2n, and let b3, b4 be the two neighbors of w on the left, from bottom
to top, and f1, f3, f4 be the dual vertices as in Figure 8.

α

β

δn w

b3

b4

f1

f4

f3

α1

γ1

β1

δ1
0

Figure 8: Zeros and poles of gw,w′(v) when wx = w′
x, wx 6= 2n. Left: w′ is above w.

Right: w′ is below w. Angles corresponding to zeros, resp. poles, are pictured in green,
resp. magenta.

To simplify notation, let us denote by α, δn, β the angles around w in clockwise order
(omitting the indices for α, β). Writing (Kf1)w,w′ as in Equation (22), we first consider
the part containing the integral over C1.∫

C1

θ(p+ (v − u))

E(u, v)

[ 4∑
i=3

Kw,bigbi,w(u)
]
gw,0(u)

n∏
j=1

E(βj , u)

E(δj , u)
. (23)

Similarly to Equation (20), using Fay’s identity (16) gives
4∑

i=3

Kw,bigbi,w(v) = ωα−β +

g∑
`=1

(∂ log θ
∂z`

(t+ d(f1))−
∂ log θ

∂z`
(t+ d(f3))

)
ω`.

Note that by definition of g, all poles of gbi,0(u) are on A0. Now, the term gw,0(u)
contains

• as poles on A0: all the angles γ1, . . . , γn and the angles of type (βj) from w to the
bottom boundary (and in particular not the angle β),

• as zeros on A0: the angles δ1, . . . , δn and the angles of type (αj) from w to the
bottom boundary (and in particular the angle α),
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so the product gw,0(u)ωα−β contains as poles on A0: a subset of the angles of type (βj),
no angle of type (αj) (since the pole α of ωα−β is cancelled by the zero α of gw,0(u)),
all the angles γ1, . . . , γn; note that the set of poles of gw,0(u)ω` has the same property.
As a consequence when each of theses terms gets multiplied by θ(p+(v−u))

E(u,v)

∏n
j=1

E(βj ,u)
E(δj ,u)

;
all the poles involving angles (βj) are cancelled, and moreover, the new poles involving
δ1, . . . , δn are cancelled by the same zeros in gw,0(u). Summarizing, in the integrand

θ(p+ (v − u))

E(u, v)

[ 4∑
i=3

Kw,bigbi,w(u)
]
gw,0(u)

n∏
j=1

E(βj , u)

E(δj , u)
,

there remains as poles on Σ: all the angles γ1, . . . , γn and the pole at u = v. By
definition, the contour of integration C1 contains all of the angles {γ1, . . . , γn}, and the
pole v (which lives on C2) is outside of C1. Since we are integrating a meromorphic
form on a compact surface (implying that the sum of the residues is equal to 0), the
integral (23) is equal to −2πi times the residue at u = v. Noting that the residue at
u = v of 1

E(u,v) is equal to −1, we obtain:

1

2πi

1

θ(p)

∫
C1

θ(p+ (v − u))

E(u, v)

[ 4∑
i=3

Kw,bigbi,w(u)
]
gw,0(u)

n∏
j=1

E(βj , u)

E(δj , u)

=
[ 4∑
i=3

Kw,bigbi,w(v)
]
gw,0(v)

n∏
j=1

E(βj , v)

E(δj , v)
=

4∑
i=3

Kw,bigbi,0(v)

n∏
j=1

E(βj , v)

E(δj , v)
.

Plugging this back into (22) yields,

(Kf1)w,w′ =
1

2πi

∫
C2

g0,w′(v)

n∏
j=1

E(δj , v)

E(βj , v)

4∑
i=3

Kw,bigbi,0(v)

n∏
j=1

E(βj , v)

E(δj , v)

=
1

2πi

∫
C2

4∑
i=3

Kw,bigbi,w′(v). (24)

Now, suppose moreover that wx 6= w′
x, then the two b-neighbors of w are on the right

of w, and we have that

(Kf1)w,w′ = (Kf2)w,w′ .

5. Suppose that wx = 2n and wx = w′
x. Then, by Equation (24), we have

(Kf1)w,w′ =
1

2πi

∫
C2

4∑
i=3

Kw,bigbi,w′(v).

Using the argument of Point 2. with black vertices on the left rather than on the right
allows us to conclude that (Kf1)w,w′ = I{w=w′}.
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Example 15. As an example of application, let us make explicit the case where angles
in each family are constant, i.e., suppose that α ≡ α,β = β,γ = γ, δ = δ, for some
angles α, β, γ, δ ∈ A0 satisfying the cyclic order α < γ < β < δ. Recalling the coordinate
notation w = (wx,wy), b = (bx, by), we obtain

K−1
b,w =

1

(2πi)2
1

θ(p)

∫
C2

∫
C1

θ(p+ (v − u))

E(u, v)
·

· θ(−t+u−d(b))
E(α, u)

by
2 E(β, u)n−

by
2

E(γ, u)
bx+1

2 E(δ, u)n−
bx−1

2

θ(t+ v+d(w))
E(γ, v)

wx
2 E(δ, v)n−

wx
2

E(β, v)n−
wy−1

2 E(α, v)
wy+1

2

− I{b right of w}
1

2πi

∫
C2

θ(−t+v−d(b))θ(t+v+d(w))
E(α, v)

by−wy−1

2

E(β, v)
by−wy+1

2

E(δ, v)
bx−wx−1

2

E(γ, v)
bx−wx+1

2

,

(25)

where p = n(δ − β)− t− d(0), and

d(b) =
by
2
(β − α) +

bx + 1

2
γ − bx − 1

2
δ, d(w) =

wx

2
(γ − δ)− wy + 1

2
α+

wy − 1

2
β.

In particular, if b is the south-west neighbor of w, meaning that (wx,wy) = (2i, 2j + 1)
and (bx, by) = (2i− 1, 2j) for some 1 ≤ i ≤ n and 0 ≤ j ≤ n− 1, Formula (25) reduces
further to

K−1
b,w =

1

(2πi)2
1

θ(p)

∫
C2

∫
C1

θ(p+ (v − u))

E(u, v)
· θ(−t+ u− d(b))θ(t+ v + d(w))

· E(α, u)jE(β, u)n−j

E(γ, u)iE(δ, u)n−i+1

E(γ, v)iE(δ, v)n−i

E(β, v)n−jE(α, v)j+1
(26)

where d(b) = j(β − α) + i(γ − δ) + δ and d(w) = j(β − α) + i(γ − δ)− α.

4 Partition function

The main result of this section is Theorem 16 consisting of an induction formula for
the partition function of the Aztec diamond with Fock’s weights, thus proving that the
partition function can always be expressed in product form; this is quite a surprising
fact since, a priori, it is defined as the determinant of a matrix. As specific cases of
the genus 0 case, we recover Stanley’s celebrated formula [Pro97, Yan91] as well as the
fact that the number of dimer configurations of an Aztec diamond of size n is equal to
2

n(n+1)
2 [EKLP92]. Our proof is inspired from one of the inductive arguments used to

establish the formula 2
n(n+1)

2 [Pro97]; it goes through in this very general setting because
Fock’s weights are invariant under spider moves, and contraction/expansion of a degree
2 vertex [Foc15, BCdT23b, BCdT23a].
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This section is organised as follows. In Section 4.1, we state Theorem 16 giving the prod-
uct formula for the partition function, then we state and prove Corollary 18 specifying
Theorem 16 to the case of genus 0; finally, in Corollary 20, we explain how it allows to
recover Stanley’s formula [Pro97, Yan91]. Section 4.2 contains the proof Theorem 16.

4.1 Partition function formula

Consider the Aztec diamond An with angles α,β,γ, δ ∈ A0 assigned to oriented train-
tracks, satisfying the cyclic order α < γ < β < δ. Consider the dimer model on An with
Fock’s weight function defined in Equation (5). Suppose that the value of the discrete
Abel map at the origin 0 = (0, 0) is d(0) = d, for some d ∈ Pic0(Σ). Let us denote the
corresponding partition function by

Zn(α,β,γ, δ; d) = Zn((αj)
n
j=1, (βj)

n
j=1, (γj)

n
j=1, (δj)

n
j=1; d) =

∑
M∈M(An)

∏
e∈M

|Kw,b|. (27)

Recall from Section (2.1) that coordinates of dual vertices of Fn are either both odd or
both even. This implies that the set Fn can naturally split into:

oddn, and evenn = int. evenn t (bryn \ cornern) t cornern,

where even vertices are furthermore split according to whether they are interior, bound-
ary or corner vertices.
Note that an odd face f of Fn is surrounded by angles αi, βi, γj , δj for some i, j ∈
{1, . . . , n}. In order to simplify notation, in Theorem 16 below we denote them gener-
ically by α, β, γ, δ, see Figure 9. We are now ready to state the main result of this
section.

α

β

γ δ

f

Figure 9: Generic notation α, β, γ, δ for angles around a face f corresponding to a dual
vertex with both odd coordinates.

Theorem 16. For every n ≥ 1, the partition function of the Aztec diamond An with
Fock’s weights satisfies the following recurrence:

Zn(α,β,γ, δ; d) ·
∏

f∈oddn

θ(t+ d(f))

θ(t+ d(f) + α+ β − γ − δ)

∏
f∈bryn

θ(t+ d(f)) =

= Zn−1((αj)
n−1
j=1 , (βj)

n
j=2, (γj)

n−1
j=1 , (δj)

n
j=2; d+ β1 − δ1) ·

[ n∏
j=1

|E(αj , βj)E(γj , δj)|
]
,

with the convention that Z0 = 1.
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Remark 17.

• On the right-hand-side we have not used the compact notation Zn−1(α,β,γ, δ; d+
β1 − δ1) because not all angles are indexed by 1, . . . , n − 1: it alternates between
1, . . . , n− 1 and 2, . . . , n.

• A consequence of Theorem 16 is that the partition function admits a product form;
we do not make this explicit since it would involve heavy indices notation. Another
remark is that having a product form, and assuming the weights to be periodic
for example, allows to have an explicit formula for the free energy of the model,
defined as minus the exponential growth rate of the partition function.

The proof of Theorem 16 relies on the evolution of the partition function under local
moves, it is postponed until Section 4.2. We first turn to interesting corollaries; the first
one is the specification of Theorem 16 to the genus 0 case.

Corollary 18 (Genus 0 case). Assume that the underlying M-curve Σ is the Riemann
sphere Ĉ, implying that the weights are given by Kenyon’s critical weights (6). Then, the
partition function of the Aztec diamond is equal to

Zn(α,β,γ, δ) = 2n(n+1)
n−1∏
`=0

n−∏̀
j=1

| sin(β̄j+` − ᾱj) sin(δ̄j+` − γ̄j)| (28)

=2n(n+1)
n−1∏
`=0

n−∏̀
j=1

| sin(δ̄j+` − β̄j+`) sin(γ̄j − ᾱj) + sin(β̄j+` − γ̄j) sin(δ̄j+` − ᾱj)|. (29)

• If furthermore, for all α ≡ α,β ≡ β,γ ≡ γ, δ ≡ δ for some α < γ < β < δ ∈ A0 =
S1, then

Zn(α,β,γ, δ) = 2n(n+1)| sin(β̄ − ᾱ) sin(δ̄ − γ̄)|
n(n+1)

2 .

• If furthermore, β̄ − ᾱ = γ̄ − δ̄ = 1
2 , then γ̄ − ᾱ = δ̄ − β̄ := ρ ∈ (0, 12), β̄ − γ̄ =

ᾱ+ 1− δ̄ = 1
2 − ρ ∈ (0, π2 ), and

Zn(α,β,γ, δ) = 2n(n+1). (30)

Remark 19.

• Recall that the Riemann theta function is equal to 1 in the genus 0 case, so that
there is no discrete Abel map.

• Formula (29) can be seen as a generalization of Stanley’s formula [Yan91, Pro97]
when more parameters are allowed, see also the proof of Corollary 20 below.
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• In the last case, if we suppose moreover that ρ = 1
4 , all edge weights are equal to

2 sin(π4 ) =
√
2. Since the number of edges in a dimer configuration is equal to the

number of white vertices, that is n(n+1); dividing (30) by (
√
2)n(n+1), one recovers

the celebrated result of [EKLP92], which states that the number of domino tilings
of the Aztec diamond is equal to 2

n(n+1)
2 . It is interesting to note that this same

formula also holds in some cases of non-uniform weights.

Proof. Returning to the definition of the weights in the genus 0 case, see Equation (6),
we have that all terms involving the Riemann theta function θ are equal to 1 and that
the modulus |E(α, β)| of the prime form is equal to |2 sin(β̄− ᾱ)|. As a consequence, the
recurrence formula of Theorem 16 gives

Zn(α,β,γ, δ) =

= 22n ·
[ n∏
j=1

| sin(β̄j − ᾱj) sin(δ̄j − γ̄j)|
]
· Zn−1((αj)

n−1
j=1 , (βj)

n
j=2, (γj)

n−1
j=1 , (δj)

n
j=2).

Iterating this induction and using that the initial condition is Z0 = 1, we obtain For-
mula (28). Formula (29) is obtained using classical trigonometric identities: for all
α, β, γ, δ,

sin (β̄ − ᾱ) sin(δ̄ − γ̄) =

=
1

2
[cos(β̄ − ᾱ− δ̄ + γ̄)− cos(β̄ − ᾱ+ δ̄ − γ̄)]

=
1

2
[cos(β̄ − ᾱ− δ̄ + γ̄)− cos(β̄ − γ̄ + ᾱ− δ̄) + cos(β̄ − γ̄ + ᾱ− δ̄)− cos(β̄ − ᾱ+ δ̄ − γ̄)]

= sin(δ̄ − β̄) sin(γ̄ − ᾱ) + sin(β̄ − γ̄) sin(δ̄ − ᾱ),

where in the third line, we have subtracted and added cos(β̄ − γ̄ + ᾱ− δ̄).

As a consequence of Corollary 18, we also recover Stanley’s celebrated formula [Pro97,
Yan91], see also [BBC+17, Section 6]. Suppose that edges are assigned weights x =
(xj)

n
j=1,y = (yj)

n
j=1,w = (wj)

n
j=1, z = (zj)

n
j=1 as in Figure 3. Let us denote by

Z(x,y, z,w) the corresponding partition function, keeping in mind that the notation
x,y, z,w is used for Stanley’s weights and that the notation α,β,γ, δ is used for Fock’s
weights.

Corollary 20 (Stanley’s formula). The partition function of the Aztec diamond with
weights x,y, z,w as in Figure 3 is equal to

Z(x,y, z,w) =

n−1∏
`=0

n−∏̀
j=1

(
xjwj+` + yjzj+`

)
.

Proof. For the purpose of this proof, let us denote by ν Fock’s weight function and by
ν̃ Stanley’s one. Recall from Proposition 7 that, for every α1 < γ < δ ∈ A0 = S1, there
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exists (αj)
n
j=2, (βj)

n
j=1 such that α < γ < β < γ and such that the weight functions

ν and ν̃ are gauge equivalent. Let us take such angles and compute Z(α,β,γ, δ) using
Corollary 18, Equation (29). We obtain

Z(α,β,γ, δ) = 2n(n+1)
n−1∏
`=0

n−∏̀
j=1

| sin(δ̄ − β̄j+`) sin(γ̄ − ᾱj) + sin(β̄j+` − γ̄) sin(δ̄ − ᾱj)|

= 2n(n+1)
n−1∏
`=0

n−∏̀
j=1

| sin(β̄j+` − γ̄) sin(δ̄ − ᾱj)|
n−1∏
`=0

n−∏̀
j=1

( | sin(δ̄ − β̄j+`) sin(γ̄ − ᾱj)|
| sin(β̄j+` − γ̄) sin(δ̄ − ᾱj)|

+ 1
)

= 2n(n+1)
n−1∏
`=0

n−∏̀
j=1

[| sin(β̄j+` − γ̄) sin(δ̄ − ᾱj)|]
n−1∏
`=0

n−∏̀
j=1

(xjwj+`

yjzj+`
+ 1
)

= 2n(n+1)
n−1∏
`=0

n−∏̀
j=1

| sin(β̄j+` − γ̄) sin(δ̄ − ᾱj)|
yjzj+`

n−1∏
`=0

n−∏̀
j=1

(
xjwj+` + yjzj+`

)
,

where in the third equality we used gauge equivalence of the weight functions ν and ν̃,
see Equation (7). Using gauge equivalence again, we know from Equation (2) that for
any reference dimer configuration M0,

Z(x,y,w, z) =
ν̃(M0)

ν(M0)
Z(α,β,γ, δ).

The proof is concluded by taking as reference dimer configuration M0 the one of Figure 3,
and observing that

ν(M0) = 2n(n+1)
n−1∏
`=0

n−∏̀
j=1

| sin(β̄j+` − γ̄) sin(δ̄ − ᾱj)|, ν̃(M0) =
n−1∏
`=0

n−∏̀
j=1

yjzj+`.

4.2 Proof of Theorem 16

Local moves. Two local moves play a crucial rule in the study of the dimer model on
minimal graphs: the spider move [Kup98, Pro03] and contraction/expansion of a degree
two vertex; see [Thu17, GK13] for more on the subject. In the setting of the Aztec
diamond, these moves allow to reduce a size n Aztec diamond into a size n − 1 Aztec
diamond, see for example [Pro97]. Our argument consists in using this induction in the
case of the dimer model with Fock’s weights while controlling the effect on the partition
function. The fact that this works in this very general framework relies on Fay’s trisecant
identity [Fay73, Foc15, BCdT23a].
The setting for the next lemma is the dimer model with Fock’s weights, see Equation (5),
on any finite minimal graph. Let us denote by Z the dimer partition function before the
move is performed, and by Z ′, resp. Z ′′, the partition function after having performed
a spider move, resp. a contraction of a degree two vertex, see Figure 10. This figure
also illustrates the evolution of the oriented train-tracks, of their angle parameters, and
introduces the notation of Lemma 21.

29



α

β

γ δ
f1 f2

f3f4

f
α

β

f

f′

Figure 10: Spider move and contraction of a degree two vertex.

Lemma 21. The following equations describe the evolution of the partition function
under

1. a spider move

Z =

∏4
j=1 θ(t+ d(fj))

|E(α, β)E(γ, δ)|
θ(t+ d(f) + α+ β − γ − δ)

θ(t+ d(f))
Z ′,

where f is the vertex at the center of the square, and f1, . . . , f4 are the vertices
corresponding to faces bounding the square, see Figure 10 (left).

2. a contraction of a degree two vertex

Z =
|E(α, β)|

θ(t+ d(f))θ(t+ d(f ′))
Z ′′,

where f, f ′ are the two vertices corresponding to the faces above and below the degree
two vertex, see Figure 10 (right).

Proof. For the purpose of this proof it is convenient to write Fock’s weight Kw,b of
Equation (5) as

Kw,b = Kf,f′

α,β.

By [Foc15, BCdT23a] we know that the dimer model with Fock’s weights, when consid-
ered as a model with face weights, is invariant under these two moves. In particular, for
the spider move, this implies that when considered as a model with edge weights, there
exists a constant C such that for all six partial partition function of Figure 11, obtained
by fixing the dimer configuration on edges bounding the square, we have Zj = CZ ′

j ,
j ∈ {1, . . . , 6}. In order to compute this constant, we can thus choose any of these six
cases, and we choose the fourth one since it leads to simple computations (recovering C
from the others requires using Fay’s trisecant identity). Using Figure 10 to identify the
angle parameters, we obtain

C =
Z

Z ′ =
|Kf,f3

β,δ |

|Kf3,f4
γ,δ Kf3,f2

β,α Kf1,f′

β,δ |
=

∏4
j=1 θ(t+ d(fj))

|E(α, β)E(γ, δ)|
θ(t+ d′(f))

θ(t+ d(f))
,
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Figure 11: Partial partition function Z1, . . . , Z6, resp. Z ′
1, . . . , Z

′
6 before, resp. after, the

spider moves, and Z1, Z2, resp. Z ′′
1 , Z

′′
2 , before, resp. after, the contraction of a degree

two vertex.

where d′(f) is the value of the discrete Abel map after the move is performed. Returning
to its definition, see Section 2.2, we have

d′(f) = d(f) + α+ β − γ − δ.

Note that the value of the discrete Abel map at the other dual vertices remains un-
changed.
For the contraction of a degree two vertex, in a similar way, we can choose any of the
two cases, and we obtain

C =
Z

Z ′′ = |Kf,f′

α,β| =
|E(α, β)|

θ(t+ d(f))θ(t+ d(f ′))
.

Proof of Theorem 16. The proof consists in performing a sequence of spider moves
and contraction of degree two vertices to transform an Aztec diamond of size n into an
Aztec diamond of size n−1 [Pro97], while keeping track of the evolution of the partition
function using Lemma 21, see Figure 12.
Let us simply denote by Z := Zn(α,β,γ, δ; d) the partition function defined in (27).
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Figure 12: Induction step for computing the partition function of the Aztec diamond.

Step 1. Suppose n ≥ 1, then Step 1 consists in performing a spider move at each of
the square whose dual vertex has odd coordinates. Let us denote by Z1 the partition
function of the dimer model on the resulting graph, see Figure 12 (first two figures).
Using Point 1. of Lemma 21, we obtain

Z = Z1 ·
[
∏

f∈{cornern} θ(t+ d(f))][
∏

f∈{bryn\cornern} θ(t+ d(f))2][
∏

f∈{int. evenn} θ(t+ d(f))4]∏n
j=1 |E(αj , βj)nE(γj , δj)n|

·

·
∏

f∈{oddn}

θ(t+ d(f) + α+ β − γ − δ)

θ(t+ d(f))
,

where we generically denote by α, β, γ, δ the angles around a dual vertex f with odd
coordinates, see Figure 10 (left).

Step 2. Suppose n ≥ 1. Looking at the graph obtained after Step 1, one notes that
all the boundary edges have to belong to a dimer configuration, see Figure 12 (second
graph, green edges). We can thus factor out their contribution and then remove all
their incident edges, which yields the third graph of Figure 12; let us denote by Z2 its
partition function. We thus have

Z1 = Z2 ·
∏n

j=1 |E(αj , βj)
2E(γj , δj)

2|∏
f∈{bryn} θ(t+ d(f))2

.

Note that if n = 1, then this identity holds by setting Z2 = 1.

Step 3. Suppose n ≥ 2 (otherwise this step does not happen); one then performs the
contraction move on all degree two (inner) vertices. Let us denote by Z3 the partition
function of the graph thus obtained, see Figure 12 (fourth graph). Using Point 2. of
Lemma 21, we obtain

Z2 = Z3 ·
∏n

j=1 |E(αj , βj)
n−1E(γj , δj)

n−1|
[
∏

f∈{bryn\cornern} θ(t+ d(f))][
∏

f∈{int. evenn} θ(t+ d(f))4]
.
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Conclusion. When n ≥ 2, combining all three steps gives

Z = Z3 ·
[ n∏
j=1

|E(αj , βj)E(γj , δj)|
] ∏
f∈{oddn}

θ(t+ d(f) + α+ β − γ − δ)

θ(t+ d(f))

1∏
f∈{bryn}

θ(t+ d(f))
.

The proof is concluded by observing that Z3 is the partition function of an Aztec
diamond of size n−1, with angles (αj)

n−1
j=1 , (βj)

n−1
j=2 , (γj)

n−1
j=1 , (δj)

n
j=2. Note moreover that

the value of the discrete Abel map at the vertex 0 = (0, 0) in the Aztec diamond of size
n − 1, is the value of the discrete Abel map at the vertex (1, 1) in the original Aztec
diamond of size n after the spider move is performed, that is:

(γ1 − α1) + (α1 + β1 − γ1 − δ1) = β1 − δ1.

When n = 1, only the first two steps are performed, and we obtain

Z =
[
∏

f∈{cornern} θ(t+ d(f))]

|E(α1, β1)E(γ1, δ1)|
· θ(t+ d(f) + α1 + β1 − γ1 − δ1)

θ(t+ d(f))

|E(α1, β1)
2E(γ1, δ1)

2|
[
∏

f∈{bryn} θ(t+ d(f))2]

= |E(α1, β1)E(γ1, δ1)|
θ(t+ d(f) + α1 + β1 − γ1 − δ1)

θ(t+ d(f))

1∏
f∈{bryn} θ(t+ d(f))

,

where in the last line we used that the boundary vertices are exactly the corner vertices
in this case. We deduce that the formula of Theorem 16 also holds in this case. �

5 Aztec diamond and minimal graphs

The Aztec diamond of size n can be seen as a finite subgraph of an infinite minimal
bipartite graph, obtained by gluing four “quadrants” made of hexagons to the sides of
the Aztec diamond, where minimal graphs are defined in Section 2.2. Let us denote this
infinite graph by Gn, see Figure 13 for a representation of G3. Similarly to the case of
the Aztec diamond, the train-tracks of Gn are made of four families, see Figure 13. They
are assigned angle parameters α = (αj)

∞
j=1, β = (βj)

n
j=−∞, γ = (γj)

∞
j=1, δ = (δj)

n
j=−∞,

in such a way that: the indices 1 to n correspond to the angle parameters of the train-
tracks of An, and the cyclic order (4) is preserved for all the train-tracks (not only those
crossing edges of An).
The graph Gn belongs to a class of infinite graphs introduced in [Spe07] by Speyer,
giving a combinatorial interpretation of the solution of the octahedron recurrence as the
partition function of dimer configurations on those graphs with specific condition at
infinity.
In addition to the finite Kasteleyn matrix K = KAn with rows and columns indexed by
vertices of the Aztec diamond of size n and we consider also in this section K̃ = KGn ,
the infinite Fock Kasteleyn operator for the infinite minimal graph Gn. K is then the
restriction of K̃ to vertices of An. The goal of this section is to use the framework of this
paper to define an inverse of Fock’s Kasteleyn operator K̃ on the infinite graph Gn such
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Figure 13: Left: The four families of train-tracks of Gn. The families α and γ are
indexed by positive integers. The family β and δ are indexed by integers less or equal to
n. Right: The Aztec diamond of size n as a finite part of an infinite minimal graph Gn,
for n = 3. The added vertices form four quadrants with hexagonal connectivity, in the
north, south, west, east of the original Aztec region. The (beginning of) the light-cone
of a white vertex w in the north quadrant is represented in light yellow. The icy edges
in those quadrants, made of the horizontal and vertical edges, are highlighted in blue,
and create a perfect matching of the complement of the Aztec diamond inside Gn.

that the corresponding probability measure induced on the edges of An is the Boltzmann
measure computed by Theorem 5 from the finite matrices K and K−1. Moreover, this
measure is frozen outside of the Aztec diamond: every edge of a quadrant is either
present a.s. or absent a.s., see Proposition 25.
Denote by QN , QS , QW , QE , the four quadrants made of hexagons respectively above,
below, to the left, to the right of the Aztec diamond. We need some more terminology
to describe the graph:

Definition 22.

• We say that an edge of QS or QN (resp. of QW or QE) is icy if it is vertical (resp.
horizontal). Every vertex of these quadrants is incident with exactly one icy edge.
So it makes sense to talk about the icy edge associated to a white (or black) vertex
in one of the four quadrants.

• The light cone of a white vertex w in QN is the region of the plane above the two
half lines starting from middle of the icy edge associated to w, and going north-west
and north-east with a 45-degree angle. See Figure 13.
We define in a similar way the light cone for white vertices in QS , and for black
vertices in QW and QE .
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We can define an infinite matrix J with rows (resp. columns) indexed by black (resp.
white) vertices of Gn by extending Formula (17) used to compute K−1 to pairs of vertices
which are not necessarily both in An. It turns out that for about half of the pairs of
vertices, the entries of J are trivially 0. Moreover, it becomes a formal inverse of the
infinite Fock Kasteleyn operator K̃. This is made precised in the statement below, and
its proof which computes explicitly the entries when needed.

Lemma 23. The infinite matrix J, has the following block structure, where rows and
columns are grouped by regions in the order An, QN , QS, QW , QE:

J =



K−1 0 0 ?

∗
0

0

0 0 0 0

0 0 0 0

DN

DS

DW

DE

�


(31)

Moreover, the operator J is a formal inverse of the infinite Fock Kasteleyn operator K̃
on Gn:

JK̃ = Idblacks, K̃J = Idwhites .

Proof. The proof follows from the construction and the computations below:

• If b is inside the Aztec diamond, we can extend the value of K−1
b,w for w in QN and

QS .

– If w is in QS , the train-tracks of type α separating b from w contribute as
zeros of gb,w. The contour C2 does not contain any pole of gb,w and thus, the
integral over C2 of gb,w in this case is zero. So we do not need to care about
the meaning of “w is on the right of b” in this case. The double integral is also
zero by a similar argument: there is no train-track of type α passing below
w (in this quadrant, we see only train-tracks of type β, γ, δ). Therefore, the
contour C2 does not contain any of the poles in v of the integrand (for any
fixed u). Thus the whole integral is 0.

– A similar result holds when w belongs to QN , but for a slightly different
reason. Let us evaluate first the double integral in Equation (17). The contour
C2 for the v variable in Equation (17) contains all the poles of the integrand
except the one at v = u. So for a fixed u, the integral over v is equal to −2iπ
times the residue at v = u, which is equal to gb,w(u). We need to integrate
this residue over u along C1.

∗ If b is “on the left of w” (meaning here that no parameter from γ appears
as a pole of gb,w), there is no pole inside C1 so the double integral is 0.
Moreover, the indicator function in front of the single integral is also zero.
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∗ If on the contrary, w is “on the right” of b (there are poles of type γ,
but then none of type δ), So the only poles of gb,w are either some αj

or some γj . The indicator function is equal to 1, so the final formula is
− 1

2iπ times an integral surrounding all the parameters from α and all the
parameters from γ of gb,w but since all the poles are encloses, the total
is again equal to 0.

In this case again, Jb,w = 0 for all w ∈ QN .

• We can repeat the same arguments when w is in the Aztec diamond, and b is either
in QW or QE , by looking now first at the variable u in the double integral. As a
consequence we have the four cyan zero blocks in this infinite inverse.

• We now look at the formula when:

– w is fixed in QN (resp. QS) and b is allowed to exit the Aztec region to be in
QW , QE and QS (resp. and QN );

– b is fixed in QW (resp. QE) and w is allowed to exit the Aztec region to be
in QN , QS and QE (resp. and QW ).

The previous arguments again show that in these situations, the value of Jb,w is
also 0. This is represented by the orange blocks.

• We then continue computing by taking b in the Aztec region, and w ∈ QW : We
can compute iteratively the value on every white vertex column by column, which
leads at each step a linear equation with a single unknown. We do the same for
w ∈ QE . This corresponds to the green block. We do the same for w in the Aztec
region, and b ∈ QW ∪QN . This corresponds to the purple region.

• We then discuss the entries when b and w are in the same quadrant. Fix for
example w in QN . We know from computations above that the value of Jb,w is 0 if
b is just outside of QN (but connected to a white vertex w′ of QN ). We can then
solve iteratively for all the values of Jb,w by solving

∑
b Kw′,bAb,w = δw′,w, as at

each step there will be always a white vertex w′ such that we know the value of
Jb,w for two black neighbors of w′, but the value of the third value is not computed
yet, but is completely determined by the linear equation above. In particular, we
obtain that Jb,w = 0 if b is not in the light cone of w, and is equal to 1

Kw,b
if (w, b)

is the icy edge attached to w. We proceed in the same way for QS and, after
exchanging the roles of the colors, for QE and QW . This determines the entries of
the four diagonal blocks DN , DS , DW , DE .

• Finally, we proceed as before to compute the entries when b ∈ QN ∪QS and w ∈
QW ∪QE , by propagating known values on the boundary to the bulk by the linear
equation. The actual entries of that block will not matter for our purposes.

It turns out that this inverse of the Kasteleyn operator has a probabilistic meaning. More
precisely, the determinant of minors of J are related to local statistics of the Boltzmann
measure on the Aztec diamond, as follows:
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Lemma 24. Let e1 = (w1, b1), . . . ek = (wk, bk) be distinct edges of the Aztec diamond
of size n, and ek+1 = (wk+1, bk+1), . . . , el = (wl, bl) be distinct edges in the complement
of An in Gn. Then(

l∏
i=1

K̃wi,bi

)
det

1≤i,j≤l
Jbi,wj

= PAn [e1, . . . , ek are dimers]×
l∏

i=k+1

I{ei is icy} (32)

where PAn is the Boltzmann probability measure on perfect matchings of the Aztec dia-
mond of size n, computed via Theorem 5.

Proof. We can assume that the edges ek+1, . . . , el are ordered in such a way that they
are grouped in four blocks corresponding to the four quadrants: QN , QS , QW , QE (for
edges joining a vertex of a quadrant to a vertex of a neighboring quadrant, consider
them as belonging to either quadrant). In each block, order the edges in such a way that
an edge e′ in the light-cone of a vertex of another edge e of the same quadrant should
come after e in the list.
Due to the structure of the matrix J, and the order we put on the edges, the entries of
the submatrix

(Jbi,wj
)1≤i,j≤l

in columns indexed by white vertices in the quadrants QN and QS are zero, except
maybe in the lower triangular part of the diagonal blocks. The diagonal entries for these
columns are I{(wi, bi) is icy}

1
Kwi,bi

. We can therefore expand the determinant

det
1≤i,j≤l

Jbi,wj

first along the columns corresponding to edges in the quadrants QN and QS . Then,
for similar reasons, we can expand the along the rows corresponding to edges in the
quadrants QW and QE . Therefore,

det
1≤i,j≤l

Jbi,wj
= det

1≤i,j≤k
Jbi,wj

×
l∏

i=k+1

I{(wi, bi) is icy}

K̃wi,bi

,

which, once multiplied on both sides by
(∏l

i=1 K̃wi,bi

)
is exactly Equation (32).

The structure of the graph Gn (as of the other infinite graphs from [Spe07]) is such that
constraints at infinity propagate in all the quadrants up to the boundary of the Aztec
region: suppose we are given a dimer configuration of Gn, which is such that in an annular
region (large enough to contain the Aztec diamond part in its interior), all the dimers
are icy edges. Then necessarily, all the icy edges in the four quadrants (and no other in
these parts of the graph) are present in this dimer configuration. Such a configuration
is called ultimately frozen. Using the determinantal formula from Theorem 5 with K̃
and J turns out to define a Gibbs measure on dimer configurations on Gn, supported on
ultimately frozen configurations.
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Proposition 25. Equation (32) from the previous lemma defines a determinantal point
process on edges of Gn, which gives a Gibbs measure on the set of dimers configurations
of Gn for the specification given by Fock’s weights on edges.
This probability measure P has the property to be frozen outside of the Aztec diamond:
every icy edge appear with probability one, and the other edges of the four quadrants
appear with probability zero, in a random configuration sampled according to that measure.
In other words, P is the product measure of the Dirac mass supported on the set of icy
edges in the complement of the Aztec diamond and the Boltzmann measure on dimer
configurations of the Aztec diamond PAn given by Fock’s weights.

Proof. The collection of relations (32) for all finite subsets of edges of Gn is a consistent
set of finite-dimensional probability distributions, by the multilinearity of the determi-
nant.
By Kolmogorov’s extension theorem, there is a unique probability measure on the sub-
set of edges of Gn with those finite dimensional marginals, which is automatically a
determinantal process, supported on dimer configurations of Gn.
The fact that the configuration is frozen outside of the Aztec diamond is a consequence
of Equation (32). This implies that it automatically satisfies the Dobrushin-Lanford-
Ruelle [Dob68, LIR69] condition for large enough annuli, containing the Aztec diamond
in their interior. Therefore, it is automatically Gibbs.

This inverse J of the Kasteleyn matrix K̃ is of different nature than the inverses de-
fined [BCdT23a]. Whereas the measures constructed from the latter would correspond
to “almost linear” height profile, the one constructed in the proposition above has a
different, extremal slope in each of the quadrants.
In both cases, the inverses are constructed as contour integrals involving the family
of functions gb,w(u) in the kernel of K̃. This raises the question of constructing other
inverses with that mechanism for other boundary conditions at infinity, for this family
of graphs or generalizations, and further to classify inverses of K̃ with a probabilistic
meaning.

6 Limit shapes

The formula for the inverse of the Kasteleyn matrix is very well suited for asymptotics
analysis.
In this section, we discuss results about limit shapes which can be obtained directly
from the analysis of this formula. Most of them are already present in the literature.
We mostly focus on a setting where parameters α, β, γ, δ are chosen in a periodic way
(which is more general than having periodic weights on edges, see [BCdT23a, Section 4]).
From far away all typical random dimer configuration of a large Aztec look almost the
same. This statement can be made rigorous by looking at the height function [Thu90],
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and saying that this random rescaled height function converges in probability to a con-
tinuous deterministic function, the limit shape, which maximizes a certain functional.
This has been established for the uniform measure on dimer configurations of simply
connected subgraphs of the square lattice [CKP01], generalized to more general periodic
weights [KOS06, Kuc17].
In the original setup of the uniform measure for the Aztec diamond, Jokush Propp
and Shor [JPS98] proved that the behaviour of the limit shape varies depending on the
position in the domain:

• Outside of the inscribed circle (the frozen regions): the limit shape is linear, and the
corresponding dominos display a brickwall pattern, which has different orientations
in each corner.

• inside the inscribed circle (the liquid region): the slope of the height function varies
continuously, and all type of edges have a positive probability of appearance.

The inscribed circle separates frozen regions from a temperate (or liquid, using the termi-
nology of [KOS06]). It is referred to as the arctic circle, and the main result of [JPS98]
is known as the arctic circle theorem.
This has been extended to periodic weights for which the liquid region is an ellipse [Joh02],
where the fundamental domain still contains a single pair of white and black vertices.
Then it has been obtained for the 2-periodic case [CJ16] and biased variant [BD23],
where the underlying spectral curve has genus 1, and more recently by Berggren and
Borodin [BB23] for a generic arbitrary genus spectral curve, but with additional assump-
tions which seem purely technical.
We claim that Formula (17) allows us to recover and go beyond the results cited above:
having the inverse Kasteleyn operator as an explicit contour integral is particularly well-
suited for asymptotic analysis: it is then possible to extract from standard saddle point
analysis the limiting behaviour of local probabilities, and from them reconstruct the
rescaled expected height function which would give the limit shape.
We first give in Section 6.1 a short derivation of the arctic circle (ellipse) theorem, by the
saddle point method, as presented in [BBC+17] for the uniform measure, inspired by its
use in [OR03] for plane partitions. Then, in Section 6.2 and 6.3, we explore some limit
shape results for Fock’s weights given by genus 0 and 1 M-curves. Finally we discuss in
Section 6.4 how the geometric arguments of [BB23] can be adapted to this more general
context to give a less restrictive result, see also the forthecoming paper [BBS].

6.1 A short derivation of the arctic circle theorem

A short derivation of the arctic circle theorem for uniform weights is presented in [BBC+17].
We give briefly here a variant for Kenyon’s critical (genus 0) weights , where all the pa-
rameters αj (resp. βj , γj , δj) are equal to a single value α (resp. β, γ, δ) satisfying the
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following cyclic order
α < γ < β < δ.

By [CKP01], we know that the rescaled height function converges in probability, for the
uniform topology, to a deterministic continuous function, with a gradient contained in
some polygon. Our goal is to determine here the interface between the region where the
gradient of the limiting height function is extremal and where it is not.
The expected gradient of the height function is directly related to the probability that
an edge of given type/orientation at that position is a dimer. Let us look at a particular
edge e = (w, b) crossed by train-tracks with parameters δ and α, where w has coordinates
(wx,wy) = (2i, 2j + 1) and b has coordinates (bx, by) = (2i − 1, 2j). By Equation (26),
the probability to see this edge in a random dimer configuration is given by:

Kw,bK
−1
b,w = (α− δ)

1

(2iπ)2

∫
C2

∫
C1

gb,0(u)g0,w(v)

v − u

(
(u− β)(v − δ)

(u− δ)(v − β)

)n

du dv

where

g0,b(u) =
(u− δ)i−1(u− α)j

(u− γ)i(u− β)j
, g0,w(v) =

(v − γ)i(v − β)j

(v − δ)i(v − α)j+1
.

We are interested in the behaviour of the integrand when n is large, and (i/n, j/n) →
(x, y), which can be rewritten in this asymptotic regime as:

exp(n(F (u;x, y)− F (v;x, y) + o(1))) (33)

where

F (u;x, y) = y log(u− α) + (1− y) log(u− β)− x log(u− γ)− (1− x) log(u− δ).

The critical points of F are given by a quadratic equation in u: there are therefore two of
them (counted with multiplicity). In order to apply the saddle point, one needs to move
continuously the contour to make them pass through the critical points in the direction
for which the critical point will be a maximum (resp. a minimum) for the real part of
F for the variable u (resp. for v). In that configuration, the double integral tends to 0
exponentially fast as N goes to infinity. See for example [OR03] where this technique
has been introduced in the context of tilings. When the two critical points are not on the
real line, one needs to make one of the contour cross the other, at least partially, to make
the two contours pass through the two critical points (and cross orthogonally). By doing
so, we get an additional contribution, given by the integral along the path between the
two critical point of the residue of the integrand when u = v, which becomes the main
contribution (the remaining double integral goes to zero by the saddle point method).
See Figure 14.
The corresponding probability of the corresponding edge converges to a number strictly
between 0 and 1: we are in the so-called liquid region, or rough phase. On the con-
trary, when the two critical points are both real, the integral becomes trivial, and the
corresponding probability is either 0 or 1: we are then in a frozen region.
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Figure 14: Left: representation of the two contours of integration when Σ is the Riemann
sphere for the inverse Kasteleyn matrix of Section 6.1. The curve A0 is the unit circle in
this case. Right: deformation of the contours in the case when the two critical points of
F are not on the unit circle (they are thus on different sides), to be in position to apply
the saddle point method. Deforming the contours like this creates unwanted contribution
to the integral of the residue at u = v along the hatched segment joining the two critical
points of F , which has to be subtracted.

The arctic curve describing the transition from the liquid region the a frozen phase is
thus given by the set of coordinates (x, y) for which the two critical points merge on the
real axis.
In our case, these two critical points merge when x and y satisfy the following equation:

r2(x− 1

2
)2 + r2(y − 1

2
)2 + 2r(2− r)(x− 1

2
)(y − 1

2
) = r − 1

where
r =

(β − α)(δ − γ)

(β − γ)(δ − α)
= (α, γ;β, δ) ∈ (1,+∞)

is the cross ratio of the four points α, γ, β, δ.
We know by [KO06] that two sets of isoradial critical weights correspond are gauge equiv-
alent if the corresponding train-track parameters are related by a Möbius transformation
preserving the unit circle. The cross-ratio r being Möbius invariant, it is expected that
the limit shape if a function of this parameter.
When r = 2 (for which a representative is when α, γ, β, δ cut the unit circle in four
equal arcs), the corresponding Boltzmann measure is uniform, and the arctic curve is a
circle. A cross-ration r 6= 2 can be obtained by putting different weight on NE/SW and
NW/SE dominos. Choosing the parameters α, γ, β, δ to be ±e±iθ/2, the ratio between
the weights is given by tan θ

2 and r = (cos θ
2)

−2. In this case, the arctic curve is an
ellipse, as proved by Johansson [Joh02, Theorem 2.4].
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Figure 15: Arctic regions for (1-)periodic critical weights, for various values of the cross-
ratio r between α, β, γ and δ. Here r = (cos θ

2)
−2 and θ = k π

20 for k = 1, . . . , 10.
The green circle corresponding to the classical arctic circle for the uniform measure, for
k = 10.

6.2 The (periodic) critical Aztec diamond has no gaseous phase

We assume now that the parameters α,β (resp. γ, δ) are periodic with period l (resp.
k), for some k, l ≥ 1.
The integrand in the formula describing the probability of a single edge has the same
form, as Equation (33), where now the function F (u;x, y) is given by the formula:

F (u;x, y) =
1

l

l∑
j=1

[y log(u− αj) + (1− y) log(u− βj)]

− 1

k

k∑
j=1

[x log(u− γj) + (1− x) log(u− δj)] .

The equation for critical points of F (·;x, y) can be rewritten as:

1

l

l∑
j=1

[
y

u− αj
+

1− y

u− βj

]
=

1

k

k∑
j=1

[
x

u− γj
+

1− x

u− δj

]
,

which by putting everything above the same denominator, becomes a polynomial equa-
tion in u of degree 2k + 2l − 2. It has thus 2k + 2l − 2 complex roots, counted with
multiplicity.
On the other hand, writing u = e2iū, αj = e2iᾱj , . . ., and using the fact that

2iu

u− α
=

ei(ū−ᾱ)

sin(ū− ᾱ)
= i+ cot(ū− ᾱ),
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the same critical equation has the following form:

1

l

l∑
j=1

[
y cot(ū− ᾱj) + (1− y) cot(ū− β̄j)

]
= −1

k

k∑
j=1

[
x cot(ū− γ̄j) + (1− x) cot(ū− δ̄j)

]
when ū is real, both sides are real. The left-hand side takes all real values between −∞
and +∞ when ū is in (ᾱj , ᾱj+1) or (β̄j , β̄j+1), for some 1 ≤ j ≤ l − 1, whereas the
right-hand side stays bounded on those intervals. As a consequence, there is at least
a solution of the critical equation on each of these intervals. Reasoning in the same
way on the intervals (γ̄j , γ̄j+1), (δ̄j , δ̄j+1), 1 ≤ j ≤ k − 1, exchanging the roles of the
left- and right-hand sides, this gives in total at least 2k + 2l − 4 real roots. Therefore,
there are at most two complex, non-real roots, for the equation in ū, which have to be
complex conjugated. This means that for the original equation in u = e2iū, the two
extra solutions are not on the unit circle and the reciprocal of the complex conjugate of
one is equal to the other.
Repeating the same saddle-point analysis as above, one can see that the probability of
the considered edge, will have a limit, which will be non trivial in (0, 1) if and only the
two extra critical points are not on the unit circle. When this is the case, let us call u0
the one inside the unit disc. Then one sees that we can find a unique point (x, y) which
has u0 (and the inverse of its complex conjugate) as critical points for F , by solving the
system of two real linear equations obtained by separating the real and imaginary part
of

∂

∂u
F (u0;x, y) = 0.

whereas, the edge will be frozen if all the critical points are real. The argument that
this linear system has a unique solution, which is furthermore in the square [0, 1] is an
slight adaptation of the proof of [BB23, Theorem 4.9].
The transition between the two regimes occur when the two extra complex critical points
merge at some u0 = e2iū0 on the unit circle, where they become zeros of the first, and
second derivative of F (·;x, y). The arctic curve separating the two regimes is obtained
finding x and y such that {

∂
∂uF (u0;x, y) = 0
∂2

∂u2F (u0;x, y) = 0
(34)

for any point u0 on the unit circle S1. Since F is an affine function of x and y, this
amounts to solving again a linear system in x and y with coefficients which are explicit
functions of u0, yielding an explicit parametrization of the arctic curve u0 ∈ S1 7→
(x(u0), y(u0)).
The result above can be summarized in the following proposition:

Proposition 26. For periodic “genus 0” weights, with arbitrary fundamental domain,

• The map from the unit disc to the liquid region is a homeomorphism.
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Figure 16: The arctic curve for critical periodic Aztec diamond (with period 3 vertically,
and 2 horizontally).

• the arctic curve has a single component and has an explicit parametrization by
trigonometric (or rational) functions. It is thus a real algebraic curve of genus 0.
In particular there is no gaseous phase.

• The tangency points with the sides of the of the square [0, 1] at the bottom (resp.
top, left, right) to u0 taking one of the values of α (resp. β, γ, δ).

The genus 0 weights are not generic, and is not covered by the results of Berggren and
Borodin [BB23]. The statement about the tangency points has been noticed by Dan
Betea for Schur measures corresponding to the Aztec diamond, when parameters are
periodic (which is essentially Stanley’s weights in the periodic setting) [Bet15].
The discussion above is mainly about the arctic curve separating the liquid and the
frozen region. Actually, the saddle point analysis allows to find the frequency of each
type of domino near any point of the liquid region, from which we can reconstruct the
expected slope, and then the limit shape.

6.3 The elliptic case

We briefly study here the case of elliptic weights, with periodic train-track parameters.
The surface Σ is now a torus C/(Z+ τZ) where τ ∈ iR∗

+.
First, as in Section 6.1, let us consider the case where the parameters αj (resp. βj , γj ,
δj) are equal to the same value α (resp. β, γ, δ) belonging to R/Z.
Rewriting the probability of a single edge using (25), with the same notation as for the
critical case, we get:

Kw,bK
−1
b,w =

∫
C1

∫
C2

exp(n(F (u;x, y)− F (v;x, y)) + o(1))
du dv

θ1(π(v − u))

where now

F (u;x, y) = y log θ1(π(u− α)) + (1− y) log θ1(π(u− β))

− x log θ1(π(u− γ))− (1− x) log θ1(π(u− δ)).
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Figure 17: Three arctic curves for a torus with τ = i
√
3. Left: the limit shape for the

unbiased 2 × 2-periodic Aztec diamond (α, β, γ, δ cut the circle into four equal arcs).
Center: the limit shape for the biased weights with ρ = 1

6 (α = 0, γ = 1
6 , β = 1

2 , δ = 5
6)

and the same value of τ . Right: α = 0, β = 3
5 , γ = 3

10 , δ =
17
20

The differential of F is a meromorphic 1-form on the torus Σ. It has a divisor of degree
2g − 2 = 0. Since F is periodic in the horizontal direction of the torus, the integral of
dF along the cycle τ

2 + R/Z is equal to 0. Moreover, since dF is real on this cycle, the
intermediate value theorem implies that dF has at least two zeros on this cycle. Since
it has four simple poles, located at α, β, γ and δ, it must have two additional zeros.
These extra zeros can be either both on the same real component of the torus (in a
frozen or gaseous phase), or both non-real and symmetric, and complex conjugated (in
the liquid phase).
The boundary of the liquid phase is thus obtained by looking at the transition between
the two regimes, when the two extra critical points merge into a double critical point.
As in the critical case, asking for u to be a double critical point of F yields a linear
system in x and y with coefficients that are given in terms of elliptic functions of u.
When u runs along the two real components of the torus, we get two closed curves: the
outer curve separates the liquid phase from the frozen ones in the corners; the inner one
separates the liquid phase from the gas bubble near the center.
Note that having periodic (even constant here) train-track parameters does not imply
that the edge weights are periodic [BCdT23a, Section 4]. In order for the edge weights
to be periodic, for a fundamental domain containing two white and two black vertices,
the parameters α, β, γ, δ should satisfy:

α− β + γ − δ = 0 mod 1, α− β − γ + δ = 0 mod 1. (35)

which means that β − α = ±1
2 , and δ − γ = ±1

2 . This case contains in particular the
2× 2 periodic Aztec diamond, studied by

• Chhita and Johansson [CJ16] by taking α = 0, β = 1
2 , γ = 1

4 , δ = 3
4 and letting τ

vary on the imaginary axis,
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Figure 18: Left: a 2x2 example with α = {0.744904, 0.448131}, β = {2.35367, 1.58096},
γ = {1.21721, 0.983251}, δ = {3.05117, 2.38214}. Right: a 3x2 example where α =
{0.599648, 0.0928766, 0.288755}, β = {2.29566, 1.7928, 2.20249}, γ = {1.18328}, δ =
{3.06226, 2.74699}. The fact that there is a single contact point on the left boundary
(whereas there are two on the right side) is a consequence of the fact that γ is 1-periodic
(constant) whereas δ is 2-periodic.

• Borodin and Duits [BD23], for a specific value of t, which in fact does not play a
role in the computation of the limit shape.

These are the cases depicted on the left and middle of Figure 17. An example where
the periodicity condition is not satisfied is shown on the right of that same figure. Note
that in this case, the picture does not have axial symmetries anymore.
One can extend this study when the parameters α, β, γ, and δ are k × l period, like
in Section 6.2. With the additional constraint that the corresponding edge weights
are periodic, this covers in particular the case k = 2, l = 2 in the study of Berggren
and Borodin [BB23] (without the technical assumption they have on the weights to
guarantee that the vertical tentacles of the amoeba of the corresponding spectral curve
are separated), but also the extension to the case where the periodicity condition for
edge weights is not met, like the one depicted on Figure 18. One can relate here, like
in the critical case, the number of cusps along bottom, left, top, right side of the square
with the number of distinct values for α, γ, β, δ respectively, whereas there are four of
them along the liquid/gas interface.

6.4 Higher genus

The study above can be done on surfaces with higher genus, with train-track parame-
ters assigned in a periodic way, even though it can be technically challenging to work
with prime forms to control the saddle point method. Imposing periodicity for weights

46



from periodicity of train-track parameters implies that the fundamental domain is large
enough (one needs to pick g distinct integer points in the interior points of the corre-
sponding Newton polygon), but we can relax this condition (and get just quasi-periodic
weights), as in the genus 1 case above.
In [BB23], the authors give a similar looking formula for the inverse of the Kasteleyn
matrix of the Aztec diamond with periodic weights. The main differences are the fact
that the integrals are written with respect to the coordinates z (and w) of the spectral
curve instead of an intrisic coordinate of the Riemann surface Σ, and the fact that the
integrand is a block matrix1. Otherwise, unsurprisingly, the function F appearing in
the asymptotics of the integral is the same as here. We refer to the paper [BB23] for
a detailed discussion of the saddle point method in the periodic case under additional
technical assumptions. Working with formula (17) can be seen as a way to circumvent
the technical assumptions they have to extend their results to non-generic cases, where
the spectral curve is singular or the amoeba has a degenerate behaviour. In that case, the
geometric correspondence is to be made between the limit shape of the Aztec diamond
and the “upper part” Σ+ of Σ, which is the connected component of Σ \

⋃g
i=0Ai whose

oriented boundary is A0 −
∑g

i=1Ai (instead of the amoeba of the spectral curve). Most
of their geometric arguments can be carried or adapted in this slightly changed context
to obtain the following:

Proposition 27 ([BB23]).

• The map ψ from (x, y) in the liquid region to the critical point of F in the interior
of Σ+ is a homeomorphism.

• There is a bijective correspondence between gaseous bubbles and the real ovals
A1, · · ·Ag.

• There is a bijective correspondence between frozen regions and connected compo-
nents of A0 \ {αj , βj , γj , δj ; 1 ≤ j ≤ n}.

The saddle point method allows one to not only compute the probability that a given
edge occurs, but also to derive the asymptotics for the entry of inverse Kasteleyn matrix
for vertices b and w at finite distance, near the same macroscopic point (x, y) in the
liquid region: it converges to Au0

b,w, where u0 = ψ(x, y) is the critical point of F (·;x, y)
in Σ+, and Au0 is the inverse from the family of inverses introduced in [BCdT23a] for
the Fock Kasteleyn operator on any infinite minimal graph containing as a subgraph a
neighborhood of the Aztec diamond containing w and b (for example the infinite square
lattice). The inverse Au0 on the infinite square defines a Gibbs measure Pu0 on dimer
configurations by the usual determinantal formula:

Pu0((w1, b1), . . . , (wk, bk)) =
( k∏
j=1

Kwj ,bj

)
det

1≤i,j≤k

(
Au0

bi,wj

)
1In particular compare the term E(u, v) in Equation (17) and the term z1 − z2 in their formula.
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Therefore, one can obtain in this generalized setup the analogue of [BB23, Theorem 1.10]:

Proposition 28. The local statistics of dimers around a point (x, y) of the liquid region
converge to the infinite Gibbs measure Pu0 on the square lattice, with u0 = ψ(x, y).

We also note that the imaginary part of the equation used to determine the critical points
of F , is the same as the master equation for the tangent plane method by Kenyon and
Prause [KP22b, KP22a, KP24]: indeed, for a fixed u, the action F is an affine function
of x and y, and the coefficients of x and y (respectively log z(u) and logw(u)) which are
analytic functions of u, and whose imaginary parts give the slope of the limit shape at the
point (x, y), see [BCdT23a, Section 4.5]. The remaining constant part is encoding the
boundary conditions and should be directly related to the intercept function. We have
thus two interpretations of the same equation: one coming from finding critical points
of the action functional F , the other other one by looking at isothermal coordinates in
which the slope and the intercept of the asymptotic height function describing the limit
shape are harmonic. Further investigation is needed to make a full connection between
the two approaches. A starting point is the expression of the expression of the surface
tension in terms of geometric quantities on Σ, obtained in [BCdT23a, Section 4.6], see
also [BBS].
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