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Two-weight codes over chain rings∗

Minjia Shi, Ruowen Liu †, Patrick Solé ‡

Abstract

Irreducible cyclic codes of length p2−1 are constructed as two-weight codes over
a chain ring with a residue field of characteristic p. Their projective puncturings of
length p+1 also yield two-weight codes. Under certain conditions, these latter codes
qualify as Maximum Distance Rank codes (MDR). We construct strongly regular
graphs from both types of codes and compute their parameters. Additionally, we
construct an infinite common cover of these graphs for a given p by extending the
alphabet to p-adic numbers.
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1 Introduction

Since Delsarte’s seminal paper [10], two-weight codes have been extensively studied in
relation to combinatorial objects such as strongly regular graphs (SRGs) [4, 5, 10] and
geometric structures like caps in projective spaces [8]. An important category within this
field is irreducible cyclic codes [5,12], which play a crucial role in constructing two-weight
codes. It is conjectured that all two-weight projective irreducible cyclic codes have been
identified [21, 23]. Specifically, for cyclic codes of dimension 2, it has been demonstrated
that all such codes (whether irreducible or not) are classified as either one-weight or two-
weight codes [17,22]. The association between SRGs and two-weight codes over finite fields
has been further extended to two-weight codes over rings, specifically for the homogeneous
weight [6, 7].

In this paper, we explore a novel approach by constructing two-weight codes over
chain rings, focusing on the Hamming distance. Interestingly, the weight distributions
vary based on the primitive status of the check polynomial. Through precise puncturing,
we successfully construct projective two-weight codes of length p + 1 in the primitive
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case and shorter lengths in other cases. The codes of length p + 1 achieve optimality as
Maximum Distance Rank (MDR) codes [18]. We also detail the main parameters of the
SRGs associated with these two classes of codes, which are derived using the coset graph
construction on the dual code. Notably, in the primitive case, these SRGs are of the Latin
square type [4, p.121]. Furthermore, the SRGs constructed for varying h share a common
cover, which is a coset graph of a code defined on the p-adic integers, similar to those
described in [9, 16].

The structure of this paper is as follows: Section 2 introduces the necessary definitions
and notation. Section 3 provides preliminary information. Sections 4 and 5 deal with
codes of length p2 − 1 over chain rings of depth 2. Section 4 focuses on the weight
distribution when the check polynomial is primitive, while Section 5 considers the more
general situation of an irreducible check polynomial of degree 2. Section 6 constructs
projective codes from those with a primitive check polynomial and details the associated
SRGs. Section 7 extends the discussion to chain rings of arbitrary depths. The paper
concludes with Section 8.

2 Definitions and Notation

2.1 Finite chain rings

We begin with some definitions and properties about finite chain rings. A commutative
ring is called a chain ring if the lattice of all its ideals is a chain. Consider the two finite
commutative chain rings with identity R and L. We say that the ring L is an extension
of R of degree r, denoted by L|R, if R is a subring of L such that 1R = 1L and the rank of
L over R is r. Let M be a maximal ideal of L, whose generator is γ. The chain of ideals
is

L = ⟨γ0⟩ ⊃ ⟨γ1⟩ ⊃ · · · ⊃ ⟨γh−1⟩ ⊃ ⟨γh⟩ = {0}.

The integer h is called the nilpotency index of ⟨γ⟩. It is well known that the residue
field L/M is a finite field Fq, where q = pr is a power of a prime p. The Teichmüller set
T = {x ∈ L | xpr = x} is a set of representatives of Fpr in that quotient. If x ∈ L, let x̃
denote its image in Fpr by reduction modulo (γ). Let tp denote the conjugate of t, where
t ∈ T . L can be expressed as L = T ⊕ γT ⊕ γ2T ⊕ · · · ⊕ γh−1T (the p-adic expansion of
L). If x ∈ L, then x = t0 + γt1 + · · · + γh−1th−1, where ti ∈ T . The Frobenius function
F (x) is defined as F (x) =

∑h−1
i=0 tpi γ

i. The trace Tr(x) from L down to R is defined as

Tr(x) =
r−1∑
i=0

F i(x).

Let L be a quadratic extension of R, so r = 2, and thus Tr(x) = x+ F (x).

2.2 Codes over finite chain rings

A matrix G ∈ Rl×n is called a generator matrix of the linear code C if the rows of G
generate C as an R-module. The Hamming weight ωH(c) of c ∈ C counts the non-zero
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components of c. The minimum distance dH(C) of C is the minimum Hamming weight
among all nonzero codewords in C. The weight distribution of C over R is defined as

[⟨0, 1⟩, · · · , ⟨ωi, Ai⟩, · · · , ⟨ωn, An⟩],

where Ai denotes the number of codewords c with ωH(c) = i. The dual code C⊥ of C
is defined as C⊥ = {v ∈ Rn | u · v = 0,∀u ∈ C}, where · denotes the standard inner
product.

A linear code C is cyclic if it is invariant under a cyclic shift, i.e., (c0, c1, . . . , cn−1) ∈ C
implies (cn−1, c0, c1, . . . , cn−2) ∈ C. A cyclic code C of length n over R can be identified
with an ideal ⟨g(x)⟩ generated by a polynomial g(x) dividing xn−1 in R[x]/⟨xn−1⟩. The
generator polynomial g(x) and parity-check polynomial h(x) = xn−1

g(x)
completely specify

the cyclic code. The extension ring of the finite chain ring R of dimension 2, denoted by
L, is defined as

L =
R[x]

⟨h(x)⟩
where h(x) is a monic basic irreducible polynomial of degree 2 in R[x]. If h(x) is basic
irreducible and h(α) = 0, then the code is a trace code of the form

C = {c(A) = (Tr(Aαi))n−1
i=0 | A ∈ L}.

Note that if α has order b, then |{αi | i = 0, · · · , n − 1}| = b. Let C have an l × n
generator matrix G = [g1| · · · |gn]. The code C is called projective if Rgi ̸= Rgj for any
pair of distinct coordinates i, j ∈ {1, · · · , n}. The parameters of a two-weight code C
over an alphabet M of size q are listed as [n, k, {w1, w2}]q if M is a finite field, and C is
of dimension k, and (n, |C|, {w1, w2})q if M is not a finite field.

The original Singleton bound posits that d ≤ n − logq (|C|) + 1, where C is a code
over an alphabet of cardinality q, n is the code’s length, and d is the minimum Hamming
distance of code C. Codes meeting this bound are called maximum distance separable
(MDS). Codes meeting the bound are termed maximum distance with respect to rank
(MDR), where the bound is d ≤ n− k + 1 and k is the rank of the code.

The Griesmer bound on a linear [n, k, d]q code is given by

n ≥
k−1∑
i=0

⌈
d

qi

⌉
,

where ⌈a⌉ is the least integer greater than or equal to a real number a.

2.3 Strongly regular graph

A graph Γ = (V,E) is called a strongly regular graph with parameters (v, k, λ, µ) if

• Each vertex has k neighbors.

• Adjacent vertices have λ common neighbors.
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• Non-adjacent vertices have µ common neighbors.

An eigenvalue of a graph Γ (i.e., an eigenvalue of its adjacency matrix) is called a restricted
eigenvalue if there is a corresponding eigenvector which is not a multiple of the all-one
vector 1. Note that for an η-regular connected graph, the restricted eigenvalues are simply
the eigenvalues different from η. The coset graph of a projective code C ⊆ Ln has vertices
representing the cosets of C, with two vertices being connected if and only if they differ
by a coset of minimum Hamming weight one.

2.4 Frobenius rings

For a finite ring R, let R̂ := HomZ(R,C×), referred to as the character module of R. We
denote a left (resp. right) R-module M by RM (resp. MR). A finite ring R is termed a
Frobenius ring if it satisfies any one of the following two equivalent conditions:

1. RR ∼=R R̂.

2. RR
∼= R̂R.

In particular, it is well-known that chain rings are Frobenius rings.

3 Preliminaries

Let R be a finite commutative ring, L be a quadratic extension of R with maximal ideal
M , and Z = T \ {0}. Then |Z| = p2 − 1. We consider trace codes defined by

Cd = {c(A) = (Tr(Ax))x∈Zd | A ∈ L},

where d is an arbitrary divisor of p2−1, and Zd is the multiset {{xd | x ∈ Z}}, repetitions
being allowed. In fact, Zd is the repetition of d sets of size p2−1

d
. By the preceding

section, we see that C1 is permutation equivalent to a cyclic code with a primitive check
polynomial, while Cd, in general, is permutation equivalent to a cyclic code with a basic
irreducible check polynomial the roots of which have order p2−1

d
.

We will use the following lemma:

Lemma 3.1.

ωH(c(A)) = p2 − 1− |{x ∈ Z | Axd + F (A)xdp = 0}|.

Proof. Because L is a quadratic extension of R, the weight of c(A) can be calculated
by length minus the number of times the Trace Tr(Axd) = Axd + F (A)xdp = 0, for
x ∈ Zd.

4 Primitive check polynomial

In this section, we calculate the weight distribution of C1.
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Theorem 4.1. The code C1 is a two-weight code with w1 = p2 − p, and w2 = p2 − 1.
Letting A1, A2 denote their respective frequencies, we have

A1 = (p+ 1)(p3 − 1), (1)

A2 = p(p2 − 1)(p3 − 1). (2)

Proof. In view of Lemma 3.1, we need to count the solutions in x ∈ Z of Tr(Ax) = 0.
Write A = a+γb+γ2c, with a, b, c in Z ∪{0}. The equation Tr(Ax) = 0 can be rewritten
as

ax+ γbx+ γ2cx = −
(
apxp + γbpxp + γ2cpxp

)
. (3)

We remark that, if p is odd, we have (−1) ∈ Z, since (−1)p
2−1 = 1. Thus the terms

−apxp, −bpxp, −cpxp are in Z, just like ax, bx, cx.
By the uniqueness of the p-adic expansion in L while h = 3, equation (3) yields the

system

ax = −apxp, (4)

bx = −bpxp, (5)

cx = −cpxp. (6)

Up to permutations of a, b, c, we claim that three cases can occur where this system has
at least one solution. In each case, the number of solutions turns out to be p− 1.

(1). a ̸= 0, b = c = 0
There are p − 1 solutions of xp−1 = −a1−p, if −1 = εp−1, for some ε in Z. This is
possible if (−1)p+1 = 1, which holds true for p odd.

(2). ab ̸= 0, c = 0
There are p− 1 solutions of xp−1 = −a1−p = −b1−p, provided ap−1 = bp−1.

(3). abc ̸= 0
There are p−1 solutions of xp−1 = −a1−p = −b1−p = −c1−p, provided ap−1 = bp−1 =
cp−1.

The number of values of A for each case is

(1). a ̸= 0, b = c = 0
p2 − 1 since a is arbitrary in Z.

(2). ab ̸= 0, c = 0

(p2 − 1)(p− 1) since
(
b
a

)p−1
= 1.

(3). abc ̸= 0

(p2 − 1)(p− 1)2 since
(
b
a

)p−1
=

(
c
a

)p−1
= 1.

5



Thus, accounting for permutations of a, b, c we obtain

A1 = 3(p2 − 1) + 3(p2 − 1)(p− 1) + (p2 − 1)(p− 1)2 =
(p2 − 1)

p− 1
(p3 − 1) = (p+ 1)(p3 − 1).

Since 1 + A1 + A2 = |C| = p6, the result follows.

Example 4.2. When p = 5, 7, and 11, we obtain codes of different lengths with the
following weight distributions:

• For p = 5, the codes have length 24 with weight distribution:

[⟨0, 1⟩, ⟨20, 744⟩, ⟨24, 14880⟩].

• For p = 7, the codes have length 48 with weight distribution:

[⟨0, 1⟩, ⟨42, 2736⟩, ⟨48, 114912⟩].

• For p = 11, the codes have length 120 with weight distribution:

[⟨0, 1⟩, ⟨110, 15960⟩, ⟨120, 1755600⟩].

5 Irreducible check polynomial

Theorem 5.1. The code Cd is a two-weight code with w1 = p2 − 1 − m, where m =
(d, p+ 1)(p− 1), and w2 = p2 − 1. Letting A1, A2 denote their respective frequencies, we
have

A1 =
(p2 − 1)

m
((m+ 1)3 − 1), (7)

A2 = p6 − 1− A1. (8)

Proof. (sketch) The proof is similar to that of Theorem 4.1. The system of equations
(4), (5), (6) is replaced by

axd = −apxdp, (9)

bxd = −bpxdp, (10)

cxd = −cpxdp. (11)

Because x ∈ Z, we have xd(p−1) = xm, where

m = (d(p− 1), p2 − 1) = (d, p+ 1)(p− 1).

The same discussion as in the proof of Theorem 4.1 yields

A1 = 3(p2 − 1) + 3(p2 − 1)m+ (p2 − 1)m2 =
(p2 − 1)

m
((m+ 1)3 − 1).

This completes the proof.
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If m = p− 1, the weight distribution is the same as in the primitive case. In the case
m > p− 1, the following values were computed in Magma.

Example 5.2. When p = 5, 7, and 11, we obtain codes of different lengths with distinct
weight distributions as d > 1 varies:

• For p = 5, the codes have length 24 with two distinct weight distributions:

[⟨0, 1⟩, ⟨12, 248⟩, ⟨24, 15376⟩], [⟨0, 1⟩, ⟨16, 372⟩, ⟨24, 15252⟩].

• For p = 7, the codes have length 48 with two distinct weight distributions:

[⟨0, 1⟩, ⟨24, 684⟩, ⟨48, 116964⟩], [⟨0, 1⟩, ⟨36, 1368⟩, ⟨48, 116280⟩].

• For p = 11, the codes have length 120 with four distinct weight distributions:

[⟨0, 1⟩, ⟨60, 2660⟩, ⟨120, 1768900⟩], [⟨0, 1⟩, ⟨80, 3990⟩, ⟨120, 1767570⟩],

[⟨0, 1⟩, ⟨90, 5320⟩, ⟨120, 1766240⟩], [⟨0, 1⟩, ⟨100, 7980⟩, ⟨120, 1763580⟩].

6 Projective codes and SRG’s

6.1 Projective codes

If C is a linear code over finite chain ring L with depth of 3, the projective code Ĉ is
given by

Ĉ = {c(A) = (Tr(A(αp−1)i))n−1
i=0 | A ∈ L}.

More generally, we consider trace codes defined by

Ĉd = {c(A) = (Tr(Axp−1))x∈Zd | A ∈ L},

where d is an arbitrary divisor of p2 − 1.

Theorem 6.1. The code Ĉ1 is a two-weight code with parameters (p+1, p6, {p, p+1})p3.
It is optimal with these parameters.

Proof. Note that two columns x, y ∈ Z of the generator matrix of C⊥
1 are linearly depen-

dent if and only if x/y ∈ Z ∩ L, if and only if (x/y)p−1 = 1. Thus, the parameters of Ĉ1

are obtained from those of C1 by dividing the length and the weights by p− 1. This code
meets the Singleton bound mentioned earlier. Indeed, it is a free code of rank 2, length
p+1, and distance p. According to the previous definition, it can be concluded that code
Ĉ1 is MDR.

The analogous theorem for d > 1 is as follows.

Theorem 6.2. The code Ĉd is a two-weight code with parameters
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(
p2−1
m

, p6,
{

p2−1
m

− 1, p
2−1
m

})
p3
,

where m = (d, p+ 1)(p− 1).

Proof. Note that two columns labelled by x, y ∈ Z of the generator matrix of C⊥
d are

linearly dependent if and only if (x/y)d ∈ Z ∩ L, if and only if (x/y)d(p−1) = 1. Let
m = (d(p− 1), p2 − 1) = (d, p+1)(p− 1). Now, (x/y)m = 1 if and only if (x/y)d(p−1) = 1,
and given x there are exactly m elements y ∈ Z such that (x/y)d(p−1) = 1. Thus, the

parameters of Ĉd are obtained from those of Cd by dividing the length and the weights
by m.

6.2 Their graphs

Theorem 6.3. The coset graph of Ĉ1

⊥
is a strongly regular graph (SRG) of degree (p +

1)(p3 − 1), on p6 vertices with restricted eigenvalues p3 − p− 1 and −(p+1) of respective
multiplicities A1 and A2 of Theorem 4.1.

Proof. By Theorem 11.1.11 of [2], the restricted eigenvalues are computed as λi = n(p3 −
1) − pw′

i for i = 1, 2 with the weights w′
1 = p and w′

2 = p + 1 from Theorem 6.1, and
their multiplicities equal the frequency of the corresponding weights. This completes the
proof.

Example 6.4. We use a special finite chain ring Zp3 as an example, take p = 3 to
obtain an SRG on 729 vertices of degree 104, and eigenvalues 23 and −4 with respective
multiplicities 104 and 624. As per [3], alternate constructions include a [52, 6, {27, 36}]3,
and a [13, 3, {9, 12}]9.

Theorem 6.5. The coset graph of Ĉd

⊥
is a SRG of degree (p2−1)

m
(p3 − 1), on p6 vertices

with restricted eigenvalues p3 − (p2−1)
m

and − (p2−1)
m

of respective multiplicities A1 and A2

of Theorem 6.2.

Proof. By Theorem 11.1.11 of [2], the restricted eigenvalues are computed as λi = n(p3 −
1) − pw′

i for i = 1, 2 with the weights w′
1 = p2−1

m
− 1 and w′

2 = p2−1
m

from Theorem 6.2,
and their multiplicities equal the frequency of the corresponding weights. This completes
the proof.

7 Generalization

7.1 Codes

We give without proof the generalization of Theorem 6.1.

Theorem 7.1. The code C1 is a two-weight code with w1 = p2 − p, and w2 = p2 − 1.
Letting A1 and A2 denote their respective frequencies, we have

A1 = (p+ 1)(ph − 1), (12)

A2 = p(ph−1 − 1)(ph − 1). (13)
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This code is optimal as the next result shows.

Theorem 7.2. The code C1 meets the Griesmer bound for finite Frobenius rings with
equality.

Proof. Note that the residue field of L is Fp. The rank of the free code C1 is 2 and its
minimum Hamming distance is p2 − p. By theorem 3.11 of [18, p.27], or [20], we know
that its length

n ≥ (p2 − p) +

⌈
p2 − p

p

⌉
= p2 − 1.

But, by construction n = p2 − 1. The result follows.

Theorem 7.3. Assume d > 1 and h > 1. The code Cd is a two-weight code with w1 =
p2− 1−m, where m = (d, p+1)(p− 1), and w2 = p2− 1. Letting A1 and A2 denote their
respective frequencies, we have

A1 =
(p2 − 1)

m
((m+ 1)h − 1), (14)

A2 = p2h − 1− A1. (15)

Remark 7.4. If h = 1 and m = p− 1, we have A1 = p2 − 1 and Cd is a one-weight code.
This is the case u = 1 of [22].

Theorem 7.5. The code Ĉ1 is a two-weight code with parameters (p+1, p2h, {p, p+1})ph.
It is optimal with these parameters.

Proof. The parameters of Ĉ1 are obtained from those of C1 by dividing length and weights
by p− 1. This code meets the Singleton bound of [18, Chap. 12]. Indeed, it is a free code
of rank 2, length p+1 and distance p. It is thus MDR in the sense of [18, Chap. 12].

The analogous result for d > 1 is as follows.

Theorem 7.6. The code Ĉd is a two-weight code with parameters(
(p2−1)

m
, p2h,

{
(p2−1)

m
− 1, (p

2−1)
m

})
ph
.

Example 7.7. With p = 7, h = 2, d = 2, m = 12, the code Ĉ2 has length 4 and weight
distribution [⟨0, 1⟩, ⟨2, 96⟩, ⟨4, 2304⟩].

7.2 Finite Graphs

The proof of the following theorem is analogous to that of Theorem 6.3 and is omitted.

Theorem 7.8. The coset graph of Ĉ1

⊥
is a SRG of degree (p+1)(ph−1), on p2h vertices

with restricted eigenvalues ph − p − 1 and −(p + 1) with respective multiplicities A1 and
A2 of Theorem 7.3.
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Example 7.9. With p = 2, h = 4, we obtain a SRG on 256 vertices, degree 45, unre-
stricted eigenvalues 13 and−3. Alternate constructions include as per [3] a [15, 4, {8, 12}]4,
a binary [45, 8, {16, 24}].

Remark 7.10. In [4, p.121], an SRG is said to be of Latin square type if its parameters
are

(v, η, λ, µ) = (N2,M(N − 1), (M − 1)(N − 2) +N − 2,M(M − 1)),

for some integers M,N with restricted eigenvalues N −M,−M , and respective multiplic-
ities M(N − 1) and (N −M + 1)(N − 1). It can be checked that the parameters above
are of this form with N = ph,M = p+ 1.

The proof of the following is analogous to that of Theorem 6.5 and is omitted.

Theorem 7.11. The coset graph of Ĉd

⊥
is a SRG of degree (p2−1)

m
(ph−1), on p2h vertices

with restricted eigenvalues ph− (p2−1)
m

and − (p2−1)
m

with respective multiplicities A1 and A2

of Theorem 7.3.

Example 7.12. With p = 7, h = 2, d = 2, the code Ĉ2 has length 4 and we obtain a SRG
on 74 = 2401 vertices of degree 192 with restricted eigenvalues 94,−4. These parameters
are beyond the table of [3]. They are not of Latin square type (see the preceding Remark).

7.3 Infinite Graphs

Denote by Γh the coset graph of Ĉ1

⊥
over Zph . Following [9], we denote by Zp∞ , the ring

of p-adic integers, that is to say the topological closure of Z for the p-adic topology [15].

Denote by Γ∞ the coset graph of Ĉ1

⊥
over Zp∞ . Both Ĉ1 and Ĉ1

⊥
can be seen as obtained

by extension of scalars from their counterparts over Fp, or as Hensel lifts from them [9].
Thus Γ∞ is a graph with a denumerably many vertices. Recall that a cover of a graph H
by a graph G is an adjacency preserving surjection from G to H. The next result shows
that, roughly speaking, Γ∞ is a kind of limit of the Γh’s.

Theorem 7.13. For all h > 0, we have

• Γh+1 is a cover of Γh,

• Γ∞ is a cover of Γh.

Proof. Follows immediately by reduction modulo ph, that preserves the coset graph defi-
nition.

A similar result holds for any fixed d > 1 that divides p2 − 1.
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8 Conclusion

In this paper, we have constructed two-weight codes over chain rings by focusing on
irreducible cyclic codes of dimension 2. This opens the way to considering other families
of cyclic codes over these rings, or cyclic codes over other families of rings. Irreducible
cyclic codes of dimension three or more over rings might have many weights.

Utilizing these specific codes, we have successfully constructed strongly regular graphs
(SRGs). Based on the computations in this paper and in [17], it appears that the coset
graphs of the dual of a maximum distance rank code of dimension 2 consistently yield
SRGs of the Latin square type. A direct combinatorial explanation for this phenomenon
might exist, especially considering the established equivalence between Mutually Orthog-
onal Latin Squares and MDS codes [11].

It is a worthwhile project to compute the spectrum of the graph Γ∞ defined as the
spectrum of its adjacency operator. An engineering application can be found in [16].
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