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ABSTRACT
Prompted by the recent successful predictions of the internal dynamics of Andromeda’s
satellite galaxies, we revisit the classical Milky Way dwarf spheroidal satellites Draco, Sculp-
tor, Sextans, Carina and Fornax in the framework of Milgromian dynamics (MOND). We use
for the first time a Poisson solver with adaptive mesh refinement (AMR) in order to account si-
multaneously for the gravitational influence of the Milky Way and its satellites. This allows us to
rigorously model the important external field effect (EFE) of Milgromian dynamics, which can
reduce the effective acceleration significantly. We make predictions on the dynamical mass-to-
light ratio (Mdyn/L) expected to be measured by an observer who assumes Newtonian dynamics
to be valid. We show that Milgromian dynamics predicts typical Mdyn/L ≈ 10−50 M�/L�.
The results for the most luminous ones, Fornax and Sculptor, agree well with available ve-
locity dispersion data. Moreover, the central power-law slopes of the dynamical masses agree
exceedingly well with values inferred observationally from velocity dispersion measurements.
The results for Sextans, Carina and Draco are low compared to usually quoted observational
estimates, as already pointed out by Angus. For Milgromian dynamics to survive further ob-
servational tests in these objects, one would thus need that either (a) previous observational
findings based on velocity dispersion measurements have overestimated the dynamical mass
due to, e.g. binaries and contaminant outliers, (b) the satellites are not in virial equilibrium
due to the Milky Way tidal field, or (c) the specific theory used here does not describe the
EFE correctly (e.g. the EFE could be practically negligible in some other theories), or a
combination of (a)–(c).

Key words: Galaxy: kinematics and dynamics – galaxies: dwarf – Local Group – dark matter.

1 IN T RO D U C T I O N

Data on large-scale structures, when interpreted in terms of
Einstein’s field equations, point towards a Universe dominated by
dark energy and dark matter. Dark energy is generally represented
by a cosmological constant, �, and dark matter (DM) is most often
assumed to be made of hitherto undetected massive elementary par-
ticles, the so-called cold dark matter (CDM). Models based on less
massive particles, so-called warm dark matter (WDM) lead largely
to the same results, apart from some mild differences in the mini-
mum mass of DM haloes and the presence of small constant density
cores at their centre (Macciò et al. 2012). However, at galaxy scales,
the observations are in disagreement with many predictions based
on particle DM (e.g. Kroupa et al. 2010; Kroupa 2012), whilst

�
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the observation of a tight correlation between the distribution of
baryonic and missing mass seems to indicate that the effective law
of gravity is well described by Milgromian dynamics particularly
in rotationally supported galaxies (Milgrom 1983, see Famaey &
McGaugh 2012 for a major review, and also Hernandez, Jimenez
& Allen 2014; Trippe 2014), rather than Newtonian dynamics plus
DM.

The specific observed dynamics of spiral galaxies can be inter-
preted as becoming scale-invariant under transformations (t, x) →
(λt, λx) with λ ∈ R when the accelerations fall well below the
threshold acceleration a0 ≈ 10−10 m s−2 ≈ �1/2. This is mostly
equivalent to stating that, in spherical symmetry, the gravitational
attraction then approximately approaches (gNa0)1/2, where gN is the
classical Newtonian gravitational acceleration due to the baryonic
matter. This prescription, known as Milgromian dynamics, leads
to a large body of remarkable predictions in galaxies (Famaey &
McGaugh 2012). A general consequence of such dynamics is
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that, unlike Newtonian dynamics, it is non-linear even in the non-
relativistic regime, meaning that it cannot satisfy the strong equiva-
lence principle. For example, in the case of a satellite galaxy orbiting
a more massive host galaxy, the satellite’s internal dynamics is not
independent from the acceleration it feels due to the external field
of the host galaxy. The effect of this external acceleration on the
internal dynamics of a system is known as the external field effect
(EFE), and is very different from the tidal effect. For objects such as
satellite galaxies, rigorously taking into account the EFE requires
to account simultaneously for the gravitational influence of the host
and the internal gravitational field of the satellites. In this work, we
revisit the dynamics of dwarf spheroidal satellites of the Milky Way
(MW) by making use of an advanced Poisson solver with adaptative
mesh refinement (AMR).

Such dwarf spheroidal galaxies orbiting around more massive
hosts range from 103 to 107 L� with half-light radii of about 500 pc
to 1 kpc. Two kinds of dwarf galaxies must exist in the framework of
the standard cosmological model (Kroupa 2012, and the references
therein): primordial dwarf galaxies (PDGs) and tidal dwarf galax-
ies (TDGs). PDGs formed early in the universe and are supposed
to be embedded in small CDM haloes. Cosmological simulations
have shown that a large number of PDGs as massive as 108 M� and
more should have formed as satellites orbiting the MW (Klypin et al.
1999; Moore et al. 1999). These primodial galaxies do not have pre-
ferred orbits and are thus roughly spherically distributed around the
host, or only moderately flattened (Wang, Frenk & Cooper 2013),
and move in arbitrary directions. Even accretion from cold fila-
ments has been demonstrated to not yield significant anisotropies
(Pawlowski et al. 2012b). TDGs on the other hand are dwarf galax-
ies resulting from major encounters of galaxies. In such encounters,
gas and stars are stripped off the galaxies through tidal forces and
form large tidal debris tails within which dwarf galaxies can form.
Contrary to PDGs, TDGs can have only little or no cold or WDM
(Barnes & Hernquist 1992; Bournaud 2010) and are clearly corre-
lated in phase-space if they originate from the same event. They
typically form vast disc-like structures around their past-encounter
hosts.

Because the found dwarf spheroidal galaxies around the MW
are observed to have extraordinary high dynamical mass-to-light
ratios (e.g. Mateo et al. 1991; Strigari et al. 2008; Walker,
Mateo & Olszewski 2009; Battaglia, Helmi & Breddels 2013;
Walker 2013), they are generally thought to be PDGs enclosed in
CDM subhaloes (e.g. Belokurov 2013). There are, however, a num-
ber of problems with this interpretation. The oldest one is known
as the missing satellite problem: while there should be more than
500 nearly isotropically distributed CDM subhaloes with bound
masses of �108 M� with a tidally limited size of �1 kpc (Moore
et al. 1999), only 11 bright satellites have been detected (and only
about 26 are known in total). It has been subsequently assumed
that gas had collapsed to form substantial stellar populations only
in some ‘lucky’ CDM subhaloes, whilst the others would have lost
their baryons or had stellar formation quenched for a variety of
reasons (e.g. Brooks et al. 2013), ranging from stellar feedback to
tidal forces and reionization. Nevertheless, even in semi-analytical
models taking such effects into account, there remain problems at
the low-mass and high-mass ends (e.g. Kroupa et al. 2010). For in-
stance, the most massive subhaloes of the MW in CDM simulations
are too dense to host any of its bright satellites (this is known as the
‘too big to fail’ problem; Boylan-Kolchin, Bullock & Kaplinghat
2011), leaving as a mystery why these massive haloes failed to form
galaxies.

Moreover, a second and even more problematic observation is
that the dwarf spheroidal satellite galaxies of the MW are arranged
in a corotating, vast polar structure (VPOS; Pawlowski et al. 2012a),
which is completely incompatible with the predictions from CDM
simulations. The same problem arises in the Andromeda galaxy
(Ibata et al. 2013) where half of the satellites are rotating in an
extremely thin planar structure oriented towards the MW.

The strong phase-space correlation of the satellites suggests that
the observed satellites are not PDGs but TDGs. While this conclu-
sion seems natural, it is in contradiction with CDM, because the
dwarf satellites of the MW are observed to have very high dynami-
cal mass-to-light ratios. The observations by Bournaud et al. (2007)
also emphasize this conflict around external galaxies: they observe
currently forming TDGs in the tidal debris of a galactic encounter,
and these TDGs also possess a large amount of missing mass. This
missing mass can, in the standard picture, only be explained by
large amounts of unseen, presumably cold, molecular gas. The flat
rotation curves of these dwarfs on the other hand are inconsistent
with this expedient as they would require this baryonic DM to be
distributed in an isothermal fashion. On the contrary, these rotation
curves are well explained by Milgromian dynamics without any free
parameters (Gentile et al. 2007).

So, if the conclusion that the MW dSphs are of tidal origin is
true, the observed high dynamical mass-to-light ratios would im-
ply that these objects are either out of equilibrium (Kroupa 1997;
Klessen & Kroupa 1998; Casas et al. 2012) or that a modified grav-
ity scheme, such as those based on Milgromian dynamics, applies,
or both. In the latter case, only those galaxies that appear to be in
dynamical equilibrium should be compared to the static predictions
of Milgromian dynamics (McGaugh & Wolf 2010).1 In the view
of Milgromian dynamics, the tidal scenario seems very natural.
Timing arguments suggest that M31 and the MW must have had a
close tidal encounter, likely 7–11 Gyr ago (Zhao et al. 2013). In the
standard model, this simple tidal encounter scenario is not possible
at all, because the dynamical friction between the CDM haloes of
the two encountering galaxies would lead to a galactic merger. The
formation of TDGs around the MW could however be explained by
other scenarios, e.g. the one modelled by Hammer et al. (2013), but
it is still in contradiction to the observed high amount of missing
matter in these objects.

Since apparent high dynamical masses2 (deduced when using
classical Newtonian dynamics) are a natural property of Milgro-
mian dynamics for objects of low surface density (Famaey & Mc-
Gaugh 2012), it is thus of high interest to predict what should be
expected for the MW dwarf satellites in this context. This was pio-
neered for the MW dwarf spheroidals by Milgrom (1995), Brada &
Milgrom (2000), Angus (2008) and Hernandez et al. (2010), while
predictions for the Andromeda dwarfs were made by McGaugh &
Milgrom (2013a) and McGaugh & Milgrom (2013b). Correct a pri-
ori predictions were for instance made for the velocity dispersions
of AndXVII, AndXIX, AndXX, AndXXI, AndXXIII, AndXXV,
AndXXVIII. Among these, some are seen as outliers from the
mass–luminosity–radius relations within the CDM paradigm be-
cause of their large size and low velocity dispersions, for instance

1 While the faintest dwarf spheroidals show clear sign of being out of equi-
librium, this is not the case for the most massive ones.
2 The dynamical mass is the mass derived from the measured velocity disper-
sion under certain assumptions, e.g. dynamical equilibrium, while applying
Newtonian dynamics.
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AndXIX, AndXXI and AndXXV. On the contrary, these low ve-
locity dispersions were correctly predicted a priori in Milgromian
dynamics thanks to the EFE (McGaugh & Milgrom 2013b).

All these studies had the drawback of having to treat the EFE of
Milgromian dynamics in a non-self-consistent manner. The external
field indeed has a major influence on the predicted effective dynam-
ical mass and has to be taken into account very carefully. This has
recently been done properly in the work of Angus et al. (2014) but
without AMR, not allowing as much flexibility to study the vari-
ous effects on vastly different scales. Here, we take advantage of
the Milgromian Poisson solver with AMR, which we developed in
the course of a larger project, in order to account simultaneously
for the gravitational influence of the MW and its satellites. As a
first application, we thus revisit the predictions for the brightest
MW dwarfs, making predictions on the objects’ dynamical mass-
to-light ratios (Mdyn/L) expected to be measured when assuming
Newtonian dynamics to be valid.

2 MI L G RO M I A N DY NA M I C S

Milgrom’s simple formula, that is

g = (gNa0)1/2 (1)

if gN � a0 (Milgrom 1983), as such cannot be a final theory of
gravity (e.g. no conservation of momentum). This formula arises
from the approach of scale-invariance symmetry of the equations
of motion under transformation (t, r) → (λt, λr) with λ ∈ R (Mil-
grom 2009d), and applies to spherically symmetric systems only.
One can however derive theories of gravity that yield Milgrom’s
formula in spherical symmetry. To date, many different generally
covariant modified gravity theories reproducing Milgromian dy-
namics have been developed (Bekenstein 2004; Zlosnik, Ferreira &
Starkman 2007; Milgrom 2009a), and even at the classical level,
various modified Poisson equations exist. While they could slightly
differ out of spherical symmetry (Zhao & Famaey 2010), the general
predictions for dwarf spheroidal galaxies should be similar in all
of these. One recent formulation (Milgrom 2010) has the following
Poisson equation:

∇2� = 4πGρb + ∇ · [ν (|∇φ|/a0) ∇φ] , (2)

where ρb is the baryonic density, � is the total (Milgromian) poten-
tial, φ is the Newtonian potential such that ∇2φ = 4πGρb, and ν(x)
→ 0 for x 	 1 and ν(x) → x−1/2 for x � 1. A family of functions
fulfilling this definition of ν(x) (see, e.g. Famaey & McGaugh 2012)
is

ν(x) = [
1 + (1 + 4x−n)1/2/2

]1/n − 1. (3)

In the following, when not stated otherwise, we use the n = 1
function, which is known to reproduce well the rotation curves of
most spiral galaxies.

The second term in equation (2) can be thought to be the matter
density distribution ρph that would, in Newtonian gravity, yield the
Milgromian boost to gravity, and is known as the ‘phantom dark
matter’ (PDM) density:

ρph = ∇ · [ν (|∇φ|/a0) ∇φ]

4πG
. (4)

This PDM density is not a real physical object but is only a math-
ematical description that allows us to solve the Poisson equation
for Milgromian dynamics with only linear differential equations
and one simple, algebraic step. In the framework of Newtonian

dynamics, this mathematical source of gravity would be interpreted
as missing matter or DM.

2.1 Computing the effective dynamical masses predicted by
Milgromian dynamics

The PDM density that would source the Milgromian force field in
Newtonian gravity is defined by equation (4) and can be computed
from the known classical (Newtonian) potential φ(x). To evaluate
this term on a Cartesian grid, we make use of the grid-based scheme
that has been devised by Lüghausen et al. (2013).

In order to treat the host and the satellite galaxies simultaneously,
we implemented this scheme into the RAMSES code (Teyssier 2002):
in this work, we make use of its Poisson solver (see Guillet &
Teyssier 2011, for a detailed description) and the available AMR
infrastructure (Kravtsov, Klypin & Khokhlov 1997; Teyssier 2002)
to compute the effective Milgromian potential from the given dis-
tribution of baryonic matter. Starting from a coarse Cartesian grid,
the AMR technique allows us to refine this grid on a cell-by-cell
and level-by-level basis in the regions of interest: each cell which
exceeds a given particle density (or equivalently baryonic mass
density) is split into 23 subcells. This way, the potential of a large
physical box containing structures of very different mass densities
and sizes can be computed efficiently at a single time. In this work,
we make use of this benefit and start with a bounding box that has
a size that is large enough to host a Galaxy model at the centre as
well as the satellite galaxies at their known positions. At the centre
of this box, we place a three-dimensional mass density model of
the MW determined by McGaugh (2008b). At the box boundaries,
we use the Dirichlet boundary conditions φ(r) = GMb/r with φ(r)
being the Newtonian potential at the distance r to the centre of mass
(of the whole baryonic density grid), and total baryonic mass Mb,
to solve the Poisson equation for the Newtonian potential φN (x).
From this discrete potential, we compute the PDM density (equa-
tion 4) using the prescription from Lüghausen et al. (2013, their
equation 4).

To find the gravitational potential �(x) predicted by Milgro-
mian dynamics, the resulting PDM density, ρph(x), is added to
the baryonic mass density, ρb(x). Poisson’s equation, ∇2�(x) =
4πG

(
ρb(x) + ρph(x)

)
, now with the total effective dynamical mass

(baryonic matter + PDM), is solved a second time, now using the
boundary condition (see equation 20 in Famaey & McGaugh 2012)

�(r) = (GMba0)1/2 ln(r) (5)

on the last grid point at the distance r to the centre of mass of the
baryonic density grid with total baryonic mass Mb.

In this work, we consider only static models of the MW satellites
and use the PDM density to predict the effective dynamical mass3

of these satellite galaxies. The grid is resolved to a resolution of
10 pc and less (the typical half-mass radius of the considered dSphs
is of the order of 500–1000 pc). The resolution limit is visible in the
logarithmic plots at small radii, r.

3 We prefer to use the term ‘dynamical mass-to-light ratio’ rather than clas-
sically just ‘mass-to-light ratio’, because in the Milgromian picture, PDM is
not real matter but a mathematical construction. Dynamical mass however
makes clear that we refer to the baryonic mass plus the DM equivalent as
deduced by a Newtonian observer in a Milgromian universe.
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2.2 External field effect (EFE)

Contrary to classical, linear, Newtonian dynamics, Milgromian dy-
namics is described by a non-linear theory and breaks the strong
equivalence principle. As a consequence, the internal dynamics of
a satellite system (e.g. dSphs around the MW, or galaxies in the ex-
ternal field of a galaxy cluster) does not decouple from the external
field produced by its mother system. This means, the external field
can drastically reduce the ‘acceleration boosting effect’ of Milgro-
mian dynamics with respect to classical dynamics, it can even break
it completely down to Newtonian behaviour if the external accel-
eration (and thus the ‘total’ acceleration) is larger than a0. If gN,ext

is the external (Newtonian) acceleration, and gN,int the internal one,
then the EFE does not play a role if

gN,ext � gN,int .

In this case, the system is in the Newtonian or Milgromian regime,
and its dynamics depends only on gN,int.4

On the other hand, if the acceleration due to the external field
dominates and is in the Newtonian regime,

gN,int < a0 � gN,ext ,

the external acceleration field takes over and the internal dynamics
appear purely Newtonian even when gN,int < a0. In between these
extreme cases, i.e. if the external field dominates but is itself well
below a0,

gN,int < gN,ext < a0 ,

the system is then Newtonian with a renormalized gravitational
constant (Famaey & McGaugh 2012). That is, in the framework
of QUMOND, the spatial distribution of the PDM density is pro-
portional to that of the baryons, ρph(x) ∝ ρb(x). This is referred to
as the quasi-Newtonian regime. The exact behaviour of the EFE
finally depends on the particular theory, and particularly on the ap-
plied ν-function. This peculiar property of any theory implementing
Milgromian dynamics is in contrast to the experience of our classi-
cal Newtonian thinking and challenges our intuition.

The EFE has another remarkable consequence that concerns the
cusp/core problem (de Blok 2010): while simulations show that
haloes made of CDM have cuspy profiles with a central matter den-
sity profile, ρ(r) ∝ rα , that has a power-law slope of approximately
αNFW = d log ρNFW(r)/d log r|r→0 = −1, the profiles of the effec-
tive dynamical mass (observationally inferred from measured veloc-
ity dispersions) of observed dSphs appear to be cored5 (e.g. Walker
& Peñarrubia 2011), i.e. α = d log ρDM/ph(r)/d log r

∣∣
r→0

≈ 0. In
Milgromian dynamics, the power-law slope is expected to be ≈−0.5
if the model is isolated (i.e. without external field) and if the bary-
onic matter density distribution itself is cored (Milgrom 2009b).
The EFE can however reduce this slope from ≈−0.5 to ≈0 if the
galaxy’s dynamics are dominated by the external field, because in
this case the PDM profile has the same shape as the baryonic matter
profile with a different normalization constant (see above), i.e. α =
d log ρph(r)/d log r

∣∣
r→0

≈ d log ρb(r)/d log r|r→0 ≈ 0. We discuss
in the results section how this applies to each object individually. In
Section 4.1 and Fig. 1, we demonstrate how an example model of

4 However, even in this regime, the external field induces a small quadrupole
which can, e.g. be measured with high-precision experiments in the Solar
system (Milgrom 2009c; Hees et al. 2014).
5 In the literature, the term ‘cuspy’ is commonly used if the power-law slope
is steeper (i.e. less) than the inner slope of the NFW profile, α < −1, while
‘cored’ refers to α > −1.

Figure 1. The lines show the cumulative mass profiles of the same King
model (based on Sculptor with M∗/L = 3 M�/L�, D = 87 kpc) at differ-
ent Galacticocentric distance to illustrate the effect of the external field (see
Section 4.1). Top panel: the cumulative mass (the assumed baryonic mass
and the predicted dynamical mass) enclosed within the radius r is shown.
Bottom panel: the ratio of the effective dynamical mass (phantom DM +
baryonic matter) to the baryonic matter content are presented as a function
of distance r to the centre of the dwarf galaxy. The thick solid line shows
the model in isolation, i.e. without external Galactic field. For the detailed
description see Section 4.1.

a MW satellite is affected by the gravitational potential of its host
galaxy.

In the course of this work, the EFE is self-consistently imple-
mented, because the computed models contain the MW and its
satellite all at one time.

3 MO D E L S

3.1 Dwarf spheroidal models

Dwarf spheroidals are quasi-spherical galaxies, the observed density
profiles are mostly well fitted by King density models (King 1966),

ρ(r) ∝ arccos(z)/z − √
1 − z2

πrking

[
1 + (

rlim/rking

)2
]3/2

z2

(6)

with z2 = (
1 + r/rking

)2
/
(
1 + rlim/rking

)2
(King 1962). King

model fits have been performed for the classical dSphs e.g. by
Strigari et al. (2008), for reviews see Ferguson & Binggeli (1994)
and Mateo (1998). We adopt the King models and scale the given
luminosities and size parameters to the recent distances compiled by
McConnachie (2012). The model parameters are listed in Table 1,
their positions in Galactocentric coordinates in Table 2.

In this work, we consider the so-called classical (luminous) dwarf
spheroidal galaxies, ordered by decreasing total luminosity. We do
not include Ursa Minor (UMi), because it appears to be out of
equilibrium (Kleyna et al. 2004). For each object, we investigate
the following 11 models.
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Table 1. List of all King models used. The model parameters (King radius, limiting radius
and luminosity) are adopted from Strigari et al. (2008) and are scaled appropriately for the
considered distances D, Dmin and Dmax, where D is the most likely distance (between the
object and the Sun) and Dmin and Dmax are the minimum and the maximum distances (1σ

deviation of D along the line of sight). The distances are adopted from the compilation of
McConnachie (2012). The respective Galactocentric distances and positions are provided
in Table 2.

rking/kpc rlim/kpc LV /(105 L�) D/kpc Dmin/kpc Dmax/kpc

Fornax 0.429 2.972 188 151.9 140.3 164.6
Sculptor 0.305 1.773 25.4 87.0 81.8 92.6
Sextans 0.432 4.321 5.8 92.9 81.1 96.9
Carina 0.281 0.919 5.0 109.2 103.2 115.7
Draco 0.173 0.894 2.4 76.9 71.3 82.9

Table 2. List of all positions in Galactic coordinates (MW centre at [0, 0, 0],
Sun at [8.5 kpc, 0, 0]) from McConnachie (2012). R is the according distance
to the Galactic Centre. The satellite positions are varied along the line of
sight within the 1σ measurement errors (see also McConnachie 2012). Rmin

and Rmax are the distances to the Galactic Centre at the positions closest to
and farthest away from the Sun, respectively.

Position[x, y, z] R Rmin Rmax

/ kpc / kpc / kpc / kpc

Fornax −41.5, −51.0, −134.1 149.4 162.0 137.7
Sculptor −5.4, −9.8, −85.3 86.0 91.7 80.7
Sextans −36.9, −56.9, 57.8 89.1 93.1 85.2
Carina −25.2, −95.9, −39.8 106.8 113.4 100.8
Draco −4.6, 62.2, 43.2 75.9 70.2 82.0

(i) At the most likely distance to the Sun (given by McConnachie
2012), we provide models with M∗/L = 1, 2, 3, 4, and 5 M�/L�.
These models are plotted with black solid lines (Figs 5–9).

(ii) At the minimum and maximum distance (given by the 1σ er-
rors), we provide models with M∗/L = 1 and 5 M�/L� to demon-
strate how the distance error transfers to the results. These mod-
els are plotted with purple (Dmax) and orange (Dmin) solid lines
(Figs 5–9).

(iii) We further provide isolated models without external field
with M∗/L = 1 and 5 M�/L� (grey solid lines in Figs 5–9). For
each galaxy, the isolated model with M∗/L = 5 M�/L� represents
the upper limit of Mdyn/L that can be achieved with this implemen-
tation of Milgromian dynamics.6

3.2 MW model

We use one of the MW mass model from McGaugh (2008a). The
model features a stellar exponential disc with scale length of Rd =
2.3 kpc, scaleheight of 0.3 kpc and a total mass of 4.9 × 1010 M�.
Moreover, it has a thin gaseous disc of 1.2 × 1010 M� and a bulge
made of a Plummer model with 0.6 × 1010 M� and a half-mass
radius of 1 kpc.

Although the MW potential is modelled in much detail, this is
not crucial, because the spatial size of the satellites is much smaller
than the size of the MW disc and their Galactocentric distances
(which are 80 kpc and more). More important are the total masses
of the individual Galactic components.

6 Under the aforementioned assumptions/simplifications like spherical sym-
metry and dynamical equilibrium.

In the Galactocentric coordinate system we use, the Sun is located
at the x-axis at 8.5 kpc. All specified Galactocentric coordinates are
given with respect to this system. The positions of the satellite
galaxy models are varied along their line of sight as seen from the
position of the Sun.

4 D I S C U S S I O N O F T H E MO D E L VA R I A B L E S

The used dSph models are determined by (i) the density model and
its parameters, (ii) the total luminosity, (iii) the stellar mass-to-light
ratio7 and (iv) the position with respect to the Galactic Centre which
specifies the external gravitational field felt by the satellite galaxy.
In the literature, a large number of different models with different
parameters can be found for each of the dSphs. In the following
subsections, we start with toy models based on the Sculptor model
(see Section 5.2) to investigate and discuss in which way the avail-
able variables affect the dynamical mass-to-light ratio, Mdyn/L, as
expected by the applied formulation of Milgromian dynamics. Re-
member that Mdyn/L is the dynamical mass-to-light ratio deduced
from the dynamics of the stars by an observer when using New-
tonian dynamics. This approach is intended to provide the reader
a basic understanding of how the model parameters (particularly
the external field and the stellar mass-to-light ratio) affect the PDM
halo in the Milgromian picture of galactic dynamics.

4.1 The external field

Because Milgromian dynamics is, by virtue of its scale-invariant
property, acceleration based, the external gravitational field plays
always a prominent role (see Section 2.2). Fig. 1 demonstrates how
the external field affects the shape of the PDM halo of a sample
dSph model. The thick solid lines shows the Sculptor model (with
D = 87 kpc, M∗/L = 3 M�/L�; see Section 5.2) in isolation or
without external field, i.e. at infinite Galactocentric distance. If
the distance of this satellite model to the centre of the Galactic
potential is decreased, i.e. the strength of the external gravitational
field is increased, the total mass of its PDM halo decreases (i.e. the
effect of Milgromian dynamics weakens). This is because the overall
acceleration in the satellite galaxy is enhanced by the external field,
which affects particularly the central and outer regions (where the

7 In the more general context, ‘stellar mass-to-light ratio’ should actually
mean ‘baryonic mass’-to-‘stellar light’ ratio, because it relates the stellar
luminosity to the baryonic mass of an object, which includes not only stellar
mass, but all kind of baryonic matter. In the case of the dSphs, this is the
same, because there is essentially no gas.
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2502 F. Lüghausen, B. Famaey and P. Kroupa

internal Newtonian acceleration, gN, is low) because of the non-
linearity of ν(x). As the external field increases, it ‘cuts off’ the PDM
density in the lowest-internal-acceleration parts (see the upper panel
of Fig. 1), making the PDM density follow the baryonic density, until
the dynamical mass-to-light ratio appears nearly constant at all r (see
the lower panel of Fig. 1). In the latter case, the external field of the
MW dominates the satellite’s internal dynamics (gN,int < gN,ext <

a0). Consequently, in this case the satellite’s effective dynamical
mass profile follows its baryonic mass profile, ρdyn(r) ∝ ρph(r) ∝
ρb(r). Moreover, this means that, if the shape of the baryonic matter
density is cored, also the PDM halo has to be cored in this external
field-dominated case (cf. Section 2.2).

As the internal + external acceleration approaches the limit
gN,int + gN,ext 	 a0, the dynamical mass to light ratio approaches
the stellar one, Mdyn → M∗.

4.2 Stellar mass-to-light ratio, M∗/L

The total mass of a stellar system is commonly inferred from the
total luminosity, L, by knowing the or assuming a reasonable stellar
mass-to-light ratio, M∗/L. In most cases, the value of this variable
is not well constrained and left as a fit parameter. The dynamical
mass-to-light ratio prediction (within the framework of Milgromian
dynamics viewed by a Newtonian observer) however is very sensi-
tive to this quantity, because the dynamical mass density distribution
is computed from the baryonic density distribution. We evaluate all
models with M∗/L = 1 and 5 M�/L� to provide lower and upper
limits on Mdyn/L.

Again based on the Sculptor model, Fig. 2 shows how the pre-
dicted dynamical mass-to-light ratio, Mdyn/L, changes with M∗/L,
where 1, . . . , 5 M�/L� is a reasonable range for the stellar mass-
to-light ratio for these dwarf spheroidals.

If M∗/L = 1 M�/L�, the satellite galaxy is dominated by the
external field of the MW but is still in the deep Milgromian regime
(gN,int < gN,ext � a0, cf. Section 2.2),8 and the satellite’s effective
dynamical mass profile thus follows its baryonic mass profile, so
that the dynamical mass-to-light ratio, Mdyn/L, is constant at all
radii r, and Mdyn/L ∝ M∗/L.

If M∗/L (and thus the baryonic density and accordingly gN,int)
is increased (M∗/L � 2), the external field becomes less domi-
nant, gN,ext < gN,int < a0, while staying in the deep Milgromian
regime. The strength of the EFE is decreased and the observable dy-
namical mass-to-light ratio (observationally inferable from velocity
dispersion measurements) would then become radius-dependant
(see Fig. 2).

4.3 Total luminosity, L

Varying the total luminosity, L, means varying the total mass
(because the stellar mass-to-light ratio is kept constant) and thus
varying the average density (because the size parameters are kept
constant as well) and accordingly gN,int varies. Fig. 3 shows the
dynamical mass-to-light ratio of the Sculptor model for different L.
As long as the total mass is small such that the internal dynamics is
dominated by the external field, the dynamical mass-to-light ratio
predicted by Milgromian dynamics does not depend on L. But as
the baryonic mass increases and the internal accelerations get to the
order of the external acceleration or larger, this degeneracy vanishes
and Mdyn/L becomes radius dependant.

8 In this particular model, this is the case if M∗/L � 2.

Figure 2. Each line shows the same model (based on Sculptor) with differ-
ent stellar mass-to-light ratios, M∗/L (the total stellar luminosity, L, is kept
constant, D = 87 kpc). This sequence of models demonstrates the impact
of the M∗/L uncertainty on the Mdyn/L ratio predicted by Milgromian dy-
namics. Top panel: the cumulative mass (the assumed baryonic mass and the
predicted dynamical mass) enclosed within the radius r is shown. Bottom
panel: the ratio of the effective dynamical mass (phantom DM + baryonic
matter) to the baryonic matter content are presented as a function of distance
r to the centre of the dwarf galaxy. The thick solid line shows the model
in isolation, i.e. without external Galactic field. For the detailed description
see Section 4.2.

Figure 3. The ratio of the predicted effective dynamical mass to baryonic
matter is plotted as a function of radius. The shown models are based
on Sculptor (M/L = 3 M�/L�, D = 87 kpc), the total luminosity, L, is
varied. See also the description in Section 4.3.

4.4 Density model and its radial parameters

For each dSph galaxy, a number of different models and fits can
be found in the literature. These are Plummer and King models,
exponential profiles, power-law profiles and also the profile derived
by Zhao (1997). In most cases, the truncated King model provides
the best fit to the observed luminosity profiles.

To demonstrate visually the influence of the external field on the
dynamical mass-to-light ratio (see Fig. 4), we vary, as before based
on the Sculptor model, the radial size paramters from rking = 0.1 to
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Classical MW dSphs in Milgromian dynamics 2503

Figure 4. The ratio of the predicted effective dynamical mass to baryonic
matter is plotted as a function of radius. The presented models are based
on Sculptor (M/L = 3 M�/L�, D = 87 kpc), the radial model parame-
ters (King radius and limiting radius) are variied. The King radius, rking,
is located at the local minimum of Mdyn/L. See also the description in
Section 4.4.

5 kpc while setting the limiting radius to rlim = 5.3 rking. The actual
King radius is ≈ 0.3 kpc. The total luminosity and the stellar mass-
to-light ratio are kept constant. Fig. 4 shows the resulting Mdyn/L

ratios.
If the King radius is large (in this particular model ≈ 0.5−1 kpc),

the system has a low density, therefore low internal accelerations
gN, and the internal dynamics are dominated by the external field. In
this case, the total effective mass profile follows the baryonic mass
profile and Mdyn/L is independent of the exact radial density model.

If however the baryonic matter density becomes compact/dense
enough such that the internal accelerations, gN,int, become large
enough to leave the external field-dominated regime (here rking <

0.5 kpc), the density model becomes important and sensitively
affects the dynamical mass-to-light ratio at r � rlim.

5 R ESULTS

Figs 5–9 present the results for the considered dSph satellite galax-
ies. The top panels show the cumulative mass profiles of the baryonic
matter (dashed lines) and the resulting effective dynamical mass (i.e.
mass of baryonic matter + PDM, solid lines). The bottom panels
show the dynamical mass-to-light ratio as function of the distance r
to the respective satellite galaxy’s centre. The black lines represent
models at the most likely distance, D (see Table 2). Purple lines
show models at the maximum distance to the Sun, Dmax, orange
lines those at the minimum distance, Dmin. All lines are marked
with their model-specific values of M∗/L in units of M�/L�.

5.1 Fornax

Due to its large distance to the Galactic Centre and its large total
luminosity (i.e. mass), Fornax (see Fig. 5) is effectively isolated
and unaffected by the EFE. The resulting dynamical mass-to-light
ratio, which is presented in the lower panel of Fig. 5, depends on
the radius, r, and ranges between 10 and 50 M�/L� depending
on the model. Contrary to the external field-dominated dSphs, the
accuracy of the model has a strong influence on the resulting Mdyn/L
as a function of radius.

Because this dSph is effectively isolated and has a cored baryonic
matter density distribution, the central shape of the PDM profile has
a power-law slope of α = d log ρph(r)/d log r

∣∣
r→0

≈ −0.5. This is

Figure 5. Results for Fornax. Top panel: cumulative profiles of the as-
sumed baryonic mass (dashed line) and the predicted effective dynamical
mass (solid line) as a function of distance from Fornax’s centre. The corre-
sponding mass model paramters are detailed in Table 1. The lower dashed
lines belong to the M∗/L = 1 M�/L� model, the upper dashed lines to
the M∗/L = 5 M�/L� one. Bottom panel: the ratio of effective dynamical
mass (baryonic matter + PDM) to baryonic mass with radius r are plotted
for each Fornax model. The results are discussed in Section 5.1. Colour
coding: the black lines correspond to models at their most likely (‘normal’)
distances (D, see Table 2). Purple lines represent the models at the maximum
distances to the Sun, Dmax, and orange lines at Dmin, respectively. Grey lines
show the models in isolation, i.e. without external field. All lines are marked
with the individual values of M∗/L in units of M�/L�. The values of rking

and rlim are given for the normal distances, D.

Figure 6. Results for Sculptor. See the caption of Fig. 5 for an explanation.
The results for this object are discussed in Section 5.2.
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2504 F. Lüghausen, B. Famaey and P. Kroupa

Figure 7. Results for Sextans. See the caption of Fig. 5 for an explanation.
The results for this object are discussed in Section 5.3.

Figure 8. Results for Carina. See the caption of Fig. 5 for an explanation.
The results for this object are discussed in Section 5.4.

consistent with the inference9 by Walker & Peñarrubia (2011), who
find α = −0.39+0.43

−0.37. Although the external field has almost no
influence on Fornax’ internal dynamics, it truncates the PDM halo
at r � rlim.

Values of Mdyn/L found in the literature are remarkably small
compared to those of other dSphs. Their observational errors cover
a range from 6.1 to only 20.4 M�/L�. These values agree well
with our results if M∗/L ≈ 1 M�/L�.

9 Walker & Peñarrubia (2011) derive the quantity � = α + 3.

Figure 9. Results for Draco. See the caption of Fig. 5 for an explanation.
The results for this object are discussed in Section 5.5.

5.2 Sculptor

Sculptor’s dynamics is on the verge to being in the external
field-dominated regime. It is external field-dominated if M∗/L =
1 M�/L�, but it is clearly not if M∗/L = 5 M�/L� (see Fig. 6,
and also the discussion of model parameters in Section 4 based on
Sculptor). Fig. 6 illustrates that Mdyn/L ≈ 9.5 M∗/L if M∗/L �
2. For larger stellar mass-to-light ratios, M∗/L > 2, we find that
the EF becomes less dominant and the dynamical mass-to-light
ratio becomes radius dependant, most prominently at the core
radius rking.

In general, the relation Mdyn/L ≈ 9.5 M∗/L therefore holds true
only at the limiting radius, rlim. In contrast to fully EFE-dominated
galaxies, the results for Sculptor are sensitive not only to M∗/L
and gN,ext, but also to the exact density model and total luminosity.
One has to be careful with radial dependences. The central density
profile of the PDM halo is cored or very close to be cored (i.e. α ≈ 0,
depending on the exact model). This slope is well consistent with the
inference by Walker & Peñarrubia (2011), who find α = −0.05+0.51

−0.39.
The Sculptor results agree very well with the values found in the

literature if M∗/L ≈ 4 M�/L�. Notably, the literature values show
the expected trend that the dynamical mass-to-light ratio is similar
at small radii (0.1 kpc) and large (rmax) radii, and lower in be-
tween (even though this is only a trend given the large observational
errors).

5.3 Sextans

Sextans’ distance to the Galactic Centre is not much larger than
that of Sculptor, but in comparison it is much fainter (by a factor
of ≈1/5), bringing it into the external field-dominated regime: The
effective dynamical mass follows the baryonic mass and

Mdyn/L ≈ 9.7 M∗/L [for Sextans].

The choice of the exact density model and the exact total luminosity
are of minor importance (within certain limits of course), and the
stellar mass-to-light ratio as well as the strength of the external field
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Classical MW dSphs in Milgromian dynamics 2505

Table 3. A compilation of dynamical mass-to-light ratios from the literature are listed (in units of M�/L�) side by side with the predictions
made in this paper applying Milgromian dynamics. M0.1 and M0.3 are the total dynamical masses within 0.1 and 0.3 kpc from the dSph’s
centre, as found by Strigari et al. (2008) from velocity dispersion measurements when applying Newtonian dynamics. These masses are
divided by the respective luminosities, LV, 0.1 and LV, 0.3, provided by the same authors. Mrmax is the total dynamical mass within the limiting
radius as provided by Walker et al. (2007) (see Table 1). The total V-band luminosity, LVtot, is again adopted from Strigari et al. (2008).

M0.1/LV, 0.1 M0.3/LV, 0.3 Mrmax /LV tot

predicted observ. predicted observ. predicted predicted observ.
with EFE inferred with EFE inferred with EFE without EFE inferred

Fornax [10.9, 29.9] 12.9+7.5
−4.3 [8.1, 22.8] 6.8+0.5

−0.7 [14.3, 47.9] [21.2, 51.6] 12

Sculptor [8.9, 40.5] 40+74
−26 [8.9, 33.7] 23+2

−7 [8.9, 50.1] [33.3, 78.7] 38

Sextans [9.5, 50.3] 280+93
−47 [9.5, 50.3] 143+113

−35 [9.5, 50.3] [163.8, 370.6] 108

Carina [10.7, 54.5] 293+43
−37 [10.7, 48.0] 81+10

−5 [10.7, 59.4] [38.6, 90.5] 81

Draco [8.0, 44.7] 55+122
−12 [8.0, 44.7] 137+15

−21 [8.0, 44.7] [53.8, 125] 346

are entirely determining the resulting effective dynamical mass-to-
light ratio. Also Sextans’ PDM density profile is clearly cored.

The dynamical mass-to-light ratios we derived for Sextans under
the assumptions of Milgromian dynamics to describe gravity cor-
rectly are far below the values found by Walker et al. (2007) and
Strigari et al. (2008), whose errors cover the wide range from 108 to
373 M�/L�. These values are even far above the computed upper
Milgromian limit (if the satellite is assumed to be isolated).

5.4 Carina

Although Carina is clearly more distanced from the Galactic Centre
than Sculptor, the effect of the external field on the internal dy-
namics appears very similar, because in both galaxies the ratio of
gN,int to gN,ext is similar. Also Carina appears clearly external field-
dominated if M∗/L = 1 M�/L�, but partly overcomes this effect
if the actual M∗/L is high (e.g. 5 M�/L�, as shown in Fig. 8). The
average dynamical mass-to-light ratio is relatively high compared
to the other dSphs, it is ≈11.2 M∗/L if M∗/L � 2.5 M�/L�. The
central shape of Carina’s PDM halo is cored or very close to be
cored (closer than in the case of Sculptor), as can be seen in the
bottom panel of Fig. 8: d(Mdyn/L)/dr

∣∣
r→0

≈ 0.
In the literature, we again find much larger values for Mdyn/L.

These cover the range from 336 M�/L� in the central region to
81 M�/L� in the outer region. The inferred values therefore in-
dicate a cuspy DM profile, whereas we expect the PDM profile to
be cored in theory. However, given the large scatter of these values
which are inferred from observations, one should use them with
much care, because the dynamical mass is estimated from the ve-
locity dispersion, and large velocity dispersions can have various
origins. Altogether, our determined values for Mdyn/L are however
a bit too low compared to those inferred from observations (Angus
et al. 2014).

5.5 Draco

Draco is the faintest of the classical satellites, and it is located at
a small Galactic distance and is thus strongly influenced by the
gravitational potential of the MW. As a consequence, its internal
dynamics are dictated by this external field, and the dynamical mass-
to-light ratio (see Fig. 9) is thus radius independent: ρdyn(r) ∝ ρb(r),
and Mdyn/M∗ ≈ 8.5. Thus,

Mdyn/L ≈ 8.5 M∗/L [for Draco].

The central shape of the PDM halo is thus cored, because the bary-
onic density profile is cored. Furthermore, the predicted Mdyn/L

are neither sensitive to the exact density model (see Section 4.4)
nor to the observational uncertainty of Draco’s total luminosity (see
Section 4.3). What matters are the stellar mass-to-light ratio and the
strength of the external field.

The dynamical mass-to-light ratios we found for Draco are very
small compared to those available in the literature (cf. Table 3). For
example, Strigari et al. (2008) find Mdyn/LV = 55+122

−12 M�/L�
within r = 0.1 kpc, and 137+15

−21 M�/L� within r = 0.3 kpc.10

Walker et al. (2007) find 346 M�/L� within r = rmax.11 While
the first value agrees fairly with our findings, the overall conclu-
sion is that our results are in contradiction with either the values
of Mdyn/L from velocity dispersion measurements (which could be
contaminated by binaries and outliers) or with the assumption that
Draco is in dynamical equilibrium, or both.

6 SU M M A RY A N D C O N C L U S I O N S

The problem of the nature and dynamics of the dwarf spheroidal
satellite galaxies is a vivid one. As highlighted in numerous re-
cent studies, their phase-space distribution around the MW and the
Andromeda galaxy is not compatible with them being primordial
galaxies embedded in CDM haloes (e.g. Ibata et al. 2014; Pawlowski
et al. 2014). On the contrary, if they are of tidal origin, they can
contain only little or no DM. In this case, the observed high veloc-
ity dispersions conclude either that all these objects must be out of
equilibrium, or that Newtonian dynamics fails on this scale and that
a different theory of gravity must apply (e.g. Milgromian dynam-
ics). In spiral galaxies, the correlation between the mass discrepancy
and the gravitational acceleration has long been known to hold for
orders of magnitude in mass, and can be interpreted as evidence for
Milgromian dynamics. Such dynamics naturally predicts that the
MW and Andromeda must have had a close tidal encounter, likely
7–11 Gyr ago (Zhao et al. 2013), leading to the formation of at least a
significant fraction of today’s satellites of the Local Group galaxies.
Recent predictions of internal velocity dispersions of Andromeda’s

10 These values for the dynamical mass-to-visible light ratios are deduced
from the density models and luminosities given by Strigari et al. (2008, see
their table 1).
11 We combine the dynamical mass measured by Walker et al. (2007) with
the stellar luminosity given by Strigari et al. (2008). The results are compiled
in Table 3.
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satellites within Milgromian dynamics have proven very successful
(McGaugh & Milgrom 2013a,b). For the MW dwarfs, the situation
is less clear. It has long been known that ultrafaint dwarfs cannot
be accounted for in Milgromian dynamics if they are in dynamical
equilibrium (McGaugh & Wolf 2010): these objects are close to
fully filling their Milgromian tidal radii, and therefore are likely out
of equilibrium. For classical dwarfs, we revisited the dynamics here
(apart from UMi which also appears out of equilibrium), by taking
advantage of our AMR Poisson solver to solve for the MW and the
dwarf satellites simultaneously. We produced a table of predicted
dynamical mass-to-light ratios which can be useful for observers
(Table 3).

We find typical Mdyn/L of ≈8–50 M�/L� (depending on model
parameters, particularly the stellar mass-to-light ratio). In the case
of Sculptor and Fornax, these values agree well with observations.
In the case of Draco, Sextans and Carina, these values are low
compared to today’s observational findings. This is in accordance
with what Angus (2008) had found, and it can mean that

(i) the satellites are not in virial equilibrium due to the MW tidal
and external field,

(ii) past observational findings are incorrect due to outliers and
binary contamination, or

(iii) that the specific modified gravity theory used12 is not the the-
ory that describes the EFE correctly. For the latter case, we provide
for each satellite upper limits of Mdyn/L possible in Milgromian
dynamics, in case the external field turns out to be negligible.

It has already been argued in the past that the EFE might be
an observational problem of Milgromian dynamics as formulated
here, when confronting predictions to data (Scarpa 2006; Hernan-
dez et al. 2010; Hernandez & Jimenez 2012; Hernandez, Jimenez &
Allen 2012, 2013). The argument is that, often, when the EFE starts
playing a role, the agreement of Milgromian dynamics with obser-
vational data becomes marginal, while it remains good if the EFE is
neglected: this might indeed be true for the dwarf spheroidals of the
MW considered here. However, it is not necessarily the case in gen-
eral. For instance, the escape speed from the MW can be determined
from the EFE and agrees well with observations (Famaey, Bruneton
& Zhao 2007), and nearby open clusters having internal acceler-
ations below a0 do not exhibit large mass discrepancies. Also, in
the CDM context, some dwarfs close to M31 have been pointed
out as outliers because of their low velocity dispersions, while with
Milgromian dynamics, such small velocity dispersions are naturally
predicted (McGaugh & Milgrom 2013b): this prediction relies on
the EFE being non-negligible as in this paper. Nevertheless, we
should point out that, even though the EFE is a necessary conse-
quence of Milgromian dynamics, in some implementations of the
theory, it could be negligible in practice: this can be the case for
instance in time-nonlocal modified inertia theories (Milgrom 2011).
Computations of, e.g. the escape speed from the MW would in this
case become more complicated and many concepts such as the es-
cape speed could have to be fully redefined. In view of the current
inferences of dynamical masses of the MW dwarfs, this absence
of EFE should certainly be kept as a possibility, as advocated in
Scarpa (2006), Hernandez et al. (2010, 2012, 2013) and Hernandez
& Jimenez (2012).

Kroupa (1997) has shown that it is possible to achieve high
Mdyn/L ≈ 100 even in DM-free dSphs by assuming purely classical
Newtonian dynamics. The reason is that the satellites that were set

12 Note also that we implemented here only one particular ν-function.

up with spherical phase-space distribution functions evolve away
from this state by losing particles from outer regions of phase-space
due to the Galactic tides. The assumption made by the observer
who assumes spherically symmetric equilibrium structures is then
wrong, leading to very high apparent Mdyn/L values, despite the
models not having any DM. This finding also applies to Milgro-
mian dynamics (and of course also to PDGs embedded in CDM
haloes), although we expect that the effect is less strong (Hernan-
dez & Jimenez 2012).

That observational findings of the measured dynamical mass are
not as correct as we think today is also one possibility which should
not be excluded a priori. Dynamical masses are derived from the
velocity dispersion, which is usually based on measurements that
are very sensitive to effects that have not been taken into account
yet, e.g. the number of binary stars, or plain outliers from the back-
ground. Serra, Angus & Diaferio (2010) have for instance shown
that taking into account outliers was bringing Sextans back on the
Milgromian prediction. A similar expectation can be made for Draco
and Carina. Interestingly, it has recently been shown that the tidal
effects are not significantly changing the predictions for Carina
(Angus et al. 2014).

We note that the predictions of Milgromian dynamics are most
accurate for the most luminous satellites, and least for the less lu-
minous ones. The most luminous dwarf galaxies likely have had the
highest star formation rates (SFRs) in the past. High SFRs result in
high minimum embedded star cluster masses, making the embedded
clusters denser and thus destroying binaries more efficiently (Marks
& Kroupa 2011). It is therefore likely that the velocity dispersion
measurements of the less luminous dwarfs are more affected by
unresolved binaries than those of the most massive dwarfs. If one
finds that the dynamical masses computed here (which are predic-
tions of Milgromian dynamics based on static equilibrium models,
and taking into account the EFE) are compatible with future, more
precise measurements of the velocity dispersions in these dwarf
galaxies, this would strengthen the notion that the MW dSph satel-
lite galaxies are TDGs that have been formed 7−11 Gyr ago as a
consequence of a close encounter between M31 and the MW. In
this case, N-body computations based on Milgromian dynamics of
the MW–M31 encounter should further test this tidal scenario.

If it however turns out that all measured velocity dispersions are
correct and that the considered dwarf galaxies are in virial equilib-
rium, then the computed dynamical masses based on Milgromian
dynamics tell us that the specific implementation used here can be
excluded, and one has to consider other theories, such as modi-
fied inertia theories in which the EFE can be practically negligible
(Milgrom 2011).
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