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ABSTRACT
We present a study of the intrinsic deprojected ellipticity distribution of the satellite dwarf
galaxies of the Andromeda galaxy, assuming that their visible components have a prolate
shape, which is a natural outcome of simulations. Different possibilities for the orientation
of the major axis of the prolate dwarf galaxies are tested, pointing either as close as possible
to the radial direction towards the centre of Andromeda, or tangential to the radial direction,
or with a random angle in the plane that contains the major axis and the observer. We find
that the mean intrinsic axis ratio is ∼1/2, with small differences depending on the assumed
orientation of the population. Our deprojections also suggest that a significant fraction of the
satellites, ∼10 per cent, are tidally disrupted remnants. We find that there is no evidence of
any obvious difference in the morphology and major axis orientation between satellites that
belong to the vast thin plane of corotating galaxies around Andromeda and those that do not
belong to this structure.

Key words: galaxies: dwarf – Local Group.

1 IN T RO D U C T I O N

The Local Group can be thought of as the closest laboratory for
testing cosmological predictions on small scales, including the dy-
namical formation and evolutionary history of galaxies (Freeman &
Bland-Hawthorn 2002). In this context the dwarf spheroidal (dSph)
galaxies are of particular interest, as they represent the smallest of
galactic systems, and are thought to be embedded in primordial dark
matter subhaloes, thus giving us insights on the earliest epochs of
galaxy formation in the Universe. The investigation of these satel-
lites is thus one of the most active areas of Local Group research at
present (Tolstoy, Hill & Tosi 2009). Their morphological parame-
ters, their masses, their spatial distribution around their host, or the
number of observed satellites, can be confronted with predictions
of the � cold dark matter (�CDM) model (Kravtsov, Gnedin &
Klypin 2004; Tollerud, Boylan-Kolchin & Bullock 2014). For ex-
ample, their spatial distribution can provide insights on the shape
of the dark matter halo of the host galaxy (Peñarrubia, Kroupa &
Boily 2002), whilst the dwarf galaxies morphological characteris-
tics can provide insights on their formation history (Zolotov, Hogg &
Willman 2011; Carraro 2014).

The very nature of the dSphs as faint, poorly populated systems,
poses several observational challenges, even for their identification
in the Local Group. Generally, they have been discovered through
the identification of small overdensities of stars over the contami-
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nating foreground stellar populations (and background population
of mis-identified compact galaxies). Improvements in instrumen-
tation and analysis techniques have led to the discovery of sev-
eral new Local Group dSph galaxies in recent years (Belokurov
et al. 2006; Zucker et al. 2006; Walsh, Jerjen & Willman 2007;
McConnachie et al. 2008; Martin et al. 2009, 2013). The known
population of dSphs in the Local Group has thereby increased con-
siderably (McConnachie 2012), which is now beginning to allow
us to draw statistically firm conclusions about the properties of the
dSph population. For instance, a recent discovery has shown that
half of the dwarf galaxy satellites of the Andromeda galaxy (M31)
reside in a vast thin plane around their host (VTP), and appear to
have coherent motions (Ibata et al. 2013). This observational dy-
namical alignment is still not fully understood within the �CDM
framework where the subhaloes that might host dSphs are a priori
expected to possess only a weak alignment (Shaya & Tully 2013;
Bahl & Baumgardt 2014; Ibata et al. 2014b; Pawlowski et al. 2014).
Finding whether the satellites that partake in the alignment have
a particular intrinsic shape and orientation that distinguishes them
from the other dSphs orbiting around M31 may help in assess-
ing whether the two sub-populations have experienced a different
dynamical history.

The morphological properties of satellite dwarf galaxies can also
provide tests of theoretical frameworks of galaxy formation on small
scales. These galaxies are usually described as a baryonic compo-
nent embedded in a massive dark matter halo (Walker et al. 2009),
meaning that their stars are relatively protected from the tidal field
of their giant host. But the formation of a plane of satellites (as
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apparently required in M31), or any past interactions could have
produced strong tidal effects that could have strongly affected their
baryonic distribution and make them partly lose their dark matter
halo. Another possibility is that some dSphs galaxies are actually
not embedded in dark matter haloes at all, but are rather remnants
of so-called tidal dwarf galaxies (TDG) which would have been
created in an encounter between two major galaxies in the distant
past, a scenario which might explain the formation of thin planes of
galaxies such as the one observed around Andromeda (Pawlowski,
Kroupa & de Boer 2011; Hammer et al. 2013) and around the
Milky Way (e.g. Kroupa, Theis & Boily 2005; Kroupa et al. 2010;
Pawlowski, Pflamm-Altenburg & Kroupa 2012). Such TDG would
be mostly devoid of dark matter (Kroupa 1997), and would pre-
sumably be much more prone to tidal deformation than those em-
bedded in primordial dark matter haloes. Some of the problems of
this picture are in principle alleviated if the Modified Newtonian
Dynamics framework (Milgrom 1983; Famaey & McGaugh 2012;
Zhao et al. 2013) is adopted (Kroupa et al. 2010; Pawlowski &
McGaugh 2014). Some other solutions consider the possibility of
dissipative dark matter, as for example, in Foot & Silagadze (2013)
or in Randall & Scholtz (2014).

In cosmological simulations, subhaloes are generally rounder
than the host haloes. Subhaloes that have masses that are
large enough to host dwarf galaxies have axis ratios :
0.65 ≤ c/a ∼ b/a ≤ 0.95 (Vera-Ciro et al. 2014). Observed dSphs
are observed to be approximately roughly round: for the Milky Way,
ε = 1 − a/b ∼ 0.3 (Martin, de Jong & Rix 2008). But we know that
this observed ellipticity is just a projected view, and the third dimen-
sion could thus hide more elongated shapes. However, deprojecting
to recover the intrinsic ellipticity is a challenge because distance
uncertainties to different sides of the same dSph are currently far
too large to allow any differential depth measurement except maybe
in the Magellanic Clouds (Klein et al. 2014; Moretti et al. 2014).
Therefore, in this paper, we propose a method which allows us to
probe the third dimension, and we focus ourselves on M31.1

In Section 2, we summarize the general method employed in this
contribution, justify our hypotheses and present our data. Section 3
presents all dwarf galaxies parameters used in the analysis, which
have been extracted from the observations. In Section 4, we define
how our deprojection procedure is built. Results are then discussed
in Sections 5 and 6, and our conclusions are drawn in Section 7.

2 M E T H O D

2.1 Hypotheses

In order to deproject the view and try to see which intrinsic ellipticity
distribution can fit the observed projected distribution of stellar
populations in the target dwarf, some simplifying hypotheses need
to be made. In the following, two main hypotheses are adopted.
First, we consider that dSphs have a prolate shape, like a cigar. This
is indeed the natural shape of dark matter haloes in the relevant mass
range (Vera-Ciro et al. 2014; Barber et al. 2015). In simulations, in
which dwarf satellites galaxies are initially made of rotating stellar
discs, this is a less natural assumption, but they can in principle
also be deformed into a prolate shape through bar-like instabilities
caused by ongoing small tidal interactions with the host (Łokas et al.
2010). Our second assumption will be to take an orientation of the

1 The method presented here could be modified later on to be applied to
dwarf satellites of the Milky Way.

prolate body that is consistent with the observed projection of the
major axis, as sketched in Fig. 1. Three cases will be considered:

(i) the prolate dwarf galaxy is oriented perpendicular to the radial
vector linking the host and the satellite,

(ii) the major axis of the prolate dwarf galaxy is oriented as close
as possible to the radial vector,

(iii) the prolate dwarf galaxy has a random orientation that is
consistent with the observed projection.

2.2 Data

In the present contribution, we will examine the structural prop-
erties of the dwarf galaxies surrounding the Andromeda galaxy
(M31). Our observational data are derived from the Pan-Andromeda
Archaeological Survey (PAndAS; McConnachie et al. 2009).
This photometric survey with the MegaCam camera on the
Canada–France–Hawaii Telescope has mapped a large area around
Andromeda (≈400 deg2), allowing the discovery and characteriza-
tion of the dwarf satellite galaxies of M31. A detailed account of
the processing of the PAndAS survey through to the final catalogue
of aperture magnitudes is given in Ibata et al. (2014a).

The PAndAS photometry was also used to estimate the distances
to the dwarf galaxies, using the tip of the red giant branch method
(Conn et al. 2012). By using a Markov Chain Monte Carlo (MCMC)
approach that incorporated Bayesian priors on the expected mor-
phology of the satellites and their luminosity function, Conn et al.
(2012) were able to derive a posterior probability distribution func-
tion (PDF) for the distance to each of the satellites present in the
survey.

From the homogeneous PAndAS data set, we also inferred the
morphological parameters of all dwarf galaxies that fall in the survey
footprint. These were derived using a version of the Martin et al.
(2008) algorithm, updated for a full MCMC treatment, and which
will be presented in another publication that is to be submitted soon
(Martin et al., in preparation).

3 EX T R AC T I N G DWA R F G A L A X Y
C H A R AC T E R I S T I C S F RO M T H E
O B S E RVAT I O N S

3.1 Morphology and selection

The code developed by Martin et al. (2008) infers the follow-
ing observational parameters: the projected ellipticity (ε, with
ε = 1 − (a/b) where a is the minor axis of the adjusted ellipse
and b the semimajor axis), the position angle (PA, the angle be-
tween the equatorial north and the major axis), and the half-light
radius (rh, taken along the major axis). The code was run on 23
dwarf galaxies present in the PAndAS survey and outputs posterior
PDFs in the form of MCMC chains. We have also included in our
study the dwarf elliptical satellites, NGC 147 and NGC 185. For
them, realistic MCMC chains have been created by simultaneous
drawings from Gaussian PDFs built from Crnojević et al. (2014),
also derived from the PAndAS survey. According to Ibata et al.
(2013), among these 25 satellites, 14 are in the VTP: And I, And
III, And IX, And XI, And XII, And XIII, And XIV, And XVI,
And XVII, And XXV, And XXVI, Cass II, NGC 147 and NGC
185. Whereas 11 are outside the VTP: And II, And V, And X, And
XV, And XVIII, And XIX, And XX, And XXI, And XXII, And
XXIII and And XXIV.

MNRAS 450, 1409–1419 (2015)
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The intrinsic ellipticity of dSph galaxies 1411

Figure 1. Sketch of the geometry. The left-hand panel shows the projected view on the sky, while the right-hand panel shows the view in the plane P defined
by the line of sight and the projected semimajor axis. Two cases are represented : the tangential case and the radial one. The bottom right-hand panel shows
the position of the plane P compared to M31, where β is the minimum angle between the radial direction and P . The variable a is the semiminor axis of the
prolate ellipsoid, equal to the semiminor axis of the projected ellipse. On the left-hand panel, PA is the angle between north and the semimajor axis rh where
||rh|| is the observed half-light radius. On the right-hand panel, br is the intrinsic semimajor axis of the prolate ellipsoid placed in the configuration that is most
radially-oriented with respect to M31, and bt is the one placed in the tangential configuration. The line-of-sight position vector los links the Earth to the centre
of the satellites galaxy. The variable γ is the angle between the intrinsic major axis of the prolate ellipsoid and the line-of-sight position vector.

Figure 2. Representative projected ellipticity distributions. Histogram of
the projected ellipticity for And I (solid line) and And XXII (dotted line)
(two representative dSph in the sample) obtained from 105 draws from the
Markov chain of Martin et al. (2008).

Thus, for each satellite k of Andromeda, the code provides us with
a Markov chain that contains at each step i the positional and mor-
phological parameters of interest: εki, PAki and rhki

. For example, in
Fig. 2 we display the PDF derived from 105 draws (this is typically
the number of draws in all MCMC chains used in this study) of
the projected ellipticity from the Markov chain of Andromeda I,
an example of a rather round dSph galaxy with a large number of

resolved red giant stars and Andromeda XXII, an example of an
extended dSph galaxy with a small number of resolved red giant
stars. It is more representative to plot log(1 − ε) = log(a/b) where
0 corresponds to a round object.

When the whole sample of dSphs considered is taken into ac-
count, one draw from their respective Markov chain of ellipticity
and distance represents a possible view from the Earth of the system
of satellites around Andromeda. Fig. 3 represents the normalized
average of the projected ellipticity of the satellites according to the
derived PDFs for 105 random realizations (of the 25 satellites). Bins
have been chosen to be large enough, log(1 − ε) = 0.2, to ensure
reliable statistics. The vertical bars are 1σ standard deviations of
the number of satellites per bin, derived from 7 × 104 draws.

As expected, the projected ellipticity shows predominantly round
objects. Moreover, no significant difference between galaxies in the
VTP (blue triangles) or outside it ( grey squares) is evident.

3.2 Position in three dimensions

Once morphological parameters have been obtained, the position
of each dSph centre in three dimensions has to be found. For that
purpose, Andromeda’s satellite galactic coordinates (αk, δk) are
considered perfect. We have chosen to take them from the literature
in Collins et al. (2013) for Cassiopeia II and in McConnachie (2012)
for the other ones. For the third dimension, the distance from Earth
(d), we use results found by Conn et al. (2012) (see Fig. 4).This
provides us with a Markov chain of distance for each galaxy dk.
Each step i of it gives a possible dki for the satellite.

MNRAS 450, 1409–1419 (2015)
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1412 J.-B. Salomon et al.

Figure 3. Observed (i.e. projected) ellipticity derived from the PAndAS
survey, showing the average distribution of ellipticity for the 25 satellites,
randomly drawn 105 times from each of the 25 Markov chains. Bin sizes
are log(1 − ε) = 0.2. Red circles are the ellipticity distribution of the entire
system of 25 dwarf galaxies. Blue triangles correspond to the 14 dwarf
galaxies contained in the vast thin plane of satellites (Ibata et al. 2013),
while the grey squares are for the 11 outside of the VTP. Vertical error bars
indicate one standard deviation derived from this experiment.

Figure 4. Histogram of the distance of the centre of two representative
systems, And I (solid line) and And XXII (dotted line) from the centre of
M31 (derived from 105 draws from the Markov chain of Conn et al. 2012).

For a dwarf galaxy, a drawing in its morphological Markov chain
and one in its distance Markov chain combined with sky coordinates
provide a set of six parameters. They define a possible representation
in space of the centre around Andromeda in association with three
possible projected morphological characteristics: αk, δk, dki, εki,
PAki and rhki

.

3.3 Model

In all the following analysis, the intrinsic shape of the dwarf galaxies
is approximated as a prolate ellipsoid, which is a natural outcome of
dark matter satellites in �CDM simulations (Vera-Ciro et al. 2014;
Barber et al. 2015). With this assumption the satellites have two
equal minor axes (a) and one major axis (b). Consequently, since a
prolate structure is symmetrical by rotation around the major axis,
the projected minor axis remains identical, irrespective of the point
of view. Thus, the apparent minor axis of the ellipse given by the

projected satellite is taken to measure the real minor axis (a). On
the other hand, rh is known, defined by PA and rh.

Of course, due to the projection on the sky, the real major axis
b is not equal to rh: b can have any orientation in the plane (P)
defined by the line of sight and rh (see Fig. 1). Thus, an additional
condition is required to fix the three-dimensional orientation of the
major axis, and consequently the intrinsic ellipticity of the satellites.
We consider three possibilities which will be discussed in Section 4.

3.4 Limitation of the major axis

As defined above, the intrinsic major axis b has to lie in the plane P .
However, depending on the parameter set drawn from the chain, it
is possible that b can take on physically implausible values. To
avoid this situation, we implement a filter to reject solutions where
b would be larger than the tidal radius of the satellite (tidal rejec-
tion criterion). Thus, the tidal radius is considered as the maximal
radius:

b <

(
Msat

2Mhost

)1/3

R, (1)

where Msat is the satellite mass and Mhost the mass of the host galaxy
contained in the sphere of radius R (distance between the satellite
centre and the host galaxy centre). We estimate Mhost using an
NFW (Navarro, Frenk & White 1997) halo model (with virial mass
2 × 1012 M�, a mean value of recent results (Watkins, Evans &
An 2010; Fardal et al. 2013)). The value of Msat is derived from the
line-of-sight velocity dispersion (σ v) listed in McConnachie (2012)
for NGC 147 and NGC 185 and in Collins et al. (2013) for the other
galaxies, taking

Msat ∼ σ 2
v b

G
, (2)

where G is the gravitational constant. Consequently, with equa-
tions (1) and (2), the following limit can be set to b:

b < σv

√
R3

2 G Mhost
. (3)

Given the large uncertainties in σ v , we wish to remain conserva-
tive and so as not to eliminate physically possible cases, we adopt
the values corresponding to the listed value of σv plus one stan-
dard deviation. In the following analysis, this criterion is always
automatically applied, and it forces the rejection of approximately
5 per cent of the MCMC parameter trial values. Finally, to avoid the
MCMC process from exploring unrealistic solutions, we limited the
projected half-light radius to 20 arcmin.

3.5 Simple test

We constructed a simple toy model to test the algorithms that we
developed and to obtain a first assessment of the magnitude of
the effect of de-projection on the ellipticity distribution. Three-
dimensional prolate dwarf galaxies are generated with a random
size (in the range of the observed dwarf satellites galaxies) and are
placed at random locations around the Andromeda galaxy (again
in the observed range). In Fig. 5, we show the consequence of
assuming that the intrinsic ellipticity is given by the observed pro-
jected distribution previously displayed in Fig. 3 (red dots). These
prolate structures are observed from a position corresponding to
Earth, and we measure the projected ellipticity that the artificial
structures would then be seen to possess (purple triangles). As
expected, the projected distribution will appear rounder than the

MNRAS 450, 1409–1419 (2015)
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The intrinsic ellipticity of dSph galaxies 1413

Figure 5. Green circles represent the intrinsic ellipticity chosen for this test.
Purple triangles represent the distribution of projected ellipticity for 1000
three-dimensional systems of 25 dSph galaxies generated from a random
distribution of position and from the green distribution for the ellipticity.
Red dots are the observed ellipticities previously seen in Fig. 3. Vertical
error bars indicate one standard deviation.

intrinsic distribution. The differences in the rounder bin is about
2σ , thus confirming that the projected distribution cannot be seen
as the three-dimensional one.

4 D E P RO J E C T I O N

Our next task is to find the distribution of intrinsic ellipticities that
is consistent with the observed projected distribution of Fig. 3, and
with the observed orientations and distances of the real satellites.
As stated above, this will require an additional geometric constraint,
which we will implement via an assumption regarding the three-
dimensional orientation of the satellites.

4.1 Tangential deprojection

As a first hypothesis, we suppose that each satellite is oriented
tangentially with respect to the vector rs connecting it to M31, i.e.
that the real semimajor axis (b) of the modelled dwarf galaxy is
on the plane P ′ perpendicular to rs. For satellite k, a given set i
of parameters (lk, bk, dki) then uniquely defines the direction of
the vector b, which corresponds to the intersection of P and P ′.
Once the direction of b is known, ||b|| is determined by requiring
that it correspond to the projected view of the dwarf galaxy whose
apparent semimajor axis is ||rh||. Finally, the intrinsic ellipticity ETki

assuming this ‘tangential hypothesis’, is calculated (see Fig. 6). In
Appendix A, we describe this deprojection in more detail.

As the tangential deprojected chain of each of the dwarf galaxies
is now known, a random draw from each of the Markov chains
gives a system of satellites all of which are in tangential orientation.
This procedure is repeated to obtain the global ellipticity distribu-
tion of the dwarf galaxy system, which is shown in Fig. 7. Under
this ‘tangential’ assumption, the intrinsic distribution of ellipticity
is substantially flatter than the projected ellipticity, and produces
a long tail of highly flattened systems. No significant difference
between galaxies within the VTP or outside of it is apparent.

Figure 6. Histogram of the ellipticity for And I (solid black line) and
And XXII (dotted black line) after tangential deprojection obtained from
105 draws of the MCMC chain. The red curves are the observed ellipticity
previously seen in Fig. 2.

Figure 7. Distribution of tangentially deprojected ellipticity for 105 systems
generated from Markov chains derived from the observational analysis.
Green circles mark the ellipticity distribution of the entire system of 25
dwarf galaxies. Blue triangles are for those contained in the vast thin plane
of galaxies (Ibata et al. 2013), 14 dSphs and grey squares are for those
outside the VTP, 11 dSphs. Red dots are the observed ellipticities previously
seen in Fig. 3. Vertical error bars indicate one standard deviation.

4.2 Radial deprojection

The second hypothesis that we explore in this analysis is to consider
that the satellites are oriented as close as possible to the radial direc-
tion with respect to Andromeda. As before, the major axis b must
lie on P . For this ‘radial’ deprojection, we would like b to lie along
rs. However, the prolate ellipsoid must also be consistent with the
observed (projected) orientation of the galaxy. In this situation, we
have three spatial unknowns that have to respect four independent
equations, so that the problem turns out to be overconstrained. Thus,
an exact radial orientation is, in general, impossible.

A way to resolve the problem is to attempt to orient the prolate
ellipsoid as close as possible to a radial direction. To this end, we
minimize the angle β, between rs and b such that the projection of b
yields rh. Consequently, β is the minimum angle, an incompressible
lower limit, that can exist between the radial vector and the major

MNRAS 450, 1409–1419 (2015)
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1414 J.-B. Salomon et al.

Figure 8. Histogram of the ellipticity for And I (solid black line) and And
XXII (dotted black line) after radial deprojection obtained from 105 draws
of the MCMC chain. The red curves are the observed ellipticity previously
seen in Fig. 2.

Figure 9. Probability density function of the angle β between the major
axis of: And I (solid line), And XXII (dotted line) and their respective radial
direction after radial deprojection (obtained from 105 MCMC draws).

axis vector of a dwarf galaxy according to our data. The intrinsic
ellipticity (assuming this ‘radial’ hypothesis) ERki

is thus obtained
(see Fig. 8) coupled with βki (see Fig. 9). For more details, see
Appendix B.

The radially deprojected ellipticity is displayed in Fig. 10, and
interestingly, the roundest bin is not dominant, and a significant
number of highly elliptical systems are required if this assumption
is realistic. Again, differences between galaxies within the VTP of
galaxies and outside of it are not significant.

4.3 γ -deprojection (random angle within P)

In the previous subsections, we considered a ‘tangential’ and a
‘radial’ deprojection. We have seen that a satellite can always be fit
to a three-D tangential orientation, but that a prolate system cannot
be placed closer to a radial direction than a minimum angle β (which
depends on the structure and position of the satellite). However in
reality, we do not have observational information that allows us to

Figure 10. As Fig. 7, but for the radial deprojection method.

Figure 11. Histogram of the ellipticity for And I (solid black line) and And
XXII (dotted black line) after γ -deprojection obtained from 105 draws of
the MCMC chain. The red curves are the observed ellipticity previously
seen in Fig. 2.

favour either of these orientations, and we only know that the major
axis lies within the line-of-sight plane P . This motivates our final
deprojection, where we instead make the minimal assumption that
the satellites are randomly oriented within P . The random angle
γ , is the angle between the line of sight and the major axis b. The
intrinsic ellipticity (assuming this ‘gamma’ hypothesis) Eγki

is thus
obtained (see Fig. 11) coupled with γ ki (see Fig. 12).

The resulting deprojection is shown in Fig. 13 and presents a
rather flat ellipticity distribution. Again, there is almost no differ-
ence between the dwarf galaxies that belong to the VTP and those
outside of it.

5 R E-PROJ ECTI ON TESTS

The distributions of ellipticity obtained in Figs 7 and 10 take into
account the observational information with a hypothesis on the
orientation and on the prolate shape of the satellite galaxies. In
contrast, the distributions of ellipticity obtained in Fig. 13 take
into account the observational information assuming that the shape
of the satellite galaxies is prolate, but that no particular direction
can be privileged. If either of these approaches is realistic, one of

MNRAS 450, 1409–1419 (2015)
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The intrinsic ellipticity of dSph galaxies 1415

the resulting deprojected distributions should be the real intrinsic
ellipticity.

To test the consistency of this approach, we decided to examine
whether the derived deprojected ellipticity distributions would give
rise to projected distributions similar to the observed distribution of
ε for random viewing directions.

To this end, we modelled systems containing 25 (three-
dimensional) prolate ellipsoids with random orientation. The el-
lipticity, and so the semimajor axis, is randomly picked from the
3D tangential-deprojected ellipticity distribution. The positions of
the dwarf galaxy models are drawn randomly inside a sphere of
450 kpc around the host. A set of 1000 such systems were gener-
ated and observed from a position equivalent to that of the Earth
point at 780 kpc from the host galaxy. The final 2D projected el-
lipticity is shown Fig. 14. The same test is applied with the 3D
radial-deprojected ellipticity and the 3D γ -deprojected one. Results
are shown in Figs 15 and 16, respectively.

In Fig. 15, one can see that the projected ellipticity distribu-
tion (purple triangles) based on the radial deprojection does not
reproduce well the observed distribution of ellipticity (red circles)
in the roundest bin. This means that if dwarf galaxies are prolate

Figure 12. Probability density function of the angle γ (in degrees) between
the major axis of And I (solid line) and And XXII (dotted line) with their
respective radial direction after γ -deprojection (obtained from 105 MCMC
draws).

Figure 13. As Fig. 7, but for the γ deprojection method (where we assume
that the major axis lies in plane P at a random angle with respect to the line
of sight).

Figure 14. Distribution of projected ellipticity for 1000 sets of 25 dSph
satellites randomly built with intrinsic ellipticity picked from the tangentially
deprojected distribution (purple triangles). Red dots show the distribution of
observed ellipticities. Green circles are the intrinsic ellipticity determined
with the tangential deprojection method represented in Fig. 7. Vertical error
bars indicate one standard deviation.

Figure 15. As Fig. 14, but for the radial deprojection method.

Figure 16. As Fig. 14, but for the γ -deprojection method.

MNRAS 450, 1409–1419 (2015)
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structures, and if our viewing direction is not special, the galaxies
are not oriented in a radial configuration. However, the projected
distributions based on tangential (Fig. 14) or the γ (Fig. 16) methods
are perfectly consistent with the observed distribution of elliptic-
ity. We consider that this is a good consistency test of our method.
Thus, modelling dwarf galaxies as possessing prolate shapes can
give self-consistent solutions in terms of their derived ellipticity
distribution. Furthermore, the population of dwarf galaxies around
Andromeda can be considered as a drawing from a distribution of
general intrinsic ellipticity.

6 IN D I V I D UA L C A S E S A N D D I S C U S S I O N

The results for all of the dSph galaxies are listed in Table 1. The
second column contains the character ‘p’ if the galaxy belongs
to the VTP according to Ibata et al. (2013), and ‘a’ otherwise.
Columns 3 and 4 contain the mean observed ellipticity and the mean
observed half-light radius obtained with the method of Martin et al.
(2008). Column 5 is the mean distance from M31 to the centre of
the dSph galaxy obtained by Conn et al. (2012). Note that these
observed average values (columns 3–5) take into account the fact
that some values have been rejected by our tidal criterion in the
γ -deprojection method. Columns 6, 8 and 10 represent the mean
of the tangential-deprojected, radial-deprojected and γ -deprojected
ellipticity obtained with our method. Columns 7, 9 and 11 are the
percentage of excluded cases by our tidal criteria for the three
deprojections. The last column is the angle β previously defined
as the geometrically minimum possible angle between the radial
direction and the plane P . All uncertainties indicate one standard
deviation of each parameter with our method.

First, the most powerful geometric constraint is a high angle β.
Indeed, it corresponds to the lower limit for a radial orientation.
This means that even if the orientation is unknown, a dwarf galaxy
cannot be closer to the radial direction than β (see Fig. 1). This
criterion does not depend at all on our hypothesis. Thus, in the
present study, we have identified six dwarf galaxies – And II, And
III, And XXI, And XXIII, CasII and NGC 147, which can abso-
lutely not be radially oriented. For this we have chosen a criterion
such that β − 1σ > 25◦ (where σ is here the standard deviation of
β). These dwarf galaxies are relatively close to their host. More-
over, they mostly have a large half-light radius and favour a high
ellipticity (more than 0.5) in each kind of deprojection. Also, for
five of these six galaxies, the γ -deprojection shows the largest rate
of tidal rejections among the three cases. These particularities sug-
gest that these six dwarf galaxies may be largely affected by their
environment and could be affected by tides or even remnants of an-
cient TDG. For the most massive object, NGC 147, This last result
is in good agreement with Crnojević et al. (2014) where they have
recently found that NGC 147 presents tidal tails. Moreover, it could
also indicate that it is beginning to be stretched due to gravitational
interactions, as attested by the stellar stream that emanates from it
(McConnachie et al. 2009).

It is also interesting to see the deprojection behaviour of the other
dwarf galaxies that have an observed large half-light radius and a
high level of tidal rejections with all three deprojection methods.
And XII, And XIX and And XXV are such cases. This might be due
to the effects of tidal interactions with M31, as argued by Collins
et al. (2014) for And XIX and And XXV (as well as And XXI).
Moreover, this strongly suggests that these galaxies are close to
being destroyed and becoming stellar streams. Please note that we
have been conservative in estimating the tidal limits of the dwarf
galaxies, as we used the measured velocity dispersion plus one

standard deviation to calculate the tidal limits. Thus, the percentage
of tidal rejections listed in Table 1 should be considered as lower
limits.

Finally, And XIII and And XXII have a large intrinsic ellipticity
with all of the deprojection choices. Indeed, with the three depro-
jections, they always conserve an ellipticity around 0.7. Thus, these
dSph galaxies are intrinsically very elongated.

As the re-projection tests suggest a possible tangential orientation
being very plausible, we have examined in this case the deprojected
ellipticity as a function of the distance (Fig. 17). Blue circles are
the values for the satellites within the VTP and grey circles are the
values for those outside. There is a priori no obvious correlation.
Nevertheless, a close inspection of the repartition of the satellites
outside of the VTP seems to indicate a relatively tight correlation
between 100 and 200 kpc: dSphs are more elongated when closer
to M31. No such correlation is present for satellites in the VTP.
With the large error bars, no strong conclusion can be drawn, but
it would be interesting to compare this with different models, both
in standard cosmology in which the VTP could have been recently
accreted and in alternative scenarios such as those based on TDGs.

We next examine the properties of the population of 25 dwarf
galaxies as a whole, which we consider as a representative sam-
ple for this kind of object. The ellipticity of this group is listed
in Table 2 for projected (ε), tangential-deprojected (Et), radial-
deprojected (Er) and γ -deprojected (Eγ ) with their total percentage
of tidal rejection.

This percentage is compatible with a physical behaviour with
a high value for tangential and γ deprojection and a much lower
value for the radial deprojection. Objects in a radial configuration are
falling towards their host with a compact shape whereas objects in
tangential or random orientation are suspected to have been strongly
disrupted in their orbits around their host.

As expected, each kind of deprojection gives a larger ellipticity
(with a minimum of 0.44) than the projected observations. Thus,
these dwarf galaxies tend to possess an elongated shape with a
minor to major axis ratio (a/b) of approximately 1/2. Vera-Ciro
et al. (2014) and Barber et al. (2015) find a slightly larger but
coherent axis ratio in the inner regions (∼1 kpc) of the dark matter
satellites in the Aquarius simulation that could possibly host stars.
Thus, our conclusion appears to be consistent with the possibility
that stellar components in the Andromeda satellite galaxies possess
the same shape. This is perhaps not incompatible either with them
being remnants of ancient TDG. These observational values can in
any case serve as a test of various models in the future.

7 C O N C L U S I O N S

First of all, we have seen that adopting a prolate shape for the dwarf
satellite galaxies of Andromeda gives a coherent solution in the
sense that the derived ellipticity distribution for the real viewing
direction is similar to what would be derived from a random van-
tage point. This simplifying assumption has allowed us to derive
the intrinsic ellipticity for the entire population of satellites. The re-
sulting ellipticity distribution is found to be relatively flat between
log(1 − ε) of 0 to −0.4 before decaying at larger ellipticities. Some
of the dwarf galaxies are found to be intrinsically significantly elon-
gated. This is probably not incompatible with them being remnants
of ancient TDG as recently found by, e.g. Yang et al. (2014), but
it could also be consistent with dwarf galaxies having the same
shape as their hosting dark matter subhalo. Secondly, no clear dif-
ference in ellipticity between the satellites inside the VTP and those
outside of it was noticed. The two populations of galaxies seem to
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Figure 17. Tangentially deprojected ellipticity versus distance to An-
dromeda. Blue circles are the values for the satellites in the VTP of galaxies
(Ibata et al. 2013), while grey circles are for the ones outside. The filling
of these circles represents the tidal rejection rate (see labels in the top-right
box).

Table 2. Average ellipticities of the whole
sample of dwarf galaxies of Andromeda
used in this work, obtained from 25 × 105

draws of the MCMC chain.

Mean ellipticity Tidally rejected
(per cent)

ε 0.32 ± 0.11 –
Et 0.44 ± 0.14 9.22
Er 0.54 ± 0.15 4.12
Eγ 0.48 ± 0.21 9.14

be made of the same type of objects as also recently concluded by
Collins et al. (2015). Nevertheless, we noted that the distribution of
ellipticity versus distance to M31 in the tangential deprojection case
was slightly different for galaxies inside and outside of the VTP.
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A P P E N D I X A : TA N G E N T I A L C A S E

We seek the vector m which has the same projection on the sky
as the half-light radius rh. This means it has the same projected
PA (see equation A3). At the same time, m must be perpendicular
to the direction rs, between M31 and the centre of the dSph (see
equation A2). First of all, for a dSph, we define a local coordinate
system (los,n,e) centred on the galaxy where the line-of-sight los
is one of the axes and where n points towards the north. From
(standard) sky coordinates (χ ,η) with respect to the centre, we
obtain the local base:

los =
⎛
⎝ cos η sin χ

sin η

cos η cos χ

⎞
⎠, n =

⎛
⎝ − sin χ sin η

cos η

− cos χ sin η

⎞
⎠, e =

⎛
⎝ cos χ

0
− sin χ

⎞
⎠.

(A1)

From this base with our conditions and the normalization of m, a
three-equation system can be deduced:

rs.m = 0 (A2)

tan(PA) = m.e
m.n

(A3)

mx
2 + my

2 + mz
2 = 1 . (A4)

The solution of this system gives us

m =

⎛
⎜⎜⎝

−1
rsx

√
C

(
Arsy
B

+ rsz

)
A

B
√

C

1√
C

⎞
⎟⎟⎠, (A5)
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where⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A = tan(PA) cos χ sin ηrsx − tan(PA)rsz sin χ sin η

− rsz cos χ − rsx sin χ

B = tan(PA)rsy sin χ sin η + rsx tan(PA) cos η

+ rsy cos χ

C = 1
r2
sx

(
Arsy
B

+ rsz

)2
+ (

A
B

)2 + 1

.

As we know m, the norm of the tangentially deprojected semimajor
axis bt has yet to be discovered. DSph are considered as prolate (see
equation A6). Thus, we are putting ourselves this time in the plane
defined by los and m. The new local base ( y,z) corresponds to the
minor (a) and the semimajor axis (bt) of the real prolate:

y2

a2
+ z2

bt
2 = 1. (A6)

For the present purposes, dSph around M31 are far enough to be
considered as being at infinity. Consequently, rh is approximately
seen between two parallel rays, los and los′ with a separation of
ω. We called α the angle between y and los. y0 is the point at the
intersection between y and los′. It follows that:

sin α = ω

y0
. (A7)

From equation (A6), we obtain y and

dy

dz
= −az

bt
2

√
1 − z2

bt
2

. (A8)

With equation (A8), we obtain the equation for the straight line (d)
which has los′ for guiding vector:

y = y0 − az2

bt
2

√
1 − z2

bt
2

. (A9)

And so, the intersection between (d) (equation A9) and the prolate
(equation A6) with equation (A7) gives

a = ω

sin α

√
1 − z2

bt
2 . (A10)

The development of equation (A11) with tan α = −y′ and
βt = π

2 − α gives the final real semimajor axis, tangentially
deprojected:

bt =
√(

ω

sin βt

)2

−
(

a

tan βt

)2

. (A11)

A P P E N D I X B : R A D I A L C A S E

We seek the vector q which has the same projection on the sky
as the half-light radius rh. It means the same projected PA. At the
same time, q must be as close as possible to the radial direction rs,
connecting M31 with the centre of the dSph (see equation A2). We
place the system in the same basis as the tangential deprojection (see
appendix A). The line of sight is again los and m is the tangential
direction. Thus, q must be placed in the plane P defined by these
two vectors. P has as its normal vector nP :

nP =

⎛
⎜⎝

BnPz

AnPz
1√

1+A2+B2

⎞
⎟⎠ (B1)

where{
A = rxmz−mxrz

−rxmy+mxry

B = −my

mx
A − mz

mx

And so, with the minimum angle between q and rs, the constraint
of lying in Plane P and the normalization of q, a system of three
equations can be deduced:⎧⎨
⎩

q.nP = 0
q.rs = max.

q2
x + q2

y + q2
z = 1

(B2)

This system is solved by maximizing equation B2:

q =

⎛
⎜⎜⎜⎜⎜⎝

−1
nPx

(nPx qy + nPz qz)

−4nPy nPz

n2
Py

+n2
Px

qz

A
√

1−n2
Pz√

A2+B2

⎞
⎟⎟⎟⎟⎟⎠ (B3)

where{
A = rsz

((
n2
Px

+ n2
Py

)
− nPy nPz

)
− rsx nPznPx

B = nPx rsy − nPy rsx

.

Finding the norm br follows the same approach as that for the
tangential case and so

br =
√(

ω

sin βr

)2

−
(

a

tan βr

)2

. (B4)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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