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ABSTRACT 

 

The Generalized Integral Transform Technique (GITT) is advanced to deal with 

conduction heat transfer in anisotropic heterogeneous media. A formal solution for exact 

integral transformation of conduction in anisotropic media is extended to account for 

heterogeneities expressed as space variable equation coefficients and source terms. The 

proposed eigenfunction expansion is based on biorthogonal eigenvalue problems which 

results in an exact integral transformation for linear problems and in a coupled 

transformed system for nonlinear situations. The associated eigenvalue problems are also 

handled through the GITT by considering simpler auxiliary eigenvalue problems of 

known analytical solution, leading to transformed algebraic eigenvalue problems. Finally, 

a two-dimensional transient test case is considered that presents an abrupt transition 

between isotropic and anisotropic materials yielding a marked change in thermal behavior 

in a defined region of interest formed by the anisotropic inclusion.  
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NOMENCLATURE 

 

a,b Dimensions of test case rectangular substrate ( 1 0 1 0,a x x b y y= − = − ) 

A, C, E Matrices in algebraic eigenvalue problem, Eq.(13a) 

B Boundary conditions operator, Eq.(1e) 

d  Linear dissipation term coefficient, Eq.(1d) 

f  Initial condition function, Eq. (1b) 

nf  
Transformed initial condition, Eq. (6c) 

ng  
Transformed source term, Eq. (6d) 

k  Diffusion term coefficient, Eq. (1d) 

L Space differential operator, Eq.(1d) 

Mk Normalization integral of auxiliary eigenvalue problem, Eq.(10b) 

n Outward-drawn normal to the surface S, Eq. (1e) 

nN  Normalization integral (or norm), Eq. (4b) 

P  Nonlinear source term, Eq. (1a) 

S  Domain surface, Eq. (1c) 

t  Time variable or corresponding spatial variable, problem (1) 

T  Temperature or other potential (dependent variable), problem (1) 

nT  
Transformed temperature or potential, Eq.(5a) 

inT  Initial temperature in test-case 

V  Domain region, problem (1) 

w  Transient or convective term coefficient, Eq. (1a) 

x  Position vector, problem (1) 



x,y Space coordinates in test-case, problem (19) 

  

Greek Symbols 

  Boundary condition coefficient, Eq.(1e) 

  Boundary condition coefficient, Eq.(1e) 

  Nonlinear boundary source term defined in Eq. (1e) 

n  
Eigenvalues, problem (2) 

n  
Eigenfunctions, problem (2) 

,n m  Kronecker delta operator, Eq. (4b) 

k  
Auxiliary eigenvalues, problem (6) 

k  
Auxiliary eigenfunctions, problem (6) 

 

Subscripts and Superscripts 

i,j Indices for tensorial notation, Eqs.(1d,e)  

n Index for eigenfunction/eigenvalue 

k,l Indices for auxiliary eigenfunction/eigenvalue 

* Related to adjoint eigenvalue problem 

^ Related to auxiliary eigenvalue problem 

- Related to integral transformed function 

~ Related to normalized eigenfuncitons 

 

  



INTRODUCTION 

 

Heat conduction in anisotropic media is directly associated with applications 

dealing with composite materials, laminated metals, wood, crystals and several other 

natural or man-made materials [1-4]. Often, such materials are inherently heterogeneous 

or are assembled together with isotropic substrates or connecting elements that participate 

in the heat transfer process, which in either case can be represented as spatially variable 

thermophysical properties, accounting for anisotropy wherever required. Such is the case, 

for instance, in a class of anisotropic functionally graded materials (FGM) [5-6] which 

present a tailored marked spatial variation of the thermophysical properties, aimed at 

achieving a specific functionality. Also recently, a class of thermal metamaterials has 

been advanced [7-10], which are designed based on an extended optical transformation 

theory that results in an anisotropic embedded region for achieving a desired controlled 

thermal behavior in a certain sub-domain, such as cloaking, rotation, concentration, 

camouflage, or illusion. 

Exact solutions for transient heat conduction with the tensorial representation of 

the thermal conductivity are readily available for linear special cases such as in infinite 

or semi-infinite media or homogeneous orthotropic materials [1], but less evident for 

general anisotropy, heterogeneity, and finite multidimensional media. A generalization of 

the classical integral transform method [11] was proposed in [12], which accounts for 

general non-symmetric anisotropy in finite regions. Since through the classical integral 

transformation procedure [11], the resulting eigenvalue problem would be non-self 

adjoint for this more general situation, an adjoint eigenvalue problem is proposed in [12] 

that forms a biorthogonal set with the original one. Therefore, both the anisotropy and 

heterogeneity effects are transferred to the adjoint eigenvalue problems, which become 

fairly involved for the general case, though a formal exact solution is provided for the 

temperature distribution. This study was later on extended through a convenient matrix 

operator form [13], covering a wide class of linear diffusion problems. 

Along the years and most markedly after the unification of the integral transform 

method in seven different classes of linear problems in heat and mass diffusion [11], a 

hybrid numerical-analytical extension to the classical approach, known as the 

Generalized Integral Transform Technique (GITT) [14] has been progressively advanced, 

as reviewed in different sources [15-24], aimed at handling different classes of 

formulations that would not allow for an exact integral transformation in the sense of [11]. 



Thus, diffusion and convection-diffusion problems with time-dependent coefficients, 

nonlinear problems, irregular geometries, non-classical eigenvalue problems, moving 

boundary problems, boundary layer equations, and Navier-Stokes equations, among 

others, were systematically approached and properly handled through the more flexible 

hybrid methodology. A few advancements allowed for by the generalized approach are 

particularly relevant to the present work, the first one being the solution of eigenvalue 

problems by the GITT itself, as proposed in [25], and its application in the analysis of 

diffusion in heterogeneous media [26-27]. This advancement was particularly important 

in allowing for the solution of fairly general eigenvalue problems with arbitrarily variable 

coefficients, by considering a simpler auxiliary eigenvalue problem as the expansion 

base, thus transforming cumbersome differential eigenvalue problems into readily 

solvable algebraic ones. A second advancement is related to a single domain 

reformulation strategy [28], which allows for the representation of multiregion problems 

as one single formulation with spatially variable coefficients accounting for the different 

materials transitions. This approach was then applied to conjugated conduction-

convection problems [29-31] and heat transfer in heterogeneous and complex media [32-

33], among other applications in heat and fluid flow. 

The present work is concerned with revisiting the formal exact solution of [12] in 

dealing with heat conduction in heterogeneous anisotropic media, while extending it to 

nonlinear problems in the framework of the GITT, as first generalized in [19]. The 

solution of the biorthogonal eigenvalue problems is then proposed through the GITT 

itself, considering a pair of simpler biorthogonal auxiliary eigenvalue problem in the 

eigenfunctions expansion in solving the original more involved problems. For the sake of 

completeness, the traditional GITT formalism is also recalled, as an alternative solution 

path for heterogeneous anisotropic media, accounting for cross derivatives as source 

terms, and directly handling the integral transformation with an adjoint eigenvalue 

problem with space variable coefficients. A transient two-dimensional test case 

represented by an anisotropic material inclusion in an isotropic rectangular substrate is 

considered for illustrating the convergence behavior of the proposed integral transform 

solution. A well-established commercial finite element method software [34] is also 

considered for comparison purposes and the present error-controlled solutions provide 

benchmark results for its convergence analysis. 

  



ANALYSIS 

 

• Problem formulation 

Transient heat conduction in a general anisotropic finite medium is considered, 

where heterogeneities are accounted for by arbitrarily space variable thermophysical 

properties and source terms, defined in region V with bounding surface S. The temperature 

distribution is governed by [12]: 

( , )
( ) ( , ) ( , , ) ,     in  ,   > 0

T t
w LT t P t T V t

t


+ = 



x
x x x x     (1a) 

with initial and boundary conditions given as 

( ,0) ( ) ,        T f V = x x x                                               (1b) 

 ( , ) ( , , ) ,      ,  t > 0 BT t t T S= x x x           (1c) 

where the equation and boundary operators are written in tensor notation as 

( ) ( )

( ) ( ) ( )

ij

i j

i ij

j

L k d
x x

B n k
x

  
 − +    


  +



x x

x x x

      (1d,e) 

where ( ) and ( ) x x are prescribed coefficients that define the boundary conditions 

kinds and ni are the components of the outward drawn normal to boundary surface S in 

each coordinate direction xi (i=1, 2, 3).  

It should be recalled that system (1) is in fact more general than it may seem, since 

any nonlinearities in the equation or boundary condition coefficients can be collected into 

the nonlinear source terms, ( , , )P t Tx  and ( , , )t T x , while characteristic x-dependent 

coefficients are kept in the original operators. For isotropic media the system is simplified 

with ( ) ( )ijk kx x  and the formal solution to problem (1) is readily given in [14,16] 

through the Generalized Integral Transform Technique (GITT). For linear source terms, 

( , )P tx  and ( , )t x , and isotropic media, system (1) reduces to the so called Class I 

problems in [11] and formal exact solutions are readily available by the integral transform 

method. 

 

• Biorthogonal eigenfunction expansion 



Also for linear source terms, but for any general anisotropic thermal conductivity, 

a formal exact solution through the integral transform method has been proposed [12,13], 

based on a biorthogonal set of eigenfunctions. Here, we first briefly show how this formal 

solution can be extended to the nonlinear situation in eqs.(1). After dropping out the 

source terms in both the heat conduction equation and the boundary condition, the 

eigenvalue problem obtained from separation of variables is given by: 

2( ) ( ) ( ) ,     in  L w V =   x x x x       (2a) 

with boundary conditions given as 

 

 ( ) 0 ,      B S = x x             (2b) 

However, for the general anisotropy tensor here considered, the eigenvalue 

problem given by eqs. (2) is non-self-adjoint and the resulting eigenfunctions are not 

orthogonal, thus the classical approach in [11,14] is not directly applicable. Then, 

following the formalism in [12-13,19], an adjoint eigenvalue problem to problem (2) is 

proposed, which will provide eigenfunctions that are orthogonal to those from problem 

(2), given by: 

* * 2 *( ) ( ) ( ) ,     in  L w V =   x x x x       (3a) 

with boundary conditions given as 

 * *( ) 0 ,      B S = x x             (3b) 

where the adjoint operators to L and B are given by 

*

*

( ) ( )

( ) ( ) ( )

ji

i j

i ji

j

L k d
x x

B n k
x

  
 − +    


  +



x x

x x x

      (3c,d) 

 It is shown in [12] that the eigenfunctions ( )  x and 
*( )  x obey the following 

orthogonality condition, forming a biorthogonal set: 

*

,( ) ( ) ( )  n m n m n
V

w dv N  =  x x x       (4a) 

where 
,n m  is the Kronecker delta and the norms are given by 

* = ( ) ( ) ( )n n n
V

N w dv  x x x        (4b) 

 From this property, one may readily construct the integral transform-inverse pair, 

given by: 



 

 

*( ) = ( ) ( , ) ( )n n
V

T t w T t dv x x x     transform    (5a) 

1

1
( , ) = ( ) ( )n n

n n

T t T t
N



=

x x      inverse     (5b) 

 Then, the integral transformation of eq.(1a) is performed employing the operator

*(.) ( )n
V

dv x , following the formalism in [12-13], to yield the transformed system below: 

2( )
 + ( )= ( , ( )), 1,2,..., 0n

n n n

dT t
T t g t t n t

dt
 = T         (6a) 

(0)n nT f=          (6b) 

where the transformed source terms and initial conditions are given by 

 
* = ( ) ( ) ( )n n

V
f w f dv x x x       (6c) 

*
*

*

( )
( ) ( )

( , ( ))= ( , , ) ( , , ) ( )
( ) ( )

n
n i ji

j

n n
S V

n k
x

g t t t T ds P t T dv

 
 − 


  + 
  +
 
 

 

x
x x

T x x x
x x

  (6d) 

The transformed ordinary differential system (6), in the more general nonlinear 

case, can be solved through well tested routines for initial value problems, such as the 

function NDSolve in the Mathematica system [35]. For linear source terms, the solution 

of the transformed ordinary differential system (6) can be obtained analytically, as shown 

in [11,16], as: 

2 2 ( )́

0
( ) = ( )́ ´n n

t
t t t

n n nT t f e g t e dt
− − −

+          (7) 

 In either case, the inverse formulae (5b) is then recalled to reconstruct the desired 

temperature distribution, a fully analytical solution for the linear case [12-13], or hybrid 

numerical-analytical for the nonlinear case. 

 

• GITT solution of biorthogonal eigenvalue problems 

 The above formal solution requires the computation of eigenvalues and 

eigenfunctions for both problems (2) and (3), which might not be feasible in exact form. 

Therefore, the GITT approach itself can be employed in transforming the original 

differential eigenvalue problems into algebraic ones, by proposing a simpler auxiliary 

eigenvalue problem to provide a base for the eigenfunction expansions, such as described 



in [16,23,25]. According to the more traditional approach in solving eigenvalue problems, 

a simpler self-adjoint auxiliary problem could be chosen to provide the base of the 

eigenfunction expansion in solving problems (2) and (3). However, a similar path of 

considering a biorthogonal expansion is here followed also in solving the eigenvalue 

problems. In fact, the proposed solution that follows will automatically reduce to the 

traditional one once a self-adjoint eigenvalue problem is selected to be the auxiliary 

problem.  

 Thus, consider the following adjoint auxiliary eigenvalue problems with simpler 

coefficients, ˆ ( )w x , ˆ ( )ijk x , ˆ( )d x , ˆ ( ) x , ˆ( ) x , so as to allow for analytical solutions: 

2ˆ ˆ( ) ( ) ( ) ,     in  L w V =   x x x x       (8a) 

 ˆ ( ) 0 ,      B S = x x             (8b) 

where the equation and boundary operators are written as 

ˆ ˆˆ ( ) ( )

ˆˆˆ ˆ ( ) ( ) ( )

ij

i j

i ij

j

L k d
x x

B n k
x

  
 − +    


  +



x x

x x x

      (8c,d) 

and, 

* * 2 *ˆ ˆ( ) ( ) ( ) ,     in  L w V =   x x x x       (9a) 

 * *ˆ ( ) 0 ,      B S = x x             (9b) 

where the adjoint operators to L̂  and B̂  are given by 

*

*

ˆ ˆˆ ( ) ( )

ˆˆˆ ˆ ( ) ( ) ( )

ji

i j

i ji

j

L k d
x x

B n k
x

  
 − +    


  +



x x

x x x

      (9c,d) 

Thus, the auxiliary eigenfunctions ( )  x and 
*( )  x obey the following 

orthogonality condition, forming a biorthogonal set: 

*

,
ˆ ( ) ( ) ( )  k l k l k

V
w dv M  =  x x x       (10a) 

where 
,k l  is the Kronecker delta and the norms are given by 

*ˆ = ( ) ( ) ( )k k k
V

M w dv  x x x        (10b) 



 Then, the transform-inverse pair is proposed for the desired eigenfunction, ( )n x

as: 

 

*

,
ˆ = ( ) ( ) ( )n k k n

V
w dv   x x x     transform    (11a) 

,

1

1
( )= ( )n k n k

k kM



=

  x x      inverse      (11b) 

 Similarly, the transform-inverse pair for the adjoint eigenfunction, * ( )n x

becomes: 

* *

,
ˆ = ( ) ( ) ( )n k k n

V
w dv   x x x     transform    (12a) 

* * *

,

1

1
( )= ( )n k n k

k kM



=

  x x      inverse      (12b) 

Now, we proceed with the integral transformation of eq.(2a) with the operator 

*(.) ( )k
V

dv x  to yield the transformed algebraic system, in matrix form, as: 

    ( )+ = 2
A C ψ μ E ψ  (13a) 

with the elements of the coefficient matrices given by: 

 * * *1 ˆ ˆ( ) ( ) ( )( ) ( )kl k l k l

l S V

a B B ds L L dv
M


 

= −  +  −  
 
 x x x  (13b) 

 2

kl k klc  =  (13c) 

 *1
( ) ( ) ( )kl k l

l V

e w dv
M

=   x x x  (13d) 

  1 2, ,... =μ  (13e) 

 

*
* ( )ˆ( ) ( )

ˆˆ ( ) ( )

k
k i ji

j

k

n k
x


 


 −


=

+

x
x x

x x
 (13f) 

 

Similarly, we proceed with the integral transformation of eq.(3a) with the operator 

(.) ( )k
V

dv x  to yield the transformed algebraic system for the eigenfunction * ( )n x , in 

matrix form, as: 



    * * * *( )+ = 2
A C ψ μ E ψ  (14a) 

with the elements of the coefficient matrices given by: 

 * * * * * *1 ˆ ˆ( ) ( ) ( )( ) ( )kl k l k l

l S V

a B B ds L L dv
M


 

= −  +  −  
 
 x x x  (14b) 

 * *1
( ) ( ) ( )kl l k

l V

e w dv
M

=   x x x  (14c) 

 *

( )ˆ( ) ( )

ˆˆ ( ) ( )

k
k i ij

j

k

n k
x


 


 −


=

+

x
x x

x x
 (14d) 

It is clear that if a self-adjoint auxiliary eigenvalue problem ( * *ˆ ˆ ˆ ˆ,L L B B  ) is chosen to solve 

problems (2) and (3) above, there will be just one set of auxiliary eigenfunctions, *( ) ( )k k  x x  

and the matrix systems coefficients shall be simplified accordingly. 

 

• GITT solution with self-adjoint eigenvalue problem 

In the more traditional formalism of the GITT approach, one would usually consider 

the adoption of a classical self-adjoint Sturm-Liouville problem as the eigenfunction 

expansion base, while the cross-derivatives in the equation and the derivatives of the other 

coordinates in each boundary condition would be merged with the corresponding source 

terms. Thus, problem (1) would be rewritten as: 

( , )
( ) ( , ) ( , , ) ,     in  ,   > 0

T t
w LT t P t T V t

t


+ = 



x
x x x x     (15a) 

with initial and boundary conditions given as 

( ,0) ( ) ,        T f V = x x x                                               (15b) 

 ( , ) ( , , ) ,      ,  t > 0 BT t t T S= x x x           (15c) 

where the new equation and boundary operators corresponding to an orthotropic medium 

are written in tensor notation as 

( ) ( )

( ) ( ) ( )

ii

i i

i ii

i

L k d
x x

B n k
x

  
 − + 

  


  +



x x

x x x

      (15d,e) 

and the source terms are redefined as 



( , , ) ( , , ) (1 ) ( )ij ij

i j

P t T P t T k
x x

  
= + −    

x x x      (15f) 

( , )
( , , ) ( , , ) ( ) ( )(1 )i ij ij

j

T t
t T t T n k

x


 =  − −



x
x x x x      (15g) 

The self-adjoint eigenvalue problem is then chosen as: 

2( ) ( ) ( ) ,     in  L w V =   x x x x       (16a) 

with boundary conditions given as 

( ) 0 ,      B S = x x            (16b) 

Following the formalism in the GITT approach [14,16], the integral transform-inverse 

pair is given by: 

( ) = ( ) ( , ) ( )n n
V

T t w T t dv x x x     transform    (17a) 

1

1
( , ) = ( ) ( )n n

n n

T t T t
N



=

x x      inverse     (17b) 

Then, the integral transformation of eq.(15a) is performed employing the operator

(.) ( )n
V

dv x , following the formalism in [14,16], to yield the transformed system below: 

2( )
 + ( )= ( , ( )), 1,2,..., 0n

n n n

dT t
T t g t t n t

dt
 = T         (18a) 

(0)n nT f=          (18b) 

where the transformed source terms and initial conditions are given by 

 = ( ) ( ) ( )n n
V

f w f dv x x x        (18c) 

( )
( ) ( )

( , ( ))= ( , , ) ( , , ) ( )
( ) ( )

n
n i ii

i
n n

S V

n k
x

g t t t T ds P t T dv

 
 − 


  + 

 + 
 
 

 

x
x x

T x x x
x x

  (18d) 

Although fairly straightforward, the traditional GITT approach is here reviewed only 

for the sake of completeness, since it should lead to a slower convergence behavior in 

comparison to the here proposed extended methodology employing the adjoint eigenvalue 

problems that fully account for the general anisotropy. As can be seen from eq.(18d) 

above, the source terms in both the equation and boundary conditions carry all the 

information on the off-diagonal elements in the thermal conductivity tensor, and then 

compose the transformed source term, ( , ( ))ng t tT , responsible for the coupling of the 



transformed potentials and the slower convergence behavior. Analytical filtering and/or 

integral balance strategies [18,21,23] can in any case be employed to reduce the 

importance of these modified source terms. Also, the eigenvalue problem (16) can be 

readily solved for any arbitrary space variation of the coefficients following the same 

GITT procedure for eigenvalue problems above discussed [25-27], based on a simpler 

auxiliary self-adjoint eigenvalue problem. 

 

 

TEST CASE 

 

To offer further details in the solution procedure, a two-dimensional transient heat 

conduction problem is considered, represented by an anisotropic material inclusion in a 

rectangular isotropic substrate. The formulation already considers homogeneous 

boundary conditions, thus skipping the step on the proposition of a filtering solution for 

homogenization. The test problem is then formulated as: 

11 12 21 22

0 1 0 1

( , , )
( , ) ( , ) ( , , ) ,     

in  [ , ], [ , ],  > 0

T x y t T T T T
w x y k k k k d x y T P x y t

t x x y y x y

x x x y y y t

         
= + + + − +   

         

 

 

   (19a) 

with initial and boundary conditions given as 

0 1 0 1( , ,0) ( , ) ,    in  [ , ], [ , ]  T x y f x y x x x y y y=                                    (19b) 

1

, , 11 12( 1)  =0,     , =0,1,   > 0 k

x k x k k

T T
T k k x x k t

x y

 
 

 

+  
+ − + = 

 
        (19c) 

1

, , 21 22( 1)  =0,     , =0,1,   > 0 k

y k y k k

T T
T k k y y k t

x y

 
 

 

+  
+ − + = 

 
        (19d) 

Following the formalism described in the previous section, the biorthogonal set of 

eigenvalue problems is given by: 

2

11 12 21 22

0 1 0 1

( , ) ( , ) ( , ) 0 ,     

in  [ , ], [ , ]

k k k k w x y d x y x y
x x y y x y

x x x y y y

        
 + + + +  −  =             

 

    

(20a) 

with boundary conditions 



1

, , 11 12( 1)  =0,     , =0,1k

x k x k kk k x x k
x y

+   
 + −  + = 

  
        (20b) 

1

, , 21 22( 1)  =0,     , =0,1k

y k y k kk k y y k
x y

+   
 + −  + = 

  
                    (20c) 

and 

* * * *
2 *

11 21 12 22

0 1 0 1

( , ) ( , ) ( , ) 0 ,     

in  [ , ], [ , ]

k k k k w x y d x y x y
x x y y x y

x x x y y y

        
 + + + +  −  =             

 

 

   (21a) 

with boundary conditions 

* *
* 1

, , 11 21( 1)  =0,     , =0,1k

x k x k kk k x x k
x y

+   
  + −  + = 

  
       (21b) 

* *
* 1

, , 12 22( 1)  =0,     , =0,1k

y k y k kk k y y k
x y

+   
  + −  + = 

  
       (21c) 

The orthogonality property, Eq.(4a), is then given as: 

1 1

0 0

*

,( , ) ( , ) ( , )  
y x

n m n m n
y x

w x y x y x y dxdy N  =          (22a) 

with the normalization integral 

1 1

0 0

*( , ) ( , ) ( , )
y x

n n n
y x

N w x y x y x y dxdy=          (22b) 

The integral transform pair then becomes: 

1 1

0 0

*( ) = ( , ) ( , , ) ( , )
y x

n n
y x

T t w x y T x y t x y dxdy      transform   (23a) 

1

1
( , , ) = ( , ) ( )n n

n n

T x y t x y T t
N



=

      inverse     (23b) 

The transformed system results in: 

2( )
 + ( )= ( ), 1,2,..., 0n

n n n

dT t
T t g t n t

dt
 =          (24a) 

(0)n nT f=          (24b) 

where the transformed source terms and initial conditions are given by 

 
1 1

0 0

* = ( , ) ( , ) ( , )
y x

n n
y x

f w x y f x y x y dxdy       (24c) 

1 1

0 0

*( )= ( , , ) ( , )
y x

n n
y x

g t P x y t x y dxdy           (24d) 



Equations (24a,b) are then readily solvable analytically for this linear problem, as 

given by Eq.(7). 

With respect to the solution of the two eigenvalue problems, Eqs.(20a-c) and (21a-c), 

one fairly straightforward choice of auxiliary eigenvalue problems corresponds to the 

orthotropic medium with constant coefficients, when * ( , ) ( , )k kx y x y  , given as: 

2 2
2

11 22 0 1 0 12 2
ˆ ˆ ˆˆ ( , ) 0 ,     in  [ , ], [ , ]k k w d x y x x x y y y

x y

   
 + +  −  =  
  

  (25a) 

with boundary conditions 

1

, , 11
ˆ( 1)  =0,     , =0,1k

x k x k kk x x k
x

+  
 + −  = 

 
        (25b) 

1

, , 22
ˆ( 1)  =0,     , =0,1k

y k y k kk y y k
y

+  
 + −  = 

 
                   (25c) 

where 
11k̂ , 

22k̂ , ŵ , and d̂ are characteristic constant values of the original coefficients. 

Upon independent variables transformation, the auxiliary problem can be readily 

rewritten as: 

2 2
2

0 1 0 12 2
( , ) 0 ,     in  [ , ], [ , ]X Y X X X Y Y Y

X Y

   
+ +   =  

 
  (26a) 

with boundary conditions 

1

, ,
ˆ( 1) =0,     , =0,1k

x k x k kX X k
X

+ 
 + −  =


           (26b) 

1

, ,
ˆ( 1) =0,     , =0,1k

y k y k kY Y k
Y

+ 
 + −  =


                              (26c) 

where, 

,,2 2

, ,1/2 1/2 1/2 1/2 1/2 1/2

11 22 11 22 11 22

ˆ ˆ ˆˆ; ; ; ; ; ;
ˆ ˆ ˆ ˆ ˆ ˆ

y kx kk k
k k x k y k

x yx y
X Y X Y w d

k k k k k k


= = = =  =  −  =  =   (26d-j) 

and separation of variables is directly employed to find the analytical solution of the 

auxiliary eigenfunctions and eigenvalues. 

 This auxiliary eigenvalue problem is then employed in solving for the 

biorthogonal set of eigenfunctions, as illustrated below for ( , )n x y : 

1 1

0 0
,

ˆ = ( , ) ( , )
y x

n k k n
y x

w x y x y dxdy        transform    (27a) 



,

1

( , )= ( , )n k n k

k

x y x y


=

        inverse     (27b) 

Also, it has been preferred to express the integral transform pair using the 

normalized auxiliary eigenfunction, given as 

1/2

1
( , )= ( , )k k

k

x y x y
M

                  (27c) 

with normalization integral 

1 1

0 0

2ˆ = ( , )
y x

k k
y x

M w x y dxdy            (27d) 

Following the integral transformation procedure as applied first to problem (20), 

for instance, the resulting matrix eigenvalue problem is written in matrix form as in 

eq.(13a), with the elements of the coefficient matrices given by: 

 
1, 2, 3, 4, 5, 6,( ) ( )nm nm nm nm nm nm nma a a a a a a= − + + − +  (28a) 

 
1 1

0 0

( , ) ( , ) ( , )
y x

nm m n
y x

c d x y x y x y dxdy= −     (28b) 

 1 1

0 0

( , ) ( , ) ( , )
y x

nm m n
y x

e w x y x y x y dxdy=     (28c) 

where, 

 
1

0

1 0

1, 11 12 11 12( ) ( )
y

m m m m
nm n n

y
x x x x

a k k k k dy
x y x y

= =

    
 = +  − + 

     
  (28d) 

 
1 1

0 0
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y x
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nm
y x

a k dxdy
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y x
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y x
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 
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0
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m m m m
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a k k k k dx
x y x y
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0 0
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y x
m n
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y x

a k dxdy
x y
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RESULTS AND DISCUSSION 

 

A symbolic-numerical algorithm was constructed in the Mathematica v.13.2 

software system, for the GITT solution of problem (19) with arbitrarily two-dimensional 

spatial variable coefficients. In order to report some numerical results, the required data 

was provided for the test case, represented by an isotropic substrate given by a square 

plate of side a=b=0.08 m, thermal conductivity ks=3.6 W/mºC , specific mass ρs=3100 

kg/m3, and specific heat cp,s=1100 J/kgºC. An anisotropic material inclusion is considered 

as a square insert in the middle of the substrate plate, with sides lx=ly=0.015m, thermal 

conductivity components k11= k22=26 W/mºC , k12= k21=8.667 W/mºC , specific mass 

ρc=8666 kg/m3, and specific heat cp,c=343 J/kgºC. There is no heat generation source 

(P=0), no linear heat dissipation (d=0), and the initial condition is an uniform temperature 

field, f=Tin=100ºC. The boundary conditions at x=y=0 are insulated boundaries, 
,0x =

,0y =0 and 
,0x =

,0y =1, and at the boundaries x=y=a, prescribed temperatures (Tw=0ºC) 

or 
,1x =

,1y =1 and 
,1x =

,1y =0. The test case is simulated up to a final time value of 

tf=3600 seconds. The proposed heterogeneous test case then involves an abrupt variation 

of thermophysical properties at the interfaces of the substrate and central inclusion 

regions. 

The first step in the solution procedure is the integral transform solution of the 

eigenvalue problems, eqs. (20,21), based on the analytical solution of the auxiliary 

problems, eqs. (26), taking the properties of the substrate as characteristic values. 

Considering different truncation orders in the inverse formula, eq.(27b), one may inspect 

the convergence behavior in the eigenfunction expansion proposal. Table I below 

provides numerical results for a few selected eigenvalues of problem (19), including the 

five most fundamental modes (µ1 to µ5), for truncation orders that vary from M=50 to 

600. The last column provides a set of converged results to the four significant digits 

provided (plus or minus one in the last significant digit). One may observe that fairly low 

truncation orders already provide two or three converged digits, and that the estimate will 

degenerate for eigenvalue orders close to the truncation order, such as the result for µ50 

with M=50. 



 

 

Table I – Convergence of selected eigenvalues in terms of truncation order M. 

  M 

µ        

50 100 200 300 400 500 600 

1 0.02981 0.02975 0.02963 0.02961 0.02959 0.02957 0.02956 

2 0.06521 0.06513 0.06502 0.06500 0.06498 0.06496 0.06495 

3 0.06671 0.06660 0.06639 0.06637 0.06632 0.06629 0.06627 

4 0.08878 0.08863 0.08837 0.08833 0.08828 0.08823 0.08821 

5 0.1047 0.1045 0.1044 0.1044 0.1043 0.1043 0.1043 

10 0.1470 0.1468 0.1466 0.1465 0.1465 0.1464 0.1464 

20 0.2063 0.2057 0.2051 0.2050 0.2049 0.2048 0.2048 

30 0.2595 0.2562 0.2551 0.2548 0.2546 0.2544 0.2543 

40 0.3006 0.2924 0.2919 0.2919 0.2918 0.2917 0.2917 

50 0.4976 0.3311 0.3301 0.3296 0.3292 0.3291 0.3289 

  

Next, one may examine the convergence behavior of the temperature field 

proposed expansion, eq.(23b), in terms of the truncation order of the temperature 

eigenfunction expansion (N). Taking a fixed truncation order for the eigenvalue problem 

expansion (M=600), Table II provides temperature values at different positions within 

both the substrate and anisotropic insert and different time values, with increasing 

truncation orders in eq.(23b). Clearly, with fairly low truncation orders below N=50, the 

temperature values are already fully converged to the six significant digits provided, and 

even to the fifth digit with N<25, showing that the choice of a biorthogonal eigenvalue 

problems set indeed yields a rapidly converging temperature expansion. 

 

Table II – Convergence of transient temperature in terms of temperature 

expansion truncation order (N) with M=600 terms for eigenvalue problem. 

N 

(x, y, t) 
10 25 50 75 100 

(0.02,0.02,180) 99.1125 99.3510 99.3513 99.3513 99.3513 

(0.04,0.04,180) 90.0926 90.1142 90.1144 90.1144 90.1144 

(0.06,0.06,180) 48.3814 48.5623 48.5616 48.5616 48.5616 

(0.02,0.02,360) 92.6351 92.6405 92.6405 92.6405 92.6405 



(0.04,0.04,360) 70.6628 70.6636 70.6636 70.6636 70.6636 

(0.06,0.06,360) 29.5010 29.5041 29.5041 29.5041 29.5041 

 

 In order to offer an illustration of the GITT usefulness in benchmarking for purely 

numerical methodologies and codes, the test case was also solved employing the well-

known COMSOL v.5.6 finite element code [34], considering different levels of mesh 

refinement as automatically provided by the software package. Table III below provides 

a summary of the different mesh sizes considered, including the adopted time step in each 

illustrative run. Figure 1 below provides a sample of the meshing for the Extra Fine case. 

 

Table III – Different mesh sizes and time steps considered in COMSOL solutions. 

Name Number of elements ∆t (s) 

Coarse 282 1 

Normal 634 0.125 

Fine 1004 0.084 

Finer 1950 0.066 

Extra Fine 6680 0.046 

 

 



Figure 1 – Finite element meshing for the Extra Fine mesh refinement option in 

COMSOL v.5.6 [34]. 

 

The convergence of the eigenvalues and corresponding eigenfunctions, briefly 

illustrated in Table I, has a direct influence in the temperature field convergence as now 

analyzed in Table IV, where the truncation order M is increased from 100 to 600 terms, 

while keeping N=M in the temperature expansion. The results for M=600 are fully 

converged to plus or minus one in the fourth significant digit, and the corresponding 

column provides a set of benchmark results for reference purposes. Clearly, the 

convergence rates of the two expansions, for temperatures and eigenfunctions, have to be 

analyzed simultaneously, so as to surely yield fully converged results for the temperature 

distribution. Also shown are the results for the Extra Fine mesh refinement option of 

Table III from COMSOL [34], for the same positions and time values.  

 

Table IV – Convergence of transient temperature at different positions with M 

terms in the eigenvalue problem expansion truncation order (N=M). 

M 

(x, y, t) 
100 200 300 400 500 600 COMSOL 

(0.02,0.02,180) 99.24 99.33 99.27 99.36 99.37 99.35 98.82 

(0.04,0.04,180) 89.81 89.95 90.11 90.14 90.11 90.11 89.96 

(0.06,0.06,180) 48.79 48.57 48.59 48.58 48.57 48.56 51.69 

(0.02,0.02,360) 92.26 92.52 92.48 92.60 92.66 92.64 92.03 

(0.04,0.04,360) 70.383 70.50 70.65 70.69 70.66 70.66 72.34 

(0.06,0.06,360) 30.00 29.60 29.60 29.55 29.52 29.50 31.98 

(0.02,0.02,720) 71.16 71.60 71.60 71.74 71.83 71.83 72.79 

(0.04,0.04,720) 46.32 46.41 46.50 46.53 46.52 46.52 48.25 

(0.06,0.06,720) 17.50 17.11 17.10 17.04 17.01 16.99 17.75 

(0.02,0.02,1800) 27.98 28.38 28.41 28.52 28.59 28.61 29.06 

(0.04,0.04,1800) 17.02 17.17 17.22 17.25 17.27 17.28 17.12 

(0.06,0.06,1800) 6.160 6.036 6.036 6.016 6.012 6.005 5.76 

 

 

The COMSOL numerical solution is also analyzed in terms of the dimensionless 

temperature, θ=(Tin-T)/Tin, relative deviations with respect to the converged GITT results, 

Table V. The deviations are quite satisfactory, being throughout most of the time and 

space domains below 5%.  



 

Table V – Dimensionless temperature (COMSOL) relative deviations with respect 

to GITT solution with N=M=600 at different positions. 

M 

(x, y, t) 

GITT  

(M=N=600) 

COMSOL 

(Extra Fine) 

Relative deviation 

(%) 

(0.02,0.02,360) 0.07359 0.07969 8.29 

(0.04,0.04,360) 0.2934 0.2766 5.71 

(0.06,0.06,360) 0.7050 0.6802 3.51 

(0.02,0.02,720) 0.2817 0.2721 3.40 

(0.04,0.04,720) 0.5348 0.5175 3.24 

(0.06,0.06,720) 0.8301 0.8225 0.920 

(0.02,0.02,1080) 0.4668 0.4534 2.86 

(0.04,0.04,1080) 0.6716 0.6659 0.839 

(0.06,0.06,1080) 0.8842 0.8850 0.0875 

(0.02,0.02,1800) 0.7139 0.7094 0.638 

(0.04,0.04,1800) 0.8272 0.8288 0.187 

(0.06,0.06,1800) 0.9399 0.9424 0.261 

 

 

Figures 2.a-c further illustrate the COMSOL [34] mesh refinement analysis, 

according to the selected options shown in Table III, plotting the time evolution of the 

dimensionless temperature, θ=(Tin-T)/Tin, relative deviations with respect to the present 

GITT results converged to the fourth digit, with M=N=600 terms, at three different 

positions. Again, one may observe that the agreement is quite satisfactory for the different 

meshes, with relative deviations falling below 5% along most of the time evolution. It is 

also observable, for each spatial position considered, the time interval when gradients and 

time rates are locally more significant, and the numerical approximation leads to a relative 

deviation increase. 

 

 



 
(a) 

 
(b) 

 
(c) 

Figures 2a-c – COMSOL [34] dimensionless temperature relative deviations for 

different mesh refinement options, Table III, with respect to converged GITT 

results at positions (x,y): (a) (0.02,0.02); (b) (0.04,0.04); (c) (0.06,0.06). 



Figure 3 provides temperature profiles at different time values along the y variable 

for the vertical line with x=0.04, which crosses both the substrate and the anisotropic 

inclusion right at the midline, thus capturing the transitions between the two materials. 

The present converged GITT results are shown in solid lines, in different colours for each 

time value (t=180, 360, 720, and 1800 s), while the COMSOL results with the Extra Fine 

mesh refinement option are provided in dotted lines. Again, the excellent agreement 

between the numerical and hybrid numerical-analytical solutions is evident, with 

practically full adherence to the graph scale. The central inclusion thermal behaviour, due 

to its larger anisotropic conductivity, is noticeable in terms of the reduced temperature 

gradients in this region. 

 

 

Figure 3 – Temperature profiles along y-variable for vertical line at x=a/2=0.04m 

(solid lines – GITT with M=600; dashed lines – COMSOL with Extra Fine mesh) 

 

Next, we consider two asymmetric situations of a rectangular central inclusion, 

with anisotropic thermal conductivity. The first asymmetric situation is a rectangular 

insert in the middle of the substrate plate, with sides lx=0.015m and ly=0.025m, and 

thermal conductivity components k11= k22=26 W/mºC , k12= k21=8.667 W/mºC, as in the 

previous square insert case. The second asymmetric situation is the same rectangular 

insert in size but with different thermal conductivity components, k11=13 W/mºC, k22=52 

W/mºC , k12= k21=8.667 W/mºC. The remaining thermophysical properties assume the 

same values as for the previous square central region. Figures 4a,b provide the 

temperature profiles at different time values along the x and y variables for the horizontal 

line with y=0.04 m the vertical line with x=0.04 m, respectively, which cross both the 

substrate and the anisotropic inclusion right at the midline, thus capturing the transitions 



between the two materials. Figures 5a,b provide again the temperature profiles along the 

same horizontal and vertical lines, but now for the other case with different diagonal 

thermal conductivity values. The GITT results with M=500 terms are shown in solid lines, 

in different colours for each time value (t=180, 360, 720, and 1800 s), while the COMSOL 

results with the Extra Fine mesh refinement option are provided in dotted lines, again 

with excellent agreement to the graph scale with the integral transform benchmark results. 

 

 

(a) y=b/2 

 

 

(b) x=a/2 

 

Figure 4 – Temperature profiles along (a) horizontal line at y=b/2=0.04m and (b) 

vertical line at x=a/2=0.04m with k11=k22=26 W/mºC , k12= k21=8.667 W/mºC (solid 

lines: GITT M=500; dotted lines: COMSOL Extra Fine mesh) 



 

(a) y=b/2 

 

 

(b) x=a/2 

 

Figure 5 – Temperature profiles along (a) horizontal line at y=b/2=0.04m and (b) 

vertical line at x=a/2=0.04m with k11=13 W/mºC, k22=52 W/mºC , k12= k21=8.667 

W/mºC (solid lines – GITT M=500; dotted lines – COMSOL Extra Fine mesh) 

 

Finally, Figures 6a,b provide the isotherms within the two regions, substrate and 

central inclusion, at t=900 seconds, as obtained from the GITT solution with M=600 

terms, for the squared and rectangular inserts with different thermal conductivities. From 

the dashed regions one can observe the fairly uniform temperature distribution within the 

central inclusions, with the corresponding deformations due to the anisotropic behavior. 



 

 

Figure 6 – Isotherms of GITT solution (M=600) at t=900 s. Dashed line is the 

central anisotropic inclusion: (a)square, k11=k22=26 W/mºC, k12=k21=8.667 W/mºC; 

(b)rectangle, k11=13 W/mºC, k22=52 W/mºC, k12=k21=8.667 W/mºC 



CONCLUSIONS 

 

The Generalized Integral Transform Technique (GITT) was further advanced to 

obtain hybrid numerical-analytical solutions for transient heat conduction in 

multidimensional heterogeneous anisotropic domains. Based on previous works, a 

biorthogonal eigenfunction expansion is proposed that carries along the information on 

the anisotropic diffusive terms. As for the heterogeneous behavior, a single domain 

reformulation strategy rewrites the problem with multiple regions or materials as one 

single energy equation with space variable coefficients and source terms. Besides, the 

GITT itself is proposed for the solution of the biorthogonal eigenvalue problems pair with 

the heterogeneity incorporated into the coefficients, thus transforming the differential 

eigenvalue problems into matrix eigensystem analysis. Simpler biorthogonal or self-

adjoint auxiliary eigenvalue problems are considered in writing the expansions for the 

original unknown eigenfunctions. A test case consisting of an isotropic rectangular 

substrate with a central anisotropic inclusion is considered more closely and used to 

illustrate the excellent convergence behavior of the temperature field based on the 

biorthogonal eigenvalue problems. Besides, this error-controlled solution is employed as 

benchmark reference results to inspect the mesh refinement improvement in finite 

element solutions for the same test-case, as obtained from the well-known COMSOL 

Multiphysics code [34]. The proposed approach is directly applicable to handling heat 

conduction in functionally graded heterogeneous media and thermal metamaterials 

modelling. Besides, it opens avenues of extension possibilities in the analysis of heat 

transfer in irregular anisotropic domains [36-37] and in the identification of 

thermophysical properties in heterogeneous anisotropic materials [38-39]. 
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