
HAL Id: hal-04594762
https://hal.science/hal-04594762v2

Submitted on 11 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep reinforcement learning for weakly coupled MDP’s
with continuous actions

Francisco Robledo, Urtzi Ayesta, Konstantin Avrachenkov

To cite this version:
Francisco Robledo, Urtzi Ayesta, Konstantin Avrachenkov. Deep reinforcement learning for weakly
coupled MDP’s with continuous actions. ACM SIGMETRICS / ASMTA 2024, Jun 2024, Venise,
Italy. �hal-04594762v2�

https://hal.science/hal-04594762v2
https://hal.archives-ouvertes.fr


Deep reinforcement learning for weakly coupled MDP’s
with continuous actions

Francisco Robledo1[0000−0003−1040−1513], Urtzi Ayesta2[0000−0003−1761−2313], and
Konstantin Avrachenkov3[0000−0002−8124−8272]

1 UPV/EHU, Univ. of the Basque Country, 20018 Donostia, Spain
UPPA, Université de Pau et des Pays de l’Adour, 64000 Pau, France

frrobledo96@gmail.com
2 IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, Toulouse, France

UPV/EHU, Univ. of the Basque Country, 20018 Donostia, Spain
IKERBASQUE - Basque Foundation for Science, 48011 Bilbao, Spain

urtzi.ayesta@irit.fr
3 INRIA Sophia Antipolis, France k.avrachenkov@inria.fr

Abstract. This paper introduces the Lagrange Policy for Continuous Actions
(LPCA), a reinforcement learning algorithm specifically designed for weakly
coupled MDP problems with continuous action spaces. LPCA addresses the chal-
lenge of resource constraints dependent on continuous actions by introducing a
Lagrange relaxation of the weakly coupled MDP problem within a neural network
framework for Q-value computation. This approach effectively decouples the
MDP, enabling efficient policy learning in resource-constrained environments.
We present two variations of LPCA: LPCA-DE, which utilizes differential evolu-
tion for global optimization, and LPCA-Greedy, a method that incrementally and
greadily selects actions based on Q-value gradients. Comparative analysis against
other state-of-the-art techniques across various settings highlight LPCA’s robust-
ness and efficiency in managing resource allocation while maximizing rewards.

Keywords: Reinforcement Learning · Weakly Coupled MDP · Continuous Ac-
tions · Lagrange Policy · Neural Networks · Differential Evolution · Resource
Allocation · Policy Optimization.

1 Introduction

The exploration of optimal decision-making under uncertainty is a fundamental prob-
lem [17], with significant implications in diverse fields such as telecommunications,
finance, robotics, and healthcare. At the heart of this exploration lies the restless multi-
armed bandit (RMAB) problem, an extension of the classical multi-armed bandit frame-
work [6] to scenarios where arms evolve independently of the player’s actions. Intro-
duced by [21], the RMAB problem highlights the challenge of allocating limited re-
sources among competing projects or processes in a state of continuous change. Re-
cently, many studies have focused on neural network approximation in restless bandit
problems, such as the works of [1], [14], and [11], which use deep reinforcement learn-
ing to approximate the Whittle indices used in their heuristics.
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One can generalize the restless bandits to weakly coupled MDPs, where the in-
dependent MDPs are coupled only through a constraint on the action and actions can
belong to complex spaces. These problems present substantial complexity due to con-
straints of the actions and common resources. A key advancement in addressing such
complex problems came with the introduction of Lagrangian Decomposition methods,
as explored by [7]. The approach of [7] proposes a Lagrangian decomposition approach
for solving the weakly coupled dynamic optimization problem, which yields upper
bounds as well as heuristic solutions. Works by [16] and [10] have introduced meth-
ods for navigating these complex decision spaces, employing Gaussian processes and
simulation-based algorithms, respectively, to tackle the multi-action challenges.

Other studies in weakly coupled MDPs include the work of [20], which addresses
the challenges of online learning in this specific MDP setting and presents an algorithm
with a tight O(

√
t) regret and constraint violations simultaneously. Additionally, [5]

introduces the LP-update policy, which generalizes the classical restless bandit prob-
lems and demonstrates asymptotic optimality at various rates depending on problem
characteristics.

Significant advances in deep reinforcement learning include the development of
Deep Deterministic Policy Gradient (DDPG) [9] and Twin Delayed DDPG (TD3) [4],
algorithms that have significantly advanced complex control tasks by solving MDPs
with continuous actions. Building on the capabilities of these frameworks, the OptLayer
architecture was introduced [12], specifically designed to generate safe, constraint-
compliant actions. OptLayer integrates an additional layer that solves a constraint opti-
mization problem applicable to both DDPG and TD3 architectures. This extension en-
sures that the actions taken by the learning models adhere to predefined constraints. [8]
explores the online learning landscape for discrete multi-action RMABs and presents
a Q-learning Lagrange policy algorithm tailored for restless multi-armed bandits with
multiple discrete actions. Similarly, [15] uses this Lagrangian decomposition to train
separate subagents for each individual MDP problem, and a general network to com-
bine these results, also in the context of discrete multi-action RMABs.

In this work, we introduce the Lagrange Policy for Continuous Actions (LPCA)
algorithm, a reinforcement learning algorithm specifically designed for weakly cou-
pled MDP problems with continuous action spaces. To the best of our knowledge, this
is the first paper proposing an algorithm to solve weakly coupled MDPs with con-
tinuous actions. LPCA integrates a neural network-based framework to study weakly
coupled MDP using the Lagrange relaxation introduced in [7] to decouple the projects
of the MDP, being able to study their dynamics independently of one another and ef-
fectively balancing resource constraints and individual project decisions. Continuous
actions allow for a more accurate representation of real-world scenarios, such as adjust-
ing resource levels or control parameters, without the limitations of discretization. This
flexibility enhances the algorithm’s ability to optimize performance by better managing
trade-offs between competing processes, ultimately leading to more robust and efficient
policy learning.
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2 Problem Formulation

In our approach to the weakly coupled MDPs with continuous actions, we consider an
environment consisting of N projects, each characterized by its unique state, action, and
the resulting reward. Specifically, the state of the system is given by s = (s1, ..., sN ) ∈
S, where each project is represented as si, an element from the finite state space Si,
i = 1, ..., N. Correspondingly, the actions taken in each project are denoted as elements
ai belonging to the compact action space Ai, and the complete system action is denoted
with bold font a = (a1, ..., aN ) ∈ A. The rewards obtained from these actions are
encapsulated as elements ri in the reward vector r. The cost associated with each action
ai is expressed as c(ai), and the cumulative cost for all actions is given by C(a) =∑

i c(ai).
The system dynamics are governed by a transition probability kernel T : S ×A ×

S → [0, 1], which specifies the probabilities of transitioning to new states given par-
ticular state and action vector. Given the values of actions, T has a product form. A
discount factor γ ∈ (0, 1) is used to balance immediate and future rewards.

The long-term discounted reward can be expressed through the Bellman value func-
tion V (s), which is the expected sum of discounted rewards accumulated over time,
starting from the state s and satisfying the Bellman dynamic programming equation:

V (s) = max
a∈A, C(a)=B

[
N∑
i=1

ri(si, ai) + γE[V (s′) | s,a]

]
. (1)

The complexity of the problem comes primarily from the constraint imposed on the
actions, which are dictated by a common pool of resources. Specifically, each project
must select a continuous action ai ∈ [0, amax

i ] whose activation cost, represented by
the total cost C(a), directly consumes a predefined total pool of available resources B.
This shared resource pool constraint means that actions across projects are inherently
coupled, which significantly increases the complexity of the decision space as the num-
ber of projects increases. The exponential growth in decision space complexity due to
this coupling underscores the challenge of resource allocation and emphasizes the need
for efficient use of the shared resource pool [2].

To manage this complexity, we can relax the value function using a Lagrange mul-
tiplier λ. This transforms the original problem into a Lagrangian form:

J(s, λ) =max
a∈A

[
N∑
i=1

ri(si, ai) + λ

(
B −

N∑
i=1

c(ai)

)
+ γE[J(s′, λ) | s,a]

]
. (2)

Here, λ is the Lagrange multiplier associated with the resource constraint B. By
adjusting λ, we effectively balance the immediate cost of actions against their long-term
rewards, allowing for a decoupling of the projects’ decisions. If we assume the additive
structure of the value function with respect to the projects of the weakly coupled MDP,
the equation (2) can be rewritten as:

J(s, λ) =
λB

1− γ
+

N∑
i=1

max
ai∈Ai

Qi(si, ai, λ), (3)
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where

Qi(si, ai, λ) = ri(si, ai)− λc(ai) + γ
∑
s′i

T (si, ai, s
′
i) max

a′
i∈Ai

Qi(s
′
i, a

′
i, λ). (4)

In this decoupled framework, the Lagrange multiplier λ is instrumental in determining
the optimal policy for each project. Under the budget constraint B, λ acts as a trade off
parameter by introducing a penalty term λc(ai) for the actions taken. A higher λ param-
eter places more emphasis on minimizing the cost (i.e., staying within the resource limit
B), while a lower λ value shifts the focus towards maximizing rewards with less em-
phasis on the cost implementations. As λ rises, the preferred policy for each project will
increasingly favor actions that offer the highest “value-to-cost” ratio. Thus, the function
(3) is a measure of the total expected reward, adjusted for the cost of the actions taken
under that policy. To balance the expected rewards with the cost of actions, we need to
find λ∗ such that

λ∗(s) = argmin
λ

J(s, λ). (5)

This term is defined as the best trade-off between maximizing rewards and minimiz-
ing the cost of actions. It is at this point that the policy aligns with the time-averaged
resource constraints, ensuring that the actions selected are not only rewarding but also
resource-efficient.

Then, in a continuous action framework, at each time step t we aim to solve the
following Knapsack-like optimization problem:

max
a∈A

N∑
i=1

Qi(si(t), ai, λ
∗(si)) s.t.

N∑
i=1

c(ai) = B. (6)

In the LPCA algorithm, described in detail next, we interpolate the curve of the Q-values
Q(s, a, λ) as functions of the Lagrange multiplier λ through a neural network. This
curve is a convex function with respect to λ [7], making the minimization of (3) a simple
one-dimensional convex optimization problem once the neural network is trained. For
the optimization (6) we explore two approaches as outlined in Sections 3.1 and 3.2.

3 LPCA Algorithm

In numerous practical applications, the model parameters, particularly expected re-
wards and transition probabilities, are often unknown or inaccessible. To address this,
traditional reinforcement learning methods have been employed to learn those parame-
ters [17]. However, a significant challenge arises in environments where the projects of
the MDP are coupled. In these cases, the complexity of solving the problem increases
exponentially with the number of projects. To address this challenge, we introduce
LPCA, a reinforcement learning algorithm that extends Q-learning by incorporating
neural networks for approximating Q-values for constrained continuous actions. This
section details the operation and implementation of LPCA.

The core methodology of the LPCA algorithm involves a two-timescale process
centered around learning and optimization. Initially, LPCA focuses on training a neural
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Algorithm 1 LPCA Training Process
Require: Environment, Niter, Update frequency N , Batch size M , Policy method
Ensure: Train LPCA Model, Update Policy Dictionary
1: Initialize Q-value neural network, policy dictionary, experience memory
2: for iteration = 1 to Niter do
3: Select and execute action a, store (s,a, r, s′, done)
4: if memory ≥M then
5: Update Q-values with mini-batch of M (Algorithm 2)
6: end if
7: if iteration mod N = 0 then
8: Update policy with Differential Evolution or Greedy (Algorithm 3)
9: end if

10: end for

network to accurately approximate the Q-values as defined in Equation (4). This pro-
cess involves learning the balance between immediate rewards, action costs, and future
rewards based on the transition dynamics of the system. Once the neural network is ef-
fectively trained, in online fashion, for the current coupled state s, LPCA computes the
value function J(s, λ) as described in Equation (3). The objective is to determine the
optimal Lagrange multiplier λ∗ that minimizes J(s, λ) as formulated in Equation (5).
Finally, LPCA addresses the optimization problem set out in Equation (6) through two
possible methods: a differential evolution optimizer (Algorithm 4) or a greedy optimizer
(Algorithm 5).

The general training process of LPCA, as outlined in Algorithm 1, is a key aspect of
our approach. The algorithm begins by utilizing a policy dictionary to interact with the
environment. This dictionary is a mapping of states to actions, where each state corre-
sponds to a unique action vector. During each interaction, an action is selected based on
the current policy, and the environment responds accordingly. The response, including
the state transition and reward information, is stored as a transition sample. Notably,
each process of the weakly coupled MDP is treated individually, with the transition
sample from each project recorded separately in a memory buffer. This memory serves
as a repository for experiences, which are later used to update the neural network that
approximates Q-values.

The training of the neural network, as detailed in Algorithm 2, is central to learn-
ing the Q-values from Equation (4) associated with state transitions (s, a, r, s′) across a
range of test λ values. These test values are selected as a random subset from ‘lambda_grid’,
which encompasses a discretized set of λ values in the range of a problem-dependent
[−λmax, λmax], using 1000-point discretization.

During each iteration of the training process, the algorithm samples a batch of ex-
periences from the memory. Each experience comprises the current state s, the action
taken a, the reward received r, the subsequent state s′, and a boolean flag indicating
the terminal status of s′, i.e. whether s′ is the last state in an epoch, for a given in-
dividual project. For each experience, the algorithm computes the target Q-values for
the state-action pair (s, a) using a random subset of λ values from ‘lambda_grid’. This
step involves evaluating the Q-value function for different levels of resource utilization
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Algorithm 2 Update Q-values in LPCA Neural Network Model
1: for each random sample in memory do
2: Extract s, a, r, s′, is_terminal from sample {is_terminal indicates if s′ is a terminal

state}
3: Q← Calculate target Q-values for s and a using a subset of λ values lambda_grid
4: Vexpected ← Calculate expected value functions for s′ using target network for each λ ∈

lambda_grid
5: if is_terminal then
6: Qtarget(s, a, λ)← r(s)− λc(a)
7: else
8: Qtarget(s, a, λ)← r(s)− λc(a) + γ · Vexpected

9: end if
10: Perform a gradient descent step on (Qtarget(s, a, λ) − Q(s, a, λ))2 to update network

weights
11: end for
12: Perform soft-update on target network weights θ′ ← θτ + (1− τ)θ′

and cost. By using a random subset of λ values, the algorithm optimizes computation,
reducing the number of evaluations needed for each update. Additionally, this approach
helps to avoid overfitting by selecting different λ points each time, ensuring that the
model does not become too specialized to specific values of λ. The computation of the
target Q-values Qtarget(s, a, λ) utilizes a target network, which is a lagged version of
the primary neural network, to provide stable targets for learning [18].

Through this training process, the LPCA algorithm efficiently learns the Q-values
for various state transitions under different levels of resource constraints, as dictated by
the varying λ values.

Having trained the neural network to generate accurate approximations of Equation
(4), we proceed with Algorithm 3 to compute the value function J(s, λ) for a given state
s as in Equation (3). This computation involves evaluating

∑N
i=1 maxai

Q(si, ai, λ) for
every λ within the discretized set ‘lambda_grid’.

Once this term is calculated, obtaining the optimal λ∗ is a one-dimensional convex
optimization problem, as shown in Equation (5).

A key technical contribution of our work is how we explore the action space to
solve the knapsack problem described in equation (6). This problem is challenging in
neural networks due to the existence of many local minima, where traditional gradient
optimization methods get stuck.

We propose two different strategies to explore this action space in order to make the
best use of the available resources and select the best action based on our Q-value esti-
mates. The first strategy, presented in Section 3.1, is an evolutionary algorithm (LPCA-
DE). It uses mechanisms similar to natural selection to iteratively search for the optimal
solution, effectively avoiding local minima by exploring a wider range of solutions.

The second strategy, presented in Section 3.2, is a greedy algorithm (LPCA-Greedy).
It focuses on choosing the action based on the gradient of the Q-values with respect to
the actions for each project, selecting the action that promises the highest increase in
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Algorithm 3 Computation of Lagrange term λ∗

Require: method
Ensure: Updated policy dictionary π(s)
1: function PolicyDictUpdate(method)
2: for all s ∈ S do
3: q_table← Zero Matrix of size [n_lambda, N]
4: for i ∈ 1 : N do
5: q_table[:, i]← maxai Q(si, ai, λ), ∀λ ∈ lambda_grid
6: end for
7: J(s, λ)← Compute value functions as (3)
8: λ∗(s)← argminλ J(s, λ)
9: if method = Evolution then

10: a∗ ← DifferentialEvolution(s, λ∗(s), amax)
11: else
12: a∗ ← Greedy(s, λ∗(s), amax, δ)
13: end if
14: π(s)← a∗

15: end for
16: end function

the Q-value per unit of resource expended. This method is simpler and faster, and helps
to quickly identify actions that increase payoff, even if it does not explore as widely.

3.1 Differential Evolution Optimization (LPCA-DE)

The first method (Algorithm 4) employs a differential evolution algorithm, renowned
for its effectiveness in identifying global optima and circumventing local optima traps.
This method is particularly adept at exploring the search space comprehensively [3].

A critical aspect of this approach is the integration of a penalty mechanism to en-
sure that action selection remains within resource constraints. Actions leading to re-
source utilization beyond the available limit are subjected to a significant penalty. This
mechanism is in line with the role of the λ term in the Q-value definition (see Equation
(4)). Given the λc(a) term in Equation (4), the derived optimal policy tends towards
cost-effectiveness. However, it may not always coincide with the optimal policy of the
original constrained problem (see Equation (1)) particularly if a higher action’s benefit
does not justify its cost in the relaxed problem, leading to potential underutilization of
resources. This leads to a policy that may not fully utilize the available resources as de-
fined in Equation (6). To address this, we introduce an additional penalty, proportional
to the amount of unused resources, into the differential evolution optimization problem.
This modification guides the optimizer towards actions that maximize resource usage,
ensuring the algorithm not only pursues cost-effective solutions but also fully utilizes
the available resources.

3.2 Greedy Optimization Strategy (LPCA-Greedy)

The second method (Algorithm 5) is a greedy optimization strategy. This approach is
characterized by its iterative process of evaluating the gradient of the Q-values with
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Algorithm 4 Action Selection through Differential Evolution Optimization
Require: State vector s, fixed Lagrange multiplier λfix, maximum action amax

Ensure: Optimal actions maximizing Q-values under resource constraints
1: function DifferentialEvolution(s, λfix, amax)
2: Bounds← [0, amax]
3: function ObjectiveFunction(a, s, λ∗)
4: Qtotal ←

∑N
i=1 Q(si, ai, λ

∗)

5: Ctotal ←
∑N

i=1 C(si, ai)
6: if Ctotal > B then
7: Penalty← Large constant value
8: Qtotal ← Qtotal − Penalty
9: else if Ctotal < B then

10: Penalty← B − Ctotal

11: Qtotal ← Qtotal − Penalty
12: end if
13: return −Qtotal

14: end function
15: a∗ ← Apply Differential Evolution optimization with (ObjectiveFunction,Bounds)
16: return a∗

17: end function

respect to the actions for each project and then allocating resources to the project with
the highest gradient. The process continues until all resources are exhausted.

This strategy prioritizes complete resource utilization, assigning resources to the
projects that promise the highest increase in the Q-value per unit of resource expended.
Unlike the differential evolution method, which searches for an optimal policy and then
adjusts for resource utilization, the greedy approach begins with the premise of full
resource allocation and does so in a manner that maximizes the benefit derived from
each project.

The choice between these methods can be guided by the specific characteristics
of the problem at hand, such as the nature of the resource constraints and the desired
balance between resource utilization and reward maximization.

Algorithm 5 Greedy Action Selection for Continuous MDP
Require: State s, λfix, max action amax, increment δ
Ensure: Optimal actions maximizing Q-values, maximum action amax

1: function Greedy(s, λfix, amax, δ)
2: Initialize action vector a to zeros, Bremaining = B
3: while Bremaining > 0 do
4: i← argmaxi

∂Q
∂ai

5: ai ← ai + δ, ensure ai ≤ amax

6: Bremaining ← B −
∑N

i=1 c(si, ai)
7: end while
8: return a
9: end function
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4 Experimental Results

To evaluate the effectiveness of our algorithms, we rely on measuring the average dis-
counted rewards that their policies yield. Given a discount factor of γ = 0.9, we exam-
ine the rewards that each algorithm’s policy yields over t ∈ [0, 50] iterations, starting
from every possible state in our problem space. The evaluation process involves com-
puting the discounted sum of the rewards using the equation

R =

50∑
t=0

N∑
i=1

γtr(si(t), ai(t)),

where r(si(t), ai(t)) represents the reward received at time t for being in state si(t)
and taking action ai(t), for each MDP i. To ensure statistical robustness and to derive
confidence intervals for our performance metrics, we repeat this evaluation 100 times.
The results are shown in our figures, with the mean performance represented by bold
lines and the confidence intervals represented by the shaded areas surrounding these
lines.

Our experimental framework encompasses three distinct types of problems: Type
A and Type B, each representing a continuous action version of challenges similar to
those discussed in [8], and the speed scaling problem inspired from [22]. Types A and
B feature two states per project with a ∈ [0, 2], with a reward function R(s) = s and
a cost function C(a) = a. The key difference between Type A and Type B lies in their
transition probability matrices:

PA(a) =

(
0.02a2 − 0.09a+ 0.8 −0.02a2 + 0.09a+ 0.2

0.75e−0.947a 1− 0.75e−0.947a

)
PB(a) =

(
0.95e−2.235a 1− 0.95e−2.235a

0.3347e−1.609a 1− 0.3347e−1.609a

)
.

Additionally, we introduce a mixed environment where half of the projects follow
the transition probabilities of Type A and the other half those of Type B.

The speed scaling environment involves projects with six states, and a ∈ [0, 2]. We
apply the uniformization technique [13] to construct an equivalent discrete time version
of the continuous time problem. The transition probabilities are given by

P (a) =



1− α
ν

α
ν 0 0 0 0

µa

ν 1− α+µa

ν
α
ν 0 0 0

0 µa

ν 1− α+µa

ν
α
ν 0 0

0 0 µa

ν 1− α+µa

ν
α
ν 0

0 0 0 µa

ν 1− α+µa

ν
α
ν

0 0 0 0 µa

ν 1− µa

ν

 ,

where α = 0.9 is the arrival rate, µ(a) =
√
a is the controlled departure rate, ν =

maxa(α+µ(a)) is the normalization factor, β is the continuous discount factor related
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Fig. 1. Experimental results for Type A environment: (Left) 4 projects and 2 units of resources,
(Right) 6 projects and 4 units of resources.

to the discrete factor γ as β = ν
γ − ν. The reward function is defined as:

R(s) =
−s

ν + β
+

Cr

ν + β
=

{
−s
ν+β if s < smax

−smax−10
ν+β if s = smax

where Cr = −10 is the rejection cost that occurs in the final state smax. The cost
function is defined as C(s, a) = a

ν+β if s > 0, otherwise 0.
For Types A and B, we conducted experiments with both 4 projects with 2 units of

resources and 6 projects with 4 units of resources. The mixed environment, combining
Types A and B, was tested with 6 projects and 4 units of resources. The Speed Scaling
experiment involved 4 projects with 1.5 units of resources, equivalent to fully activating
two of the four projects.

To benchmark our algorithm, we choose DDPG (Deep Deterministic Policy Gradi-
ent) [9] augmented with OptLayer [12] as the baseline. OptLayer enhances DDPG by
incorporating a constraint optimization layer in the actor network, enabling the genera-
tion of actions that respect the constraints outlined in the original problem formulation
(Equations (1) and (6)).

In addition to this, we have benchmarked Whittle’s index heuristic for continuous
actions. These indices are computed through the algorithm proposed by [19] for discrete
multi-action (a ∈ [0, 1, 2, . . . ]) and adapted for an arbitrary discretization δa of the
action (a ∈ [0, δa, 2δa, . . . ]). For an approximation of a fully continuous action, we
use a discretization of δa = 0.001, leading to a total of 2001 possible actions. Due to
the large amount of indices to compute, a tabular learning algorithm for those indices
would not be feasible.

In the 4 projects and 2 resources configuration, both LPCA-DE and LPCA-Greedy
demonstrated a clear advantage over DDPG, particularly in Type B environment (Figure
2 left), where the gap between the performance of both versions of LPCA and DDPG
is larger and both LPCA algorithms converge to the Whittle Index policy performance.
In Figure 1 left, although DDPG achieves a similar level of performance to LPCA, the
latter converges to a performance level similar to Whittle indices’ much faster, while
DDPG takes around 40000 iterations.
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Fig. 2. Experimental results for Type B environment: (Left) 4 projects and 2 units of resources,
(Right) 6 projects and 4 units of resources.
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Fig. 3. (Left) Speed Scaling with 4 projects and 1.5 units of resources, (Right) Mixed Type A and
B environments with 6 projects and 4 units of resources.

This gap widened significantly in the 6 projects and 4 resources setting. In Type A
(Figure 1 right), the optimality gap between both versions of LPCA and DDPG widens.
A similar pattern shows in Type B (Figure 2 right), with DDPG having subpar perfor-
mance. In the mixed environment (Figure 3 right), DDPG’s performance reflects the
issues observed in the previous scenarios. On the other hand, LPCA-DE and specially
LPCA-Greedy are able to obtain a better policy, close to the Whittle index policy per-
formance.

In the Speed Scaling experiment (Figure 3 left), the performance of both LPCA-DE
and LPCA-Greedy algorithms converges to a similar performance to the Whittle index
policy, while DDPG’s performance lags behind.

Overall, the LPCA algorithms consistently outperformed DDPG with OptLayer
across various settings and environments. Notably, LPCA’s superiority became increas-
ingly pronounced in more complex scenarios involving a greater number of processes
and limited resources.
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5 Conclusion

In this study, we introduced the LPCA (Lagrange Policy for Continuous Actions) al-
gorithm, a reinforcement learning approach for weakly coupled MDPs with continuous
actions and resource constraints. Our experimental results demonstrate that LPCA, in
both its Differential Evolution (DE) and Greedy variants, consistently outperforms the
DDPG algorithm augmented with OptLayer across various scenarios. Notably, LPCA
exhibits superior scalability with an increasing number of projects.

As a direction for future research, we aim to test the LPCA algorithm in larger-scale
environments featuring more states per projects. This expansion will allow us to further
evaluate LPCA’s scalability and effectiveness in even more complex and dynamic set-
tings, potentially broadening its applicability to a wider array of practical problems
in operations research and beyond. The exploration of LPCA’s performance in these
extended scenarios is expected to yield valuable insights into its capabilities and limi-
tations, guiding future enhancements and adaptations of the algorithm.
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