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Abstract

The deployment of safe and trustworthy machine learn-
ing systems, and particularly complex black box neural net-
works, in real-world applications requires reliable and cer-
tified guarantees on their performance. The conformal pre-
diction framework offers such formal guarantees by trans-
forming any point into a set predictor with valid, finite-set,
guarantees on the coverage of the true at a chosen level
of confidence. Central to this methodology is the notion of
the nonconformity score function that assigns to each ex-
ample a measure of “strangeness” in comparison with the
previously seen observations. While the coverage guaran-
tees are maintained regardless of the nonconformity mea-
sure, the point predictor and the dataset, previous research
has shown that the performance of a conformal model,
as measured by its efficiency (the average size of the pre-
dicted sets) and its informativeness (the proportion of pre-
diction sets that are singletons), is influenced by the choice
of the nonconformity score function. The current work in-
troduces the Penalized Inverse Probability (PIP) nonconfor-
mity score, and its regularized version RePIP, that allow
the joint optimization of both efficiency and informative-
ness. Through toy examples and empirical results on the
task of crop and weed image classification in agricultural
robotics, the current work shows how PIP-based conformal
classifiers exhibit precisely the desired behavior in compar-
ison with other nonconformity measures and strike a good
balance between informativeness and efficiency.

1. Introduction
The development and deployment of machine learning-
based autonomous systems has been a flourishing field of

research in both academia and, relatively more recently, in
the industry [1, 2]. While machine learning models often
exhibit high performance “in the lab”, they often face much
more difficulty when deployed in the real world, for a num-
ber of reasons that are not yet fully clear [3]. Indeed, when
faced with a new observation, the model will produce a new
prediction whose quality is often related to the similarity of
this new observation to what the model has previously seen.
When the new observation is quite anomalous with respect
to the previously seen data or even slightly perturbed, most
models will produce wrong predictions [4], with often dire
and intolerable consequences in safety critical applications
such as autonomous driving [5–7] and medical diagnosis
[8–10], to name a few.

The safe deployment of machine learning systems in the
real world is therefore incumbent upon the integration of at
least two main important features into them [2, 11]: (1) the
ability to provide valid and trustworthy guarantees on the
quality of predictions in “normal” conditions, and (2) the
ability to reliably detect and signal anomalies when faced
with them.

Conformal prediction is a method that provides formal
statistical guarantees on the predictive quality of any black
box model [12, 13]. It has recently gained in popularity
due to the minimal assumptions required for its deployment.
Without imposing explicit conditions on the data distribu-
tion, any base point predictor can be transformed using the
conformal approach into a set predictor with formal guar-
antees on the coverage of the true value at confidence level
1 − α, where α is a chosen level of tolerance to error. For-
mally, in a supervised learning context, whereby for each
object x ∈ X is assigned a label y ∈ Y , a conformal model
produces prediction sets C1−α ⊂ Y that satisfy the marginal



coverage guarantee [13, 14]

P
(
y ∈ C1−α(x)

)
≥ 1− α (1)

whenever the test data follow the same distribution as the
data on which the model was calibrated. Under this con-
dition, the coverage guarantee is satisfied marginally over
all possible calibration sets. Additionally, the study of the
structure and the size of the predicted sets allows us to quan-
tify the uncertainty of the base model, and to detect exam-
ples on which the model is highly uncertain [15]. As such,
the conformal approach can be used to satisfy the two con-
ditions for safe deployment of machine learning systems as
it has been shown in a number of applications [16] rang-
ing from railway signaling [17], medical imaging [18], to
nuclear fusion [19].

Three main components are needed to conduct inductive
conformal prediction [20]: a base predictor B (which can be
any machine learning point predictor), a dataset on which to
calibrate the model so that it becomes a conformal predic-
tor, and a nonconformity score function ∆ that assigns a
“strangeness value” to each example in the calibration set.
This value measures how conforming each individual is to
what the model has previously seen. While the marginal
coverage guarantee is satisfied by construction, the quality
of the predicted sets is influenced by these three compo-
nents. For example, a neural network B with low accuracy
can still be calibrated to achieve 1 − α = 0.9 coverage,
but will tend to predict much larger sets, since it is uncer-
tain about the true class and thus needs to predict many to
guarantee the inclusion of the true one.

The object of interest in this work is the nonconformity
score function ∆. In particular, we are interested in study-
ing the influence of different nonconformity functions on
two of the most commonly used metrics for the evaluation
of conformal classifiers [21]: efficiency, the average size
of the predicted sets, and informativeness, the proportion
of predicted singleton sets. These two metrics measure, in
some sense, the “usability” of the conformal approach when
needed to take decisions under normal condition, and may
be useful to signal high uncertainty conditions. The context
of the study is automated precision weeding in agriculture
[22], whereby a robotic system is embedded on a tractor to
detect and spray herbicides on undesirable weeds in real-
time, under real-world conditions. The precision agricul-
ture sector is an interesting test-bed for safe AI methodolo-
gies since they are indeed needed in agriculture, but do not
directly threaten human lives in case of failure.

Related work A good body of research is dedicated to
the development of useful and efficient nonconformity score
functions [23–25]. For classification, the first comprehen-
sive work is that of Johansson et al. [21] in which the
authors study the impact of different model-agnostic non-
conformity functions – in particular, the Hinge Loss and

the Margin Score – on neural network classifiers. The au-
thors find that neither of these score functions allows the
joint maximization of informativeness and efficiency. Their
empirical results show that the Hinge Loss minimizes the
size of prediction sets, while the Margin Score maximizes
the number of singletons. These results are further con-
firmed by Aleksandrova and Chertov [26, 27] on most of the
datasets they tested, in their work aiming at reconciling the
two scores by computing, for a new observation, two con-
formal sets using both the Hinge and Margin scores, then
choosing the Margin-based set as the final prediction if it is
a singleton, or the Hinge set otherwise. Unfortunately, this
approach may be quite inefficient as it requires repeating
the calibration step for each nonconformity function. Fisch
et al. [28] propose an efficient conformal classification ap-
proach based on an expansion of the notion of validity to
include the concept of admissible labels, which are seman-
tically plausible class labels for a given example. Such an
expansion may lead to highly inefficient prediction sets in
learning tasks with a large number of classes. As such, the
authors develop an efficient cascaded inference algorithm
that reduces the size of the prediction set by progressively
filtering the number of candidates via a sequence of increas-
ingly complex classifiers. Other works have explored ways
to combine multiple conformal models in such a way as to
preserve the validity guarantee while producing sets that are
as efficient as possible [25, 29, 30].

Contributions In direct continuation of these previous
works, and for the expansion of the still meager body of
work on conformal prediction in precision agriculture [31–
33], our work proposes the following contributions:
1. The proposal of a new model-agnostic nonconformity

function that strikes a good balance between optimiz-
ing both efficiency and informativeness: the Penalized
Inverse Probability (PIP);

2. The proposal of a simple regularized version of PIP,
RePIP, inspired by [34] for improved efficiency in use
cases with a large number of classes;

3. The comparison of PIP with other nonconformity mea-
sures from the literature on toy examples, showing the
balanced and adaptive behavior of this measure under
different settings;

4. The comparison of PIP and RePIP with other noncon-
formity measures from the literature based on efficiency
and informativeness through rigorous empirical experi-
ments on an image dataset for crop and weed classifica-
tion taken under real-world conditions with the aim of
providing valid guarantees on the performance of a pre-
cision weeding system.



2. Definitions & Mathematical Setup
Let x ∈ X be a vector of features, which we will call
an object [12]. To each object is associated a class label
y ∈ Y := {1, ...,K} to form what we call an example
z = (x, y) ∈ X × Y . A black-box classifier B is trained on
a set of ntrain examples to output for an object a class pre-
diction B̂(x) = ŷ ∈ {1, ...,K} and an associated estimated
probability p̂ŷ ∈ [0, 1], such that

∑K
k=1 p̂

k = 1.
The inductive conformal approach consists of a calibra-

tion step in which the trained classifier is calibrated on a set
of ncal calibration examples {zi = (xi, yi), i = 1, ..., ncal}
using a real-valued nonconformity score function ∆(z) :
X × Y → R. The output of the calibration step is usually
a quantile value qcal ∈ R computed on the distribution of
nonconformity scores over the calibration set.

This quantile is then used to produce prediction sets
C1−α(x) ⊂ Y on the remaining ntest test examples. For
each class, its score ∆ is computed based on the probability
estimated by B, then compared to qcal in a hypothesis test
of whether the class is considered “conforming” enough or
not. The produced prediction sets are valid in the sense
that they satisfy the marginal coverage guarantee defined in
Equation (1). This property is verified empirically by com-
puting the empirical marginal coverage, which is simply
the proportion of prediction sets that cover the true label:

1

ntest

ntest∑
i=1

1{yi∈C1−α(xi)} (2)

The quality of the prediction sets can then be evaluated
using these two metrics:
• Efficiency, defined as the average size of the predicted

sets:
1

ntest

ntest∑
i=1

|C1−α(xi)| (3)

where | . | is the set cardinality, the number of classes in
the predicted set.

• Informativeness, defined as the percentage of predicted
sets of size 1 (often called oneC in the literature [21, 26]):

1

ntest

ntest∑
i=1

1{|C1−α(xi)|=1} (4)

Clearly, conformal predictors that have both high efficiency
and high informativeness are the preferred models in prac-
tice, at a fixed coverage level of 1 − α. Smaller set sizes
are easier to manipulate and be used to construct decision
rules. Singleton predictions are the most informative pre-
dictions since they do not manifest any “uncertainty” about
the predicted class. A most informative, and efficient, con-
formal model would be one that predicts only singletons
while guaranteeing marginal coverage. Unfortunately, such
an optimal conformal model is impossible to attain in prac-
tice [14].

3. Nonconformity Score Functions
3.1. Review of Some Nonconformity Scores

The nonconformity measure quantifies the “strangeness” of
a given object by comparing it to the objects previously en-
countered by the model during training and calibration [35].
For the same base predictor B, different nonconformity
functions lead to different conformal predictors. Here, we
review commonly used nonconformity score functions for
classification from the literature [14, 21]. Since the esti-
mated probabilities p̂k are fixed for a given object x, the
nonconformity score function ∆(z) will simply be denoted
∆(y) in the following for ease of understanding. Note also
that during the calibration step of the conformal procedure,
y is the true class of object x, while during the prediction
phase, y is the tested class to be included or not in the pre-
diction set.

Hinge Loss (IP) [21] Also known as Inverse Probability,
this score function measures how far the estimated probabil-
ity of y (where y is the true class label) is from the perfect
score of 1:

∆IP(y) = 1− p̂y (5)

Indeed, a perfect classifier should always assign a probabil-
ity of 1 to the true class label, which would have a Hinge
score of 0. For smaller probability estimates of y, a higher
Hinge score is assigned since the model is deemed more un-
certain about y. The Hinge Loss can thus be considered a
very “natural” measure of nonconformity. Unfortunately, it
suffers from a major shortcoming: it does not take the prob-
ability estimates of the other classes into consideration.

Margin Score (MS) [21] Assuming an implicit hypoth-
esis that good predictive models should assign the highest
probability estimate to the true class, the MS measures the
difference between the estimated probability of y and the
highest estimated probability among the other classes:

∆MS(y) = max
k ̸=y

p̂k − p̂y = ∆IP(y) + max
k ̸=y

p̂k − 1︸ ︷︷ ︸
penalization

(6)

A large positive value of this score indicates that the es-
timated probability assigned to y is distant from the class
of highest confidence. It means that class y is considered
highly strange in comparison to the class the model consid-
ers as the true one. Notice that y is always penalized, even
when it is the most probable class, which is not ideal. An-
other shortcoming of the MS is that it only takes the maxi-
mum probability into consideration, why not take the prob-
abilities of the other classes directly into consideration? It is
important to note that in cases of anomalies, OOD observa-
tions or adversarial attacks, neural networks would tend to
assign the highest confidence to classes that are completely



wrong [4], thus putting the reliability of the Margin Score
into question.

Regularized Adaptive Prediction Sets (RAPS) This
nonconformity function was first introduced in [14] as part
of the APS approach, with the aim of producing predic-
tion sets whose size adapts to, and reflects, the difficulty
of each object. It is the first score function that fully inte-
grates a range of estimated probabilities other than that of y.
In particular, the APS score incorporates all the estimated
probabilities that are larger than that of the class of inter-
est. Observing that the APS score tends to predict relatively
large set sizes in learning problems with a large number of
classes, Angelopoulos et al. [34] introduced a regularized
version of this score, named RAPS.

Let the operator R(k) be the rank of class k after the
estimated probabilities p1, ..., pK have been sorted in de-
creasing order, and p̂[r] be the probability estimate of the
class having rank r, such that p̂k = p̂[R(k)], we can define
the RAPS score function as:

∆RAPS(y) =

R(y)−1∑
r=1

p̂[r] + u · p̂[R(y)]

︸ ︷︷ ︸
APS

+λ ·
(
R(y)− kreg

)+︸ ︷︷ ︸
regularization

(7)

where u is a uniform random variable in (0, 1) for tie-
breaking, λ is the penalization amount and kreg is the rank
at which to start penalizing. λ and kreg can be fixed by the
user or optimized on a held-out dataset. The penalization
is proportional to the how further away is y in the ranking
of estimated probabilities from kreg . When y has a very
low probability, meaning that it has a very high R(y), its
score will be very strongly penalized, leading to the exclu-
sion of y from the prediction set. This will lead, on average,
to smaller set sizes, as it excludes from the prediction sets
those classes that would have been included by the original
APS score (obtained for λ = 0). While the APS and RAPS
have been developed with adaptivity and efficiency in mind,
their authors’ do not seem to take the informativeness crite-
rion into consideration.

3.2. Penalized Inverse Probability

In this article, we introduce the Penalized Inverse Proba-
bility (PIP), a new nonconformity score function that in-
tegrates components from the three previously presented
measures with the aim of optimizing both efficiency and in-
formativeness. Following the same notation presented pre-
viously, PIP can be defined as:

∆PIP(y) = 1− p̂y︸ ︷︷ ︸
∆IP(y)

+

R(y)−1∑
r=1

p̂[r]

r
1{R(y)>1}︸ ︷︷ ︸

penalization

(8)

For R(y) = 1, when y is the class with the highest estimated
probability, the PIP score is simply the Hinge (IP) Loss. In

Figure 1. Six different potential configurations of model outputs
sorted in decreasing order of p̂. Only the classes until reaching the
class of interest y are shown. Computed nonconformity scores for
each case can be seen in Table 1.

∆IP(y) ∆MS(y) ∆PIP(y)
Case 1 0.90 0.02 1.08
Case 2 0.90 0.10 1.10
Case 3 0.90 0.20 1.26
Case 4 0.90 0.20 1.30
Case 5 0.90 0.20 1.43
Case 6 0.90 0.60 1.70

Table 1. Computed scores of the example cases shown in Figure 1.
The proposed ∆PIP(y) manifests a more adaptive behavior for the
varying configurations than the classical IP and MS functions.

all other cases, the sum of the estimated probabilities of all
the classes with higher probability than y weighted by the
inverse of their rank is added as a penalization term. As
such, a decreasing weight is associated to each class that
is closer to y. This penalization term resembles the APS
score, and alleviates the shortcoming inherent by IP of not
taking the estimated probabilities of other classes into con-
sideration. Furthermore, for R(y) = 2, it should be clear
that ∆PIP(y) = 1 + ∆MS(y). As such, the PIP score ex-
hibits analogous behavior to different nonconformity func-
tions depending on the estimated probabilities by the base
model B, leading to better adaptivity, as will be shown in the
toy examples below. For more detailed developments on the
relationship between the PIP and the other scores, we refer
the interested reader to Section 1 in the Supplementary Ma-
terial.

Toy examples Consider the six different possible output
configurations of a neural network classifier shown in Fig-
ure 1. The class of interest is y and its estimated prob-
ability is fixed to p̂y = 0.1 in all the examples. Only
the classes having higher estimated probabilities than y are



shown since they are the only ones that are used in the com-
putations of the different scores. In Table 1 are shown the
different scores assigned to class y in each of the cases,
sorted in increasing order. A greater score is a sign of
greater “nonconformity” – that is, of higher uncertainty –
attributed to y.

The first obvious observation is that IP assigns the same
score to y in all cases. As p̂y = 0.1 is the same in all cases
and IP is, by definition, indifferent to the other classes, all
the configurations are reduced to the same score. This rigid-
ity is often undesirable in a nonconformity score function.

The MS measure, on the other hand, manifests a more
fluid behavior since it also considers the highest estimated
probability. Case 1 is assigned the lowest MS score, since
the estimated probabilities of y and a are quite similar. As
such, MS considers that class y is as likely a candidate as
a to be the first predicted class, and thus assigns it a low
nonconformity score. Case 2 is considered a bit “stranger”
than Case 1 by the MS function because the difference be-
tween the maximal class a and y is a bit larger, which is
a desirable behavior by this score function. In Case 6, al-
though y has the same rank R(y) = 3 as in Case 1, the
MS value is maximal since the margin between the p̂a and
p̂y is large. Cases 3 to 5 show the shortcoming of the MS
measure. Since in all these cases the difference between p̂a

and p̂y is the same, they will all be assigned the same score
value, even though it is clear that class y in Case 5 should
be assigned a higher nonconformity value than in Case 3 or
even in Case 4.

The proposed PIP function exhibits the most versatile be-
havior since it takes into consideration all the classes having
higher estimated probabilities than y. ∆PIP(y) is different in
all the distinct configurations, manifesting the specificity of
each case. Indeed, it can easily be shown that ∆PIP guar-
antees a different score for every class even in the case of
highest uncertainty where all the classes have the same es-
timated probability 1/K (Section 1 in Supplementary Ma-
terial). Case 1 has the lowest PIP score, since class y is
almost as likely as a or b to be predicted as the first class.
As such y is not deemed strange in such a condition. The
behavior of PIP in such situations is similar to that of MS.
Case 2 is considered slightly stranger because the difference
between p̂a and p̂y is larger and cannot simply be attributed
to some “noise.” While y has the same estimated probability
and rank R(y) = 3 in both Case 3 and Case 4, it receives a
slightly lower score in Case 3 since the difference with the
b is very small: y could very much have been the second
class and thus need not be penalized heavily for falling in
third place. Class y in Case 5 is further penalized because
more significant classes have higher estimated probabilities
than y.

Summary of PIP score properties The desirable behav-
ior manifested by PIP can be summarized as:

• In all situations, the Hinge Loss (IP) is a baseline value for
the PIP function. Therefore, classes with low probability
estimates will tend to be assigned higher nonconformity
scores. This kind of behavior leads to a lower average
size of predicted sets (higher efficiency) since it tends to
exclude the classes with low probability estimates [21].

• PIP takes into consideration all the probability estimates
of the other classes with higher probabilities when com-
puting the score for a given class. This includes the max-
imum probability class. Therefore, when p̂y has a low
value compared to maxk ̸=y p̂

k, class y will be heavily pe-
nalized (just like with the MS measure). This behavior
generally leads to more predicted singletons (higher in-
formativeness) because in all cases where one class has
a very high probability estimate, all the other classes will
be heavily penalized and thus excluded from the predicted
set [21].

• Additionally, PIP distinguishes the cases where the dif-
ference between p̂y and the “more probable” classes is
significant or not, penalizing less when such differences
are negligible and can be attributed to some noise. This
leads to scores that are different almost everywhere, per-
mitting better discrimination between the different model
outputs.

3.3. Regularized PIP

For learning tasks with a large number of classes, the user
may require to preserve the desirable behavior of the PIP
score function but with smaller set sizes on average. The
same regularization term added to APS [34] can be added
to obtain RePIP, a regularized version of the proposed non-
conformity measure:

∆RePIP(y) = ∆PIP(y) + γ ·
(
R(y)− kreg

)+︸ ︷︷ ︸
regularization

(9)

Here, γ is the equivalent of the λ parameter in the RAPS
nonconformity score and kreg is, similarly to RAPS, the
rank at which to begin penalizing more.

4. Experimental Results
In this section, we study the performance of different con-
formal classifiers obtained using the nonconformity score
functions presented previously on the task of classifying
images taken under real world conditions into 13 different
plant species. This learning task is part of a precision weed-
ing robotic use case, where an autonomous robot should dis-
tinguish weeds from cultivated crops and spray them with
herbicide in real-time. Guaranteeing the performance of the
weed classifiers is of great importance since missed weeds
can multiply quickly and threaten heavily the health of the
cultivated crops and the quality of harvest.



Figure 2. Some randomly chosen example images of 6 different classes. Common buckwheat and rye brome are weeds, while corn, pea
and sunflower are cultivated species.

4.1. Experimental Setup

The public WE3DS dataset recently published in [36] is
originally a dataset of RGB-D images with semantic seg-
mentation masks densely annotated into 17 plant species
classes in addition to the soil class for the background.
Due to the scarcity of publicly available crop and weed
classification datasets, this dataset has been transformed
into a classification dataset. Discarding the depth chan-
nel, the original RGB images have been divided into non-
overlapping windows of size 224 × 224. To each resulting
image is associated a true class label which is defined as the
class with the highest number of pixels in the correspond-
ing semantically annotated mask. This results into a dataset
of around 14,800 RGB images with 13 different classes, of
which six random specimens are shown in Figure 2. We
refer the interested reader to Section 2 in the Supplemen-
tary Material for a full description of the data preparation
procedure.

The database is then randomly divided into: (1) a train-
ing set (70%), on which a ResNet18 classifier [37] is trained
using default hyperparameters and pretrained weights on
ImageNet [38], and fixed for all experiments; the remain-
ing 30% of the data are then split into (2) a calibration set
(13.5%) for conformal calibration and (3) a test set (16.5%)
on which the conformal classifiers are evaluated. It is im-
portant to note that the choice of the base model B is not
of great importance and is not the focal point of this study.
It is for this reason, and especially to be able to study the
differences among the nonconformity score functions, that
we opted for a classical ResNet18 classifier which does
not manifest exceptional classification performance on this
task. It could have very well been replaced by a newer state-
of-the-art deep classifier.

After training the ResNet18 classifier, the neural network
is calibrated using each of the previously presented noncon-
formity score functions at the chosen confidence level of
1 − α = 0.9. Then, it is used to predict sets of classes for
the test images. To make sure that the obtained results are
not simply due to having favorable samples of images, the
calibration and test steps are repeated 1000 times, each time
on a different random split of the data. The random seed of

the ith random split, i = 1, 2, ..., 1000, is the same across
the different nonconformity score functions so as to obtain
results that are truly comparable and not simply influenced
by the aleatoric uncertainty inherent to the data.

4.2. Setting γ and λ for RePIP and RAPS

For RAPS and RePIP, kreg is fixed at 3 based on this spe-
cific use case’s requirements. In general, we prefer not to
have prediction sets with more than 3 classes: the cultivated
species, a weed species and the soil. In order to choose the
regularization amounts λ and γ, we conduct a parameter
sweep by testing multiple values from a manually defined
grid. For each value and each method, a different confor-
mal classifier is obtained for which we compute the effi-
ciency and informativeness. Similarly to the experimental
setup, with the aim of verifying the reliability of the esti-
mated metrics, each conformal classifier is calibrated and
tested on multiple random splits of the data.

Figure 3 shows the average set size and the proportion
of singletons for each random split of the data and different
values of γ (Figure 3a) and λ (Figure 3b). Depending on
the user’s preferences and the use case requirements, the
optimal value can be chosen so as to place more weight on
minimizing inefficiency or maximizing informativeness.

In our case, we deem it more important to maximize the
number of predicted singletons while maintaining the cov-
erage guarantee, as it is much easier to construct decision
rules when only one class is predicted. Therefore, based on
the empirical results in Figure 3, we choose γ = λ = 0.02
as values for the hyperparameters. We also note that for
both hyperparameters, a limit seems to be reached at 0.5
whereby any greater value produces the same prediction
sets (notice that the data points for the values 0.5 and 1 are
overlapping).

4.3. Results and Discussion

The comparison of the different models is conducted based
on the efficiency and informativeness criteria. A desirable
model is one that optimizes both of these criteria by pro-
ducing prediction sets with small size on average and as
many singletons as possible without violating the marginal
coverage guarantee. Figure 4 shows the results obtained



(a)

(b)

Figure 3. Efficiency and Informativeness for different values of the
regularization hyperparameters. For each value of γ and λ, 100
different splits of the calibration and test sets are considered for
more reliable results.

over the 1000 runs for each conformal classifier. Unsur-
prisingly, all the conformal classifiers are able to maintain
the required 90% marginal coverage guarantee on average,
with MS showing a comparatively unstable behavior with
respect to the other measures (Figure 4a).

As can be seen in Figure 4b, the Hinge (IP) score leads
to the smallest average set size, which is in accordance with
the empirical results in [21] showing that IP is the mea-
sure to use to maximize efficiency. RAPS and RePIP which
are designed with efficiency in mind through the regulariza-
tion term lead to slightly larger set sizes on average, with
RePIP coming in second place after IP. A slight difference
between APS and RAPS can be noticed. The Margin (MS)
score function shows a significantly unstable behavior over
the different random runs. This can be due to its deep de-

(a)

(b)

(c)

Figure 4. Violin plots of experimental results on 1000 random
splits of the WE3DS classification dataset (each point is a random
split): (a) Empirical Coverage – (b) Efficiency (Mean Set Size) –
(c) Informativeness (Proportion of Predicted Singletons).



pendence on the data it faces via the outputs of the base
classifiers, an inference that can be made by comparing the
divergent results in [21] and [27]. It also manifests a con-
siderably higher average set size on average than all the
other methods, a result in agreement with Johansson et al.
[21]. The proposed PIP score, while exhibiting a slightly
larger average set size than the other methods, is still much
more efficient than the MS. This slight inefficiency is a
price to pay for a considerable increase in informativeness
(see Equation 4).

Indeed, MS manifests the highest proportion of predicted
singletons, in accordance with the literature [21, 26], with
more than 50% of predicted sets being singletons, on av-
erage. This result is influenced by the estimated probabil-
ities of the base neural network: when the base classifier
assigns a much higher estimated probability to one class in
comparison to the others – that is, it is highly “confident”
in the class it predicts – all the other classes will be con-
siderably penalized, and thus excluded from the prediction
set. This behavior is in agreement with Case 6 in Figure 1
and Table 1. This behavior tends to increase the number of
predicted singletons only when the base classifier B already
has a relatively high accuracy. The other nonconformity
score functions, APS, RAPS and IP, that are not explicitly
concerned with informativeness, have significantly less pre-
dicted singletons. On the other hand, our proposed PIP and
RePIP scores can be considered quite competitive with MS
in terms of informativeness with around 50% of predicted
sets having size 1, and manifest better stability with regards
to the data in comparison with MS. Interestingly, while the
regularization via RePIP leads to considerably smaller set
sizes on average, it does not decrease informativeness in any
noticeable way, thus striking the required balance between
the two evaluation criteria.

In a robotic pipeline, a conformal model that satisfies
the condition of guaranteed coverage under normal con-
ditions with such a high level of singletons along with a
moderate average set size (such as with PIP or RePIP) is
quite attractive. While providing around half of the predic-
tions as singletons that can readily be used to take decisions,
the conformal classifier produces the remaining predictions
as sets that consist of only 2 or 3 classes, on average, on
which adapted decision rules can be constructed easily for
autonomous agents [39].

5. Conclusion
Conformal prediction is an important methodology for de-
veloping safe, deployable, machine learning systems. As
long as the data faced by the model resembles, to a cer-
tain extent, the data on which it has been calibrated, the
conformal model maintains the marginal coverage guaran-
tee. Even though this marginal warranty can be strength-
ened, for example to provide class-conditional [13, 14, 40]

or group-conditional coverage guaranties [32, 41], it already
constitutes a strong gauge of validity for machine learning
models, in particular black box neural networks that do not
provide such guarantees by default. The conformal enve-
lope around any learning model can be an important step
for its certification as a valid model for deployment.

However, while any well-calibrated conformal model
can provide coverage guarantees, the utility of the predic-
tive model as a component in a larger decisional pipeline,
in fully autonomous systems or human decision support
systems, depends heavily on the prediction sets produced
[39, 42]. In the current work, we introduced the Penal-
ized Inverse Probability (PIP), and its regularized version
(RePIP), with the aim of jointly optimizing the efficiency
and informativeness of conformal classifiers. PIP and
RePIP, mixing elements from other nonconformity score
functions, provide a well-balanced hybrid behavior. The
empirical results on crop and weed classification using deep
neural networks show that PIP-based classifiers lead to rela-
tively efficient prediction sets with significantly higher level
of informativeness than their counterparts. Future work will
continue this line of research notably by studying the be-
havior the different nonconformity measures on multiple
datasets consisting of varying number of classes. A promis-
ing direction of exploration in safe AI is the comparison
of the performance and robustness of these different non-
conformity score functions under “abnormal” conditions,
for example under distribution shifts and with regards to
anomalous observations.
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1. Some Mathematical Properties of PIP

The toy examples and the empirical results show that the
proposed PIP nonconformity score behaves similarly to
its baseline Hinge Loss (IP) measure in certain situations,
while in other times its behavior resembles that of the Mar-
gin Score (MS). In fact, there is a direct relationship be-
tween these three scores, namely:

∆PIP(y) = 1− p̂y︸ ︷︷ ︸
∆IP(y)

+

R(y)−1∑
r=1

p̂[r]

r
1{R(y)>1} (1)

where R(k) is the rank of class k after the estimated proba-
bilities p1, ..., pK have been sorted in decreasing order, and
p̂[r] the probability estimate of the class having rank r, such
that p̂k = p̂[R(k)]. For any y such that R(y) > 1, we have:

∆PIP(y) = 1− p̂y + p̂[1] +

R(y)−1∑
r=2

p̂[r]

r

= 1−p̂y +max
k ̸=y︸ ︷︷ ︸

∆MS(y)

p̂k +

R(y)−1∑
r=2

p̂[r]

r

= 1 +∆MS(y) +

R(y)−1∑
r=2

p̂[r]

r

(2)

From these relationships, we can study the behavior of
∆PIP(y) in different possible scenarios and derive some up-
per and lower bounds:

1. Assume the case where the class of interest y is the most
“certain” class. That is, p̂y = 1 and for all other classes
p̂k = 0, k ̸= y. In such a situation, the rank R(y) of
y will obviously be 1. In such an optimal scenario, y
should be given the minimal possible score. Indeed:

∆PIP(y) = ∆IP(y) = 1− p̂y = 0

is a lower bound on ∆PIP.

2. Assume the opposite scenario whereby a class k ̸= y is
assigned the maximal probability p̂k = 1, which then
means that p̂y = 0. Such a setting should be maximally
penalized since the base classifier can be considered to
have made a big mistake about class y:

∆PIP(y) = 1 +∆MS(y) +

R(y)−1∑
r=2

p̂[r]

r︸ ︷︷ ︸
=0

= 1 +max
k ̸=y

p̂k − p̂y︸ ︷︷ ︸
=1

= 2

(3)

which is an upper bound on ∆PIP.
3. Assume the theoretical scenario where the base classifier

assigns the same probability estimate to all classes. That
is, pk = 1/K, ∀k = 1, 2, ...,K. In this case, the class
of interest y will have the same probability estimate as
all other classes and its PIP score will depend only on its
rank R(y), which can take any value in 1, 2, ...,K:

∆PIP(y) = 1− 1

K
+

R(y)−1∑
r=1

p̂[r]

r

= 1− 1

K
+

1

K

R(y)−1∑
r=1

1

r


= 1 +

1

K

R(y)−1∑
r=1

1

r
− 1


(4)

Based on this scenario, it is apparent that PIP generally
guarantees assigning a different score to each class since
even in the degenerate (and impossible) case when all
the classes have the same probability estimates, the non-
conformity score of each class will be different.
From these scenarios, we can further observe the “hy-

brid” behavior of PIP. Indeed, from scenario (1) it is ap-
parent that when a class k has a high estimated probability
p̂k (close to 1), it is this probability estimate that plays the

1



biggest role in the final score value. When this class k is the
class of interest y, then p̂y will play an important role in at-
tenuating the final score as it will be used in the IP term, i.e.
the first part in Equation 1. However, when k is different
than the class of interest y it will play a role in increasing
the score assigned to y as it will reside in the penalization
component of the PIP score. When the base classifier is
quite “ambivalent”, assigning more or less the same scores
to all classes, then the most important factor impacting the
final score is the rank R(y) of class y but which will have
decreasing importance due to the inverse rank weighting in
the penalization component.

2. WE3DS Data Preparation

The experiments in this article are conducted on the public
WE3DS dataset1 published by Kitzler et al. [1]. Originally
conceived as a dataset of densely annotated RGB-D images
for semantic segmentation with 17 different plant classes
and the soil class, it has been transformed through a simple
procedure into a classification dataset.

Figure 1. Demonstration of how the original WE3DS segmenta-
tion images are divided into smaller classification images.

As shown in Figure 1, after discarding the depth channel,
each original RGB image of size 1600 × 1144 is divided
into non-overlapping smaller images of size 224×224. The
corner regions that do not align with the cropping grid (due
to the original dimensions not being perfectly divisible by
224) are simply discarded. For each smaller image (like
the one highlighted in blue in Figure 1), its corresponding
area is considered in the ground-truth semantic mask. The
number of pixels in each class is counted, then a decision is
taken:
1. If the image contains only pixels of class soil, then soil

is defined as the class label of the resulting classification
image;

1The original dataset can be accessed and downloaded here:
https://zenodo.org/records/5645731

Figure 2. Count of images per class in the resulting classifica-
tion dataset after window cropping from the original larger images.
The soil class overshadows all other classes.

Figure 3. Count of images per class in the final classification
dataset after soil random undersampling and the dropping of the
five rarest classes.

2. If any other class exists in the image, the majority class
is taken to be the true label.

This results in a classification dataset consisting of
89,880 images 18 different classes showing very high im-
balance towards the heavily majoritarian soil class (Fig-
ure 2). In order to curb this imbalance problem, 1,500 im-
ages are randomly sampled from the soil class. Addition-
ally, the five very rare classes (corn spurry, narrow leaved
plantain, common wild oat, red root amaranth and red fin-
gergrass) are removed, resulting in a dataset of 13 classes
and 14,800 images as shown in Figure 3. This is the dataset
used to conduct the experiments in the current work.
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