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Abstract 32 

Recent global marine lipidomic analysis reveals a strong relationship between ocean 33 

temperature and phytoplanktonic abundance of omega-3 long-chain polyunsaturated fatty acids 34 

(LC-PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are 35 

essential for human nutrition and primarily sourced from phytoplankton in marine food webs. In 36 

phytoplanktonic organisms, EPA may play a major role in regulating the phase transition 37 

temperature of membranes, while the function of DHA remains unexplored. In the oleaginous 38 

diatom Phaeodactylum tricornutum, DHA is distributed mainly on extraplastidial phospholipids, 39 

which is very different from the EPA enriched in thylakoid lipids. Here, CRISPR/Cas9-mediated 40 

knockout of delta-5 elongase (ptELO5a), which encodes a delta-5 elongase (ELO5) catalyzing the 41 

elongation of EPA to synthesize DHA, led to a substantial interruption of DHA synthesis in P. 42 

tricornutum. The ptELO5a mutants showed some alterations in transcriptome and 43 

glycerolipidomes, including membrane lipids and triacylglycerols under normal temperature 44 

(22°C), and were more sensitive to elevated temperature (28°C) than wild type. We conclude that 45 

PtELO5a-mediated synthesis of small amounts of DHA has indispensable functions in regulating 46 

membrane lipids, indirectly contributing to storage lipid accumulation, and maintaining 47 

thermomorphogenesis in P. tricornutum. This study also highlights the significance of DHA 48 

synthesis and lipid composition for environmental adaptation of P. tricornutum. 49 

 50 

Keywords: Delta-5 elongase, Docosahexaenoic acid, Multiplexed CRISPR/Cas9, Phaeodactylum 51 

tricornutum, Thermomorphogenesis, Triacylglycerol. 52 

 53 

Introduction 54 

Omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs) are receiving increasing attention 55 

due to their important roles in human health (Zhang et al., 2019). Many evidences suggest that 56 

docosahexaenoic acid (DHA) contributes to the normal development of visual and neurological 57 

systems in infants, and eicosapentaenoic acid (EPA) reduces the incidence of cardiovascular 58 

disease in middle-aged and elderly adults (Bazinet and Layé, 2014; Lai et al., 2018). Currently, 59 

marine fish and seafood are the primary dietary sources of omega-3 LC-PUFAs. However, they do 60 

not possess a complete biosynthetic pathway for omega-3 LC-PUFAs, and these marine organisms 61 
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can only obtain LC-PUFAs from marine phytoplankton, which are the true producers of these 62 

important omega-3 LC-PUFAs (Khozin-Goldberg et al., 2016). Global climate change, 63 

specifically ocean warming, is affecting marine phytoplankton communities, which may have a 64 

significant impact on the abundance of omega-3 LC-PUFAs in the oceans (Boyce et al., 2010; Tan 65 

et al., 2022). A recent analyses of global ocean lipidomes showed a strong negative correlation 66 

between the abundance of EPA and temperature, and a weak correlation between DHA and 67 

temperature (Holm et al., 2022). The reason behind the different impact of ocean warming on EPA 68 

and DHA abundance in marine phytoplankton is still unknown.  69 

Limited research suggests that membrane phospholipids containing omega-3 LC-PUFAs in 70 

algal cells may function as shield molecules against exogenous or endogenous oxidative 71 

challenges in marine environments (Okuyama et al., 2008; Lupette et al., 2018). In addition, the 72 

high content of omega-3 LC-PUFA in membrane lipids can regulate the fluidity and stability of 73 

cell membranes in response to temperature changes, thus helping phytoplankton to adapt to low 74 

temperatures (Ernst et al., 2016). Although studies on phospholipid models have shown that 75 

different compositions of omega-3 LC-PUFAs in phospholipids affect different characteristics of 76 

membranes, such as membrane structure and lipid interactions, these have not been adequately 77 

investigated in phytoplankton (Sherratt and Mason, 2018; Sherratt et al., 2021). It is indisputable 78 

that the proportions of different omega-3 LC-PUFAs varied considerably in most algal species, but 79 

it is more common for diatoms to have a very high proportion of EPA and low proportion of DHA 80 

(Sayanova et al., 2017; Zulu et al., 2018). This suggests that EPA and DHA may play different 81 

roles as membrane lipid constituents in some physiological functions of phytoplankton. 82 

Diatoms are an important group of marine primary producers and major source of omega-3 83 

LC-PUFAs, which play vital roles in the global carbon cycle, climate change regulation, and 84 

healthy marine food webs (Field et al., 1998; Zulu et al., 2018; Li et al., 2023). Phaeodactylum 85 

tricornutum, one of the model species of diatoms, contains high amounts of EPA (30% of the total 86 

fatty acids) and trace amounts of DHA, which make it a suitable species to study the metabolic 87 

pathway of omega-3 LC-PUFAs (Abida et al., 2015). In the DHA synthesis pathway, delta-5 88 

elongase (ELO5) is the key enzyme, that catalyzes the synthesis of DHA from EPA, and regulates 89 

the relative DHA content in the fatty acid profile of P. tricornutum (Dolch and Maréchal, 2015). 90 

Expression of heterologous ELO5 from picoalga Ostreococcus tauri increased DHA levels in P. 91 
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tricornutum, and much of this over-synthesized DHA was retained in phospholipids, while these 92 

alterations in fatty acid composition did not affect the growth of the transformed strains (Hamilton 93 

et al., 2015). In comparison, endogenous ELO5 in P. tricornutum remains understudied. Two 94 

endogenous ELO5s, PtELO5a (protein ID: Phtra3_J9255) and PtELO5b (protein ID: 95 

Phatr3_J34485), were annotated as delta-5 elongase in the database of P. tricornutum. Our 96 

previous study revealed the role of ptELO5a in the elongation of EPA through heterologous 97 

expression in Pichia pastoris (Jiang et al., 2014). However, there is still a lack of direct genetic 98 

evidence confirming that PtELO5a is required for the biosynthesis of DHA from EPA in P. 99 

tricornutum. Meanwhile, the effects of interrupting DHA synthesis on lipid metabolism and 100 

physiology in P. tricornutum remain unclear. 101 

Over the last decades, successful application of gene editing techniques, such as transcription 102 

activator-like effector nucleases (TALENs) and the clustered regularly interspaced short 103 

palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) approaches in diatoms, have 104 

allowed us to target and stabilize modifications to the diatom genome (Daboussi et al., 2014; 105 

Nymark et al., 2016; Moosburner et al., 2020). In this report, ptELO5a mutants were constructed 106 

using CRISPR/Cas9 gene editing, and the phenotypes of these mutants were analyzed by 107 

combining lipidomic and transcriptomic data. We also focused on the association between 108 

molecular composition of phospholipids and heat sensitivity according to the phenotype of the 109 

mutants under heat stress. This work will improve our understanding of the effects of the DHA 110 

synthesis pathway on phospholipid composition and physiology in diatoms. 111 

 112 

Results 113 

Widespread distribution and environmental responsiveness of ELO5 in marine eukaryotic 114 

phytoplankton 115 

To determine the possible ecological and physiological functions of ELO5, Tara Oceans 116 

unigenes and metatranscriptomes datasets were used to analyze the main regional distribution and 117 

abundance of ELO5. The results indicated that ELO5 was widely distributed in the global oceans 118 

and found at all Tara Ocean stations (Fig. 1A). A total of 79204 ELO5 homologs were hit. 119 

Phytoplankton accounted for 46% of the total ELO5 homologs, with Dinophyta (16.6%), 120 

Chlorophyta (7.9%) and Bacillariophyta (5.9%) being the three major eukaryotic groups of 121 
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phytoplankton in the ocean (Fig. 1B). To further explore the specific environmental drivers 122 

regulating the expression and distribution of ELO5, the distance-corrected dissimilarities in the 123 

abundance of ELO5 transcripts in marine eukaryotic phytoplankton were analyzed with respect to 124 

the environmental factors. Overall, three environmental factors, i.e., temperature, nitrate and 125 

phosphate, were found to be significantly correlated with the abundance of ELO5 (Fig. 1C). 126 

Among these factors, temperature was the main factor driving the global distribution of diatoms. 127 

Bioinformatic analysis, subcellular location, and overexpression of PtELO5 128 

PtELO5a (Phatr3_J9255) and hypothesized PtELO5b (Phatr3_J34485) in P. tricornutum contain 129 

369 and 286 amino acid residues, respectively, and are both hypothesized to be membrane-bound 130 

proteins, containing ELO-conserved structural domains in their sequences (Fig. S1 and S2). To 131 

understand the evolutionary position of PtELO5, phylogenetic analyses were performed using 132 

different functional elongases of different organisms (Fig. 2A, Supplemental Dataset S1). The 133 

elongases that elongate the carbon chains of long-chain polyunsaturated fatty acids are divided 134 

into three main groups. The Δ9 elongases catalyze specific C18 PUFAs, including C18:2Δ9,12 and 135 

C18:3Δ9,12,15. Other C18 PUFAs are catalyzed by Δ6 elongases include C18:3Δ6,9,12 and 136 

C18:4Δ6,9,12,15. PtELO5a belonged to Δ5 elongases, which are involved in the elongation of 137 

C20:4Δ5,8,11,14 and C20:5Δ5,8,11,14,17. FsELO5 from Fistulifera solaris showed the highest 138 

similarity to PtELO5a in Bacillariophyta, whereas there was a large evolutionary distance between 139 

PtELO5b and other typical Δ5 elongases of diatoms. The hypothesized PtELO5b and those 140 

elongases with the highest sequence similarity to PtELO5b were clustered into Δ9 elongases. 141 

To verify the subcellular localization of PtELO5a, transgenic P. tricornutum cells with 142 

over-expressed PtELO5a fused with an eGFP protein were observed by confocal fluorescence 143 

microscopy. The green GFP signal was observed around the outermost layer of the plastid and 144 

accompanied by partial regional expansion (Fig. 2B). Further staining by ER-tracker was 145 

performed to demonstrate the overlap of cER and ER, as cER is a continuous component of the 146 

entire ER (Fig. S3). In diatoms, the outermost membrane of the plastid is attached to the ER, 147 

known as the ‘chloroplast ER’ (cER) (Gibbs, 1979). Thus, PtELO5a protein is probably located in 148 

cER of P. tricornutum. 149 

To confirm that ptELO5a, rather than hypothesized ptELO5b, is essentially required by P. 150 

tricornutum for the biosynthesis of DHA (22:6), ptELO5a and ptELO5b overexpressing strains 151 
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were constructed, respectively (Fig. S4). The analysis of fatty acid composition showed that the 152 

relative content of 22:6 in the ptELO5a overexpressing strain was increased by 3.67-fold 153 

compared with that in WT (Fig. S5). However, the overexpression of ptELO5b had no significant 154 

effect on the relative composition of 20:5 and 22:6. These results suggest that ptELO5a is the main 155 

functional gene responsible for carbon chain elongation of 20:5 and the biosynthesis of 22:6 in P. 156 

tricornutum. 157 

Identification of the ptELO5a knockout mutant obtained through CRISPR/Cas9-mediated 158 

gene editing. 159 

The ptELO5a mutants of P. tricornutum was successfully obtained by bacterial conjugation 160 

with a Cas9-sgRNA episome-based construct that carried three sgRNA expression cassettes to 161 

target three screened loci within the gene. PCR results showed that using WT genomes and total 162 

complementary DNAs (cDNAs) as PCR template can amplify the products, which cannot be 163 

achieved by using mutant genomes and cDNAs as PCR template (Fig. 3, A and B). DNA 164 

sequencing showed that a 35 bp size fragment was missing in the DNA sequence of mutants, 165 

compared to the WT DNA sequence (Fig. 3C). These results indicated that the P. tricornutum 166 

mutants with complete knockout of ptELO5a were successfully obtained. Further phenotypic 167 

analysis was performed using these three independent ptELO5a mutants. 168 

The ptELO5a mutants showed increased sensitivity to heat stress 169 

Unlike the consistent phenotype under normal conditions (at 22℃) with sufficient nutrients, the 170 

cell morphology of ptELO5a mutants appeared significantly different from that of the WT under 171 

heat stress conditions (at 28℃), with circular protrusions at both ends of the mutant cells and poor 172 

integrity of endomembrane system (Fig. 4, A and B). This subpopulation could maintain a 173 

proportion of about 45% in subsequent stress in the mutants (Fig. S6). The mutants almost stopped 174 

growing under heat stress, while the WT could still grow slowly at 28℃ (Fig. 4, C and D). In 175 

addition, the relative electron transport rate (rETR), maximum quantum yield of photosystem II 176 

(Fv/Fm), and chlorophyll a content in the mutants were all significantly lower than those in WT 177 

(Fig. 4, E, F and H). Whereas non-photochemical quenching (NPQ), reactive oxygen species 178 

(ROS) and malondialdehyde (MDA) contents in the mutants were significantly higher than those 179 

in WT at 28℃, suggesting that the ptELO5a mutants were subjected to higher oxidative stress (Fig. 180 

4, G, I and J). Further analysis of fatty acid composition showed that the reduction in PUFA 181 

ACCEPTED M
ANUSCRIPT

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/advance-article/doi/10.1093/plphys/kiae297/7682471 by IN

IST-C
N

R
S user on 30 M

ay 2024



 

7 
 

content in the mutants under heat stress was significantly higher than that in WT (Fig. 4, K, L and 182 

M). These results indicated that the ptELO5a mutants suffered more damage under heat stress than 183 

WT. 184 

Analysis of transcriptome of the ptELO5a mutants and the WT under heat stress 185 

After exposure to heat stress at 28℃ for 1 and 3 days, analysis based on transcriptional profiles 186 

showed that they exhibited similar trends in transcript levels in various metabolic pathways 187 

(Supplemental Dataset S2). Down-regulations were observed in the ribosome, photosynthesis, 188 

protein processing, and fatty acid synthesis pathways, while DNA replication, homologous 189 

recombination, mismatch repair, and N-glycosyl synthesis pathways were up-regulated (Fig. S7). 190 

The number of significant differentially expressed genes (DEGs) between the mutants and WT 191 

increased significantly with increasing duration of heat stress (Supplementary Table S3). 192 

Compared to WT, the ptELO5a mutants showed a higher degree of inhibition of metabolic 193 

pathways associated with protein synthesis and degradation (ribosome, ER protein processing, 194 

proteasome, and RNA transport pathways) and photosynthesis (porphyrin and chlorophyll 195 

metabolism, 2-oxocarboxylic acid metabolism, and carotenoid biosynthesis) during heat stress. On 196 

the contrary, the mutants demonstrated increased activities within various metabolic pathways 197 

involved in energy production, notably the citrate cycle (TCA cycle) (Fig. 5, A and B). Moreover, 198 

a substantial down-regulation of heat shock protein (HSP)-encoding genes was observed in the 199 

mutants compared with the WT under heat stress (Fig. S8). Altogether, these transcriptional results 200 

suggested that the knockout of ptELO5a interrupted the ER regulation of heat stress, primarily by 201 

influencing the coordinated regulation of HSP genes and ER-associated genes involved in the 202 

clearance of proteins with heat-induced misfolding (Fig. 5C). 203 

The mutation in ptELO5a significantly altered the content and composition of fatty acids and 204 

glycerolipid in P. tricornutum  205 

To reveal the direct effects of ptELO5a mutation on changes in lipid composition and related 206 

gene expression, fatty acids (FAs), lipid profiles and transcriptome of ptELO5a mutants and WT 207 

were compared at both exponential and stationary growth phase under standard culture conditions 208 

at 22℃. The knockout of ptELO5a evidently resulted in a significant reduction in 22:6, but had no 209 

effect on the accumulation of 20:5. Since most FAs were synthesized in chloroplasts, palmitic acid 210 

(16:0) and palmitoleic acid (16:1) accumulation in the ptELO5a mutants at the stationary phase 211 
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were significantly lower than that in the WT (Fig. 6A). This also resulted in a significantly lower 212 

total FA content of 716 nmol mg-1 dry cell weight (dcw) in the ptELO5a mutants than 902 nmol 213 

mg-1 dcw in the WT during the stationary growth phase. Analysis of relative content profiles of 214 

FAs revealed significant decrease in the 16:0, 16:1 and 22:6 types of FAs in the ptELO5a mutants 215 

compared to WT at both growth phases. This decrease in FAs was balanced by the increase in 216 

myristic acid (14:0), 20:5 and lignoceric acid (24:0) (Fig. 6B). 217 

Glycerolipidomic analysis revealed that the inactivation of ptELO5a significantly affected the 218 

composition and distribution of different molecular species within each lipid class in the ptELO5a 219 

mutants (Fig. 7A, Supplemental Dataset S3). Compared to the WT, the disruption of ptELO5a 220 

gene in the mutants resulted in a significant increase in phospholipids in the exponential phase, 221 

including phosphatidylglycerol (PG, 52%, P<0.001), phosphatidylinositol (PI, 31%, P<0.01), 222 

phosphatidylethanolamine (PE, 47%, P<0.01) and phosphatidylcholine (PC, 21%, P<0.01). On the 223 

other hand, a significant reduction was observed in 224 

diacylglyceryl-hydroxymethyl-N,N,N-trimethyl-β-alanine (DGTA) as well as three abundant 225 

thylakoid glycolipids, including sulfoquinovosyldiacylglycerol (SQGD), 226 

monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). In addition, the 227 

relative amount of TAG was also significantly lower in the ptELO5a mutants (P<0.05). 228 

Analysis of the molecular composition of phospholipids showed that the knockout of ptELO5a 229 

directly affected the carbon chain elongation of 20:5 at the sn-2 position in phospholipid 230 

composition. This resulted in significantly higher 20:5 content in mutants, including 20:5/20:5 in 231 

PC and PE, as well as 14:0/20:5, 20:4/20:5 and 20:5/20:5 in DGTA. The knockout of ptELO5a 232 

also resulted in a significant reduction in the content of 22:6 and docosapentaenoic acid (22:5) in 233 

the three phospholipids, including 20:5/22:6 in PC and PE, and 20:5/22:5, 20:5/22:6 and 22:6/22:6 234 

in DGTA (Fig. 7, B, C and D). The decrease in 22:6 content was mainly compensated by the 235 

increase in 20:5, while the total amount of 22:6 and 20:5 remained constant. Meanwhile, the 236 

excessive accumulation of 20:5 also caused the accumulation of the precursor fatty acids, 237 

including linolenic acid (18:3), parinaric acid (18:4) and arachidonic acid (20:4), for 20:5 238 

synthesis in the ptELO5a mutants. Meanwhile, the relative contents of 16:0, 16:1 and oleic acid 239 

(18:1) significantly decreased in the mutants (Fig. S9).  240 

The molecular composition of MGDG, DGDG and SQDG, which are main components of 241 
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plastid membrane lipids in diatoms, were also affected in ptELO5a mutants (Fig. S10). The 242 

relative contents of 20:5/16:2 and 20:5/16:3 in MGDG accounted for more than 50%, and were 243 

significantly higher in the ptELO5a mutants. The DGDG composition of the mutants significantly 244 

reduced in the fraction containing 20:5 at the sn-1 position, whereas the proportions of all other 245 

fractions increased. In SQDG, the relative contents of 14:0/16:0 and 14:0/16:1 (the two most 246 

dominant fractions) were significantly higher in the mutants. Statistical analysis of the fatty acid 247 

composition of three glycolipids showed that the trend of the changes in fatty acids of DGDG was 248 

essentially opposite to that of MGDG, with a decrease in the content of PUFAs (Fig. S11, A and 249 

B). MGDG and SQDG had basically the same trend of the changes in the fatty acids, except for 250 

the opposite trend of changes in 20:5 (Fig. S11C). The relative composition of total fatty acids in 251 

the three glycolipids of mutant strains mainly showed a significantly higher percentage of 14:0 252 

and 16:3, a significantly lower percentage of 16:0 and 16:1, and no significant difference in the 253 

percentage of 20:5 (Fig. S11D). A heat map was constructed to show the variations in the 254 

percentage of 20 major TAG species. The heat map showed no significant difference in the three 255 

major components with highest relative content, including 48:2 (16:0_16:1_16:1), 48:1 256 

(16:0_16:0_16:1), and 48:3 (16:1_16:1_16:1). The percentage of TAG species containing 20:5 257 

increased from 13.27% to 16.05% after mutation (Fig. S12). 258 

Suppression of central carbon metabolism in the ptELO5a mutants was the main cause of 259 

reduced TAG accumulation capacity  260 

The production of lipids usually begins in the exponential phase and the accumulation of TAG 261 

occurs during the stationary phase in eukaryotic algae (Guschina and Harwood, 2006). However, 262 

neutral lipid content and triglyceride content revealed that the mutants were significantly weaker 263 

in accumulating TAG during stationary phase compared to WT (Fig. 8, A and B). In this study, 264 

mRNA-seq analysis was performed to understand how ptELO5a knockout affected the lipid 265 

accumulation in P. tricornutum. To eliminate the interference of other factors on gene expression, 266 

the transcriptome of the ptELO5a mutants and WT cells cultured under optimal growth conditions 267 

were compared at exponential and stationary phases. Enrichment analysis of KEGG pathways in 268 

significant DEGs showed that the differential pathways mainly included some pathways related to 269 

carbohydrate and lipid metabolism (Fig. 8C). Most DEGs of these pathways mostly related to 270 

carbohydrate metabolism (i.e., pyruvate metabolism, pentose phosphate pathway, and 271 
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glycolysis/gluconeogenesis) are significantly suppressed in mutants in stationary phase (Fig. 8, D 272 

and E). In addition, the degradation of valine, leucine, and isoleucine (another important pathway 273 

that provides substantial substrates for lipid accumulation) was also inhibited in the mutants (Fig. 274 

S13).   275 

The expression of some key lipid-related genes in the mutants were also down-regulated during 276 

stationary phase (Supplemental Dataset S4), especially the encoding genes of acetyl-CoA 277 

carboxylase (ACC1, Phatr3_J55209; ACC2, Phatr3_EG01955) and malonyl-CoA:ACP 278 

transacylase (MCAT, Phatr3_J37652), which are critical for the utilization of acetyl-coenzyme A 279 

for fatty acid synthesis and carbon chain elongation in plastids and cytoplasm. 280 

Acyl-CoA:diacylglycerol acyltransferase (DGAT2D, Phatr3_J43469) and 281 

phospholipid:diacylglycerol acyltransferase (PDAT, Phatr3_J8860), which are directly involved in 282 

TAG synthesis, were also significantly down-regulated in the mutants. In addition, the vast 283 

majority of genes in the TAG and fatty acid degradation pathways were also significantly 284 

down-regulated, with the exception of the encoding gene of acetoacetyl-CoA thiolase 285 

(Perox-AACT, Phatr3_J45947; Mito-AACT2, Phatr3_J28068), glyoxisomal malate 286 

dehydrogenase (Mito-PMDH, Phatr3_J42398) and citrate synthase (Mito-CSY, Phatr3_J30145). 287 

Complementation of ptELO5a mutants restored their heat tolerance and TAG accumulation 288 

capacity 289 

To further verify that the changes in lipid content were caused by ptELO5a knockout rather than 290 

a second point mutation, complementary algal strains of ptELO5a (ptELO5a-Com) were 291 

constructed (Fig. 9A). To avoid knockout of backfill sequences, free knockout plasmid-removed 292 

knockout strains were obtained by successive zeocin-free passages (Fig. S14). The analysis of 293 

fatty acid composition revealed that the relative content of 22:6 in the ptELO5a-Com strains 294 

significantly elevated to the level similar to the wild type (Fig. 9B). Under heat stress, the growth 295 

of the ptELO5a-Com strains was basically the same as that of the wild type both grown in the 296 

cultures bubbled with filtered air and in the static culture (Fig. 9C; Fig. S15). In addition, the 297 

growth of the ptELO5a overexpression strains under heat stress was also consistent with that of 298 

the wild type (Fig. S16). The Nile Red-stained fluorescence and TLC separation assay further 299 

confirmed that the TAG accumulation pattern in the ptELO5a-Com strains and WT during 300 

stationary phase was also consistent (Fig. 9, D, E, F and G). These results confirmed that the 301 
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phenotypes of the ptELO5a mutants were indeed caused by the inactivation of the ptELO5a gene. 302 

This finding excluded the possibility of second point mutation. 303 

 304 

Discussion 305 

The role of long-carbon-chain elongase in lipid remodeling and environmental adaptation 306 

has been underestimated in marine phytoplankton 307 

Both marine eukaryotic phytoplankton and land plants evolved from prokaryotic cyanobacteria 308 

due to the endosymbiosis during the long evolutionary process (Zimorski et al., 2014). Unlike the 309 

land plants that can only synthesize C16 or C18 PUFAs, many marine phytoplankton also have the 310 

ability to synthesize LC-PUFA (more than 18 carbon atoms) (Dolch and Maréchal, 2015). In 311 

general, the LC-PUFAs synthesis pathway requires multiple elongases and desaturases, which are 312 

mainly distributed in the cER or ER, and the synthesis of 20:5 from 18:1 can be categorized into 313 

the traditional Δ6 pathway or the alternative Δ8 pathway (Gong et al., 2014; Huang et al., 2023). 314 

And the synthesis from EPA to DHA requires two conserved steps: elongation of EPA to 315 

docosapentaenoic acid (DPA, 22:5 n-3) by ELO5, and then desaturation by Δ4 desaturase (DES4) 316 

(Ruiz-López et al., 2012).  317 

In addition to its speculated role in regulating the phase transition temperature of membranes, 318 

EPA is also thought to be closely related to photosynthesis due to the high amount of EPA in 319 

glycolipids in marine phytoplankton (Abida et al., 2015). In comparison, DHA content is usually 320 

much lower than EPA and mainly found in phospholipids with unclear functions (Sayanova et al., 321 

2017; Zulu et al., 2018). Recent extensive field investigations and lipid analysis in the ocean have 322 

revealed that the abundance of EPA in marine phytoplankton decreases with the increasing 323 

temperature, while DHA content first increases and then decreases with increasing temperature 324 

(Holm et al., 2022). This suggested that DHA is less sensitive to temperature than EPA. This 325 

discrepancy in temperature sensitivity indicates that DHA and EPA may have different 326 

physiological functions in phytoplankton. So far, the roles of DHA and carbon chain elongation, 327 

especially long-chain elongation enzymes, in the environmental adaptation of marine 328 

phytoplankton have been overlooked. 329 

The knockout of ptELO5a affects not only DHA synthesis but also lipid metabolism  330 

Both overexpression and knockdown experiments indicate that PtELO5a is the dominant Δ5 331 
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elongases. Although the ptELO5a mutants did not have a reduced overall fatty acid synthesis 332 

capacity during the exponential phase, the percentage of glycolipids and phospholipids changed 333 

significantly (Fig. 7A). Phospholipids such as PG, PI, PE, and PC were significantly increased, 334 

whereas glycolipids such as MGDG, DGDG, and SQDG were significantly reduced. Transcript 335 

levels of the genes related to synthesis of phosphatidic acid (PA), diacylglycerol (DAG), and 336 

cytidine diphosphate diacylglycerol (CDP-DAG) in plastids and ER were upregulated in the 337 

mutants, including the genes encoding glycerol-3-phosphate acyltransferase, 338 

1-acylglycerol-3-phosphate acyltransferase, and CDP-DAG synthase. The synthesis of polar head 339 

precursors in the cytoplasm as well as synthesis, desaturation, and polar head exchange of PE, PS 340 

and PC in the ER were up-regulated in the mutants. Moreover, the transcript levels of most of the 341 

genes involved in the synthesis of galactolipids and sulfolipids from DAG in plastids were 342 

significantly down-regulated in the mutants, which is likely the direct cause of the reduced levels 343 

of glycolipid synthesis (Supplemental Dataset S4). 344 

Mutations in ptELO5a also resulted in a reduced ability to accumulate TAGs. This may affect 345 

changes in the ability of mutants to adapt to environmental conditions, as TAGs are the main 346 

storage lipids in photosynthetic organisms under stress (Yang et al., 2022). DHA is mainly 347 

distributed on phospholipids, which are low in content and not directly involved in TAG synthesis 348 

in wild-type P. tricornutum (Abida et al., 2015). Thus, there may be some indirect correlation 349 

between DHA content and the ability to accumulate TAGs. This was revealed by further analysis 350 

of the transcription of genes associated with lipid accumulation. Several important pathways 351 

involved in carbohydrate metabolism as well as the branched-chain amino acid degradation 352 

pathway are significantly repressed in the ptELO5a mutants, which greatly reduces the availability 353 

of carbon precursors (Fig. 8C; Fig. S13). The degradation products of plastid proteins and polar 354 

lipids have been shown to be the main carbon precursor resource for TAG (Ge et al., 2014; 355 

Levitan et al., 2015); The expressions of ACCs and MCAT, which are critical for the initiation of 356 

fatty acid de novo synthesis, were significantly reduced in the mutants, which might have been 357 

highly detrimental for the translation of acetyl-CoA in the overall lipid synthesis pathway (Zulu et 358 

al., 2018). Thus, insufficient supply of carbon precursors and down-regulation of key node genes 359 

may be the main reasons for the reduced accumulation capacity of TAGs in ptELO5a mutants. 360 

Disruption of ptELO5 caused heat sensitivity in P. tricornutum 361 
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In P. tricornutum, DHA is mainly incorporated into the sn-2 position of glycerol backbone of 362 

PC, PE and DGTA. Esterification of PUFAs to membrane lipids is crucial to maintain the proper 363 

membrane fluidity, especially at low temperature (Valentine and Valentine, 2004). For instance, 364 

arachidonic acid (20:4)-containing MGDG might contribute to maintenance of chloroplast 365 

membrane fluidity at low temperatures in the green alga Lobosphaera incisa (Zorin et al., 2017). 366 

In this study, ptELO5a-disrupted mutants were prepared to gain insight into the physiological role 367 

of DHA in P. tricornutum. The growth of ptELO5a was normal at 22°C, whereas it was strongly 368 

impaired at 28°C. The limiting temperature for keeping membrane integrity in the wild type was 369 

28.5°C (Cheong et al., 2021). Apparently, the altered membrane lipid composition in the ptELO5a 370 

mutants significantly reduced the tolerance temperature. Here, attempts were made to establish a 371 

link between the impaired growth and lipidomic changes. Lipidomic analysis showed that in the 372 

ptELO5a mutants, the most dramatic change in the proportion of DHA-containing glycerolipid 373 

molecular species was observed in PE 20:5/22:6, which decreased from 27.4% in WT to 1.11% in 374 

the mutants during the exponential phase, and from 5.35% in WT to undetectable level in the 375 

mutants in the stationary phase (Fig. 7). A significant reduction was also observed in other 376 

DHA-containing molecular species, including 20:5/22:6 of PC, and 20:5/22:6 and 22:6/22:6 of 377 

DGTA in the ptELO5a mutants. Furthermore, the impact of PE:PC ratio has been reported on the 378 

regulation of membrane fluidity in higher eukaryotic cells, such as insect and mammalian cells 379 

(Dawaliby et al., 2016). In this study, PE:PC ratio significantly increased from 0.22 in the WT to 380 

0.27 in the ptELO5a mutants, indicating the change in the cellular membrane fluidity in ptELO5a 381 

mutants, especially at higher temperature. In marine cyanobacteria Synechococcus, fatty acid 382 

moieties of glycolipids were modified in response to temperature variation. When growth 383 

temperature decreased, the average acyl chain length of galactolipids decreased and the global 384 

proportion of unsaturated chains in the membranes strongly increased (Pittera et al., 2018). 385 

Compared to WT, the average length of the PC and PE sn-1 and sn-2 acyl chains significantly 386 

decreased in the ptELO5a mutants (Supplementary Table S4). This change may affect the 387 

functionality of extraplastidic membranes in the ptELO5a mutants, causing impaired cell growth 388 

at higher temperature of 28°C. 389 

In addition, we also found that some metabolic pathways in the mutants were more affected 390 

under heat stress, mainly reflecting the close association with organelles composed of 391 

ACCEPTED M
ANUSCRIPT

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/advance-article/doi/10.1093/plphys/kiae297/7682471 by IN

IST-C
N

R
S user on 30 M

ay 2024



 

14 
 

phospholipids (Fig. 5). The quality of the ER is considered critical to the stress response of algal 392 

cells, and it is also closely related to phospholipid composition (Yamaoka et al., 2019). Moreover, 393 

the rapid response of ER quality control (ERQC) and ER-associated degradation mechanism 394 

(ERAD) at high temperatures, as well as the rate of degradation of misfolded proteins in the ER 395 

system are critical for heat tolerance of algae (Chen et al., 2022). In addition, the gene expression 396 

levels related to the majority of heat stress proteins (HSP) in the ptELO5a mutants were 397 

significantly lower than those in the WT, which may largely affect the thermotolerance of mutants 398 

(Ding et al., 2020). Maintenance of protein processing machinery and membrane structure is 399 

important for temperature acclimation and adaptation in marine diatoms (Liang et al., 2019). 400 

However, the expression of these genes was significantly suppressed in the mutants, which is 401 

clearly unfavorable for the mutants to cope with high temperature stress. 402 

The distinct physiological functions of EPA and DHA in marine phytoplankton 403 

EPA and DHA may have distinct physiological functions in marine phytoplankton. Unlike EPA, 404 

which ends up localizing into the chloroplast membrane galactolipids (SQDG, MGDG and DGDG) 405 

after its synthesis in the ER, DHA is mainly distributed in PC, PE and DGTA, suggesting that 406 

DHA is important for the functionality of extraplastidic membranes. The changes observed in the 407 

ultrastructure of chloroplast in the ptELO5a cells might have been caused by the altered EPA 408 

composition in plastid membrane lipids. Alternatively, there may be a tight association between 409 

chloroplast membranes and extraplastidic membranes. Intercepting the synthesis of DHA, the 410 

original DHA-containing fraction was replaced by EPA, resulting in reduced adaptation to 411 

adversity in the mutants. The DHA synthesis of the constructed complementary strains was 412 

basically at the same level as that of the wild type in terms of temperature adaptability and neutral 413 

lipid synthesis. Thus, the role of small amounts of DHA in regulating the physiology and cellular 414 

structure of phytoplankton cannot be ignored (Fig. 10). DHA synthesis is at the end of the entire 415 

LC-PUFAs synthesis pathway and is often overlooked in studies, but it is important in the 416 

regulation of overall lipid composition and stress adaptation in diatoms. 417 

Under the scenario of future global warming, understanding the physiological functions and 418 

biosynthetic pathways of LC-PUFAs in marine phytoplankton not only helps to understand the 419 

changes and distribution of phytoplankton communities, but also has important significance for 420 

predicting the resource distribution of natural LC-PUFAs. High contents of EPA and DHA have 421 
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been reported in many phytoplankton, not only in the polar marine environments, but also in 422 

subtropical and tropical marine environments with higher temperatures (Hixson and Arts, 2016; 423 

Zulu et al., 2018). Although phytoplankton can actively adjust their adaptive strategies under 424 

thermal variations, ocean warming will affect their physiological state and cellular composition, 425 

leading to changes in their eco-regional distribution (Liang et al., 2019; Li et al., 2023). The 426 

availability of LC-PUFAs and the nutrient quality of planktonic food web components will reduce 427 

under ocean warming, which will also significantly reduce the efficiency of human access to 428 

LC-PUFAs (Lau et al., 2021). DHA, like other LC-PUFAs, is also susceptible to oxidation under 429 

high-temperature stress, so algae tend to maintain higher levels of LC-PUFAs at lower 430 

temperatures (Jiang and Gao, 2004). However, the differences between DHA and EPA in the 431 

physiological regulation of algal cells should not be neglected. Our study suggests that those 432 

diatoms have maintained a strategy of elongating fatty acid from 20 to 22 carbon atoms over long 433 

periods of evolution, which to a certain extent enhances their ability to cope with high temperature. 434 

The synthesis of DHA and the elongation process of PUFA carbon atoms from 20 to 22 may be 435 

more important for them in the context of future climate change. Those diatoms with this 436 

elongation enzyme or DHA biosynthesis capability may have a competitive advantage in adapting 437 

to global ocean warming, which needs to be further revealed in the future. 438 

 439 

Materials and Methods 440 

Phaeodactylum tricornutum wild-type (WT), ptELO5a-overexpression (ptELO5a-OE), 441 

ptELO5b-overexpression (ptELO5b-OE), ptELO5a mutants and ptELO5a-complementation 442 

(ptELO5a-Com) strains were cultured in sterile artificial seawater enriched in F/2 medium 443 

(Guillard, 1975). The ptELO5a-OE, ptELO5b-OE and ptELO5a mutants were additionally 444 

supplemented with zeocin with a final concentration of 75 mg L-1. The ptELO5a-Com strains were 445 

additionally supplemented with nourseothricin (NTC) with a final concentration of 200 mg L-1. 446 

The algal cells were maintained at 22°C under 75 μmol photons m-2 s-1 light intensity and 12 h 447 

light/12 h dark cycle. For the measurements of physiological phenotypes, P. tricornutum strains in 448 

the exponential growth phase were inoculated into 500 mL medium at an initial concentration of 449 

1×104 cells mL-1 with constant aeration. Daily samples were taken for cell number counting, 450 

nitrate concentration determination, and Nile red staining fluorescence intensity determination 451 
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(Collos et al., 1999; Yu et al., 2009). For the heat stress experiment, the incubation temperature 452 

was set to 28oC and other experimental conditions remained unchanged. 453 

Plasmid construction and transformation of P. tricornutum 454 

To investigate the subcellular localization of PtELO5a in P. tricornutum cells, a fusion protein 455 

containing PtELO5a and enhanced green fluorescence protein (eGFP) was designed. The coding 456 

sequence of ptELO5a was cloned into the multiple cloning sites (MCS) of pPha-CG vector to 457 

construct the enhanced green fluorescent protein fusion vector. In addition, the coding sequence of 458 

ptELO5b was cloned into the MCS of pPha-T1 as the vector for ptELO5b over-expression. 459 

Approximately 1×107 
P. tricornutum cells in the exponential growth phase were centrifuged at 460 

3000 g for 10 min, and spread onto each 1.2% agar plate containing F/2 media. The plasmids were 461 

coated with tungsten powder and transformed into P. tricornutum cells by the Bio-Rad Biolistic 462 

PDS-1000/He Particle Delivery System (Bio-Rad, Hercules, California, USA) as the previously 463 

described method (Zaslavskaia et al., 2000). The bombarded cells were spread onto 1.2% agar F/2 464 

plates with 75 μg mL-1 zeocin for 2-3 weeks to obtain resistant colonies. The ptELO5a-GFP 465 

transformed algal strains also serve as ptELO5a-OE strains. 466 

To construct the ptELO5a mutants, the Cas9 target sites of ptELO5a with the PAM signal (NGG) 467 

were identified by PhytoCRISP-Ex and six suitable sgRNAs were screened. The plasmid used to 468 

the gene editing of ptELO5a in P. tricornutum was constructed by the insertion of the gRNA 469 

expression cassettes into the PBR-CAS9-ShBle vector by the Golden Gate Assembly as described 470 

by Moosburner et al. (Moosburner et al., 2020). The resulting Cas9-ShBle:sgRNA episome was 471 

introduced into P. tricornutum cells using the bacterial conjugation method as described in (Karas 472 

et al., 2015). Resistant colonies were selected on F/2 plates supplemented with 75 μg mL-1 zeocin. 473 

All the plasmids and primer sequences used in this study are listed in Supplemental Table S1 and 474 

Table S2, respectively. 475 

Identification and homozygosis of ptELO5a knockout mutants 476 

In order to determine whether the resistant colonies were successfully gene-edited by Cas9, the 477 

colonies were randomly selected to prepare cell lysates, and 2 μl of cell lysates were used as 478 

specific primers for polymerase chain reaction (PCR) amplification of ptELO5a sequence on the 479 

genome. Forward primer was set for this knocked out sequence and reverse primer was designed 480 

for sequences outside the edited region The PCR products were detected with 1% agarose gel and 481 
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a portion of the products were selected for Sanger sequencing. Genotypic characterization of 482 

colonies using a CRISPR Edit Inference Tool (ICE, Synthego, https://ice.synthego.com). Colonies 483 

with 100% indel percentage were selected to determine the sequence of the fragment that was 484 

knocked out. The cloned genomic DNA and cDNA were verified by PCR for further 485 

determination of knockout results. 486 

Confocal microscopy 487 

P. tricornutum cells containing subcellular localization vector (VptELO5a-eGFP) were cultured to 488 

exponential growth phase. Samples were excited with the laser scanning confocal microscope 489 

LEICA TCS SP8 (Leica, Germany) at 488 nm GFP fluorescence and chlorophyll fluorescence, 490 

with gain set to 750 for GFP fluorescence at emission wavelength 500-520 nm, and gain set to 550 491 

for chlorophyll fluorescence at emission wavelength 625-720 nm. Endoplasmic reticulum 492 

(ER)-Tracker Red (Beyotime, Beijing, China) was used to visualize ER with parameters set to an 493 

excitation wavelength of 561 nm, an intensity of 3%, a gain of 100, and an emission wavelength 494 

of 590-640 nm. 495 

Transmission electron microscopy 496 

P. tricornutum cells were harvested by centrifugation at 3000 g for 15 min, then fixed overnight 497 

at 4°C with ten volumes of 4 % (w/v) glutaraldehyde fixative diluted with sterilized seawater. The 498 

supernatant was removed and rinsed 3 times with 0.1 M phosphate buffer. The samples were 499 

stained with 1% (w/v) osmium tetroxide for 2 h at 4°C in the dark, and washed with 0.1 M 500 

phosphate buffer for 3 times, and then dehydrated with increasing concentration of ethanol (30, 50, 501 

70, 90% (v/v) in water) for 10 min and 90% acetone ((v/v) in water) for 10 min. 100% acetone 502 

was used to infiltrate the samples for 10 min and repeated for 3 times. Then gradually infiltrated 503 

for 1 h using a mixture of Pon 812 Epoxy Resin Monomer and acetone in the ratios of 3:1, 2:1, 1:1 504 

and 1:0, respectively. Finally, the samples were polymerized at 37°C for 12 h and 60°C for 48 h. 505 

After ultra-thin sectioning, the sections were stained with uranyl acetate and lead citrate. Images 506 

were recorded using the HITACHI H-7650 transmission electron microscopy (Hitachi, Japan) at 507 

80 kV. 508 

Lipid extraction and analysis 509 

When cultured to the stationary phase (7 d, 8 d, and 9 d), 5×107 cells/sample were collected and 510 

the total lipids of fresh algal cells were extracted with chloroform/methanol (2:1, by volume) and 511 
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redissolved with chloroform after nitrogen blowing. The amounts of triacylglycerols (TAGs) were 512 

evaluated by thin layer chromatography (TLC) using hexane/diethyl ether/acetic acid (70:30:1, by 513 

volume) and visualized with 0.01% primuline reagent ((w/v) in acetone). LC-MS was performed 514 

on the isolated TAGs to obtain TAG profiles as previously described (Xie et al., 2020). For 515 

detailed profiling of all glycerolipids in WT and ptELO5a mutants, lipids were extracted and 516 

fractionated by 1D and 2D TLC, and purified lipid classes were used for assays by LC-MS/MS as 517 

described previously (Jouhet et al., 2017). 518 

Measurements of photosynthetic parameters 519 

The chlorophyll fluorescence parameters of P. tricornutum were evaluated by a pulse amplitude 520 

modulation (PAM) fluorometer (AquaPen AP110-C, Czech Republic). To determine the 521 

parameters of maximum photochemical efficiency of photosystem Ⅱ (Fv/Fm) and 522 

nonphotochemical exciton quenching (NPQ), the samples were dark-adapted for 20 min, and 523 

analyzed in a 1 cm cuvette. The rapid light curve (RLC) was obtained using a pre-programmed 524 

light curve (LC3) scheme for relative electron transport rate (rETR) analysis. 1×107 algal cells 525 

were collected per sample for chlorophyll a content determination. The cells were suspended by 526 

adding 4 mL of 90% acetone solution and extracted overnight at 4°C under dark conditions. The 527 

samples were centrifuged at 5000 g for 10 min at 4℃ and the absorbance values at 630 and 664 528 

nm of the supernatant were measured. The chlorophyll a content was calculated based on Chl a = 529 

11.47 A664 - 0.40 A630 (Wright et al., 2005). 530 

Reactive oxygen species and malondialdehyde determination 531 

Reactive oxygen species (ROS), malondialdehyde (MDA) and total protein quantitative assay 532 

kits were purchased from Nanjing Jiancheng Bioengineering Institute (Nanjing, China). Algae 533 

samples with a total cell number of 2 × 106 were collected and incubated in the dark for 20 min 534 

with the addition of the DCFH-DA probe, then the excess probe was washed away with sterile f/2 535 

medium and the fluorescence values were measured at 488 nm excitation wavelength and 525 nm 536 

emission wavelength. 40 ml for each algae sample was extracted and assayed for MDA and total 537 

protein content according to the manufacturer’s instructions. The result of MDA content was 538 

calculated as nmol per milligram of total protein (nmol mg protein-1). 539 

Transcriptome and RNA-sequencing 540 

The WT and ptELO5a mutant cells were harvested at different culture conditions and time 541 
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points for transcriptome analysis. Under normal culture condition of 22°C, cells were harvested at 542 

nutrient replete phase (4 d) and nitrogen depletion phase (8 d), named as exponential phase (exp) 543 

and stationary phase (sta), respectively. In heat stress experiment, algal cells at exponential phase 544 

were adjusted to a cell concentration of 1×106 mL-1 and treated at 28°C on 1 d and 3 d; these cells 545 

were named as heat treat 1d (HT1d) and heat treat 3d (HT3d) respectively. Total RNA of algal 546 

cells was extracted using TRIzol reagent (Invitrogen, USA) and sequencing was performed on the 547 

BGI PE150 platform (Wuhan Generead Biotechnologies Co. Ltd., China). Clean reads were 548 

accurately compared with the reference genome using HISAT2 (2.2.1) and quantified using 549 

featureCounts (v2.0.1) (Kim et al., 2019).  550 

RNA extraction and reverse transcription quantitative PCR 551 

Total RNA was extracted from P. tricornutum cells in the exponential growth phase. Cells were 552 

harvested from 40 ml of culture medium and centrifuged at 4000 g for 10 min at 4°C to discard 553 

the supernatant, and the cells were frozen and ground in liquid nitrogen. RNA was extracted 554 

according to the RNeasy MinElute Cleanup Kit operating manual (Qiagen Inc. Germany). Total 555 

RNA (1 μg) was reverse transcribed into cDNA using PrimeScript RT reagent kit (Takara Bio, 556 

Japan), and expression was quantified using the TB Green® Premix Ex Taq™ II (Takara). Primer 557 

sequences used for qPCR are listed in Supplemental Table S2. 558 

Construction of P. tricornutum ELO5 complementary strain 559 

The coding region of ptELO5a was amplified by PCR using primer pair of 560 

ptELO5aKO_com-F/R. Using In-Fusion Cloning, PCR product was ligated to the EcoRI/SalI sites 561 

of pPha-Cp1, a modified vector to replace the zeocin resistance cassette with a NTC resistance 562 

cassette (Slattery et al., 2018). To avoid the continuous editing of complementary ptELO5a 563 

fragment by knockout-plasmid, ptELO5a mutants with knockout-plasmid loss were screened 564 

through five rounds of continuous passage of zeocin free F/2 medium. Then, at exponential-phase, 565 

the screened ptELO5a mutant cells were complemented by microparticle bombardment with the 566 

NTC-resistance plasmid pPha-Cp1 containing the WT ptELO5a sequence. Selection of algal 567 

transformants was done using F/2 agar plates supplemented with 200 μg mL-1 NTC. 568 

Phylogenetic analysis 569 

The ELO sequences were obtained from NCBI (https://www.ncbi.nlm.nih.gov/protein/) 570 

(Supplemental Dataset S1). Multiple protein sequence alignment using software MEGA 11 with 571 
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the embedded ClustalW program. The phylogenetic tree was reconstructed with default setting 572 

using the neighbor-joining method. 573 

Analysis of the global distribution and environmental correlation of ELO5 genes 574 

The abundance of ELO5 and ELO5-like genes in the ocean was analyzed on both the Marine Atlas 575 

of Tara Oceans Unigenes and eukaryotes metatranscriptomes (MATOUv1+metaT) (Vernette et al., 576 

2022). The geographical distribution of the phytoplankton ELO5 genes based on the Tara Oceans 577 

dataset was visualized using the online tool (Chiplot). The taxonomic groups of the phytoplankton 578 

enriched at each site were counted, and the environmental conditions at the corresponding sites 579 

were evaluated. To include as much phytoplankton as possible, the phytoplankton ELO5 genes 580 

from 0.8-5 µm, 5-20 µm and 20-180 µm surface layers of the ocean were selected for further 581 

analysis in this study. The following nine environmental parameters were chosen for correlation 582 

analysis: temperature (℃), salinity (PSU), photosynthetic active radiation (PAR, mol/m2/day), 583 

iron_5m* (µmol/l), ammonium_5m* (µmol/L), nitrite_5m* (µmol/L), nitrate_5m* (µmol/L), PO4 584 

(µmol/L) and Si (µmol/L). Partial Mantel correlations between ELO5 mRNA abundance and 585 

environmental parameters were computed using the vegan R software package. 586 

Accession numbers  587 

Sequence from Phaeodactylum tricornutum genome and data used for phylogenetic tree 588 

reconstructions can be found in the P. tricornutum and the GenBank data library under the 589 

following accession numbers: Phtra3_J9255; Phatr3_J34485; KOO22560; EOD07354; CEF39061; 590 

AAL37626; ADD51571; BAI40363; ADN94475; ADN94476; GFH52305; AEA07666; 591 

BAO27787; OEU22482; ACK99719; AAT85662; ADE06662; AQX92136; AAV67797; 592 

AAW70157; AFU3574; ACR53359; AHG94993; GAY03028; AAV67799; GFH61049; 593 

KAG8470089; AFF27584; GAX16207; OEU09261; KAG7344361; AAV67798; AAV33630; 594 

VEU39922; ACR53360; AAY15135; AAV67800; KAI8329854; KAF8984070; GJJ77693; 595 

GAX16936; KAI2494228; OEU22771; KAI7818337; KAF9207334; KAF9933269; GKZ01156; 596 

KAG7344733; CAH0379219; KAI8371721; CAB9508581; CAB9525579; KAI9274193; 597 

CAE7610831; GMI28703; GMI31968; GMI26318; QDZ23655; CAJ1934847; KAI2494718; 598 

GKY98428; KAG7370759; GMI60985; KAJ1623087; CAB9512426; KAK1738254; GMI30663; 599 

GMH53578; GMH56579; GMH70427. Transcriptome sequence data are available at NCBI under 600 
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BioProject accession PRJNA1055175 601 

(https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1055175). 602 
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acid degradation pathway. 625 
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Figure legends 658 

Figure 1. The widespread presence environmental nutrient responsiveness of ELO5 in global 659 

marine phytoplankton. (A) Wide geographic distribution of ELO5 found in Tara Oceans. Color 660 
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scale depicts the abundance of ELO5 mRNA at each site. (B) The wide taxonomic distribution of 661 

ELO5 in marine phytoplankton. Dino, Dinophyta; Chlo, Chlorophyta; Baci, Bacillariophyta; Hapt, 662 

Haptophyta; Cryp, Cryptophyta; Eugl, Euglenozoa; Rhod, Rhodophyta. (C) Environmental 663 

nutrient drivers of phytoplankton ELO5 abundance. Pairwise comparisons of environmental 664 

conditions are represented by a color gradient indicating the Pearson’s correlation coefficient. Line 665 

width represents the corresponding Mantel’s r statistic for the correlation of taxonomic ELO5 666 

abundance and each environmental factor. PAR, photosynthetic active radiation. 667 

 668 

Figure 2. Analysis of PtELO5 sequence alignment and protein localization. (A) Cladogram of 669 

ELO5 of difference functions from various organisms. The GenBank ID of the corresponding 670 

species ELO5 is shown in bracket. Cc, Cylindrotheca closterium; Co, Conidiobolus obscurus; Cpa, 671 

Chlamydoabsidia padenii; Cpr, Chloropicon primus; Cte, Chaetoceros tenuissimus; Cto, 672 

Chrysochromulina tobinii; Dl, Diacronema lutheri; Dv, Diacronema viridis; Eg, Euglena gracilis; 673 

Eh, Emiliania huxleyi; El, Entomortierella lignicola; Ep, Entomortierella parvispora; Fcr, 674 

Fragilaria crotonensis; Fcy, Fragilariopsis cylindrus; Fs, Fistulifera solaris; Gm, Gamsiella 675 

multidivaricata; Hsp, Haplosporangium sp.; Ig, Isochrysis galbana; Li, Lobosphaera incisa; Lz, 676 

Linnemannia zychae; Ma, Mortierella alpina; Mpo, Marchantia polymorpha; Mps, Mayamaea 677 

pseudoterrestris; Ng, Nannochloropsis gaditana; Ni, Nitzschia inconspicua; No, Nannochloropsis 678 

oceanica; Ns, Nannochloropsis salina; Ot, Ostreococcus tauri; Pa, Pythium aphanidermatum; Pc, 679 

Pyramimonas cordata; Par, Parmales sp.; Pav, Pavlova sp.; Pi, Pythium insidiosum; Pm, 680 

Pseudo-nitzschia multistriata; Ppa, Physcomitrium patens; Ppi, Pavlova pinguis; Psp, Pavlovales 681 

sp.; Pt, Phaeodactylum tricornutum; Rsa, Rebecca salina; Rsp, Radiomyces spectabilis; Sma, 682 

Skeletonema marinoi; Smi, Symbiodinium microadriaticum; Sr, Seminavis robusta; Su, 683 

Sporodiniella umbellate; Tc, Triparma columacea; Tg, Tetraparma gracilis; Tl, Triparma laevis; 684 

Tp, Thalassiosira pseudonana; Tr, Triparma retinervis; Ts, Triparma strigata. Baci, 685 

Bacillariophyta, Chlo, Chlorophyta, Dino, Dinophyta, Eugl, Euglenozoa, Hapt, Haptophyta, Ochr, 686 

Ochrophyta, Oomy, Oomycota, Stre, Streptophyta. The triangular and square markers represent 687 

the top 20 sequences most similar to the PtELO5a and PtELO5b protein sequences compared in 688 

NCBI, respectively. (B) Subcellular localization of PtELO5a in P. tricornutum cells. TL, 689 

transmitted light; PAF, plastid autofluorescence; GFP, enhanced green fluorescence protein; 690 
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PAF/GFP, overlay of plastid and GFP fluorescenc. 691 

 692 

Figure 3. Construction of ptELO5a mutant strains. (A) Schematic representations show the 693 

fragmental deletion between two targeted sites of the ptELO5a mutants. Scissors represent sgRNA 694 

to guide Cas9 for cleavage. A pair of primers (blue triangle, KO-For and KO-Rev) was designed to 695 

detect large deletions in the ptELO5a mutants. (B) Genomic DNAs and total complementary 696 

DNAs (cDNAs) as templates for polymerase chain reaction (PCR) detection. Columns 1, 2, and 3 697 

used the wild type as a template, and columns 4, 5 and 6 used the mutants as a template, 698 

respectively; (C) The sequencing results of the successful editing of the mutant ptELO5a gene. 699 

The protospacer adjacent motif (PAM) region is shown in blue colour letters, and the number at 700 

the end shown in red colour letters indicates deleted (-) bases between two Cas9 cuts. 701 

 702 

Figure 4. Analysis of the physiological parameters of wild type (WT) and ptELO5a mutants 703 

(ptELO5a_KO) under heat stress. (A) optical microscope observation of morphology; (B) 704 

transmission electron micrographs of ultrastructure. (C) cell growth curves; (D) nitrate 705 

concentrations in culture medium; (E) relative electron transport rate (rETR); (F) the maximum 706 

quantum yield of photosystem II (Fv/Fm); (G) non-photochemical quenching (NPQ); (H) 707 

chlorophyll a content; (I) reactive oxygen species (ROS) content; (J) malondialdehyde (MDA) 708 

content; (K) Relative composition of fatty acids; (L) Ratio of UFA to SFA. UFA, unsaturated fatty 709 

acid; SFA, saturated fatty acids; (M) the double bond index (DBI). DBI = 2 [(% monoenes) + (2 × % 710 

dienes) + (3 × % trienes) + (4 × % tetraenes) + (5 × % pentaenes) + (6 × % hexaenes)]/100 is 711 

according to Feijão et al., (Feijão et al., 2018). The initial inoculation density was 104 cells mL-1. 712 

All 22°C samples were collected at the exponential phase (4th d) and heat-stressed samples were 713 

continued to be transferred to 28°C for 3rd d. Data are the average of three biological replicates 714 

with error bars indicating standard deviations (n = 3) and the asterisk indicates the significant 715 

difference asterisk indicates the significant difference (Student’s t-test, *, P < 0.05; **, P < 0.01; 716 

***, P < 0.001) between the WT and ptELO5a_KO . 717 

 718 

Figure 5. Transcriptome analysis of wild type (WT) and ptELO5a mutants (ptELO5a_KO) under 719 

heat stress (28°C). (A) (B) The enriched metabolic pathways of significantly differentially 720 
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expressed genes between ptELO5a_KO and WT at 1 and 3 days of heat stress, and the top 20 721 

metabolic pathways were selected based on significance. The red triangle indicates that the 722 

pathway was up-regulated in ptELO5a_KO compared to the WT, while blue triangle indicates 723 

down-regulation. (C) ER-related pathways have significant differences between ptELO5a_KO and 724 

WT in response to heat stress. ERQC, ER quality control; HSPs, heat shock proteins; ERAD, 725 

ER-associated degradation. Red arrow indicates that the pathway was up-regulated in the mutant 726 

strain, and blue arrows indicate that the pathway was down-regulated. 727 

 728 

Figure 6. Comparative analysis of fatty acid between wild type (WT) and ptELO5a mutants 729 

(ptELO5a_KO) grown at the exponential (exp) and stationary (sta) phases. (A) Total fatty acid 730 

content. (B) Fatty acid composition (mol% of total fatty acids). Data and error bars are mean and 731 

standard deviation, respectively (n = 3). The asterisk indicates the significant difference (Student’s 732 

t-test, *, P < 0.05; **, P < 0.01; ***, P < 0.001) between the WT and ptELO5a_KO. 733 

 734 

Figure 7. Comparative analysis of lipidome differences between wild type (WT) and ptELO5a 735 

mutants (ptELO5a_KO) grown at the exponential and stationary phases. (A) glycerolipids; (B) 736 

phosphatidylcholine (PC); (C) phosphatidylethanolamine (PE); (D) 737 

diacylglyceryl-hydroxymethyl-N,N,N-trimethyl-β-alanine (DGTA). Data and error bars are mean 738 

and standard deviation, respectively (n = 3). The asterisk indicates the significant difference 739 

(Student’s t-test, *, P < 0.05; **, P < 0.01; ***, P < 0.001) between the WT and ptELO5a_KO. 740 

 741 

Figure 8. Impacts of ptELO5a knockout on lipid accumulation and transcriptome under standard 742 

culture conditions (22°C). (A) Nile red fluorescence intensity of wild type (WT) and ptELO5a 743 

mutants (ptELO5a_KO) cells grown for 6, 7, 8 and 9d, respectively. Data and error bars are mean 744 

and standard deviation, respectively (n = 3). The asterisk indicates the significant difference 745 

(Student’s t-test, *, P < 0.05; **, P < 0.01) between the WT and ptELO5a_KO. (B) A thin-layer 746 

chromatogram of total lipids from WT and ptELO5a_KO grown for 7, 8 and 9d, respectively. 747 

Each lipid sample was extracted from ~5×107 cells. TAGs were visualized with 0.01% primuline 748 

reagent ((w/v) in acetone). (C) KEGG enrichment analysis of differentially expressed genes at 749 

stationary phase between the WT and ptELO5a_KO. Samples were collected on 8d. (D) A 750 
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simplified model of the central carbon metabolic pathway responsible for lipid metabolism based 751 

on significant difference pathway analysis. (E) Major significant difference genes in central 752 

carbon metabolism (pentose phosphate pathway, pyruvate metabolism and 753 

glycolysis/gluconeogenesis) between WT and ptELO5a_KO. Data are mean of log2(fold changes) 754 

(n=3) and are presented as heat maps with shades of red or green colors according to the scale bar. 755 

Fold changes were calculated as log2(FPKM (ptELO5a_KO) / FPKM (WT)).  FPKM, absolute 756 

abundance of transcripts. *, |log2(fold change) | > 1. 757 

 758 

Figure 9. Phenotype analyses of P. tricornutum wild type (WT), ptELO5a mutants (ptELO5a_KO) 759 

and complementary strains (Com). (A) PCR of genomic DNA of the complementary strains using 760 

the ELO5aKO_colony-F/R primers (blue triangle). (B) Comparative analysis of fatty acid 761 

composition (mol% of total fatty acids) of WT, ptELO5a_KO and Com strains at exponential 762 

phase at 22℃. (C) Growth curves of WT, ptELO5a_KO and Com strains under air bubbling 763 

condition for 9 d at 28℃. (D) Growth curves of WT, ptELO5a_KO and Com strains under air 764 

bubbling condition for 9 d at 22℃. (E) Nitrate concentrations in the F/2 media for WT, 765 

ptELO5a_KO and Com strains for 9 d at 22℃. (F) Nile red fluorescence intensities of WT, 766 

ptELO5a_KO and Com strains grown for 9 d at 22℃. (G) A thin-layer chromatogram of total 767 

lipids from WT, ptELO5a_KO and Com strains grown for 7 d, 8 d and 9 d at 22℃. Each lipid 768 

sample was extracted from ~5×107 cells. TAGs were visualized with 0.01% primuline reagent 769 

((w/v) in acetone). Data and error bars are mean and standard deviation, respectively (n = 3). The 770 

asterisk indicates the significant difference in two-by-two comparisons between the three algal 771 

strains (Student’s t-test, *, P < 0.05; **, P < 0.01; ***, P < 0.001). 772 

 773 

Figure 10. Schematic representation of the PtELO5a-mediated lipid metabolism pathway in P. 774 

tricornutum. The continued catalytic synthesis of DHA from EPA, which is abundant on 775 

phospholipids, occurs in four main steps. Step 1, Phospholipase A2 (PLA2) catalyzes sn-2 of 776 

phosphatidylcholine to form lysophosphatidylcholine (LPC) and 20:5-CoA. Step 2, 777 

PtELO5a-catalyzed carbon chain elongation of 20:5-CoA to 22:5-CoA. Step 3, 778 

Acyl-CoA:lysophosphatidylcholine (PtLPCAT) recombines free 22:5-CoA with LPC in cER (You 779 

et al., 2023). Step 4, ER fatty acid desaturases 4 (ERΔ4FAD) catalyzes 22:5 to 22:6 in PC sn-2 in 780 
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cER (Huang et al., 2023). By interrupting ptELO5a in this synthesis pathway, DHA synthesis is 781 

blocked, leading to alterations in the composition of both phospholipids and glycolipids, which in 782 

turn affects the response of the mutants to stress. Demonstrates glyceride fractions with a relative 783 

change greater than 60%. The relative content of the fractions is shown in red for elevated values 784 

in the mutants compared to the wild type and in blue for decreased values. 785 
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