
HAL Id: hal-04594073
https://hal.science/hal-04594073v1

Preprint submitted on 30 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A concurrency model based on monadic interpreters:
executable semantics for a concurrent subset of LLVM

IR
Nicolas Chappe, Ludovic Henrio, Yannick Zakowski

To cite this version:
Nicolas Chappe, Ludovic Henrio, Yannick Zakowski. A concurrency model based on monadic inter-
preters: executable semantics for a concurrent subset of LLVM IR. 2024. �hal-04594073�

https://hal.science/hal-04594073v1
https://hal.archives-ouvertes.fr

A concurrency model based on monadic1

interpreters (draft)2

Executable semantics for a concurrent subset of LLVM IR3

Nicolas Chappe Envelope4

Univ Lyon, ENS de Lyon, UCBL, CNRS, Inria, LIP, F-69342, LYON Cedex 07, France5

Ludovic Henrio Envelope6

Univ Lyon, ENS de Lyon, UCBL, CNRS, Inria, LIP, F-69342, LYON Cedex 07, France7

Yannick Zakowski Envelope8

Univ Lyon, ENS de Lyon, UCBL, CNRS, Inria, LIP, F-69342, LYON Cedex 07, France9

Abstract10

Monadic interpreters have gained increasing attention as a powerful tool for modeling and reasoning11

about first order languages. In particular in the Coq ecosystem, the Choice Tree (CTrees) library12

provides generic tools to craft such monadic interpreters while supporting concurrency with nodes13

encoding non-deterministic choice. This monadic approach allows the definition of programming14

language semantics that is modular, compositional and executable.15

This paper demonstrates the use of CTrees to formalize semantics for concurrency and weak16

memory models in Coq. Our semantics is built in successive stages, interpreting each aspect of17

the semantics separately. We instantiate the approach by defining the semantics of a minimal18

concurrent subset of LLVM IR with a memory model based on Kang et al’s work on Promising19

Semantics, but the modularity of the approach makes it possible to plug a different source language20

or memory model by changing a single interpretation phase. By leveraging new results on the21

notions of (bi)similarity of CTrees, we establish the equational theory of our constructions, and show22

how to transport equivalences through our layered construction. Finally, our model is executable,23

hence we can test the semantics by extraction to OCaml.24

2012 ACM Subject Classification Author: Please fill in 1 or more \ccsdesc macro25

Keywords and phrases semantics, concurrency, Coq, LLVM26

Digital Object Identifier 10.4230/LIPIcs...27

1 Introduction28

In recent years, large-scale verification of industrial-strength software has become increasingly29

common [52] following the inspirational success of CompCert [38] in Coq, or CakeML [32] in30

Isabelle/HOL. However, such developments still require a tremendous amount of expertise31

and efforts. A significant body of work hence seeks to simplify this task, whether through32

richer semantic foundations [6, 11], or through richer proof principles [29, 56, 63].33

In the Coq ecosystem, the Interaction Trees (ITree) library by Xia et al. [58, 59] has34

been influential over the recent years as a rich semantic toolbox for modelling first order35

languages. Inspired by advances in denotational semantics [8, 18, 47], the library provides36

an implementation of a coinductive variant of the freer monad [28]. This library provides37

access to monadic programming over symbolic events, tail recursive and general recursion,38

and interpretation of effects into monadic transformers in the style of one-shot algebraic39

effects. Concerning proofs, a rich theory of weak bisimilarity of computations enables both40

equational reasoning, and relational Hoare-style program logics. The approach has been41

used to model and verify a wide range of applications, such as networked servers [30, 62],42

transactional objects [39], non-interference [55], or memory-safe imperative programs [19].43

© Author: Please provide a copyright holder;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nicolas.chappe@ens-lyon.fr
mailto:ludovic.henrio@cnrs.fr
mailto:yannick.zakowski@inria.fr
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 A concurrency model based on monadic interpreters

The largest application of the approach is arguably embodied by the Vellvm project.44

This project aims to formalize LLVM IR, the intermediate representation at the heart of the45

LLVM compilation infrastructure [35], and build verified tools upon it. LLVM IR is both46

the target language of a wide range of source languages, from C/C++ and Rust to Haskell,47

and an intermediate representation that targets most architectures. As such, investing effort48

into its verification is particularly worthwhile, as it takes part in the trusted codebase of an49

enormous range of projects. In a nutshell, the language itself is a low level language based50

on SSA-formed mutually recursive control flow graphs with a low level memory model.51

While the Vellvm project takes its roots over a decade ago [64, 65], Zakowski et al. have52

restarted the project on denotational foundations using the ITree library [60]. The approach53

has been celebrated by Zakowski et al. through the mantra “a compositional, modular, and54

executable semantics”. Compositional in that it is built by structural recursion on the syntax,55

and defines the meaning of open programs. Modular in that it defines and compose the56

semantics of each effect as independent handlers. Executable in that the model allows for57

the extraction of a verified executable interpreter suitable for testing.58

Despite its success, the project presents a major blind spot: it strictly restricts itself to59

sequential computations, ruling out entirely any modelling of concurrency. This shortcoming60

is particularly regrettable in that concurrency bugs are particularly difficult to detect by61

nature, being hard to reproduce trough testing. In this paper, we pave the road towards62

addressing this limitation. More specifically, we raise the following question: can a monadic63

model be built for a language such as LLVM IR in the presence of threads against a weak64

memory model? We answer positively by implementing one such model in Coq.65

To achieve this result, we build on Chappe et al’s recently introduced Choice Trees66

(CTrees) [10]. CTrees are a variant of ITrees, where the monad not only provide support for67

divergence, but also non-determinism. Chappe et al. demonstrate how this is sufficient to68

build trace models for concurrency, illustrating the approach on CCS and a simple imperative69

language with cooperative scheduling.70

To model concurrency in the context of LLVM IR, we provide the following.71

We build a semantic model for a concurrent language (Section 3) by composing four72

passes: (1) representation into CTrees, (2) implementation of intra-thread effects, (3)73

interleaving of threads, and (4) implementation of inter-thread effects.74

We apply our approach to µthread
IR , a simplified version of LLVM IR with support for75

thread creation (Section 3.2) and a weak memory model based on Kang et al’s work on76

Promising Semantics [24] (Section 3.6).77

We develop a meta-theory, showing in particular how equivalence of programs is transported78

across interpretation, which provides a simple proof method for a class of thread-local79

optimizations (Section 5).80

We derive an executable version of the semantics from our model (Section 4).81

We also demonstrate how the modularity of the approach enables flexible reuse of the82

interpretation passes. Our results are formalized in the Coq proof assistant, and provided as83

an open source artifact.184

1 https://github.com/micro-vellvm-concurrency/micro-vellvm-concurrency

https://github.com/micro-vellvm-concurrency/micro-vellvm-concurrency

Chappe et al. XX:3

2 Context85

2.1 Memory models and LLVM IR orderings86

In a concurrent setting, the semantics of accesses to a shared memory can be particularly87

subtle. Indeed, modern architectures such as ARM do not ensure sequential consistency (SC)88

(i.e., writes to memory are immediately visible to all threads).89

In turn, modern programming languages adopt memory models weaker than SC (i.e.90

allowing more behaviors) to enable efficient compilation to such targets. Otherwise, synchronization91

statements (e.g., fences) have to be injected by a compiler targetting hardware with a weaker92

memory model in order to ensure that the compilation does not introduce unexpected93

behaviors. These additional synchronizations induce a run-time performance penalty.94

Intermediate representations for compilers such as LLVM IR are at the convergence of95

such constraints: they must support models allowing an efficient compilation both to a wide96

range of hardware, as well as from the vast majority of source languages. To accommodate97

for the diversity of front-ends it supports, LLVM IR’s atomic memory access and fence98

instructions support a memory ordering annotation that specifies the degree of atomicity of99

the instruction. We sum up their semantics below, and refer the interested reader to the100

LLVM language reference for further information2.101

Regular loads and stores, with no annotation,3 offer little atomicity guarantees. They are102

unsafe in a concurrent setting, unless another form of synchronization such as fences or103

mutexes is used. In most cases, data races involving a non-atomic operation return an104

undefined value.105

The Unordered ordering corresponds to the Java memory model. It guarantees that a106

load returns a defined value that comes from a memory write to the same address, but it107

still offers little guarantee on which value is chosen.108

The Monotonic ordering corresponds to the relaxed C/C++ memory model. It enforces109

a total ordering on memory accesses to the same memory location, but not on those to110

different memory locations. It is slightly stronger than unordered accesses. For most111

weak hardware memory models, this ordering is the strongest one that can be efficiently112

compiled to machine code without introducing additional fences.113

The Acquire, Release and AcquireRelease orderings are based on their C/C++ counterparts.114

They offer synchronization guarantees on memory akin to mutexes. When an acquire115

operation synchronizes with a prior release operation (for instance, an acquire read reads116

a value that comes from a release write), all the writes visible to the releasing thread117

become visible to the acquiring thread.118

SequentiallyConsistent is the strongest LLVM IR ordering. When used exclusively, it119

guarantees global sequential consistency.120

Consider the litmus test in Listing 1 for illustration. Assuming @x is atomically initialized121

to 0, the non-atomic load of thread B (line B.2) may return undef as it can read both the122

initial 0 or the 2 from (A.1). By contrast, the monotonic load will have a defined result,123

either 0 or 2, because it is atomic. Assuming the acquire fence (B.3) synchronizes with the124

release fence (A.2), all the stores visible to thread A at the time of the fence become visible125

to thread B, which implies that the final load at (B.4) unambiguously returns 2.126

2 https://llvm.org/docs/LangRef.html
3 In µthread

IR , we use the annotation not_atomic for uniformity.

https://llvm.org/docs/LangRef.html

XX:4 A concurrency model based on monadic interpreters

thread A
1 store monotonic 2, @x
2 fence release

thread B
1 %1 = load @x
2 %2 = load monotonic @x
3 fence acquire
4 %3 = load @x

Listing 1 Fragment of an LLVM IR program with 2 threads running in parallel (simplified
syntax).

thread A
1 store monotonic 2, @x ; t=2
2 store monotonic 1, @y ; t=1
3 %a = load @y ; t=1

thread B
1 store monotonic 2, @y ; t=2
2 store monotonic 1, @x ; t=1
3 %b = load @x ; t=1

Listing 2 Fragment of an LLVM IR program with 2 threads (simplified syntax). The comments
indicate a possible assignment of timestamps at which load and store operations occur.

2.2 Promising Semantics127

We seek a formal memory model that supports the different LLVM IR memory access128

operations (read, write, read-modify-write and fence) and orderings. We furthermore need the129

model to be operational: by defining locally the next available transitions of the system, such130

models fit better in the CTree formalism. Promising Semantics [24] is one such operational131

weak memory model, and has been extensively studied over the past few years [37, 13, 36, 61].132

In its most basic form, Promising semantics uses two components to model a shared133

memory: a global set of messages and per-thread views. The set of messages materializes134

the past writes to memory. A message mainly contains an address, a value, and a timestamp.135

The timestamps have a per-address semantics in the sense that each memory address has its136

own totally ordered timeline of its past stores.137

The global Promising state also contains thread states. Each thread has a view that138

remembers for each address the timestamp of its last performed operation. The timestamps139

in the view of a given thread can only increase over time, but not necessarily to the maximal140

possible timestamp. We omit here details about additional views stored in global state,141

thread states and messages, used for sequentially consistent and acquire/release accesses.142

The example in Listing 2, adapted from [24], demonstrates how timestamps enable store-store143

reordering in Promising semantics. a and b can both be assigned 1 in the same execution.144

We stress that this short description of promising semantics is simplified. The full-fledged145

promising semantics supports two other important features. First, timestamps are actually146

intervals of the form (from, to], this allows modelling read-modify-write operations. Second,147

promising semantics also supports load-store reorderings thanks to promises. At any point148

of an execution, a thread can promise that it will later write some value to some address at149

some timestamp. Other threads accessing this address can read from this promise as if the150

future write had already happened. Finally, every promise has to be eventually fulfilled.151

We only support the first of these two features in our implementation, as described in152

Section 3.6. This allows us to support all the orderings of a acquire/release semantics, but153

not the load-store reorderings allowed in the monotonic ordering.154

Chappe et al. XX:5

r
Ret r

∅
e

v1
.

e
v
n

Vis e
τ

τ
BrS b

.

BrD b

Figure 1 The four kinds of nodes in values of type ctree E B X. r value of type X, e external
event taken from E, and b external or internal branching taken from B. The edge labels hint at the
LTS the structure represents.

2.3 Choice Trees155

CTrees, introduced in [10], is a Coq library providing a coinductive [49] data-structure156

ctree E B X of potentially infinite trees. As illustrated in Figure 1, values of this type exhibit157

four kinds of nodes: leaves carrying values of type X, external events (Vis) taken from the158

signature E, and two variants of nondeterministic branching (BrD and BrS) taken from the159

signature B4. A signature is a family of types: for instance, an event e : E nat indicates the160

effect expects back a natural number, and hence that the node in the tree branches over nat.161

While external events encode observable computation transitions, non-deterministic162

branches have no visible behaviour, but are still further distinguished depending on their163

visibility. BrS nodes encode a computational step whose existence can be observed (denoted164

by the presence of a τ label in Figure 1), while BrD nodes are truly invisible, capturing a165

proper internal non-deterministic transition. We typically work with a baseline of branching166

choices B01 allowing for representing stuck processes (a BrD node with no successor), silent167

guards (Guard, a BrD node with a single successor), and stepping guards (Step, a BrS node168

with a single successor). We write +' for the disjoint sum of signatures.169

CTrees come with similar combinators as ITrees. It forms a monad, with the traditional170

ret and bind constructs. It supports iteration, via the combinator iter f i that iterates a171

loop body f, starting from i, until an exit signal is reached. Crucial to the construction of172

models based on these libraries, CTrees also support an interp h primitive, that captures173

the structure is free in the parameter E. Given a handler h, that is an implementation of174

the external events from E into an appropriate monad M, the function interp h t recursively175

applies h over the tree t. The resulting monadic computation therefore corresponds to the176

initial tree, where external events are now implemented internally.177

Equivalence of CTrees is implemented as strong bisimilarity over the labelled transition178

system (LTS) sketched in Figure 1. There is no label on BrD nodes: they are not visible in the179

resulting LTS. The strong bisimulation game hence treats BrD nodes in a manner reminiscent180

of weak bisimulation, albeit subtly different: we refer the interested reader to [10].181

3 Concurrent semantics for a subset of LLVM IR182

This section introduces our approach to formalize concurrency and memory models as monadic183

interpreters. The approach is applied to a subset of LLVM IR focused on concurrency: an184

assembly-like language with concurrent memory accesses and functions that can be spawned185

with C-style thread creation and joining. Note however that beyond this concrete application,186

the principles and the tools we develop are applicable to other concurrent languages.187

4 The B parameter was not present in [10], as branching was implicitly over finite sets fin n. We base
our work on a later, more general version of the library.

XX:6 A concurrency model based on monadic interpreters

µthread
IR

D1 , list globals ×list (
ctree (VarE +’ ThreadE +’ MemE) B01

value)

Representation Irepr

D2 , genv → list (lenv →
ctree (ThreadE +’ MemE) B01

(locals * value))

Intra-thread Ivar

D3 , genv → list lenv →
ctree (WithTId MemE) (B01 +’ SchedC)

(locals * unit)

Interleaving Ithread

D4 , genv → PSMem * list lenv →
ctree ∅ (B01 +’ SchedC +’ PSMemC)

(PSMem * locals * unit)

Inter-thread Imem

spawn @f()
%1 = load @a

Spawn "f"

Read a

LocalWrite r1 0 LocalWrite r1 1

Spawn "f"

Read a

define @f() {
store @a 1

}

Write a 1

Write a 1

Sched

Sched

Read a0

Sched Sched

Write a 11

Sched

Sched

Sched

UpdView a Rd

Sched

UpdView a Wr

Sched

Figure 2 The interpretation stack: signatures (left) and simplified example (right). Black nodes
represent events (Vis), brown ones stepping branches (BrS), and gray ones silent branches (BrD).
Ret nodes are omitted, and dotted lines indicate further omitted nodes.

In the remainder of this section, we first give a bird’s eye view of our approach, before188

specifying the source language we consider, and defining its semantic model.189

3.1 A semantic model built as an interpretation stack190

Figure 2 illustrates the construction of the semantic model. It is structured into successive191

stages of interpretation, from a source language (µthread
IR in our case study, introduced192

hereafter) all the way down to our semantic domain D4, a monadic computation combining193

a read-only map of globals, stateful local and memory states, and internalizing the potential194

divergence and non-determinism into a CTree. The stack follows four stages:195

CTree representation. From the source language, each function is represented into a196

(deterministic) CTree. This stage produces a list of CTrees.197

Intra-thread interpretation. This stage gives a semantic to thread-local events: this198

process can be done point-wise over D1, it is unrelated to the concurrent nature of199

Chappe et al. XX:7

atom ::= @id | %id | int | bool | undef
exp ::= atom | atom op atom
aop ::= atomic_exchange | atomic_add
ord ::= not_atomic | monotonic | acquire | release | acq_rel | sc

instr ::= exp | alloca (exp) | loadord (exp) | storeord (exp, exp)
| rmword (aop, exp, exp) | cmpxchgord (exp, exp, exp)
| fenceord | spawn (fid, fid, fid, x)

term ::= branch (exp, bid, bid) | jmp (bid) | return (exp)
sblock ::= {entry : bid; code : list (fid, instr); term : term}

cfg ::= {name : fid; entry : id; body : list sblock}
prog ::= {main : cfg; funs : list cfg; globs : list @id}

Figure 3 Syntax for µthread
IR , a minimal subset of LLVM IR

the computation. For µthread
IR , this phase deals with accesses to globals and registers,200

introducing a read and a state monad transformers in D2.201

Interleaving. This pass takes the (deterministic) CTrees modelling the (spawnable)202

functions in D2, and builds a singular (nondeterministic) CTree that represents the203

concurrent execution of the program. Spawn events are given a semantics at this stage.204

Inter-thread interpretation. This last stage gives a semantics to the remaining events, the205

ones that are not thread-local; in particular it interprets shared memory accesses. In our206

case-study, we build an operational Promising-like memory model supporting non-atomic,207

acquire/release, and (partly) monotonic accesses.208

We emphasize that only the first layer of interpretation, the representation of the209

source language into D1, is language-specific. The other components of the model are210

reusable. Furthermore, alternate memory models can be plugged in place of the inter-thread211

interpretation; we come back to this idea in Section 5.3.212

3.2 The source language: µthread
IR213

Figure 3 depicts the syntax of µthread
IR , our source language. A program includes an identified214

main function, a list of global variable (@id) declarations, and a list of functions ready to215

be spawned. These functions take exactly one argument. They are defined as control flow216

graphs, i.e., a name, an entry block, and a list of blocks. Blocks contain an identifier, straight217

line three address code, and a terminator either returning, or jumping to a new block.218

µthread
IR instructions include arithmetic operations (exp) and standard LLVM IR memory219

access instructions, annotated with their expected orderings, as described in Section 2.1.220

Since the semantics of thread creation is not defined in LLVM IR, and largely depends221

on the platform, language, and libraries used, we define a non-standard µthread
IR instruction222

spawn (fid, fidinit, fidcleanup, x), that spawns a thread with the body of the function fid as223

its initial task, with x given as a parameter. This instruction is parameterized by a thread224

initialization function and a thread cleanup function, respectively run at the beginning and225

at the end of the thread execution.226

We leverage this spawn primitive to implement in µthread
IR thread creation and joining,227

based on thrd_create and thrd_join from the C11 standard library [20]. Their semantics,228

and our implementation, relies on acquire/release accesses for synchronization. Due to the229

absence of function calls in µthread
IR , we use Coq-level macros to generate the code, but would230

use source-level functions in a language like Vellvm. Appendix A provides additional details.231

XX:8 A concurrency model based on monadic interpreters

(* Events used in the initial representation *)
Variant VarE : Type → Type :=
| LocalWrite (id: ident) (v: value) : VarE unit
| LocalRead (id: ident) : VarE value
| GlobalRead (id: ident) : VarE value

Variant MemE : Type → Type :=
| Read (o: ordering) (k: addr) : MemE value
| Write (o: ordering) (k: addr) (v: value) : MemE unit
| ReadWrite (o: ordering) (k: addr) (f: value → value) : MemE value
| Fence (o: ordering) : MemE unit
| Alloc (sz: nat) : MemE addr

Variant ThreadE : Type → Type :=
| Spawn (f init cleanup: fid) (arg: value) : ThreadE thread_id
| Yield : ThreadE unit

(* Additional event and branch introduced in the interleaving *)
Variant WithTId (E : Type → Type) : Type → Type :=
| Annot {X} (e : E X) (t : thread_id) : WithTId E X

Variant SchedC : Type → Type :=
| Sched (ready: list thread_id) : SchedC thread_id

(* Additional branch introduced by the memory model *)
Variant PSAccess : Type := PSRead | PSFulfill | PSFulfillUpdate
Variant PSMemC : Type → Type :=
| PSUpdateView : PSMem → thread_id → addr → PSAccess → PSMemC (date * date)

Listing 3 Signature of events and branches used in the construction of the model

As any production level language, LLVM IR accumulates numerous orthogonal features,232

leading to active research even when restricted to its sequential memory model [25, 4]. In233

order to keep the complexity of our development reasonable, many LLVM IR features, mostly234

unrelated to concurrency concerns (typing, function calls other than via spawn, undefined235

behaviors, etc.) are not supported in our development. These excluded features are however236

supported in Vellvm [60]. We expect that a future integration of our contributions to Vellvm237

would only require minor modifications to the way we handle concurrency and memory.238

3.3 CTree representation for µthread
IR239

This first step translates the syntax into the semantic domain D1: each function is denoted240

into a CTree, and collected into a list, along with the global variables. This process is rather241

standard, following closely Vellvm to resolve the control flow, albeit using CTrees rather242

than ITrees. In particular, graphs are denoted as a tail recursive fixpoint of the function243

mapping block identifiers to their denotation. We refer to Zakowski et al. [60] for details.244

Crucial to this denotation is the identification of the effects of the language, captured245

for now into abstract events. We inventory them in Listing 3: interactions with the local246

and global variables (VarE), interactions with the shared memory (MemE), and multi-threading247

events (ThreadE). Note that these events only specify a signature at this stage: their semantics248

will be refined in the subsequent stages of interpretation; this leaves us,in particular, all249

flexibility in choosing the memory model later on.250

The intuitive semantics of variable and memory events is mostly straightforward. The251

most complex of these events is the read-modify-write (RMW) operation (ReadWrite o k f)252

that atomically reads a memory address k and modifies its content according to the function253

f; it returns the read value. Each memory event (save for alloc) takes a memory ordering as254

argument, to specify atomicity constraints that the memory model should enforce on this255

access. These ordering directly reflect LLVM IR’s specification, as discussed in Section 2.1.256

Chappe et al. XX:9

Yield events are temporary placeholders adding synchronization points, which simplifies257

the operational characterization provided in Section 5.2. We add them to tag pure instructions258

and jumps between blocks. They are replaced by a Guard in the interleaving phase.259

CTrees are not only parameterized by their interface of events, but also by their interface260

of internal branching, and of course by a return type. In D1, the internal branching is261

restricted to B01, i.e., unary nodes. Consequently, each function is modelled as a CTree with262

a single deterministic trace. The return type in D1 corresponds to the type of dynamic263

values. In µthread
IR , dynamic values are restricted to unbounded signed integers that also serve264

as pointers, once again to limit the features covered by our language.265

3.4 Interpretation of intra-thread events266

By nature, the semantics of thread local events is orthogonal to any concurrency concern.267

We therefore handle them first, without introducing any observable event in the process—we268

come back to this intuition when characterizing our model operationally in Section 5.2. Note269

that, in this second semantic domain D2, the model of each function is still deterministic.270

This interpretation pass is simple enough to be defined in terms of the generic interp271

combinator from the CTree library—applied point-wise to each function. The underlying272

handler introduces a reader monad transformer for the global variables. We assume they273

have been initialized as part of an initial configuration phase. The local registers are handled274

into a standard state monad transformer.275

3.5 Thread interleaving276

The interleaving combinator builds a non-deterministic model for a whole multi-threaded277

program from the deterministic model of each function, including an initial main function.278

The jest of this interleaving stage is to interpret away the ThreadE events from the local279

models and build an interleaving semantics. This stage should also retain enough information280

to allow us to choose a specific memory model in a later stage. This transformation is281

however too global to be definable via interp. We therefore handcraft a new co-recursive282

combinator interleave fns fid tasks.283

This combinator is parameterized by the list fns of models of the functions in scope, and284

carries recursively two pieces of information as argument: (1) the next fresh thread ID fid285

to be used; and (2) the run-time mapping tasks from thread IDs to their (deterministic)286

models still waiting to be interleaved.287

At each co-recursive call, the interleave function first checks whether its work is done,288

i.e., the tasks map is empty, otherwise it proceeds to:289

1. non-deterministically pick one thread ID id to focus on;290

2. retrieve the first transition5 that the focused code can take;291

3. if the step is a spawn event, extend the tasks map with a fresh thread initialized to the292

corresponding task, and otherwise take an annotated version of the transition.293

Step 1 introduces non-determinism in the computation: as observed in D3, SchedC branches294

(see Fig. 3) are used to pick a thread id from the domain of the current tasks map. Crucially,295

these branches are delayed ones, they do not introduce a synchronization point: in D3, all296

nodes that are not BrD are memory events.297

5 We elide details, but point out to the interested reader that retrieving this first step is not completely
trivial over CTrees: we reuse the head combinator from Chappe et al. [10] to this end.

XX:10 A concurrency model based on monadic interpreters

Step 3 annotates the memory events it interleaves with the identity of the thread298

performing them. This additional information is leveraged by the next step of interpretation299

that is specific to a memory model. We emphasize that this interleaving combinator is hence300

independent both from the source language, and from the chosen memory model.301

The top-level interleaving operator can finally be defined as interleave 2 [(1, main)],302

i.e., by initializing the tasks map to the singleton containing the model of the main function.303

3.6 Interpretation of inter-thread events304

Remains at last to interpret the memory events. As suggested by the signature D4, we305

proceed by standard interpretation, via interp. Events are handled into a state transformer306

for a data-structure PSMem, introducing additional non-deterministic branching over PSMemC.307

We may already observe that the approach entails a limitation: the valid values resulting308

from a read must be captured locally. In contrast, a vast and successful body of works on309

concurrent memory models relies on axiomatic models [20, 34, 48, 1, 17] where acyclicity310

conditions rule out globally invalid traces. While we could similarly capture a superset of the311

valid traces and trim the valid subset afterwards, it would likely lead to a complex object to312

reason about, and essentially negate any possibility of extraction (see Section 4).313

Fortunately, operational weak memory models have seen increasing traction over the314

last decade [45, 16, 33, 24, 51]. These approaches typically define non-deterministic LTSs315

over extended notions of memory, making them a natural fit for monadic interpreters. As316

discussed in Section 2.2 we base our model on Promising Semantics. More specifically, we317

work with the promise-free subset of Promising Semantics, as defined in [24].318

The semantics of this fragment has remained stable over the different iterations of319

Promising semantics, except for non-atomic accesses that were only introduced more320

recently [13, 36]. Noticeably, this later addition is similar but not equivalent to LLVM321

IR’s non-atomics in case of data race. We close this gap by sticking to LLVM IR’s non-atomic322

semantics [9] in our formalization on three main points. First, memory writes do not cause323

undefined behavior. Second, non-atomic reads return an undefined value if they can read324

from several messages (i.e., they have more than one valid choice of timestamp). Finally,325

atomic reads return an undefined value if they can read from several messages, including a326

non-atomic one.327

Our Promising interpretation pass introduces PSUpdateView branches (see Listing 3)328

that correspond to the choice of timestamp when a memory access occurs. The returned329

timestamps are checked against the Promising state to forbid incorrect outcomes such as330

overlapping messages. In any case, the interpretation of a memory event introduces a Step331

node, which induces a τ -transition (Figure 1).332

Without support for load-store reorderings, our memory model is stronger than full-fledged333

Promising memory models, which has a performance cost for the compilation of monotonic334

memory accesses [44]. However, supporting promises would be particularly challenging, as335

it involves a sophisticated certificate mechanism that cannot be naturally captured by the336

CTree interp combinator.337

Another limitation is our lack of support for unordered accesses (called plain accesses338

in Promising). Plain accesses are not particularly challenging to support, but they add339

complexity to the model and have a limited use as they do not appear in C-like languages340

nor in hardware memory models.341

Chappe et al. XX:11

4 Executability342

After the last interpretation stage, the CTree modelling a program, given initial global and343

local environments, only contains Step, BrD and Ret nodes. It therefore has no unimplemented344

effect left. Its remaining branches are more precisely Sched branches that determine which345

thread will execute next; memory-model-specific branches such as the choice of timestamp346

when a memory access occurs in the promising model; Step nodes introduced by the347

interpretation of memory events (Section 3.6); and Guard steps introduced all along.348

The model can therefore be used for testing, by recursively crawling through the tree. In349

particular, it suffices to provide an interpretation of the Sched and memory-model branches350

to compute a valid execution of the program. Note that this interpretation can be performed351

either in Coq, or in OCaml after extraction.352

To illustrate the approach on the Coq side, we provide a round-robin scheduler and a353

pseudo-random scheduler for Sched events. For the nodes branching on Promising timestamps,354

we define two interpretations: one that returns the maximal timestamps, leading to a355

sequentially consistent execution; and one that chooses a random valid timestamp. Put356

together with the interpretation stack, this gives us an extracted end-to-end executable357

interpreter able to simulate an execution of a µthread
IR program.358

Alternatively, we implement a collecting interpreter that returns all the possible outcomes359

of a program. This interpreter is naively extracted as an OCaml executable, which naturally360

does not scale, but running it on litmus tests illustrates our model and builds confidence in361

the correctness of our semantics.362

This executability of the semantics at little additional cost is a key property of definitional363

monadic interpreters. This had been illustrated already in Vellvm but their interpretation364

stack eventually splits into a propositional model and an executable interpreter that handle365

nondeterminism (e.g., undefined values) differently. Our development goes further in this366

direction as the CTrees branching nodes provide a unified framework that fully captures367

nondeterminism while remaining executable.368

5 Meta-theory369

We sketch three meta-theoretical aspects of our model, laying ground for the future extension370

of Vellvm with concurrency and memory models. First, we establish that equivalence at371

each semantic domain is a congruence for its layer of interpretation. When possible, we do372

so by strengthening the generic meta-theory of CTrees. Second, we establish an operational373

characterisation of the model at the µthread
IR level. Finally, we introduce alternate memory374

models and illustrate their use in the modelling pipeline.375

5.1 Transporting equivalences through the model376

Following a modular design to build our model has benefits in terms of maintainability,377

extensibility, and code reuse. But as advocated abstractly by Yoon et al. [59], and concretely378

in Vellvm [60], it also enables us to look at programs under increasingly complex semantic379

lenses. Consider for example the block fusion optimisation proven in [60]: two blocks that are380

the only successor/predecessor of one another may be fused. While the optimization modifies381

the control flow of the function, and hence requires a non-trivial coinductive proof, it precisely382

preserves the trace of occurring events. It can therefore be proven independently from any383

piece of state. Crucially, this proof can be transported to the full model, because each layer of384

interpretation preserves the equivalence at the previous semantic layer. We establish similar385

XX:12 A concurrency model based on monadic interpreters

∀i, ti ∼ ui

∀g l, Ivar(gs, t) g l ∼ Ivar(gs, u) g l

∀g i l, (t g)i l ∼ (u g)i l

∀g l, Ithread(t) g l ∼ Ithread(u) g l

∀g l, t g l ∼ u g l

∀g l m, Imem(t) g (m, l) ∼ Imem(u) g (m, l)

Figure 4 Equivalence preservation by interpretation

transport theorems for our model: although the presence of threads complicates greatly the386

overall semantics of the language, the same proof for block fusion should remain valid!387

Figure 4 spells out the precise statements we prove.6 We work with equivalences built388

atop of strong bisimilarity of CTrees, written ∼, and lift it point-wise to lists and functions.389

Lists are indicated with an overline, and we access their elements with a subscript.390

The proof methodology is fundamentally different for the congruence of Ivar and Imem on391

one hand, and Ithread on the other. The latter, interleaving the threads, is hand-crafted: its392

proof of congruence must therefore be handmade as well—we elude its details. The first two393

cases however are directly defined in terms of the CTree combinator interp. Their congruence394

can therefore be derived from an extension of generic results introduced in [10].395

More specifically, we say that a CTree is quasi-pure if every transition it can take is a396

value transition (in which case the CTree is actually pure), or if every transition it can take397

deterministically leads to a Ret leaf. A stateful handler is said to be quasi-pure if for all input398

states, it implements every event into a quasi-pure CTree. Assuming that h is quasi-pure,399

interp h is a monad morphism that transports equivalences:400

I Theorem 1. Quasi-pure stateful handlers. If h : E stateT S (ctree B F) is quasi-401

pure, then ∀t u, t ∼ u =⇒ interp h t s ∼ interp h u s.402

Proving this theorem using the original bisimilarity for CTrees [10] would be too difficult.403

Instead we introduce an alternate, equivalent, definition of strong bisimilarity for CTrees.404

Its formal description is out of the scope of this paper, we only provide its intuition and405

refer the interested reader to our formal development. While the original CTree simulation406

works over the LTS in which BrD nodes are collapsed before hand, we consider these nodes407

as so-called ε-transitions, treated weakly in our simulation. Building the bisimilarity on top408

of this simulation requires more care, it cannot be defined simply using the intersection of409

two such simulation half-games. Rather, the simulation keeps track of whether it is in the410

left or right bisimulation half-game. The approach is similar in spirit, but not comparable,411

to the notion of coupled simulation [54].412

5.2 An operational perspective on the model413

While we value the modularity of our construction, our layered view is difficult to relate to414

a more intuitive and operational view of the semantics of the language. To alleviate this415

issue, we provide an equational mean to decompose the semantics into syntax-level atomic416

steps. More precisely, we prove that interleaving partial models is equivalent to picking417

6 Note: there is nothing to prove for Irepr, since syntactic equality at the source is preserved trivially.

Chappe et al. XX:13

non-deterministically a live thread identifier, performing the model of its head instruction,418

and continuing. That is, omitting quantifiers:419
420

interleave (Ivar (Irepr fns) g) fid (Ivar (Irepr p) g l)421
∼422

tid � brD (Sched p);;423
(fid',p',l') � step fns fid p g l;;424
interleave (Ivar (Irepr fns) g) fid' (Ivar (Ivar p') g l')425426

Where step fns fid p g l is a function that looks up the syntactic code of fid in p, and427

either computes the result of the terminator, extends the list of threads with a newly created428

one associated to the corresponding syntactic code in fns, or inserts the model of the memory429

operation terminated with the register update of the instruction.430

For this equation to hold up-to strong bisimulation, it is crucial that each source instruction431

results in a step in the model at the D3 level: this is the motivation behind the introduction432

of Yield events when representing pure expressions and terminators mentioned in Section 3.3.433

5.3 Models over alternate memory models434

As described in Section 3.6, we plug in the model for µthread
IR a weak memory model based435

on a promise-free Promising Semantics, striking a balance between simplicity and richness436

of support for LLVM IR’s ordering annotations. Looking ahead, one may need similar437

models against different memory models: whether it is to prove correct a front-end against438

a sequentially consistent source language, a back-end against x86’s TSO model [45], or to439

switch to a simpler model when considering data-race free µthread
IR ’s programs.440

Such applications are far out of the scope of the present paper, focused on the presentation441

of the initial infrastructure. Nonetheless, we already illustrate the flexibility of the approach442

by additionally implementing in our library SC and TSO memory models. We furthermore443

prove that the SC model of an µthread
IR program , sharing the first three layers of Figure 2,444

always simulates its TSO and Promising models.445

6 Related work and discussion446

Formal semantics of C and LLVM IR. Although switching from ITrees to CTrees, our447

work follows closely Zakowski et al.’s Vellvm development [60]. Their work, as ours, put the448

emphasis in building models allowing for testing, but also suitable for the formal verification449

of tools and program optimizations.450

Many others have proposed formalization of various parts of the C or LLVM IR languages.451

For C, notable examples include CompCert [38] and its extensions to memory aware452

programs [5], Krebbers and Wiedijk [31]’s typed C11 semantics, Memarian et al.’s modelling453

of pointer provenance [43]. Specifically over LLVM IR, Crellvm [26] shares common objectives454

with Vellvm, while Alive [42, 41], by taking a lighter weight approach, has had impressive455

results in bug finding through bounded model checking.456

All these projects emphasize the importance and difficulty of modelling industrial457

languages: they however, like Vellvm, restricted themselves to the sequential fragment.458

By contrast, CompCertTSO [57] has impressively extended CompCert with a TSO model459

built via a synchronisation machine. They have used their semantics to prove fence elimination460

optimizations. Specifically for LLVM IR, the K-LLVM framework [40], based on the K-461

framework [53], provides a very complete, executable semantics for LLVM IR with threads.462

We are however not aware of any formal proof conducted on their semantics. On the contrary,463

[9] uses event structures to reason on the semantics of acquire/release and non-atomic accesses464

in LLVM IR, with pen-and-paper compilation proofs from C11 and to hardware models.465

XX:14 A concurrency model based on monadic interpreters

Concurrent memory models. An extensive body of works studies concurrent memory models466

under an axiomatic lens, where allowed behaviors are captured through acyclicity conditions.467

It has been notably instrumental in clarifying the behavior of modern processors [2, 1].468

However, fundamental to our interpretation stack is the ability to define a weak memory469

model in an operational way. As thoroughly discussed through the paper, we specifically470

leverage the Promising Semantics line of work [24, 37, 12, 13, 36]. While we re-use the base471

formalism of Promising Semantics, recovering their meta-theory in our formalism is largely472

left to future work. A possible starting point could be results reducing non-determinism473

around non-atomic memory accesses for the verification of thread-local optimizations [61].474

Denotational approaches, seeking compositionality, have been developed for concurrent475

shared-memory-based models over the years. In particular, Brookes’ seminal work [7]476

introduces an elegant denotational trace semantics for sequential consistency. This approach477

was quickly extended to TSO [22], and later on to weaker memory models using partially478

ordered multisets (pomsets) [27]. Concurrency in these languages stems from a binary parallel479

operator, which does not quite fit the kind of C-like imperative language we aim at modelling:480

our thread scheduling relies on a global view on a list of identified running threads, while a481

parallel operator leads to more implicit hierarchical scheduling.482

It seems that Brookes’ work resembles our approach provided we swap the thread483

interleaving pass and the inter-thread interpretation pass, and introduce a stateful Yield484

event that sends the memory state to the scheduler and obtains an updated version. Specifying485

such a commutation and comparing closely the two approaches is left to future work.486

Recently, Dvir et al. [14] have proposed a monadic denotational semantics for sequential487

consistency with a yield operator based on Brookes’ traces. This model was later extended to488

an acquire/release memory model [15], based on the acquire/release fragment from Promising489

Semantics (a restriction of the promise-free model we use). Beyond the shared context, they490

rather focus on a pen-and-paper equational theory. Nevertheless, support for the program491

transformations mentioned in [15] is an interesting perspective of our Coq development.492

Other denotational approaches to weak memory models do not build an interleaving493

semantics but carry a partial order of dependencies between events. Such approaches rely on494

event structures [46] or on partially ordered multisets [21, 23, 27].495

Bridging the gap with the hardware. While we focus on LLVM IR, a natural perspective496

would be the verification of an efficient back-end. Faithfully modelling modern hardware is497

however a major endeavour in itself. IMM [48] is an axiomatic semantics meant to provide a498

standard intermediate model bridging the gap between programming language concurrent499

memory models and axiomatic hardware models;it is meant to factor out proofs of compilation500

correctness. Among others, it supports Promising Semantics as a source model.501

On a level closer to the architecture, Sail is a DSL for describing formally the behaviour502

of machine-level instructions [3]. It has been used to give executable operational semantics503

to the Power [16] and ARM [50] memory models. While we seem to strike for a sensibly504

different angle at the time, Sail is interesting in that it allows local thread behaviour to be505

translated into a free monad over an effect datatype. It would seem rather straightforward to506

interpret this monad into a CTree, and use the framework presented in this paper to reason507

formally about it, in the presence of concurrent threads.508

Future work509

The work presented in this paper paves the way towards an extension of Vellvm with510

concurrency. While the current artifact only formalizes a minimalistic subset of LLVM IR,511

Chappe et al. XX:15

and although its integration into Vellvm will require significant efforts, we believe it should512

not face any major theoretical challenge. On a long term basis, our work should thus allow513

for the formal verification of optimizations and compilation passes, taking into account a514

concurrent memory model in a particularly modular way. For that purpose, it should be515

possible in particular to recover in our formalism many meta-theoretical results from the516

Promising Semantics line of research. We have illustrated in this paper the foundations that517

give us confidence this objective can be achieved.518

References519

1 Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc Maranget.520

Armed cats: Formal concurrency modelling at arm. ACM Trans. Program. Lang. Syst., 43(2),521

jul 2021. doi:10.1145/3458926.522

2 Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation,523

testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2):7:1–7:74,524

2014. doi:10.1145/2627752.525

3 Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray,526

Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christopher Pulte, Shaked527

Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell. ISA semantics for ARMv8-A, RISC-V,528

and CHERI-MIPS. In Proceedings of the 46th ACM SIGPLAN Symposium on Principles of529

Programming Languages, January 2019. Proc. ACM Program. Lang. 3, POPL, Article 71.530

doi:10.1145/3290384.531

4 Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve Zdancewic. A two-phase532

infinite/finite low-level memory model, 2024. arXiv:2404.16143.533

5 Frédéric Besson, Sandrine Blazy, and Pierre Wilke. Compcerts: A memory-aware verified C534

compiler using a pointer as integer semantics. J. Autom. Reason., 63(2):369–392, 2019. URL:535

https://doi.org/10.1007/s10817-018-9496-y, doi:10.1007/S10817-018-9496-Y.536

6 Martin Bodin, Philippa Gardner, Thomas P. Jensen, and Alan Schmitt. Skeletal semantics537

and their interpretations. Proc. ACM Program. Lang., 3(POPL):44:1–44:31, 2019. doi:538

10.1145/3290357.539

7 Stephen Brookes. Full abstraction for a shared-variable parallel language. Information540

and Computation, 127(2):145–163, 1996. URL: https://www.sciencedirect.com/science/541

article/pii/S0890540196900565, doi:10.1006/inco.1996.0056.542

8 Venanzio Capretta. General recursion via coinductive types. Log. Methods Comput. Sci., 1(2),543

2005. doi:10.2168/LMCS-1(2:1)2005.544

9 Soham Chakraborty and Viktor Vafeiadis. Formalizing the concurrency semantics of an llvm545

fragment. In Proceedings of the 2017 International Symposium on Code Generation and546

Optimization, CGO ’17, pages 100–110. IEEE Press, 2017.547

10 Nicolas Chappe, Paul He, Ludovic Henrio, Yannick Zakowski, and Steve Zdancewic. Choice548

trees: Representing nondeterministic, recursive, and impure programs in coq. Proc. ACM549

Program. Lang., 7(POPL), jan 2023. doi:10.1145/3571254.550

11 Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Gruetter. Omnisemantics:551

Smooth handling of nondeterminism. ACM Trans. Program. Lang. Syst., 45(1):5:1–5:43, 2023.552

doi:10.1145/3579834.553

12 Minki Cho, Sung-Hwan Lee, Chung-Kil Hur, and Ori Lahav. Modular data-race-freedom554

guarantees in the promising semantics. In Proceedings of the 42nd ACM SIGPLAN International555

Conference on Programming Language Design and Implementation, PLDI 2021, pages 867–882,556

New York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3453483.557

3454082.558

13 Minki Cho, Sung-Hwan Lee, Dongjae Lee, Chung-Kil Hur, and Ori Lahav. Sequential reasoning559

for optimizing compilers under weak memory concurrency. In Proceedings of the 43rd ACM560

SIGPLAN International Conference on Programming Language Design and Implementation,561

https://doi.org/10.1145/3458926
https://doi.org/10.1145/2627752
https://doi.org/10.1145/3290384
https://arxiv.org/abs/2404.16143
https://doi.org/10.1007/s10817-018-9496-y
https://doi.org/10.1007/S10817-018-9496-Y
https://doi.org/10.1145/3290357
https://doi.org/10.1145/3290357
https://doi.org/10.1145/3290357
https://www.sciencedirect.com/science/article/pii/S0890540196900565
https://www.sciencedirect.com/science/article/pii/S0890540196900565
https://www.sciencedirect.com/science/article/pii/S0890540196900565
https://doi.org/10.1006/inco.1996.0056
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.1145/3571254
https://doi.org/10.1145/3579834
https://doi.org/10.1145/3453483.3454082
https://doi.org/10.1145/3453483.3454082
https://doi.org/10.1145/3453483.3454082

XX:16 A concurrency model based on monadic interpreters

PLDI 2022, pages 213–228, New York, NY, USA, 2022. Association for Computing Machinery.562

doi:10.1145/3519939.3523718.563

14 Yotam Dvir, Ohad Kammar, and Ori Lahav. An algebraic theory for shared-state concurrency.564

In Programming Languages and Systems: 20th Asian Symposium, APLAS 2022, Auckland, New565

Zealand, December 5, 2022, Proceedings, pages 3–24, Berlin, Heidelberg, 2022. Springer-Verlag.566

doi:10.1007/978-3-031-21037-2_1.567

15 Yotam Dvir, Ohad Kammar, and Ori Lahav. A denotational approach to release/acquire568

concurrency. In Stephanie Weirich, editor, Programming Languages and Systems - 33rd569

European Symposium on Programming, ESOP 2024, Held as Part of the European Joint570

Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg,571

April 6-11, 2024, Proceedings, Part II, volume 14577 of Lecture Notes in Computer Science,572

pages 121–149. Springer, 2024. doi:10.1007/978-3-031-57267-8_5.573

16 Kathryn E. Gray, Gabriel Kerneis, Dominic P. Mulligan, Christopher Pulte, Susmit Sarkar,574

and Peter Sewell. An integrated concurrency and core-ISA architectural envelope definition,575

and test oracle, for IBM POWER multiprocessors. In Proceedings of the 48th International576

Symposium on Microarchitecture (Waikiki), pages 635–646, December 2015. doi:10.1145/577

2830772.2830775.578

17 Angus Hammond, Zongyuan Liu, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean579

Pichon-Pharabod. An axiomatic basis for computer programming on the relaxed arm-a580

architecture: The axsl logic. Proc. ACM Program. Lang., 8(POPL), jan 2024. doi:10.1145/581

3632863.582

18 Peter Hancock and Anton Setzer. Interactive programs in dependent type theory. In Peter G.583

Clote and Helmut Schwichtenberg, editors, Computer Science Logic, pages 317–331, Berlin,584

Heidelberg, 2000. Springer Berlin Heidelberg.585

19 Paul He, Eddy Westbrook, Brent Carmer, Chris Phifer, Valentin Robert, Karl Smeltzer,586

Andrei Stefanescu, Aaron Tomb, Adam Wick, Matthew Yacavone, and Steve Zdancewic. A587

type system for extracting functional specifications from memory-safe imperative programs.588

Proc. ACM Program. Lang., 5(OOPSLA):1–29, 2021. doi:10.1145/3485512.589

20 ISO/IEC. ISO/IEC 9899:2011. 2011.590

21 Radha Jagadeesan, Alan Jeffrey, and James Riely. Pomsets with preconditions: a simple591

model of relaxed memory. Proc. ACM Program. Lang., 4(OOPSLA):194:1–194:30, 2020.592

doi:10.1145/3428262.593

22 Radha Jagadeesan, Gustavo Petri, and James Riely. Brookes is relaxed, almost! In Proceedings594

of the 15th International Conference on Foundations of Software Science and Computational595

Structures, FOSSACS’12, pages 180–194, Berlin, Heidelberg, 2012. Springer-Verlag. doi:596

10.1007/978-3-642-28729-9_12.597

23 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev.598

The leaky semicolon: Compositional semantic dependencies for relaxed-memory concurrency.599

Proc. ACM Program. Lang., 6(POPL), jan 2022. doi:10.1145/3498716.600

24 Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. A promising601

semantics for relaxed-memory concurrency. SIGPLAN Not., 52(1):175–189, January 2017.602

doi:10.1145/3093333.3009850.603

25 Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov, Steve Zdancewic, and604

Viktor Vafeiadis. A formal C memory model supporting integer-pointer casts. In David Grove605

and Stephen M. Blackburn, editors, Proceedings of the 36th ACM SIGPLAN Conference on606

Programming Language Design and Implementation, Portland, OR, USA, June 15-17, 2015,607

pages 326–335. ACM, 2015. doi:10.1145/2737924.2738005.608

26 Jeehoon Kang, Yoonseung Kim, Youngju Song, Juneyoung Lee, Sanghoon Park,609

Mark Dongyeon Shin, Yonghyun Kim, Sungkeun Cho, Joonwon Choi, Chung-Kil Hur, and610

Kwangkeun Yi. Crellvm: Verified credible compilation for llvm. In Proceedings of the 39th611

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI612

https://doi.org/10.1145/3519939.3523718
https://doi.org/10.1007/978-3-031-21037-2_1
https://doi.org/10.1007/978-3-031-57267-8_5
https://doi.org/10.1145/2830772.2830775
https://doi.org/10.1145/2830772.2830775
https://doi.org/10.1145/2830772.2830775
https://doi.org/10.1145/3632863
https://doi.org/10.1145/3632863
https://doi.org/10.1145/3632863
https://doi.org/10.1145/3485512
https://doi.org/10.1145/3428262
https://doi.org/10.1007/978-3-642-28729-9_12
https://doi.org/10.1007/978-3-642-28729-9_12
https://doi.org/10.1007/978-3-642-28729-9_12
https://doi.org/10.1145/3498716
https://doi.org/10.1145/3093333.3009850
https://doi.org/10.1145/2737924.2738005

Chappe et al. XX:17

2018, pages 631–645, New York, NY, USA, 2018. Association for Computing Machinery.613

doi:10.1145/3192366.3192377.614

27 Ryan Kavanagh and Stephen Brookes. A denotational semantics for sparc tso.615

Electronic Notes in Theoretical Computer Science, 336:223–239, 2018. The Thirty-third616

Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXIII).617

URL: https://www.sciencedirect.com/science/article/pii/S1571066118300288, doi:618

10.1016/j.entcs.2018.03.025.619

28 Oleg Kiselyov and Hiromi Ishii. Freer monads, more extensible effects. In Proceedings of the620

8th ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada, September621

3-4, 2015, pages 94–105, 2015. URL: http://doi.acm.org/10.1145/2804302.2804319, doi:622

10.1145/2804302.2804319.623

29 Jérémie Koenig and Zhong Shao. Compcerto: compiling certified open C components. In624

Stephen N. Freund and Eran Yahav, editors, PLDI ’21: 42nd ACM SIGPLAN International625

Conference on Programming Language Design and Implementation, Virtual Event, Canada,626

June 20-25, 2021, pages 1095–1109. ACM, 2021. doi:10.1145/3453483.3454097.627

30 Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William Mansky,628

Benjamin C. Pierce, and Steve Zdancewic. From C to interaction trees: specifying, verifying,629

and testing a networked server. In Assia Mahboubi and Magnus O. Myreen, editors, Proceedings630

of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP631

2019, Cascais, Portugal, January 14-15, 2019, pages 234–248. ACM, 2019. doi:10.1145/632

3293880.3294106.633

31 Robbert Krebbers and Freek Wiedijk. A typed C11 semantics for interactive theorem proving.634

In Xavier Leroy and Alwen Tiu, editors, Proceedings of the 2015 Conference on Certified635

Programs and Proofs, CPP 2015, Mumbai, India, January 15-17, 2015, pages 15–27. ACM,636

2015. doi:10.1145/2676724.2693571.637

32 Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. CakeML: A verified638

implementation of ML. In Principles of Programming Languages (POPL), pages 179–191.639

ACM Press, January 2014. URL: https://cakeml.org/popl14.pdf, doi:10.1145/2535838.640

2535841.641

33 Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. Taming release-acquire consistency.642

In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of643

Programming Languages, POPL ’16, pages 649–662, New York, NY, USA, 2016. Association644

for Computing Machinery. doi:10.1145/2837614.2837643.645

34 Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. Repairing646

sequential consistency in c/c++11. In Proceedings of the 38th ACM SIGPLAN Conference on647

Programming Language Design and Implementation, PLDI 2017, pages 618–632, New York,648

NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3062341.3062352.649

35 Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis650

& transformation. In Proceedings of the International Symposium on Code Generation and651

Optimization: Feedback-Directed and Runtime Optimization, CGO ’04, page 75, USA, 2004.652

IEEE Computer Society.653

36 Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav. Putting weak654

memory in order via a promising intermediate representation. Proc. ACM Program. Lang.,655

7(PLDI), jun 2023. doi:10.1145/3591297.656

37 Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-Kil Hur, Ori Lahav,657

and Viktor Vafeiadis. Promising 2.0: Global optimizations in relaxed memory concurrency.658

In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design659

and Implementation, PLDI 2020, pages 362–376, New York, NY, USA, 2020. Association for660

Computing Machinery. doi:10.1145/3385412.3386010.661

38 Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM,662

52(7):107–115, July 2009. URL: https://hal.inria.fr/inria-00415861, doi:10.1145/663

1538788.1538814.664

https://doi.org/10.1145/3192366.3192377
https://www.sciencedirect.com/science/article/pii/S1571066118300288
https://doi.org/10.1016/j.entcs.2018.03.025
https://doi.org/10.1016/j.entcs.2018.03.025
https://doi.org/10.1016/j.entcs.2018.03.025
http://doi.acm.org/10.1145/2804302.2804319
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/3453483.3454097
https://doi.org/10.1145/3293880.3294106
https://doi.org/10.1145/3293880.3294106
https://doi.org/10.1145/3293880.3294106
https://doi.org/10.1145/2676724.2693571
https://cakeml.org/popl14.pdf
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3591297
https://doi.org/10.1145/3385412.3386010
https://hal.inria.fr/inria-00415861
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814

XX:18 A concurrency model based on monadic interpreters

39 Mohsen Lesani, Li-yao Xia, Anders Kaseorg, Christian J. Bell, Adam Chlipala, Benjamin C.665

Pierce, and Steve Zdancewic. C4: verified transactional objects. Proc. ACM Program. Lang.,666

6(OOPSLA1):1–31, 2022. doi:10.1145/3527324.667

40 Liyi Li and Elsa L. Gunter. K-LLVM: A Relatively Complete Semantics of LLVM IR. In668

Robert Hirschfeld and Tobias Pape, editors, 34th European Conference on Object-Oriented669

Programming (ECOOP 2020), volume 166 of Leibniz International Proceedings in Informatics670

(LIPIcs), pages 7:1–7:29, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für671

Informatik. URL: https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.672

ECOOP.2020.7, doi:10.4230/LIPIcs.ECOOP.2020.7.673

41 Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. Alive2:674

Bounded translation validation for llvm. PLDI ’21, 2021. doi:10.1145/3453483.3454030.675

42 Nuno P Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. Provably correct676

peephole optimizations with alive. PLDI 15, pages 22–32. ACM, 2015. doi:10.1145/2813885.677

2737965.678

43 Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell, Alexander Richardson,679

Robert N. M. Watson, and Peter Sewell. Exploring C semantics and pointer provenance. Proc.680

ACM Program. Lang., 3(POPL):67:1–67:32, 2019. doi:10.1145/3290380.681

44 Peizhao Ou and Brian Demsky. Towards understanding the costs of avoiding out-of-thin-air682

results. Proc. ACM Program. Lang., 2(OOPSLA), oct 2018. doi:10.1145/3276506.683

45 Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model: x86-tso. In684

Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, Theorem685

Proving in Higher Order Logics, pages 391–407, Berlin, Heidelberg, 2009. Springer Berlin686

Heidelberg.687

46 Marco Paviotti, Simon Cooksey, Anouk Paradis, Daniel Wright, Scott Owens, and Mark688

Batty. Modular relaxed dependencies in weak memory concurrency. In Peter Müller, editor,689

Programming Languages and Systems, pages 599–625, Cham, 2020. Springer International690

Publishing.691

47 Maciej Piróg and Jeremy Gibbons. The coinductive resumption monad. In Bart Jacobs,692

Alexandra Silva, and Sam Staton, editors, Proceedings of the 30th Conference on the693

Mathematical Foundations of Programming Semantics, MFPS 2014, Ithaca, NY, USA,694

June 12-15, 2014, volume 308 of Electronic Notes in Theoretical Computer Science,695

pages 273–288. Elsevier, 2014. URL: https://doi.org/10.1016/j.entcs.2014.10.015,696

doi:10.1016/J.ENTCS.2014.10.015.697

48 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. Bridging the gap between programming698

languages and hardware weak memory models. Proc. ACM Program. Lang., 3(POPL), jan699

2019. doi:10.1145/3290382.700

49 Damien Pous. Coinduction All the Way Up. In Thirty-First Annual ACM/IEEE Symposium701

on Logic in Computer Science (LICS 2016), New York, United States, July 2016. ACM. URL:702

https://hal.archives-ouvertes.fr/hal-01259622, doi:10.1145/2933575.2934564.703

50 Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell.704

Simplifying arm concurrency: multicopy-atomic axiomatic and operational models for armv8.705

Proc. ACM Program. Lang., 2(POPL), dec 2017. doi:10.1145/3158107.706

51 Christopher Pulte, Jean Pichon-Pharabod, Jeehoon Kang, Sung-Hwan Lee, and Chung-Kil Hur.707

Promising-arm/risc-v: a simpler and faster operational concurrency model. In Proceedings of708

the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation,709

PLDI 2019, pages 1–15, New York, NY, USA, 2019. Association for Computing Machinery.710

doi:10.1145/3314221.3314624.711

52 Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, Zachary Tatlock, et al. Qed at712

large: A survey of engineering of formally verified software. Foundations and Trends® in713

Programming Languages, 5(2-3):102–281, 2019.714

53 Grigore Roşu and Traian Florin Şerbănută. An overview of the k semantic framework.715

The Journal of Logic and Algebraic Programming, 79(6):397 – 434, 2010. Membrane716

https://doi.org/10.1145/3527324
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2020.7
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2020.7
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2020.7
https://doi.org/10.4230/LIPIcs.ECOOP.2020.7
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/2813885.2737965
https://doi.org/10.1145/2813885.2737965
https://doi.org/10.1145/2813885.2737965
https://doi.org/10.1145/3290380
https://doi.org/10.1145/3276506
https://doi.org/10.1016/j.entcs.2014.10.015
https://doi.org/10.1016/J.ENTCS.2014.10.015
https://doi.org/10.1145/3290382
https://hal.archives-ouvertes.fr/hal-01259622
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3314221.3314624

Chappe et al. XX:19

computing and programming. URL: http://www.sciencedirect.com/science/article/pii/717

S1567832610000160, doi:10.1016/j.jlap.2010.03.012.718

54 Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University Press,719

USA, 2nd edition, 2012.720

55 Lucas Silver, Paul He, Ethan Cecchetti, Andrew K. Hirsch, and Steve Zdancewic. Semantics721

for noninterference with interaction trees. In Karim Ali and Guido Salvaneschi, editors, 37th722

European Conference on Object-Oriented Programming, ECOOP 2023, July 17-21, 2023,723

Seattle, Washington, United States, volume 263 of LIPIcs, pages 29:1–29:29. Schloss Dagstuhl -724

Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ECOOP.2023.725

29, doi:10.4230/LIPICS.ECOOP.2023.29.726

56 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer.727

Conditional contextual refinement. Proc. ACM Program. Lang., 7(POPL):1121–1151, 2023.728

doi:10.1145/3571232.729

57 Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter730

Sewell. Compcerttso: A verified compiler for relaxed-memory concurrency. J. ACM, 60(3),731

jun 2013. doi:10.1145/2487241.2487248.732

58 Li yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce,733

and Steve Zdancewic. Interaction trees: Representing recursive and impure programs in coq.734

Proc. ACM Program. Lang., 4(POPL, Article 51), 2020.735

59 Irene Yoon, Yannick Zakowski, and Steve Zdancewic. Formal reasoning about layered monadic736

interpreters. Proc. ACM Program. Lang., 6(ICFP), aug 2022. doi:10.1145/3547630.737

60 Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic.738

Modular, compositional, and executable formal semantics for LLVM IR. Proc. ACM Program.739

Lang., 5(ICFP), aug 2021. doi:10.1145/3473572.740

61 Junpeng Zha, Hongjin Liang, and Xinyu Feng. Verifying optimizations of concurrent programs741

in the promising semantics. In Proceedings of the 43rd ACM SIGPLAN International Conference742

on Programming Language Design and Implementation, PLDI 2022, pages 903–917, New York,743

NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3519939.3523734.744

62 Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer,745

William Mansky, Benjamin C. Pierce, and Steve Zdancewic. Verifying an HTTP key-value server746

with interaction trees and VST. In Liron Cohen and Cezary Kaliszyk, editors, 12th International747

Conference on Interactive Theorem Proving, ITP 2021, June 29 to July 1, 2021, Rome, Italy748

(Virtual Conference), volume 193 of LIPIcs, pages 32:1–32:19. Schloss Dagstuhl - Leibniz-749

Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ITP.2021.32, doi:750

10.4230/LIPICS.ITP.2021.32.751

63 Ling Zhang, Yuting Wang, Jinhua Wu, Jérémie Koenig, and Zhong Shao. Fully composable752

and adequate verified compilation with direct refinements between open modules. Proc. ACM753

Program. Lang., 8(POPL):2160–2190, 2024. doi:10.1145/3632914.754

64 Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Formalizing755

the LLVM Intermediate Representation for Verified Program Transformations. In Proc.756

of the ACM Symposium on Principles of Programming Languages (POPL), 2012. doi:757

10.1145/2103621.2103709.758

65 Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Formal759

verification of SSA-based optimizations for LLVM. In Proc. 2013 ACM SIGPLAN Conference760

on Programming Languages Design and Implementation (PLDI), 2013. doi:10.1145/2499370.761

2462164.762

http://www.sciencedirect.com/science/article/pii/S1567832610000160
http://www.sciencedirect.com/science/article/pii/S1567832610000160
http://www.sciencedirect.com/science/article/pii/S1567832610000160
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.4230/LIPIcs.ECOOP.2023.29
https://doi.org/10.4230/LIPIcs.ECOOP.2023.29
https://doi.org/10.4230/LIPIcs.ECOOP.2023.29
https://doi.org/10.4230/LIPICS.ECOOP.2023.29
https://doi.org/10.1145/3571232
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/3547630
https://doi.org/10.1145/3473572
https://doi.org/10.1145/3519939.3523734
https://doi.org/10.4230/LIPIcs.ITP.2021.32
https://doi.org/10.4230/LIPICS.ITP.2021.32
https://doi.org/10.4230/LIPICS.ITP.2021.32
https://doi.org/10.4230/LIPICS.ITP.2021.32
https://doi.org/10.1145/3632914
https://doi.org/10.1145/2103621.2103709
https://doi.org/10.1145/2103621.2103709
https://doi.org/10.1145/2103621.2103709
https://doi.org/10.1145/2499370.2462164
https://doi.org/10.1145/2499370.2462164
https://doi.org/10.1145/2499370.2462164

XX:20 A concurrency model based on monadic interpreters

A Implementation of thread creation763

As an intermediate representation, LLVM IR does not specify how threads can be created,764

this is left to higher-level programming languages and APIs. By itself, our spawn syntax is765

too low-level to be practical, in particular it does not enforce a consistent view on memory766

between the caller thread and the freshly-created one. However, it is parameterized by thread767

initialization and cleanup functions whose code is respectively prepended and appended to768

the code of the actual task to run. We can use these functionalities to implement more769

realistic thread handling semantics7. We base the semantics of thread creation and joining770

on thrd_create and thrd_join from the C11 standard library [20]. It is similar to POSIX771

pthread_create and pthread_join, but the interactions between these functions and the772

memory model are more clearly specified in the C standard than in the POSIX one.773

Following the C standard, the creation of a thread synchronizes with the beginning of774

the execution of said thread, meaning that memory writes that were visible to the creating775

thread are made visible to the created thread. Likewise, the end of the execution of a thread776

synchronizes with the thrd_join caller. The semantics of such synchronization corresponds777

to acquire/release accesses, and can thus be modelled using those at little additional cost:778

the parent writes the thread argument to memory using a release write, and the child779

acquire-reads it at the beginning of its execution, which materializes the synchronizes-with780

edge.781

In our Coq development, the thread creation and join operations are directly implemented782

in µthread
IR on top of the low-level spawn instruction. thrd_create is a macro (a Coq function783

that generates µthread
IR code) that accepts two arguments: the function identifier of the784

thread to spawn, and a value that is passed to it. It returns a pointer to the thread data785

structure. Then, the macro thrd_join, given such a pointer, waits for the completion of the786

corresponding thread and returns its final result.787

7 If we supported function calls (as they are in Vellvm), we could use this instead of the prepend/append
mechanism but not having functions reduces the overall complexity of the development.

	1 Introduction
	2 Context
	2.1 Memory models and LLVM IR orderings
	2.2 Promising Semantics
	2.3 Choice Trees

	3 Concurrent semantics for a subset of LLVM IR
	3.1 A semantic model built as an interpretation stack
	3.2 The source language: IRthread
	3.3 CTree representation for IRthread
	3.4 Interpretation of intra-thread events
	3.5 Thread interleaving
	3.6 Interpretation of inter-thread events

	4 Executability
	5 Meta-theory
	5.1 Transporting equivalences through the model
	5.2 An operational perspective on the model
	5.3 Models over alternate memory models

	6 Related work and discussion
	A Implementation of thread creation

