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Abstract
Solid tumors have a dynamic ecosystem in which malignant and non-malignant (endothelial, stromal, and immune) cell types 
constantly interact. Importantly, the abundance, localization, and functional orientation of each cell component within the 
tumor microenvironment vary significantly over time and in response to treatment. Such intratumoral heterogeneity influ-
ences the tumor course and its sensitivity to treatments. Recently, high-dimensional imaging mass cytometry (IMC) has 
been developed to explore the tumor ecosystem at the single-cell level. In the last years, several studies demonstrated that 
IMC is a powerful tool to decipher the tumor complexity. In this review, we summarize the potential of this technology and 
how it may be useful for cancer research (from preclinical to clinical studies).
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Introduction

Tumor development and progression are modulated by 
complex intrinsic and extrinsic biological mechanisms. It 
is now clear that tumors are complex ecosystems composed 
of malignant and non-malignant cell types, such as cancer-
associated fibroblasts (CAF), endothelial cells, and tumor-
infiltrating immune cells that constantly interact by secreting 
soluble factors or through direct ligand-receptor interactions. 
These interactions change temporally and spatially, and 
define the tumor microenvironment (TME) architecture. The 
tumor ecosystem and architecture can be strongly affected 
by anti-cancer treatments, and change together with the 
cancer cell clone diversity and genomic alterations through 

reciprocal influences [1]. Therefore, one of the main chal-
lenges in oncology is to increase our understanding of the 
spatiotemporal changes in the tumor ecosystem composition 
and architecture. The exploration of intratumor heterogene-
ity, by determining the spatial distribution of metabolites, 
RNAs, and proteins in single cells, will lead to a more 
precise understanding of the tumor cellular and molecular 
mechanisms. This will contribute to improve patient strati-
fication and to the identification of novel therapeutic targets.

Comprehensive in situ multiplex technologies have been 
developed to study the TME, while maintaining the cell spa-
tial information [2]. Sequential immunostaining approaches 
(i.e., PhenoCycler, formerly known as CODEX [3], from 
AKOYA, or MACSima [4] from Miltenyi) have allowed 
increasing the number of biomarkers that can be assessed 
simultaneously. However, these approaches require multiple 
slide treatment rounds and acquisition steps that may mod-
ify the epitope affinity and damage the tissue architecture. 
They also require a precise image alignment preprocessing 
step for analysis. In addition, tissue autofluorescence might 
limit the sensitivity of protein detection. In the 2010s, high-
dimensional imaging mass cytometry (IMC) was developed 
to overcome these limitations, thus offering a level of tissue 
analysis never achieved before [5, 6].

IMC combines the high-plex capacity of mass cytom-
etry (CyTOF) with in situ immunohistochemistry (IHC). 

Nathalie Bonnefoy and Henri-Alexandre Michaud share senior 
authorship.

This article is a contribution to the special issue on: Single-cell 
and spatial multi-omics in clinical outcomes studies - Guest Editor: 
Brice Gaudillière

 * Henri-Alexandre Michaud 
 henri-alexandre.michaud@inserm.fr

1 IRCM, Univ Montpellier, ICM, Plateforme de Cytométrie Et 
d’Imagerie de Masse, Inserm Montpellier, France

2 IRCM, Univ Montpellier, ICM, Inserm Montpellier, France

/ Published online: 4 January 2023

Seminars in Immunopathology (2023) 45:17–28

http://crossmark.crossref.org/dialog/?doi=10.1007/s00281-022-00978-w&domain=pdf
http://orcid.org/0000-0002-5072-7078
http://orcid.org/0000-0003-4814-6722
http://orcid.org/0000-0002-6165-1929


Seminars in Immunopathology (2023) 45:17–28

1 3

Currently, IMC can be performed using two systems: the 
Hyperion Imaging System (HIS) and MIBIscope (for-
merly known as MIBI-TOF) that are distributed by Stand-
ard Biotools and by Ionpath, respectively. These systems 
allow measuring the expression of more than 40 biomark-
ers simultaneously in tissue sections using a combination of 
stable metal isotope-conjugated antibodies or DNA probes. 
Single-cell data, including marker expression and spatial (X 
and Y) coordinates, can be extracted using dedicated algo-
rithms. Thus, IMC is a comprehensive technology suitable 
for tissue exploration and discovery. By allowing the spatial 
visualization of several markers simultaneously in tissues, 
IMC precisely describes the tissue architecture for extract-
ing data on cell quantification, phenotype, localization, and 
also interaction networks. In this review, we describe IMC 
principle and its usefulness for oncology by discussing the 
most recent basic, translational, and clinical research studies.

Imaging mass cytometry principle

Use of metal‑tagged probes

IMC is based on the use of heavy metal-tagged probes 
that are quantified by time of flight mass spectrometry 
(TOF–MS) to eliminate autofluorescence and spectral over-
laps and to significantly increase the multiplexing capacity. 
To date, 42 metals in addition of a cationic nucleic acid inter-
calator that contains natural-abundance iridium (191Ir and 
193Ir) identifying nuclei have been used for imaging mass 

cytometry allowing to identify as many markers (Table 1). 
IonPath and Standard Biotools propose a limited number 
of ready-to-use metal-tagged antibodies validated for imag-
ing applications. To extend the antibody panel, metals and 
conjugation kits are commercially available for in-house 
conjugation of antibodies. The limit remains the number of 
available pure metal isotopes [7]. It is also possible to con-
jugate an antibody that is already tagged with a fluorescent 
dye, to identify a region of interest by fluorescence micros-
copy before performing IMC [8]. However, some antibod-
ies cannot support the reduction/oxidation step during the 
conjugation procedure and may lose the metal tag or can-
not be reconstitute, particularly specific isotypes (i.e., IgM, 
IgY). Therefore, after conjugation, it is highly recommended 
to confirm the conjugation and its stability, and to titer the 
conjugated antibody in a relevant tissue.

Although the majority of metals used for IMC are not 
naturally present in biological samples, in cancer studies, 
metal contamination is a risk in samples from patients who 
were treated with platinum salts (e.g., cisplatin, oxaliplatin) 
or who underwent imaging using contrast agents with gado-
linium that interferes with signal detection. If known, the 
detection of such therapeutic/diagnostic metals by IMC can 
be relevant for biodistribution assessment [9, 10]. Moreo-
ver, ruthenium can also be used for counterstaining. It binds 
evenly to cells and when combined with iridium staining 
mimics hematoxylin and eosin staining [11]. Of note, it 
is possible to use metal-tagged secondary antibodies to 
amplify a weak signal or to detect an unconjugated primary 
antibody not suitable for conjugation. However, such as for 

Table 1  Metals compatible 
with imaging mass cytometry, 
recapitulates the 42 metals (in 
blue) used in published studies 
using imaging mass cytometry. 
To note that iridium (191/193) 
used for nuclei detection is not 
included and Rh103 is mainly 
used for counterstaining
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IF or IHC, the use of a secondary antibody adds an extra step 
of staining with the unconjugated antibody first, the second-
ary antibody, and, at the end, the IMC panel [12]. The use 
of a secondary antibody might increase the background and 
has to be tested for each tissue.

Immunostaining

For both the MIBIscope and Hyperion technologies, the 
staining protocol is based on classical IHC procedures 
and can be used with snap-frozen, formalin-fixed par-
affin-embedded (FFPE) tissue and also plastic samples 
(Fig. 1(A)) [13, 14]. For FFPE samples, slides must be 
deparaffinized and the antigen retrieval step done before 
staining. This means that all antibodies must be validated 
in the same antigen-retrieval condition (pH, temperature, 
timing). Each user must find the best antigen retrieval 
conditions in function of the sample type. Similarly, the 
staining procedure can be customized and adapted for each 
antibody and tissue. We identified studies that compared 
the signal/background ratio of each antibody in function of 
the staining time and temperature to optimize the staining 
conditions. These studies give useful information on the 
best immunodetection conditions, on sequential staining 
with different antibody panels, and on antibodies/markers 
that are not compatible with IMC [12, 15].

In addition to antibodies, DNA probes can be conju-
gated with metal tags to detect mRNAs. This needs to add 
an in situ hybridization (ISH) step prior the immunohisto-
chemistry. The method, called RNAscope, offers a great 
opportunity to extend investigations by combining transcrip-
tomic and proteomic approaches. It allows the detection of 
biomarkers for which no antibody has been developed and 
validated, poorly expressed, or concentrated such as secreted 
factors (cytokines, chemokines). This requires to validate 
the compatibility of each antibody with the ISH procedure. 
Indeed, not all antigens are conserved after the tissue treat-
ment during ISH [16].

Differences between the Hyperion Imaging System 
and MIBIscope

The HIS and MIBIscope use the same antibodies and 
staining protocols, but MIBIscope requires gold-coated 
slides. These two approaches rely on different signal 
acquisition systems. HIS uses a UV laser for tissue abla-
tion. When a pixel is ablated (i.e., a laser shot), a cloud of 
volatile biological material is sent to the CyTOF, ionized 
by the plasma, and then ions are quantified by TOF–MS 
(Fig. 1(B)). HIS uses a quadrupole mass spectrometer 
to eliminate light elements with an atomic mass < 80 Da 
before detection. The image resolution corresponds to the 
laser size (1 µm2). The acquisition speed is ~ 60 min/mm2 

(400 µm2/s) with the last generation analyzer (https:// www. 
fluid igm. com/). MIBIscope uses a  O2

+ duoplasmotron pri-
mary ion beam to liberate secondary ions from the metal 
elements. Then, the secondary ion cloud is sent to the 
TOF–MS device for quantification after multimer elimi-
nation (Fig. 1(B)). This detection system has three main 
differences compared with the HIS detection system. First, 
as the primary ion beam does not destruct the tissue, sev-
eral acquisition rounds can be performed at different speeds 
and resolutions. Second, the resolution is adjustable, up to 
260 nm. However, increasing the resolution increases the 
acquisition time. For example, at a resolution of 500 nm, 
30 min is needed to rasterize  1mm2 of tissue. Third, the 
TOF–MS device of MIBIscope detects and quantifies all 
elements, from hydrogen to uranium. This has been used 
to quantify and use 12C and 31P, which are naturally present 
in tissues, as natural counterstain, or to quantify 56Fe in 
FFPE spleen tissue sections for correlating its presence 
with the amount of heme oxygenase-1 in macrophages 
[17]. Keren et al. also claimed that MIBIscope is more 
sensitive than HIS [18], although there is no comparative 
study published, to our knowledge.

Image processing and single‑cell analysis

High-plex imaging allows visualizing the expression of each 
marker, alone, or in combination with the other targeted mol-
ecules, to obtain a precise picture of the tissue architecture, 
cell distribution, and biomarker expression. This requires 
multiple levels of data analysis.

Cell segmentation

Post-acquisition data processing is required for single-cell 
analysis. First, images are exported into individual TIFF-
OMES files and pre-cleaned (denoising, filtering outlier 
signals). Then, each cell is identified and individualized. 
Besides commercial software tools, such as AQUA™ (Nav-
igate BioPharma Inc), Visiopharm®, or HALO® (Indica 
labs), some open-source software solutions have been devel-
oped and are widely used. ImcSegmentationPipeline, the 
most common, was developed by Bodenmiller’s group and 
combines multiple steps using different open source soft-
ware tools [19]. Briefly, cell segmentation relies on pixel 
classification (nucleus, cytoplasm, background) using Ilas-
tik [20]. Then, a probability map is generated to determine 
the cell boundaries and to generate a segmentation mask 
with CellProfiler [21] (Fig. 1(C)). The mask, combined with 
the individual OMES-TIFF file, is exported as a single-cell 
file, usually a.fcs or.csv file, that recapitulates the signal 
intensity and spatial coordinates of each marker in each cell 
(Fig. 1(C)). These data can be used for cell annotation and 
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in-depth analysis using a flow cytometry software, such as 
FlowJo, CytoBank [22], OMIQ (https:// omiq. ai), or dedi-
cated R packages.

Pixel classification and cell segmentation are the most 
limiting steps of IMC data analysis. There are many 
attempts to facilitate and accelerate cell segmentation. such 
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as automated background removal [23], signal normaliza-
tion and spillover compensation [24], and also automated 
segmentation tools, such as DeepCell. DeepCell is a data 
labeling software that is based on the Mesmer deep learn-
ing algorithm and that uses TissueNet, a large and compre-
hensive cell segmentation dataset [25]. However, after cell 
segmentation, aberrant cell phenotypes are often clustered 
due to miss-discrimination of the two cell membranes in a 
high cell density area of the region of interest. For instance, 
 CD19+CD3+ clusters in lymphoid structures result from 
the miss-assignment of the CD19 and CD3 signals in 
areas where  CD19+CD3− B cells are in close vicinity to 
 CD19−CD3+ T cells. These clusters can also be analyzed 
on their own because they may reflect a spatial signature 
that represents a surrogate of tertiary lymphoid structures. 
Alternatively, they can be used to determine a segmenta-
tion quality index based on aberrant cluster structures. To 
circumvent this kind of issue and improve cell identification, 

Bai et al. released a method called REinforcement Dynamic 
Spillover EliminAtion to reassign pixels near the periphery 
between adjacent cells. However, it can only correct lateral 
marker spillover, but not signals due to overlaps [26].

Some studies tried to bypass the segmentation step. For 
instance, Allam et  al. developed a pixel-based analysis 
method. After raw data cleaning and normalization, they 
compared clustering at the pixel level and segmentation 
clustering at the cell level. According to their results, pixel-
level clustering seems to provide a better separation between 
clusters and cell phenotypes with less background noise than 
the cell-level segmentation method [27].

Cell annotation

In this step, each cell is annotated on the basis of its phe-
notype and functional state. Cell annotation can be done 
manually (Fig. 1(D)) or by unsupervised clustering for cell 
exploration (e.g., Phenograph or FlowSOM). Unsuper-
vised methods allow the unbiased cell identification and, 
potentially, the discovery of unanticipated cell phenotypes. 
After annotation, the expression of functional markers can 
be quantified to evaluate cell functionality or maturation, 
and the cell density and frequency can be calculated. The 
results can be visualized using uniform manifold approxima-
tion and projection [28] or t-distributed stochastic neighbor 
embedding [29]. To determine the signature of a specific cell 
subgroup, single-cell files can be processed with predictive 
algorithms, such as CITRUS that combines unsupervised 
clustering and signature identification (Fig. 1(E)) [30].

Spatial distribution and interactions

Once a cell population of interest (POI) has been determined, 
the neighborhood analysis can be performed. The data of 
cells in contact with a specific POI can be exported in a sin-
gle file for individual analysis of neighbor cell composition 
to identify preferred partnerships (Fig. 1(F)). Spatial fea-
tures can be identified by pairwise enrichment to determine 
significant enrichments or avoidances between cell clusters. 
By adjusting the distance between cells, it allows defining 
spatial signatures that involve two or more cell clusters, and 
to determine a cell community/network (Fig. 1(G)) [31]. 
Some open-source software tools are available to determine 
the cell spatial distribution, such as histoCAT and ImaCYTE 
[32, 33]. These tools integrate many plugins for single-cell 
analysis, such as dot-plots, dimensional reduction, and clus-
tering. Of note, R packages also have been developed. They 
require bioinformatics skills, but they are more flexible than 
software tools and may be more adapted for such analysis. 
ImcRtools and cytomapper are two R Bioconductor pack-
ages developed by Bodenmiller’s group for IMC image pro-
cessing and analysis [29, 30]. Data processing and analysis 

Fig. 1  Imaging mass cytometry: principle and applications. (A) 
Imaging mass cytometry workflow. Frozen or FFPE tissues are incu-
bated with metal-conjugated antibodies as done for IHC. Then, slides 
are inserted into the analyzer (Hyperion Imaging System or MIBI-
scope) for data acquisition. Metals are ionized and quantified by 
mass spectrometry by time of flight (TOF–MS). Multiplexed images 
are reconstituted according the metal abundance per pixel. Hype-
rion Imaging System and MIBIscope images are generated with the 
respective software system. (B) Hyperion Imaging System (HIS) and 
MIBIscope acquisition systems. HIS (left panel) uses an UV laser 
for tissue ablation. Tissue rasterization generates a cloud of biologi-
cal material that is ionized by inductively coupled plasma. Ions are 
then filtered by a quadrupole mass spectrometer to discard low atomic 
mass elements. High mass atomic ions are quantified by TOF–MS. 
MIBIscope (right panel) uses an  O2

+ duoplasmotron primary ion 
beam to generate secondary ions. Single secondary ions are filtered 
and quantified by TOF–MS. (C) Single-cell file generation. For cell 
segmentation pixels from TIFF images are classified into nucleus 
(yellow), cytoplasm (blue), and background (red). All markers can be 
used for pixel classification. After classification, the cell boundary is 
determined and a segmentation mask is generated. The combination 
of single channel images and segmentation mask allows generating a 
single-cell file suitable for downstream analysis. This file associates, 
for each cell, its spatial coordinates and the signal intensity of each 
tested marker. (D, E) Cell annotation and investigation. From the sin-
gle-cell files, cell subtypes can be identified. (D) The annotation can 
be done manually, as done during the analysis of a cell suspension by 
successive gating. (E) For cell exploration, unsupervised clustering 
can be used and its results can be visualized with dimensional reduc-
tion tools (e.g., t-SNE, UMAP) in which a color corresponds to a sin-
gle-cell cluster. Each cluster is identified on the basis of the expres-
sion level of each marker visualized by a heatmap. (F, G) Spatial 
analysis. (F) The spatial coordinates of each cell are used to identify 
cells in direct contact (purple) with the cell of interest (red). Then, 
such neighboring cells can be analyzed on their own to determine 
their composition. (G) Cell interactions between all identified clusters 
can be comprehensively analyzed and visualized in heatmaps. X-axis, 
cell clusters of interest (from); Y-axis, cell clusters in contact with the 
cluster of interest (to); green dots, interactions; red dots, avoidance 
between clusters. The color intensity indicates the number of cells in 
contact with the cluster of interest. From the interaction analysis, a 
cell network for the tissue can be determined

◂
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are still complicated (for many scientists with limited bio-
informatic skills) and time-consuming, but they allow fully 
exploiting IMC data for quantitative tissue profiling. The 
diversity of analysis pipelines widens the questions that can 
be addressed using IMC.

3D modeling and high‑resolution imaging

3D imaging offers new perspectives for tissue analysis. As 
a proof of concept, Kuett et al. analyzed IMC 152 serial 
tumor tissue sections. After cell segmentation, they recon-
stituted the tumor in 3D for spatial analysis. They compared 
the proximity between cell clusters and blood vessels using 
2D and 3D data and found that the 2D approach signifi-
cantly overestimated this distance [34]. Rovira-Clavé et al. 
studied cisplatin distribution in cultured cells by IMC. For 
this purpose, they replaced the oxygen duoplasmatron source 
of a MIBIscope by a cesium primary beam. This modifica-
tion requires the use of halogen-loaded single-strand DNA-
conjugated antibodies instead of lanthanide-conjugated anti-
bodies, but allows a resolution of ~ 30 nm (compared with 
the HIS and MIBIscope resolutions of 1 µm and 260 nm, 
respectively). For the first time, they could detect cisplatin 
at the subcellular level and could correlate cisplatin localiza-
tion with five subnuclear structures in function of the cell 
type (e.g., resistant to treatment or not) and treatment com-
bination [9].

IMC in preclinical research

Preclinical models, which are becoming more and more 
sophisticated, may allow unraveling complex biological 
mechanisms and IMC may improve their understanding. To 
date, few in vivo preclinical studies and even fewer in vitro 
studies based on IMC have been published.

As MIBIscope and HIS can detect platinum isotopes, they 
have been used to monitor platinum-based chemotherapy 
bio-distribution in vivo. Chang et al. assessed platinum bio-
distribution and clearance in a patient-derived xenograft 
model of pancreatic cancer. Using a 14-antibody panel, they 
found that platinum binds to collagen fibers in tumor and 
normal tissues, but with different persistence [10]. Melin 
et al. monitored the radiation side effects in liver in mice by 
assessing the spatiotemporal alterations of the liver immune 
contexture, using a 20-antibody panel. They observed that 
the proportion of neutrophils, macrophages, and T cells 
increased and that these cells preferentially clustered near 
the central veins after irradiation. Moreover collagen accu-
mulated, indicating pericentral fibrosis [35]. Zabransky 
et al. compared the TME, notably the immune infiltrate, in 
four different syngeneic hepatocellular carcinoma (HCC) 
mouse models treated with anti-PD-1 antibodies. In three 

models, they found immune profiles that were similar to 
those observed in human HCC. IMC data analysis showed 
that the accumulation of M2-like tumor-associated mac-
rophages and the strong interaction between CAFs and T 
cells were linked to treatment resistance [36]. In the mT3 
KPC mouse model of pancreatic cancer, Peran et al. simul-
taneously detected RNAs and proteins by IMC to investigate 
CAF interactions within the TME. They found that cadherin 
11 (CDH11) expression was associated with CAF pro-tumor 
activity, which could be inhibited by an anti-CDH11 anti-
body. Deep immunophenotyping showed that anti-CDH11 
antibodies decreased the frequency of  FOXP3+ T cells in 
the tumor [37]. To decipher the lung TME and the effect of 
the  KRASG12C inhibitor MRTX-1257, Van Maldegem et al. 
set up a 27-antibody panel for frozen tissue analysis and 
developed their own segmentation pipeline named imcyto. 
Single-cell IMC analysis permitted a thorough description of 
the immune landscape of KRAS-mutated lung tumors, high-
lighted the strong PD-L1 expression in macrophages, and 
the preferential localization of PD-L1-positive macrophages 
next to dendritic cells, which potentially counteracted their 
activation and consequently T cell activation through the 
immunosuppressive PD-1/PD-L1 pathway. Interestingly, 
upon  KRASG12C inhibition, the authors observed that mac-
rophage-dendritic cell interactions disappeared [38].

IMC can also be very useful to compare different drug 
delivery methods and their pharmacodynamics. Liu et al. 
used IMC to evaluate the benefit of nanofluidic drug-elut-
ing seeds (NDES) for intratumoral delivery of anti-PD-
L1 and anti-CD40 antibodies in a triple negative breast 
cancer mouse model. They demonstrated that NDES 
improves immunotherapy efficacy and promotes absco-
pal effects compared with intraperitoneal injection. To 
obtain these results, they used a 15-antibody panel that 
allowed identifying and localizing 21 immune cell popu-
lations. They observed that NDES efficacy was associ-
ated with higher tumor infiltration by  CD4+ and  CD8+ 
T cells compared with drug delivery by intraperitoneal 
injection. The neighborhood analysis showed increased 
interactions between cytotoxic T cells, dendritic cells, 
and cancer cells in the NDES group [39]. IMC has also 
been used to follow nanoparticle-mediated drug delivery 
into the tumor mass. Strittmatter et al. combined mass 
spectrometry imaging and IMC in patient-derived xeno-
graft mouse models of lung, colon, and ovarian cancer 
to follow the biodistribution and the effect on the TME 
of encapsulated AZD2811, an aurora kinase B inhibitor. 
They designed an IMC 27-antibody panel to assess the 
TME cell composition (e.g., immune, stromal, muscle, 
endothelial, epithelial cells) and the cell metabolic and 
functional status (hypoxia, proliferation, exhaustion, M2 
balance, epithelial-mesenchymal transition, and glucose 
metabolism). Then, using MSI, they precisely quantified 
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and analyzed the spatial distribution of AZD2811-loaded 
nanoparticles on the same tissue section. Thus, the multi-
modal approach revealed that NP encapsulated AZD2811 
was preferentially distributed in regions rich in mac-
rophages. Although still preliminary, this work shows the 
benefits of combining two imaging approaches to better 
understand the nanomedicine-delivered drug distribution 
and their mechanisms of action within the tumor [40]. 
In another study, Strittmatter et al. combined again mass 
spectrometry imaging and IMC to evaluate the intratu-
moral distribution and the effect of gemcitabine and its 
phosphorylated metabolites in the KPC mouse model of 
pancreatic cancer. They used a 25-antibody panel to dis-
criminate the effects of the drug and its metabolites on the 
tumor and immune cell state (metabolism, signaling, DNA 
damage, proliferation, mitosis). They found that gemcit-
abine metabolites induced DNA damage in highly prolif-
erative areas. This work provided evidences that IMC and 
mass spectrometry imaging-based multimodal molecular 
imaging is a powerful combination to evaluate nanoparti-
cle delivery, to localize and quantify metabolites with MSI 
and to study the tumor microenvironment modification of 
such treatment with IMC [41].

In addition, IMC is a comprehensive approach to study 
small structures, such as spheroids and organoids. For 
instance, Lotsberg et al. set up a spheroid culture system 
that mimics cancer-stromal cell interactions in non-small 
cell lung cancer to study how these interactions influence 
epithelial-to-mesenchymal transition and treatment resist-
ance. They co-cultured EGFR inhibitor-resistant lung cancer 
clones with fibroblasts and investigated how co-culturing 
modifies the spheroid cell composition using a 19-antibody 
panel to assess phenotypic and proliferation markers and 
to quantify each cell type and also cell–cell interactions 
within the spheroids. The single-cell analysis revealed a 
strong tumor cell heterogeneity with an inverse association 
between mesenchymal cell marker expression (associated 
with resistance) and the capacity to form compact spheroids. 
Moreover, they observed different stromal cell interactions 
in function of the cancer cell phenotype [42].

IMC in clinical research

Spatial single-cell analysis can be used to comprehensively 
monitor the immune contexture in situ and to follow and 
localize the expression of biomarkers in order to identify 
signatures, including cell–cell interactions. In this section, 
we describe how IMC may contribute to better characterize 
solid tumors to discover and decipher new complex biologi-
cal mechanisms for patient stratification in view of precision 
medicine.

Identification of cells with complex phenotypes

By analyzing skin biopsies from patients with mycosis 
fungoides, a common form of cutaneous T cell lymphoma, 
Guo et al. identified by mass cytometry (CyTOF) cells that 
express CD25, CD45RO, and CD27 and that they consid-
ered to be Treg-like cells. Then, they used a 36-antibody 
panel to confirm by IMC their presence within the tumor 
and to describe specific cell interaction networks and the 
expression of biomarkers associated with the disease stage. 
The combination of CyTOF and IMC also highlighted the 
high inter-patient heterogeneity [43]. Similarly, Wang et al., 
who previously described significant modifications of the 
immune contexture by comparing healthy dura mater and 
primary meningioma samples by single-cell RNA sequenc-
ing, used IMC to assess the TME in meningioma. Using 
a 20-antibody panel to identify and localize immune cell-
stroma cell interactions, they found that the  CD8+ T cell 
composition was modified with a preponderance of resi-
dent memory T cells within the tumor, compared with the 
naive/central memory balance of  CD8+ T cells in healthy 
dura mater samples. They then characterized macrophage 
distribution, and identified border-associated macrophages 
and suggested spatial relationships with the co-localized T 
cells and antigen-presenting cells [44]. Similarly, Sanmamed 
et al. identified by CyTOF a dysfunctional subpopulation of 
 CD8+ T cells that accumulates in the TME and that is asso-
ciated with poor response to immune checkpoint inhibitors 
(ICIs) in advanced non-small-cell lung cancer. They found 
that these cells strongly proliferate, but produce little or no 
interferon gamma (IFNγ). Then, with a 35-antibody panel, 
they showed that this proliferative T cell population (Ki-
67+  CD28+) expresses many immune checkpoint molecules 
(PD-1+ LAG-3+ TIM-3+) and is terminally differentiated 
 (EOMEShigh  TBETlow) [45].

Spatial tumor heterogeneity and discovery 
of unexpected cell phenotypes

Besides their spatial distribution and interactions, IMC 
allows assessing the tumor cell heterogeneity at the single-
cell level. Bodenmiller’s group, a pioneer in this field, ana-
lyzed 352 breast cancer samples. Based on the cell pheno-
type and interaction analyses, they identified 23 individual 
cell communities with a 35-antibody panel and defined 18 
novel breast cancer subgroups [31]. Similarly, Sheng et al. 
quantified 36 biomarkers in 134 HCC samples and identified 
16 cell communities based on the interactions of normal and 
tumoral hepatocytes, and endothelial and immune cells [46].

Furthermore, cell heterogeneity assessment by IMC 
may lead to the identification of unanticipated cell pheno-
types or functions. For instance, Ferrian et al. published a 
case report about a patient with endometrial and colorectal 
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carcinoma who received chemotherapy and brachytherapy 
as first-line therapy before anti-PD-1 antibodies (nivolumab) 
as second-line therapy. The patient responded well to these 
treatments, but presented severe side effects, particularly 
gastritis. In situ hybridization analysis showed high IFNγ 
expression in cancer samples and IMC analysis of gastric 
biopsies revealed a strong immune cell infiltration (> 50%) 
suggesting that the main source of IFNγ was the immune 
infiltrate. Unexpectedly, an unbiaised analysis showed that 
IFNγ was predominantly secreted by a specific and unknown 
cluster of epithelial cells  (PanCK+ HLA-DR+ Ki-67+ IFNγ+) 
instead of the immune cells [47]. Zheng et al. analyzed by 
CyTOF the immune infiltrate in lung cancer. Unsupervised 
analysis clustered a subpopulation of PD-L1-expressing 
 CD8+ T cells while PD-L1 I is mainly expressed by tumor 
and myeloid cells. Using an 18-antibody panel they studied 
T cell distribution in cancer tissue. Consistently with the 
CyTOF data, by unsupervised clustering they identified 11 
distinct  CD8+ T cell clusters, including the one expressing 
PD-L1. By neighborhood analysis, they showed that the PD-
L1+CD8+ T cell cluster was preferentially in contact with 
PD-1+CD38+CD8+ T cells, suggesting that such interaction 
contributes to inhibit the immune response and promotes 
immune escape. Lastly, they demonstrated, in vitro, that PD-
L1-expressing  CD8+ T cells suppress effector T cell func-
tions [48].

Beyond phenotypic marker detection

The published application examples demonstrate the high 
diversity of questions that can be addressed with IMC. For 
instance, antibodies against phosphokinases can be added 
in the panel to assess also cell signaling. IMC panels may 
include antibodies against enzymes involved in metabolic 
pathways, bacterial markers, or DNA probes to detect 
mRNA transcripts. Guo et al. compared the phosphoryla-
tion state of the translational inhibitor eIF4E in tumor cells 
from patients with postpartum breast cancer by IMC. They 
found that that postpartum breast cancer samples contained 
cancer cells that strongly expressed phosphorylated eIF4E 
(active form) and that tumor  CD8+ T cells displayed mark-
ers of dysfunction. Based on these results, the authors sug-
gested that blocking phosphorylated eI4E might enhance 
the efficacy of immunotherapies [49]. Feng et al. used IMC 
with a 14-antibody panel that included also antibodies 
against lipoteichoic acid and lipopolysaccharides to tar-
get  Gram+ and  Gram− bacteria, respectively. They could 
correlate the presence of bacteria in breast cancer samples 
with cancer subtypes and immune infiltrate [50]. Using the 
MIBI technology, Hartmann et al. combined immune and 
metabolic markers in a 36-antibody panel. They compared 
the metabolic profile of T cells and epithelial cells from 
colorectal carcinoma tissues. They identified two metabolic 

profiles of  CD8+ cells that express CD39 and PD-1. This 
suggests two functional states that allow differentiating 
between exhausted and activated cells [51]. The concomi-
tant detection of proteins and mRNAs represents a great 
opportunity to better describe a phenotype and to detect 
new targets for which no efficient antibody has been vali-
dated yet [16]. For instance, Hoch et al. studied chemokine 
RNA and immune cell marker protein expression by IMC 
in metastatic melanoma samples and could detect CXCL9 
and CXCL10 expression in dysfunctional T cell patches that 
express CXCL13 [52].

Deciphering complex biological mechanisms

To investigate the immune contribution of the COVID-19 
mRNA-1273 vaccine to the regression of metastatic sali-
vary gland myoepithelial carcinoma, Sousa et al. used IMC 
to study pre- and post- vaccination metastatic and primary 
tumor biopsies. They observed a complete change in the 
immune balance, from higher frequency of M2 macrophages 
and neutrophils in pre-vaccination samples to preponderance 
of lymphocytes (T, B, and natural killer cells) after vaccina-
tion [53]. Alnajar et al. explored the TME of a metastatic 
sarcomatoid urothelial carcinoma in a patient presenting 
prolonged response to pembrolizumab (anti-PD-1 antibody) 
after primary resistance to chemotherapy. Next-generation 
sequencing revealed that the tumor mutational burden was 
decreased accompanied by PD-L1 genomic amplification 
in cancer cells that was confirmed by IHC. Moreover, IMC 
showed that PD-L1 was mainly secreted by tumor cells and 
not myeloid cells [54].

Patient stratification

Processing IMC data from a large number of patients may 
lead to the tumor re-classification for patient stratification 
and prognosis. For instance, besides revealing the tumor 
cell heterogeneity and immune contexture, Jackson et al. 
characterized the tissue architecture and identified specific 
cellular features that allowed determining 18 novel breast 
cancer subgroups that are associated with distinct clinical 
outcomes [31]. Danemberg et al. extended this work to 693 
breast tumor samples and integrated IMC data with clini-
cal and genomic data. They showed that the proportions of 
granulocytes, antigen-presenting cells, vasculature, and T 
cells with suppressive phenotype in the TME vary in func-
tion of their localization, thus forming distinct structures 
that may predict survival and improve patient stratification 
[55]. Feng et al. identified in muscle invasive bladder cancer 
three major spatial distribution patterns of the epithelial cell 
markers pan-cytokeratin and E-cadherin. These three cancer 
types presented different immune cell profiles (enrichment/
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composition) that may influence the tumor course and 
response to treatment [56].

Pathology comparison

IMC is also a useful approach for group comparison. It gen-
erates objective data (marker expression, cell phenotype 
abundance, and cell interaction scores) that allow compar-
ing the clinical status in different cancer types or cohorts. 
Colombo et al. explored the immune landscape in diffuse 
large B cell lymphoma (DLBCL) samples with a 32-anti-
body panel to compare their immune contexture with that 
of Hodgkin’s lymphoma, which is sensitive to ICI, in order 
to understand DLBCL poor response to ICI. IMC revealed 
an association between CXCR3 expression and T cell infil-
tration in immune desert regions of DLBCL samples [57]. 
To understand how obesity influences breast cancer course, 
McDowel et al. used a 35-antibody panel to objectively com-
pare the TME of breast cancer metastases from patients with 
high (obesity) and normal body mass index. IMC showed 
that neutrophils and proliferating  (Ki67+) tumor cells were 
increased in patients with obesity. The authors suggested 
that due to neutrophil oxidative stress, vascular permeability 
was modified and promoted the migration of neutrophils and 
tumor cells [58]. Risom et al. monitored the progression 
of pre-invasive breast cancer lesions (i.e., ductal carcinoma 
in situ (DCIS)) into invasive breast cancer using a 37-anti-
body panel to extract 433 parameters in tumor samples from 
matched patients with DCIS, invasive breast cancer (pro-
gressors), and DCIS that did not progress (non-progressors). 
They found that the location/function of stromal cells (par-
ticularly CAFs) and myoepithelium, rather than cancer cells, 
constituted a prognostic feature of DCIS-to-invasive breast 
cancer transition [59].

Treatment response prediction

The identification of predictive markers is a current chal-
lenge in oncology. Martinez-Morilla et  al. assessed the 
expression of different biomarkers by IMC and associ-
ated β-2 microglobulin expression with a better response 
to immunotherapy in melanoma [60]. Abdulrahman et al. 
combined single-cell RNA sequencing for TCR repertoire 
profiling and bulk sequencing to characterize the tran-
scriptional states of clonally expanded tumor-infiltrating T 
cells in oropharyngeal squamous cell carcinoma samples. 
They identified two groups based on their immune status: 
immune responsive (IR +) and non-responsive (IR −). They 
observed that survival was better in the IR + group than in 
IR − patients. Then, using IMC and a 33-antibody panel, 
they identified 51 cell clusters (including 30 immune cell 
clusters and 14 tumor cell clusters) and specific spatial 
features that characterize IR + tumors (co-localization of 

resident  CD8+ T cells and DC) and IR − tumors (interac-
tions between lymphocytes and immunosuppressive myeloid 
cells) [61].

Improving cancer therapies

To improve treatment efficacy, an important challenge is to 
understand how treatments influence the tumor ecosystem. 
Ho et al. evaluated the benefit of neoadjuvant cabozantinib 
and nivolumab in patients with HCC. At resection time, 
they compared responders and non-responders by IMC. 
In responders, their TME was enriched in effector T cells, 
and B cells were spatially rearranged. Conversely, in non-
responders, the proportion of  CD163+ARG1+ macrophages 
was increased in the TME, and this may partly explain the 
resistance to ICI [62]. Fonkoua et al. studied by IMC TME 
changes in patients with metastatic gastroesophageal ade-
nocarcinoma after ICI followed by ramucirumab/paclitaxel 
compared with pre-ICI samples. They found that the sequen-
tial combination prevented Treg infiltration and preserved 
the pool of cytotoxic T cells [63]. Yang et al. observed 
similar TME modifications in six patients with advanced 
rectal cancer treated with neoadjuvant chemoradiotherapy 
by comparing the TME by IMC of patients with and without 
complete pathological response. They showed that complete 
response (n = 3) was associated with an increase in the pro-
portion of cytotoxic lymphocytes and a decrease in tumor-
associated M2 macrophages and Treg cells [64]. Moldove-
anu et al. mapped by IMC the tumor immune compartment 
of melanoma samples after ICI. They reported that proxim-
ity of antigen-experienced cytotoxic T cells with tumor cells 
and a high proportion of proliferating experienced  CD8+ 
T cells were associated with positive response to ICI [65].

Conclusion

In this review, we described the potential contributions of 
IMC in the field of immuno-oncology. From the study of 
biomarker expression and distribution to the identification 
of a predictive signature based on cell–cell interactions, IMC 
allows an in-depth and comprehensive study of the tumor 
ecosystem. The continuous release of new computational 
tools and methods for multiplexed image and single-cell 
analysis confirms the constant progress of this technology.

The importance of the immune context in the response 
to treatment is now acknowledged. The emergence of the 
immunoscore to predict the response to treatment in colorec-
tal cancer has clearly demonstrated the importance of study-
ing the immune status of patients before treatment [66, 67]. 
Therefore, IMC, with its spatial approach, can play a crucial 
role in the discovery of predictive signatures by comparing 
the TME before and after treatment and between responders 
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and non-responders. Altogether, IMC-based studies will sig-
nificantly contribute to the discovery of predictive signatures 
and mechanisms of resistance, and consequently also to the 
development of new therapeutic strategies for precision 
medicine.
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