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Abstract

Storytelling is an integral part of human ex-
perience and plays a crucial role in social
interactions. Thus, Automatic Story Eval-
uation (ASE) and Generation (ASG) could
benefit society in multiple ways, but they are
challenging tasks which require high-level
human abilities such as creativity, reasoning
and deep understanding. Meanwhile, Large
Language Models (LLM) now achieve state-
of-the-art performance on many NLP tasks.
In this paper, we study whether LLMs can be
used as substitutes for human annotators for
ASE. We perform an extensive analysis of
the correlations between LLM ratings, other
automatic measures, and human annotations,
and we explore the influence of prompting
on the results and the explainability of LLM
behaviour. Most notably, we find that LLMs
outperform current automatic measures for
system-level evaluation but still struggle at
providing satisfactory explanations for their
answers.

1 Introduction

The task of Automatic Story Generation (ASG) (Li
et al., 2013) consists in the creation of a narrative
from a short sentence. Previous research showed
that storytelling enables a narrator to communi-
cate honestly with their audience (Rowcliffe, 2004)
and to provide listeners with an engaging and in-
structive experience (Miller and Pennycuff, 2008).
Indeed, the process of story creation is a salient
testimony of human creativity, requiring both the
discovery of interesting ideas and their adept ex-
pression through a carefully-built narrative. Strong
automatic story generating systems could there-
fore be useful for a variety of applications, such
as gaming (Turner, 2014), education (Lombardo
and Damiano, 2012), mental health (George et al.,
2014) and marketing (Júnior et al., 2023).

Meanwhile, over the last few years, advances
in natural language processing (NLP) have been
spearheaded by the development of large language
models (LLM) such as GPT-3 (Brown et al., 2020),
LaMDA (Thoppilan et al., 2022), PaLM (Chowd-
hery et al., 2023) and LLaMA (Touvron et al.,
2023a). Upon release, these models have been
setting new state-of-the-art performance standards
for a wide array of NLP tasks, e.g. question answer-
ing, summarization, and translation. In particular,
for ASG, LLMs are now able to produce convinc-
ing stories, so much so that they can be hard to
distinguish from human stories (Clark et al., 2021).
As their performance improves, they may become
valuable assistants to our creative process; already,
writing contests have been shown to encourage
their use (Edilivre, 2023).

The increased availability of LLMs to the gen-
eral public underlines the need for reliable story
evaluation methods that can be used to improve
both the performance of ASG models and our
understanding of their strengths and weaknesses.
Since the human annotation of stories is costly and
time-consuming (Celikyilmaz et al., 2020), Auto-
matic Story Evaluation (ASE) systems could pro-
vide an efficient and scalable replacement for hu-
man evaluation. However, current automatic mea-
sures have been shown to be poorly correlated with
human judgment for ASG (Chhun et al., 2022).

In this paper, we investigate whether LLMs
themselves can be used as substitutes for human
annotators for story evaluation. To that end, we per-
form several annotation experiments where we ask
different LLMs to rate stories according to differ-
ent criteria and to explain their rating. We show an
example in Fig. 1 and a schema of our experiments
in Fig. 2.

Our contributions are the following:

1. A comparison between LLMs and current
ASE measures. We compute and analyze the cor-
relations between LLM ratings with human anno-



Eval-Prompt
Prompt: A mirror shows your reflection and your
future soulmate. You only see your reflection.
Story: Carnival music seemed to dance in the back-
ground. A cacophony of color and knick knacks
decorated the fairgrounds. [...]
Rate the story on a scale from 1 to 5 on Empathy
and explain your answer.

LLM Answer
I would rate the story a 2 on Empathy. While I
could relate to the character’s feelings of indiffer-
ence towards the mirror, I did not feel a strong
emotional connection to any of the characters. [...]

Fig. 1: Example Eval-Prompt and answer from our
experiments. “Prompt” inside the Eval-Prompt refers to
the story-prompt.

tations on criteria specific to story evaluation; we
find that, while overall correlations are moderate
to weak, system-level correlations are very high,
suggesting that LLMs can produce reliable model
rankings for ASE;

2. An analysis of the influence of prompt en-
gineering on LLM performance. We examine
the effects of using different Eval-Prompts on the
consistency and distribution of LLM ratings. We
find that adding detailed guidelines does not nec-
essarily improve performance and that LLMs are
remarkably self-consistent;

3. Insights on LLM explainability for ASE.
We analyze the explanations provided by LLMs
through different methods, including a user study,
and find that LLMs’ understanding of the ASE task
is perfectible. Most notably, they struggle at ex-
plaining their ratings with substantiated claims;

4. An analysis of LLM performance in ASG.
The high system-level correlations of LLMs with
human ratings enable us to use them to rate other
LLMs for ASG. We find that LLMs perform at least
as well as humans for the generation of short sto-
ries, and that their performance may be explained
by their tendency to produce output that is similar
to their pretraining data.

Our methodology can be found in Sec. 3.1. We
release our data and code on GitHub1. Our data

1https://github.com/dig-team/
hanna-benchmark-asg

consists of:
• ASE experiments: ∼150k rating and expla-

nation annotations (1,056 stories, 6 criteria, 4
Eval-Prompts, 3 tries, 2 models);

• User study: 1,500 human annotations of
LLM explanations;

• ASG experiment: 384 stories generated by
Llama models with corresponding LLM anno-
tations to expand the HANNA dataset of Chhun
et al. (2022).

This paper is structured as follows: in Sec. 2, we
review the related work. In Sec. 3, we lay out our
methodology and experimental details. In Sec. 4,
we perform our analysis of the results. In Sec. 5, we
discuss the state of LLMs in ASG and ASE. Finally,
in Sec. 6, we conclude with practical takeaways for
researchers, the limitations of our work, and future
research directions.

2 Related work

2.1 Human Evaluation

Evaluating stories is a difficult task (McCabe and
Peterson, 1984; Dickman, 2003). In the social sci-
ences literature, multiple criteria have been sug-
gested, often divided into cognitive and emotional
factors (Bae et al., 2021). However, the consensus
around the criteria to be used in the NLP literature
is still weak (Fan et al., 2018; Guan et al., 2020;
Rashkin et al., 2020; Goldfarb-Tarrant et al., 2020).
Chhun et al. (2022) distill the indicators used in the
social sciences literature into 6 criteria (Relevance,
Coherence, Empathy, Surprise, Engagement, Com-
plexity), which we will use in our paper as well.

While human evaluation remains the gold stan-
dard of evaluation, it is costly and time-consuming.
We therefore need to develop automatic measures
that can act as substitutes for human judgment,
ideally for each of the criteria. Such automatic
measures could be used to improve language mod-
els, e.g. as a loss function or for chain-of-thought
prompting (Wei et al., 2022b).

2.2 Automatic Evaluation

Automatic measures (e.g. BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), BERTScore (Zhang
et al., 2020), BARTScore (Yuan et al., 2021)) have
been repeatedly shown to correlate moderately to
poorly with human judgment, especially when ap-
plied to tasks other than the one they were de-
signed for (Zhang et al., 2004; Novikova et al.,
2017; Colombo et al., 2023). Deutsch et al. (2022)

https://github.com/dig-team/hanna-benchmark-asg
https://github.com/dig-team/hanna-benchmark-asg
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Fig. 2: Schema of the performed ASE experiments. RE, CH, etc. are the considered human criteria (Sec. 3.1). “EP”
means “Eval-Prompt”, defined in Sec. 3.1. For the user study (Sec. 3.3), we randomly sampled 100 explanations
from our experiments.

put forth the particular limitations of reference-free
measures. For ASE, Guan et al. (2020) and Chhun
et al. (2022) also observe weak correlations be-
tween automatic and human ratings, whether they
be reference-based or reference-free. This high-
lights the need for better automatic evaluation meth-
ods. To tackle this issue, this paper investigates the
use of LLMs to annotate stories with ratings w.r.t.
a given criterion.

2.3 Automatic Annotation

LLMs are increasingly being tested for automatic
text annotation, e.g. for sentiment analysis (Qureshi
et al., 2022), named entity recognition (Enkh-
saikhan et al., 2021) or event structure modeling
(Vauth et al., 2021). Wang et al. (2021) demonstrate
that labeling performed by GPT-3 can achieve the
same performance as human labeling and be up to
96% more cost-efficient. Ding et al. (2023) show
that GPT-3 performs well for text classification
tasks, but struggles with more complex tasks such
as named entity recognition. Chakrabarty et al.
(2023) design a test for creativity and show that
LLM-generated stories pass fewer tests than hu-
man stories, and that using LLMs for ASE yields
no positive correlations.

We seek to generalize their findings through the
use of source-available models and a finer analysis
and discussion of LLM performance.

2.4 Prompt Engineering

The importance of designing efficient prompts for
large language models such as GPT-3 has been ex-

tensively investigated in recent years. Reynolds
and McDonell (2021) notably find that zero-
shot prompting can perform similarly to few-shot
prompting, and even exceed it. They explore the
design of metaprompts that prime the language
model to better solve a given problem. Zhou et al.
(2023b) treat the prompt engineering process as
an optimization problem, use search algorithms
guided by LLMs to solve it and attain human-level
performance. Wei et al. (2022a) and White et al.
(2023) review different strategies that have been
applied to augment large language model abilities,
e.g. least-to-most prompting (Zhou et al., 2023a),
ask-me-anything prompting (Arora et al., 2023),
and zero-shot chain-of-thought reasoning (Kojima
et al., 2022).

We choose to investigate whether LLMs perform
better with simple or detailed guidelines, and with
zero- or one-shot Eval-Prompts.

3 Meta-Evaluation of LLMs for ASE

3.1 Methodology for ASE

The ASG task commonly involves the generation
of a story from a short sentence called a prompt (Al-
abdulkarim et al., 2021), which we will henceforth
call story-prompt.

ASE Definition. Given an evaluation measure
m (e.g. a scoring algorithm, an LLM. . . ), a story-
prompt i, and a story yi, we define the ASE task as
the production of an evaluation score m(yi).

In this paper, we choose to use LLMs as ASE
measures. We will refer to the prompt that is fed to



Eval-Prompt 1

Prompt: You have
become death, destroyer
of worlds.

Target Story: You
look up to see all of
them in fear. You just
must fix this soon.
Slowly, just like your
Father always had
instructed him, you look
down and see all your
foes dead and beaten
down. You can’t resist
the urge to touch the
wounds. For there is
nothing you can do
about it. [...]

Rate the story on a
scale from 1 to 5 on
Surprise (how surpris-
ing the end of the story
was). Rating:

Eval-Prompt 3

Prompt: You have become death, de-
stroyer of worlds.

Target Story: You look up to see all
[...]

Guidelines:
1 — The ending seemed completely obvious
from the start, or doesn’t make any sense at all.
2 — The ending was easily predictable after a
few sentences.
3 — The ending was predictable after half of
the story.
4 — The ending surprised you, but would have
been difficult to predict.
5 — The ending surprised you, and still
seemed as if it could very reasonably have been
predicted, ie, there were enough clues in the
story.

Rate the story on a scale from 1 to 5 on
Surprise (how surprising the end of the story
was) and explain your answer. Use the provided
guidelines. Rating:

Eval-Prompt 4

Prompt: You have
become death, destroyer
of worlds.

Target Story: You
look up to see all [...]

Human Story: I
saw the button. It was
simple, red, no words
on it as I already knew
what it did. I mean I
built the button, I built
what happens [...]

Rate the target story
on a scale from 1 to
5 on Surprise (how
surprising the end of
the story was) and
explain your answer.
Do not rate the human
story; it is here only for
reference. Rating:

Fig. 3: Example Eval-Prompts for the Surprise criterion. Eval-Prompt 2 is the same as Eval-Prompt 1 with “explain
your answer” added at the end. “Prompt” (bold) refers to the story-prompt.

the LLM as the Eval-Prompt, to distinguish it from
the story-prompt. See Fig. 1 for an example of the
use of an LLM for story evaluation.

ASE Criteria. We use the criteria introduced
by Chhun et al. (2022), who designed HANNA, a
benchmark for story evaluation. They compiled a
set of six orthogonal criteria from the social sci-
ences literature:

1. Relevance (RE, how well the story matches
its prompt),

2. Coherence (CH, how much the story makes
sense),

3. Empathy (EM, how well the reader under-
stood the character’s emotions),

4. Surprise (SU, how surprising the end of the
story was),

5. Engagement (EG, how much the reader en-
gaged with the story),

6. Complexity (CX, how elaborate the story is).

Methodology. Given the importance of good
prompt engineering (Zhao et al., 2021), we design
four different Eval-Prompts for the generation of
ratings. For each of our Eval-Prompts, we provide

the model with a story-prompt and a corresponding
story. Then:

Eval-Prompt 1 (simple rating): we ask the
model to rate the story on a scale from 1 to 5 on
one of the six criteria;

Eval-Prompt 2 (rating with explanation): same
as Eval-Prompt 1, and we ask the model to explain
its answer;

Eval-Prompt 3 (rating with explanation and
guidelines): same as Eval-Prompt 2, and we pro-
vide the model with the detailed guidelines from
the original annotation protocol by Chhun et al.
(2022);

Eval-Prompt 4 (rating with explanation and hu-
man story): same as Eval-Prompt 2, and we provide
the model with the human story associated with the
same story-prompt. We explicitly tell the model
that the human story is given only for reference
purposes.

Different Eval-Prompt examples are shown in
Fig. 3.



3.2 Meta-Evaluation Measures

Notations. For S systems and N story-prompts, let
yji be the story generated by system j ∈ {1, . . . , S}
for story-prompt i ∈ {1, . . . , N}. For a (human
or automatic) measure m, we denote by m(yji ) the
score associated to yji . Let K be a correlation co-
efficient, e.g. Pearson’s r (Pearson, 1895), Spear-
man’s ρ (Spearman, 1961) or Kendall’s τ (Kendall,
1938). We note hk the measure provided by the
k-th human annotator.

A naive method to compare ratings from two
measures would be to compute how much they
differ from each other for each story, e.g. by cal-
culating the average L1 distance between a given
evaluation method m and the human ratings, i.e.,
1
3

∑3
k=1 L1(m,hk). However, this method suffers

from the central tendency bias—the tendency of
an individual to rate most items on a survey in the
middle of a rating scale—which is often observed
in Likert scales (Stevens, 1971) and could be ex-
plained by the participants’ tendency to base their
judgment on a least mean squares estimator rather
than a maximum a posteriori estimator (Douven,
2018). We therefore choose more robust measures
of meta-evaluation: system-level and overall corre-
lations.

System-level correlation (Ksys
m1,m2). We take the

correlation of the vectors containing the mean score
of all stories for each system, for m1 and m2. This
strategy measures how much m1 and m2 agree
when comparing different systems. Formally:

Ksys
m1,m2

≜ K

(
1

N
Csys

m1
,
1

N
Csys

m2

)
, (1)

where Csys
m ≜

[
N∑
i=1

m(y1i ), . . . ,
N∑
i=1

m(ySi )

]
.

The segment-level correlation, often used in con-
junction with the system-level one in the meta-
evaluation literature (Ma et al., 2019; Bhandari
et al., 2020), is not adapted to ASE since stories
generated from the same story-prompt are not re-
quired to be similar, while e.g. translations of a
sentence should look alike. We therefore use the
overall correlation, which we define below.

Overall Correlation (Km1,m2). We take the cor-
relation between the full vectors containing the
scores of m1 or m2 for a given story for every

system. Formally:

Km1,m2 ≜ K(Cm1 ,Cm2), (2)

where Cm ≜

[(
m(yji )

)
(i,j)∈{1,...,N}×{1,...,S}

]
.

Statistical Testing (Sec. 4.1). Correlations be-
tween two automatic measures on the same anno-
tated dataset are not independent. As advised by
Graham and Baldwin (2014), we use the Williams
test (Williams, 1959; Moon, 2019) to evaluate the
strength of an increase in dependent correlations
(Steiger, 1980).

Given three features X1, X2 and X3 of a popu-
lation of size n, Williams’s t test for whether the
correlation between X1 and X2 equals the correla-
tion between X1 and X3 is formulated as follows:

t =
(r12 − r13)

√
(n− 1)(1 + r23)√

2K (n−1)
(n−3) +

(r12+r13)2

4 (1− r23)3
,

where rij is the correlation between Xi and Xj and

K = 1− r12
2 − r13

2 − r23
2 + 2 r12 r13 r23.

Williams’s t statistic follows a Student’s t-
distribution with n − 3 degrees of freedom. In
particular, the Williams test takes the correlations
between X2 and X3 into account.

Furthermore, since we perform a large quantity
of tests, we choose to correct p-values for mul-
tiplicity. As advised by Jafari and Ansari-Pour
(2019), we control the false discovery rate using
the Benjamini-Hochberg (BH) method (Benjamini
and Hochberg, 1995). Given n p-values p1, . . . , pn
sorted in increasing order, the BH method consists
in computing adjusted p-values p⋆k = pk

m
k and

replacing the p-values from largest to smallest.
Following recent recommendations to move be-

yond simplistic “statistical significance” tests (Am-
rhein et al., 2019; Wasserstein et al., 2019; Mc-
Shane et al., 2019), we report all p-values for trans-
parency. We choose to use a gradual notion of
evidence for our statistical analysis, as suggested
by Muff et al. (2022).

3.3 Human Evaluation of ASE Explanations

We conduct a user study in which we ask human
raters to identify potential issues in LLM explana-
tions. Dou et al. (2022) introduced an error annota-
tion schema called SCARECROW that we adapted



for ASE. We manually reviewed a random sam-
ple of 20 explanations from Beluga-13B on Eval-
Prompt 3 and selected the most relevant error types.
Then, we randomly sampled another 100 explana-
tions and, for each explanation, we asked 3 human
workers to annotate it w.r.t. the following five error
categories:

1. Poor Syntax: parts of the explanation are
grammatically incorrect or wrongly-worded;

2. Incoherence: parts of the explanation are self-
contradictory, logically wrong, or simply do
not make sense and do not fit the other cate-
gories;

3. Wrong Guideline: the explanation does not
respect the provided guidelines;

4. Superfluous Text: parts of the explanation
contain text that repeats itself or generation
artefacts;

5. Unsubstantiated Claims: the explanation
fails to make explicit references to the story
to substantiate its reasoning.

We recruited workers on Amazon Mechanical Turk.
We estimated that a HIT would take around one
minute, so we set the reward at $0.20 per HIT,
so about $12 per hour. To ensure that annotators
spoke fluent English, we restricted access to the
experiment to the UK, the US, Canada, Australia
and New Zealand.

3.4 Experimental Details

Dataset. We use the HANNA dataset (Chhun
et al., 2022) which contains 1,056 stories generated
from story-prompts from the WritingPrompts
dataset (Fan et al., 2018), with both pretrained lan-
guage models: BERTGeneration (Rothe et al.,
2020), CTRL (Keskar et al., 2019), GPT (Rad-
ford et al., 2019), GPT-2 (Radford et al., 2019),
RoBERTa (Liu et al., 2019) and XLNet (Yang
et al., 2019); and ASG-specific models: Fusion
(Fan et al., 2018), HINT (Guan et al., 2021) and
TD-VAE (Wilmot and Keller, 2021). These sto-
ries were annotated with scores from human raters
on the six criteria introduced in Sec. 3.1 and 72
automatic measures. We reproduce the original
procedure from Chhun et al. (2022): for reference-
based evaluation measures (e.g. BLEU), we use
the human story from HANNA as the reference for
the generated story. Because of space constraints,
we display only the evaluation measures that are
the most used in the literature: BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004), chrF (Popović,

2015), BERTScore (Zhang et al., 2020), SUPERT
(Gao et al., 2020), BLANC (Vasilyev et al., 2020),
BARTScore (Yuan et al., 2021), BaryScore
(Colombo et al., 2021). The results are similar
for the other automatic measures.

ASG Models. Since the release of the HANNA
dataset, language models have made significant ad-
vancements. We therefore felt the need to expand
HANNA with more recent models. We selected
Llama-2-7b-chat-hf (Llama-7B) as a new base-
line and 4 high-performing models (at the time
of selection) of different sizes on the Hugging-
Face Open LLM Leaderboard2: Platypus2-70B-
instruct (Platypus2), Llama-30b-instruct-2048
(Llama-30B), StableBeluga-13B (Beluga-13B),
Mistral-7B-OpenOrca (Mistral).

ASE Models. We submit each of the four Eval-
Prompts 3 times on all 1,056 stories on each of
the 6 criteria, and we then extract the ratings au-
tomatically from the generated answer via a regu-
lar expression. Since story evaluation on multiple
prompts and multiple criteria was more computa-
tionally demanding, we limited our experiments
to the smaller 13B and 7B models. We used the
4 following models: Beluga-13B, Mistral, Llama-
2-13b-chat-hf (Llama-13B), and Gpt-3.5-turbo
(ChatGPT). We also ran the ASE experiments with
Llama-7B, which failed at the task too often for
the results to be exploitable, e.g. by generating
nonsensical conversations between itself and the
user. We use (temperature, top_p) = (1, 0.95) for
Llama models and (0.7, 1) for ChatGPT (default
suggested values).

Llama2 (Touvron et al., 2023b) models were
trained on a closed “new mix of data from publicly
available sources”. Beluga-13B and Mistral-7B are
Llama2 models fine-tuned on Orca-style datasets
which contain triplets of “System message–User
query–LLM response” for a large collection of
tasks (Mukherjee et al., 2023). Beluga-13B is fine-
tuned on StabilityAI’s closed internal dataset, while
Mistral-7B is fine-tuned on the open OpenOrca
dataset (Lian et al., 2023). ChatGPT (Brown et al.,
2020; Ouyang et al., 2022) is a closed-source model
trained on a closed internal dataset that includes
the CommonCrawl, Books1 and Books2 datasets.

We used the transformers library (Wolf et al.,
2020) and the OpenAI API for our experiments.

2https://huggingface.co/spaces/
HuggingFaceH4/open_llm_leaderboard

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard


4 Analysis of the results

Our work aims at answering five important ques-
tions for ASE and ASG:

• ASE1: How do LLMs compare w.r.t. current
evaluation methods, both human and automatic?

• ASE2: How does the Eval-Prompt influence the
consistency and distribution of LLM ratings?

• ASE3: How explainable is the evaluation per-
formed by LLMs?

• ASG1: Relying on ASE results, how do LLMs
perform at ASG?

• ASG2: How does pretraining data help predict
ASG performance?

4.1 ASE1: Comparison with Current
Evaluation Measures

4.1.1 Automatic Annotation Consistency

Crit. Beluga-13B Mistral-7B Human

RE 0.88±0.01 0.86±0.01 0.48±0.30

CH 0.93±0.01 0.90±0.01 0.29±0.28

EM 0.88±0.01 0.87±0.02 0.34±0.09

SU 0.80±0.02 0.63±0.03 0.28±0.12

EG 0.91±0.01 0.87±0.01 0.46±0.12

CX 0.85±0.01 0.78±0.02 0.56±0.08

Tab. 1: Intra-class coefficients type 2k for Eval-Prompt
1 ratings with 95% confidence interval. Higher is better.

First, we want to verify if LLMs provide sta-
ble answers. The default decoding strategy for
LLMs (both Llama models and ChatGPT) is top-p
sampling, which involves random variability in the
generation process. We evaluate how consistent
LLMs are with themselves through an inter-rater
reliability (IRR) estimation. For each task, we inter-
pret the three different LLM ratings as coming from
three different annotators and we use the intra-class
correlation coefficient (ICC), which is the most rel-
evant one for our case study: unlike Cohen’s and
Fleiss’s kappas (Cohen, 1960; Fleiss, 1971) or Krip-
pendorff’s alpha (Hayes and Krippendorff, 2007),
which quantify IRR based on all-or-nothing agree-
ment, the ICC incorporates the magnitude of the
disagreement to compute its IRR estimate, with
larger-magnitude disagreements resulting in lower
ICC than smaller-magnitude disagreements (Hall-
gren, 2012). We specifically use the ICC for av-
erage random raters (ICC2k) (Vallat, 2018); with

the assumption that the random aspect can approxi-
mate the random aspect of the generation.

ICC2k values for Eval-Prompt 1 for Beluga-13B,
Mistral-7B and human ratings are displayed on
Tab. 1. Comparing LLM consistency and human
inter-rater agreement values should be done with
caution: human raters may have subjective appreci-
ations of the Likert scale despite guidelines, while
LLM consistency depends mostly on parameters
that dictate output variability, e.g. temperature or
top-p. That said, we reckon that it is still useful to
display human IRR values as a baseline. We ob-
serve that LLMs have very high consistency overall
for all criteria; the lowest value is Mistral-7B’s ICC
for Surprise (0.66), which is still fairly high. Con-
fidence intervals are also smaller than for human
ratings.

4.1.2 Correlations with Human Annotations
Here, we study the Kendall correlations between
LLM and human ratings on corresponding crite-
ria. For the “Beluga-13B 1” column in Fig. 4, the
first value is the correlation between Beluga-13B
Relevance ratings and averaged human Relevance
ratings for Eval-Prompt 1, then Coherence ratings,
etc.

Assuming we want an automatic measure to per-
form as well as an individual human rater would,
we need a baseline for comparison. Therefore, we
also compute the average correlations between in-
dividual human ratings and average human ratings,
which we compiled into the same figures for the
sake of readability (the “Human” column). Since
the individual human rating is included in the aver-
age human rating, both measures are not indepen-
dent, so the column acts as an upper-bound.

Overall Correlations (Fig. 4). LLM ratings gen-
erally correlate with human ratings similarly to
automatic measures, if not better. Overall, Beluga-
13B is the best performer, achieving higher cor-
relations (0.25 on average) than both other LLMs
and automatic measures (≤0.18). The better results
(as compared to Llama-13B (0.16) and Mistral-7B
(0.20)) suggest a positive influence of fine-tuning
and model size respectively. The inferior perfor-
mance of ChatGPT (0.18) is difficult to explain
since OpenAI does not disclose the details of its
architecture, its training process and, most impor-
tantly, its training data. Nonetheless, an important
takeaway is that current source-available models
can effectively compete with closed-source models:
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Fig. 4: Overall absolute Kendall correlations between
evaluation measures and human ratings. Higher is better.
The black vertical line separates LLMs (left) and non-
LLMs (right). Coefficient values are multiplied by 100
for readability; we will symbolize this with “(×100)” in
the next figures.

this is good news for NLP research, since observa-
tions made on closed-source models cannot easily
be generalized.
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Fig. 5: System-level absolute Kendall correlations
(×100) between evaluation measures and human rat-
ings. Higher is better. The white vertical line separates
LLMs (left) and non-LLMs (right).

System-level Correlations (Fig. 5). First, we ob-
serve that human baseline correlations are notice-
ably higher than non-LLM automatic measures:
while human annotators tend to reach a consensus
when ranking systems (averaging correlations of
0.73), non-LLM automatic measures are moder-
ately to poorly correlated from human judgment
(with values ranging from 0.13 to 0.57).

Meanwhile, Llama models display very high cor-
relations, with Beluga-13B performing almost as
well as human raters (0.70 vs 0.73). ChatGPT
shows a somewhat erratic performance (correla-

tions range from 0.07 to 0.73), which is overall
comparable or inferior to Llama models. Also,
LLMs generally outperform other automatic mea-
sures (0.70 for Beluga-13B compared to 0.57 for
BARTScore).

The fact that correlations are sometimes higher
than the baseline can be explained by the subjective
nature of the task: human annotators may exhibit
higher variability in their ratings than the stable
LLMs.
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Fig. 6: BH-adjusted p-values (×100) of the Williams
tests for overall and system-level Kendall correlations.
Lower is better. “0” means p < 0.01.

Statistical Testing. Fig. 6 shows the BH-adjusted
p-values of the Williams tests for the increase in
correlations with a given criterion between Beluga-
13B average Eval-Prompt 1 ratings (row) and other
measures (column).

For overall correlations, there is strong statistical
evidence that Beluga-13B correlates better with hu-
man judgment than many non-LLM automatic mea-
sures (p < 0.01 for many tests). Evidence is more
moderate to weak when comparing Beluga-13B
and other LLMs. For instance, between Beluga-
13B and ChatGPT, p-values lie between 0.01 and



Criterion Eval-Prompt 1 Eval-Prompt 2 Eval-Prompt 3 Eval-Prompt 4

Relevance 0.88±0.01 0.90±0.01 0.85±0.02 0.92±0.01

Coherence 0.93±0.01 0.94±0.01 0.87±0.01 0.93±0.01

Empathy 0.88±0.01 0.88±0.01 0.83±0.02 0.91±0.01

Surprise 0.80±0.02 0.79±0.02 0.70±0.03 0.85±0.01

Engagement 0.91±0.01 0.92±0.01 0.79±0.02 0.93±0.01

Complexity 0.85±0.01 0.86±0.01 0.85±0.01 0.89±0.01

Tab. 2: Intra-class coefficients type 2k for Beluga-13B ratings with 95% confidence interval. Higher is better.

LLM Eval-Prompt 1 Eval-Prompt 2 Eval-Prompt 3 Eval-Prompt 4

Beluga-13B 3.48±0.04 3.38±0.03 3.06±0.03 3.28±0.04

Llama-13B 3.48±0.03 3.52±0.03 3.21±0.02 2.82±0.03

Mistral-7B 3.47±0.03 3.51±0.03 3.46±0.03 3.28±0.03

ChatGPT* 1.52±0.03 1.47±0.03 1.62±0.02 1.60±0.03

Tab. 3: Average Likert ratings per LLM per Eval-Prompt. The asterisk signals the fact that ChatGPT was only asked
to rate the original HANNA dataset without Llama-generated stories. Higher is better.

0.14. While the performance of Beluga-13B still
leaves a lot of room for improvement, it performs
better than non-LLM automatic measures.

For system-level correlations, statistical evi-
dence for better performance appears weaker:
p > 0.11 for all tests. However, one should keep
in mind that the ratings (averaged over more than
1,000 stories) used to compute system-level corre-
lations hold more information than the individual
ratings of the overall correlations. Therefore, while
statistical evidence is weaker, the averaged nature
of the correlations and the significant numeric in-
creases in correlations (0.70 for Beluga-13B vs
0.57 for BARTScore/BERTScore) suggest that
Beluga-13B is more reliable at ordering systems
compared to non-LLM measures.

4.1.3 Takeaways

First, LLMs show very high self-consistency. Over-
all correlations remain weak, although LLMs dis-
play marginal improvements over non-LLM auto-
matic measures, backed with strong statistical evi-
dence. At the system-level, LLM correlations with
human judgment are high, but statistical evidence is
weaker. In conclusion, while LLMs still cannot be
relied upon to evaluate a single story, they appear
more reliable than non-LLM automatic measures
for comparing different models and selecting the
best one.

4.2 ASE2: Influence of the Eval-Prompt
In this section, we discuss the influence of the Eval-
Prompt on the consistency and distribution of the
generated LLM ratings.

4.2.1 Influence on Consistency
Here, we analyse the influence of the Eval-Prompt
on LLM consistency. ICC2k values for Beluga-13B
ratings w.r.t. the different Eval-Prompts are shown
on Tab. 2 (other LLMs display similar behavior).
The influence of Eval-Prompts appears limited: pro-
viding guidelines (Eval-Prompt 3) tends to decrease
self-consistency for all criteria except Complexity
with a discernible effect (as shown by the confi-
dence intervals), but ICC values remain very high.
LLMs are therefore remarkably consistent in their
grading, no matter the Eval-Prompt.

4.2.2 Influence on Ratings
We show the average Likert ratings per LLM
per Eval-Prompt on Tab. 3. Compared to Eval-
Prompt 1, Eval-Prompt 2 seems to have limited in-
fluence on the ratings for all models, often leading
to overlapping confidence intervals. Eval-Prompt
3 causes a statistically discernible decrease in rat-
ings for Beluga-13B and Llama-13B, and a dis-
cernible increase for ChatGPT. Eval-Prompt 4 has
a similar effect, with the decrease also observable
with Mistral-7B. The significantly lower ratings
of ChatGPT partly stem from the fact that it was
not asked to rate the new Llama-generated stories,
which were generally highly-rated.



Overall, it seems that more detailed Eval-
Prompts (3 and 4) tend to decrease the ratings for
Llama-models while having an opposite effect for
ChatGPT. We tried to separate ratings per genera-
tive model or per criterion but were unable to iden-
tify a more specific pattern: we therefore chose to
show only the aggregated results for the sake of
clarity.

4.2.3 Influence on Correlations
Here we analyze the influence of Eval-Prompts
on correlations between LLM ratings and human
ratings.
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Fig. 7: Overall absolute Kendall correlations (×100)
between LLMs and human ratings for different Eval-
Prompts. Higher is better. B-13B = Beluga-13B, L-13B
= Llama-13B, M-7B = Mistral-7B and Chat = ChatGPT.

Overall Correlations (Fig. 7). Eval-Prompt 2
overall correlations are very close to Eval-Prompt 1
correlations for all models: simply asking for an
explanation has limited influence on correlations.
Eval-Prompt 3 tends to decrease correlations for all
models: providing guidelines makes the model less
accurate, counter-intuitively. Eval-Prompt 4 (pro-
viding a human story for reference) has a similar
effect.

System-level Correlations (Fig. 8). Eval-
Prompt 2 has limited effect on correlations again,
except for Beluga-13B for whom it seems to
increase correlations. Eval-Prompt 3 decreases
correlations, with a marked effect in Llama-13B.
Finally, Eval-Prompt 4 seems to cause a small
increase in correlations, contrary to its decreasing
effect on overall correlations.

4.2.4 Takeaways
First, regardless of Eval-Prompt complexity, LLMs
behave consistently when prompted multiple times.
Asking for an explanation (Eval-Prompt 2) has
negligible effect on ratings, while more complex
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Fig. 8: System-level absolute Kendall correlations
(×100) between LLMs and human ratings for different
Eval-Prompts. Higher is better. B-13B = Beluga-13B,
L-13B = Llama-13B, M-7B = Mistral-7B and Chat =
ChatGPT.

Eval-Prompts (3 - providing guidelines and 4 - pro-
viding a reference human story) have a more dis-
cernible influence (positive or negative). As for
correlations with human ratings, providing guide-
lines (Eval-Prompt 3) consistently seems to lower
correlations, whereas providing a human story for
reference (Eval-Prompt 4) has opposite effects for
overall or system-level correlations.

4.3 ASE3: Explainability of Ratings

In this section, we analyze to what extent the ex-
planations provided by LLMs are consistent w.r.t.
their ratings, i.e., whether they differ from criterion
to criterion, whether they are semantically relevant
and, for Eval-Prompt 3, whether they are compli-
ant with the provided guidelines. We will focus on
Beluga-13B since it had the best correlations with
human judgment, as shown in Sec. 4.1.

4.3.1 Visualization of Explanation
Embeddings

First, we want to ascertain whether Beluga-13B
provides different explanations for each of the hu-
man criteria. We gather the explanations provided
by Beluga-13B on human stories for each crite-
rion and use the SentenceTransformers library
(Reimers and Gurevych, 2019) to compute their cor-
responding embeddings. We then use a 2D UMAP
projection (McInnes et al., 2018) (with parameters
n_neighbors = 300 and metric = euclidean) to vi-
sualize how the embeddings are distributed. Fig. 9
shows the visualization of the UMAP projection:
Beluga’s explanations are overall well-separated
w.r.t. their corresponding criteria.
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Fig. 9: UMAP projection of Beluga-13B explanations.

4.3.2 Keyword Analysis

Since Beluga’s explanations seem to vary from one
criterion to another, we evaluate whether they make
sense from a semantic point of view. We use the
YAKE! keyword extractor, which significantly out-
performs other state-of-the-art methods (Campos
et al., 2020): we show selected 3-gram keywords
from the top-30 per criterion on Tab. 4. The results
are consistent with Fig. 9: keywords are overall
different for each criterion. We can also see here
that they are semantically relevant.

Crit. Keywords

RE story, prompt, roughly matches, target,
weak relationship, connection, weak

CH story, coherence, make sense, difficult to
understand, clear narrative structure

EM empathy, emotions, understand the char-
acters, depth, emotional connection

SU story, surprise, ending, predictable, rate,
unexpected, twist, completely obvious

EG story, mildly interesting, engagement,
difficult, found, characters, fully engage

CX story, characters, intricate plot, difficult
to understand, straightforward, depth

Tab. 4: Selected keywords from Beluga-13B explana-
tions w.r.t. a specific criterion.

Error Type Rate AC1

Poor Syntax 0.02 0.93 0.97 1.00

Incoherence 0.11 0.73 0.81 0.89

Wrong Guideline 0.13 0.85 0.90 0.96

Superfluous Text 0.20 0.55 0.66 0.78

Unsubstantiated Claims 0.31 0.47 0.60 0.74

Tab. 5: Error rates of Beluga-13B Eval-Prompt 3 on a
sample of 100 explanations. Lower is better.

4.3.3 User Study on LLM Explanations
We display the results of our user study (designed in
Sec. 3.3) in Tab. 5. We also display the IRR, which
we computed using Gwet’s agreement coefficient 1
(AC1) (Gwet, 2008; Fergadis and Scheffler, 2022).
Gwet’s AC1 is known to perform well for IRR es-
timation on binary classification tasks such as our
user study: it was designed to be more stable and
less affected by prevalence and marginal probabil-
ity than Cohen’s kappa, and this was confirmed by
practical experiments (Wongpakaran et al., 2013).

We can see that Beluga-13B produces near-
impeccable syntax, at least according to annotators
(2% of “Poor Syntax”). It also does a good job at
producing coherent text (11% of “Incoherence”),
and mostly understands the guidelines (13% of
“Wrong Guideline”). However, it tends to repeat
itself somewhat (20% of “Superfluous Text”) and,
most notably, tends not to substantiate its claims
with direct references to the story (31% of “Un-
substantiated Claims”). Overall, annotators tend
to agree with one another, as showed by the high
values of Gwet’s AC1.

The substantial rate of “Unsubstantiated Claims”
and the fact that 40% of all Eval-Prompt 3 ratings
are not supported by an explanation—despite
the Eval-Prompt explicitly asking for it—beg the
question of whether Beluga-13B truly understands
the given task. We discuss this question further in
Sec. 5.

Takeaways. LLM explanations seem to be spe-
cific to each considered human evaluation criterion;
however, a finer analysis with a user study reveals
that LLMs often struggle with following guidelines
and substantiating their explanations.

4.4 ASG1: LLM Performance in ASG

In this section, we discuss the performance of
LLMs at the ASG task compared to human and
previous models’ performance, as we expanded the



Model RE CH EM SU EG CX Average

Human 3.37±0.12 3.55±0.11 3.42±0.11 3.11±0.13 3.58±0.10 3.48±0.10 3.42±0.06

Platypus2-70B 4.09±0.05 4.31±0.05 3.92±0.06 3.69±0.07 4.19±0.05 3.88±0.05 4.01±0.03

Llama-30B 4.19±0.05 4.38±0.04 4.04±0.06 3.63±0.09 4.31±0.05 3.98±0.05 4.08±0.03

Beluga-13B 4.06±0.08 4.10±0.06 3.75±0.08 3.54±0.08 3.90±0.08 3.69±0.07 3.84±0.05

Mistral-7B 4.12±0.05 4.25±0.05 3.86±0.06 3.56±0.08 4.11±0.05 3.82±0.04 3.95±0.03

Llama-7B 4.07±0.06 4.24±0.05 3.90±0.06 3.58±0.06 4.09±0.05 3.79±0.05 3.95±0.03

GPT-2 2.57±0.13 2.36±0.11 2.72±0.11 2.59±0.14 2.67±0.12 2.89±0.12 2.63±0.07

HINT 1.57±0.10 1.31±0.07 1.59±0.10 1.49±0.10 1.58±0.09 1.43±0.08 1.49±0.06

Tab. 6: Average Beluga-13B ratings for Eval-Prompt 1 with 95% confidence interval. Higher is better.

Model RE CH EM SU EG CX Average

Human 3.48±0.11 3.50±0.10 3.69±0.08 3.24±0.11 3.42±0.10 3.45±0.07 3.46±0.05

Platypus2-70B 4.26±0.08 4.31±0.08 4.05±0.07 3.46±0.10 3.94±0.06 3.55±0.07 3.93±0.03

Llama-30B 4.15±0.10 4.29±0.07 4.02±0.07 3.46±0.09 3.94±0.06 3.65±0.07 3.92±0.03

Beluga-13B 4.07±0.09 4.14±0.07 3.98±0.07 3.50±0.09 3.74±0.08 3.59±0.07 3.84±0.03

Mistral-7B 4.15±0.10 4.22±0.08 4.02±0.07 3.51±0.11 3.94±0.07 3.67±0.07 3.92±0.04

Llama-7B 4.13±0.10 4.14±0.09 3.90±0.08 3.48±0.09 3.78±0.08 3.56±0.08 3.83±0.05

GPT-2 2.40±0.10 2.37±0.09 2.74±0.10 2.85±0.11 2.60±0.09 2.88±0.09 2.64±0.05

HINT 2.12±0.11 2.13±0.08 2.23±0.10 2.28±0.11 2.05±0.08 2.05±0.09 2.15±0.06

Tab. 7: Average Mistral-7B ratings for Eval-Prompt 1 with 95% confidence interval. Higher is better.

HANNA dataset with stories generated from more
recent models. Since Beluga-13B and Mistral-7B
display very high system-level correlations with
human ratings (see Fig. 5), we use their ratings as
proxy for human ratings. Tab. 6 and Tab. 7 show
the average Beluga-13B and Mistral-7B ratings
for Eval-Prompt 1 per model per criterion for a
few HANNA models (GPT-2, HINT) and the Llama
models.

We observe that LLMs perform remarkably well,
getting higher ratings than older models (GPT-2)
and even human stories. Beluga-13B and Mistral-
7B both seem to prefer the outputs from larger
LLMs (Platypus2-70B, Llama-30B) to their own
outputs, suggesting that the LLM grading process
cannot be explained simply by a proxy for per-
plexity. Interestingly, in both tables, Mistral-7B
gets slightly higher ratings than Beluga, with some
differences being statistically discernible, which
could be explained by differences in fine-tuning
data.

Takeaways. Larger models (Platypus2-70B,
Llama-30B) exhibit the best ASG performance,
with LLM ratings at least equal to those of human
stories. However, our setting involves short stories
of between 500 and 1,000 words; generating longer
stories may prove more difficult since maintaining

large-scale coherence may become an issue.

4.5 ASG2: Influence of Pretraining Data on
ASG Performance

In this section, we verify whether the LLM pre-
training data contains the WritingPrompts dataset
to check for model contamination, as advised by
Magar and Schwartz (2022), and to what extent
ASG performance is related with data exploitation,
e.g. through reproduction of training examples.

We use the MIN-K% PROB detection method
(Shi et al., 2024) which is based on the hypothesis
that unseen data will contain more outlier words
with low probability than seen data. Furthermore,
it does not require additional training. Given a
sentence and an LLM’s probability distribution of
the next token, MIN-K% PROB selects the top-k%
of tokens with the highest negative log-likelihood
and computes their average log-likelihood. We
can then detect if the sentence was included in
pretraining data by thresholding this average. We
follow Shi et al. (2024) and use k = 20 for our two
experiments.

Model Contamination. We sample 1,000 sto-
ries from the WritingPrompts dataset (Fan et al.,
2018), from which the HANNA human stories come.
Tab. 8 shows the predicted contamination rates of



Model Contamination (%)

Platypus2-70B 0.80
Llama-30B 1.80
Beluga-13B 4.40
Mistral-7B 2.50
Llama-7B 10.10

Tab. 8: Predicted contamination rates of the Writing-
Prompts sample.

the WritingPrompts sample. Since they are very
low, this strongly suggests that the WritingPrompts
sample was not included in the pretraining data of
the evaluated models. We can reasonably surmise
that the same applies to the whole WritingPrompts
dataset.

Data Reproduction. We use the BooksMIA
dataset (Shi et al., 2024), which contains 9,870 sam-
ples of books labeled 0 if included in the Books3
dataset (commonly used for pretraining LLMs) or
1 if released in or after January 2023. Since the
BooksMIA data is labeled, we compute the area un-
der the ROC curve (AUC) obtained with MIN-K%
PROB thresholding. Results are shown on Tab. 9.

Model AUC (%)

Platypus2-70B 92.1
Llama-30B 81.3
Beluga-13B 70.1
Mistral-7B 51.2
Llama-7B 55.1

Tab. 9: AUC detection score on the BooksMIA dataset.

We observe that the AUC detection score is
higher for larger models, i.e., it is easier to detect if
a book was in the pretraining data of a larger LLM.
The definition of the MIN-K% PROB measure also
means that larger LLMs tend to produce text that
is more similar to their pretraining data, such as
fiction books, which could help explain their better
ASE ratings.

Takeaways. The better performance of larger
LLMs for ASG may be partially explained by their
tendency to generate text that is more similar to
their pretraining data, e.g. existing novels.

5 Discussion on LLM performance

Our work is part of the ongoing research on the gen-
eral ability of LLMs for understanding and think-

ing.
Mahowald et al. (2024) distinguish formal (the

statistical features of language) and functional lin-
guistic competence (the ability to use language in
the world) and show that LLMs are very successful
on formal linguistic tasks but struggle at functional
linguistic tasks. Bubeck et al. (2023) argue that
LLMs do display impressive performance at a wide
variety of tasks but lack “slow thinking” capabili-
ties, referring to the System 1–System 2 dichotomy
introduced by Kahneman (2011).

Thus, the high performance of LLMs at ASE
should be interpreted with caution: we hypothesize
that the “rating” part of our story evaluation experi-
ments could be linked to formal linguistic compe-
tence and the fast, automatic System 1, while the
“explanation” part would correspond to functional
linguistic competence and the slow, conscious Sys-
tem 2.

This analogy would explain the good correla-
tions of LLM ratings with human ratings: the in-
ternal criterion of LLMs for story evaluation may
be formal quality (vocabulary, syntax, grammar),
regardless of the criterion mentioned in the Eval-
Prompt. Indeed, the six criteria from Chhun et al.
(2022) are mostly orthogonal but not completely
independent: their correlation with one another
may be related to the general “System 1” tendency
of human raters to favour stories that display bet-
ter formal qualities. In that sense, LLMs may re-
flect a human bias towards easy, intuitive thinking.
By contrast, the less convincing performance of
LLMs at explaining their ratings may highlight
their weaker System 2 capabilities as argued by
Mahowald et al. (2024) and Bubeck et al. (2023).

6 Conclusions

6.1 Practical Takeaways

1. Used with prompts based on specific criteria,
LLMs are currently the best proxy for human
evaluation of story generation (Sec. 4.1.2). In
particular, LLMs display very high system-level
correlations with human judgment;
2. LLMs are remarkably self-consistent
(Sec. 4.1.1), exhibiting very high intra-class
coefficient values;
3. LLMs understand the ASE task only par-
tially (Sec. 4.3.3): they struggle to explain their
answers with substantiated claims;
4. For ASE, providing detailed guidelines (Eval-
Prompt 3) did not lead to improved correlations



with human ratings (Sec. 4.2.3). Providing a hu-
man story for reference (Eval-Prompt 4) yields
mixed results;
5. LLM stories have at least equal ASE ratings
to human stories (Sec. 4.4), with larger LLMs
exhibiting the best performance;
6. Pretraining data helps explain LLM perfor-
mance at ASG (Sec. 4.5): the higher ratings of
larger LLMs may be due to their ability to produce
output similar to existing books.

6.2 Limitations and Future Directions

The ASE task is a very subjective one: LLM perfor-
mance at ASE and ASG must be seen as a reflection
of average preferences and may therefore include
biases, e.g. from their pretraining data.

Furthermore, we performed most of our experi-
ments in a zero-shot setting without further train-
ing; it would be interesting to compare our results
with future work involving fine-tuning or reinforce-
ment learning with human feedback on data spe-
cific to ASE.

Also, we did not conduct our experiments with
LLMs that were optimized for long inputs and out-
puts, such as GPT-4.

Finally, we mainly used source-available LLama
models and found that they performed at least as
well as ChatGPT, a proprietary model. We encour-
age the NLP community to favor the use of such
models, as the growing presence of closed models
hinders research transparency and reproductibility.
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