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Abstract

A single-field representation is derived to describe a multi-species gas flow seeded with perfectly
rigid, non-porous and partially inert particles. Indeed, the latter are not involved in heterogeneous reactions
with the gas phase (no consumption of the solid by the gas), but they are expected to potentially undergo
adsorption and recombination of gaseous radicals on their surface, resulting in the desorption of stable species
into the gas. In this work, integral balances are first established at the gas-solid interface, consistent with the
local single-phase equations for reactive multi-species gas flow. This allows rigorous derivation of the jump
equations that apply at the gas-solid interface in the presence of surface reactions. Then, the description
in terms of local single-phase equations, completed by the jump equations at the interface, is recast into a
set of equations for the full domain in the sense of distributions. The result extends Kataoka’s formalism [I.
Kataoka, International Journal of Multiphase Flow 12 (5) (1986) 745–758] to reactive gas-solid flow in the
presence of both homogeneous and surface reactions.
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Nomenclature
Generic variables

ϕ two-phase scalar field

ϕ two-phase vector field

ϕ̂ surface scalar field

ϕ̂ surface vector field

Θ two-phase scalar source term

Θ two-phase vector source term

Θ̂ surface scalar source term

Θ̂ surface vector source term

J two-phase diffusion flux of a scalar quantity

J two-phase diffusion flux of a vector quantity

Ĵ surface diffusion flux of a scalar quantity

Ĵ surface scalar field representing the surface diffusion of a vector quantity

Two-phase fields

β thermal expansion coefficient K−1

χT isothermal compressibility coefficient Pa−1

χ(m) indicator function of phase P(m)

κ bulk viscosity Pa s

λ thermal conductivity Wm−1 K−1

µ shear viscosity Pa s

ω̇k mass reaction rate of species k per unit volume kg s−1 m−3

ω̇′
T heat rate due to homogeneous reactions per unit volume Wm−3

ρ density kgm−3

σ total stress tensor Pa

τ viscous stress tensor Pa

Cp mass heat capacity at constant pressure JK−1 kg−1

e rate-of-strain tensor s−1

et mass total energy J kg−1

P pressure Pa

h mass enthalpy J kg−1

Q̇ heat rate due to radiative transfer per unit volume Wm−3

q total heat flux Wm−2
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T temperature K

u velocity ms−1

Vk diffusion velocity of species k ms−1

W molar mass kgmol−1

Xk molar fraction of species k

Yk mass fraction of species k

Surface fields (variables with a hat)

Γ̂ density of surface sites molm−2

˙̂ωk mass rate of species k per unit surface kg s−1 m−2

ρ̂ surface density kgm−2

ρ̂k surface density of species k kgm−2

ê mass internal energy J kg−1

L̂T interfacial source term in the temperature equation Jm−2

n̂(m) normal vector to the interface Σ directed outwards from the phase P(m)

˙̂Q heat rate due to radiative transfer per unit surface Wm−2

˙̂
Qj molar rate of the jth surface reaction per unit surface mol s−1 m−2

˙̂sk molar rate of species k per unit surface mol s−1 m−2

˙̂s∗ molar rate of vacant sites ∗ per unit surface mol s−1 m−2

ŵ velocity of the gas-solid interface Σ ms−1

[̂Xk] molar density of species k per unit surface molm−2

[̂X∗] molar density of vacant sites ∗ per unit surface molm−2

Ẑk fraction of surface sites occupied by the species k

Ẑ∗ fraction of vacant sites

Geometric quantities related to the material volume Fig. 1

∂V surface surrounding the material volume V m2

∂(V (m)) surface surrounding the volume V (m) m2

(∂V )
(m) intersection between the phase m and the surface ∂V m2

C contour circling the surface S m

S intersection between the material volume V and and the interface Σ m2

N̂ surface vector normal to C, tangent to Σ, directed outwards S

V material volume m3

n(m) normal vector to the surface ∂(V (m))
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V (m) intersection between the volume V and the phase m m3

Properties of chemical species and vacant surface sites

σk site occupancy number of species k

Cpk mass heat capacity at constant pressure of species k JK−1 kg−1

ek mass internal energy of species k J kg−1

emol,∗ molar internal energy of vacant sites * Jmol−1

hk mass enthalpy of species k J kg−1

hmol,∗ molar enthalpy of vacant sites * Jmol−1

Wk molar mass of species k kgmol−1

Other symbols

δ(x) 1D Dirac distribution [x]−1

δΣ surface Dirac distribution associated with the interface Σ m−1

ν′kj molar stoechiometric coefficient of reacting species k in surface reaction j

ν′∗j molar stoechiometric coefficient of reacting surface sites in surface reaction j

ν′′kj molar stoechiometric coefficient of produced species k in surface reaction j

ν′′∗j molar stoechiometric coefficient of produced surface sites in surface reaction j

Ω(1) set of gas species

Ω(2) set of solid species

Ω(Σ) set of surface species

Σ solid-gas interface

f function defining the position of the interface Σ

g gravity ms−2

H Heaviside function

j index for the surface reactions

K total number of gas, solid and surface species

k index for species

ks index for the unique solid species

Mk molecule of species k

M∗ vacant surface site

MΣ number of surface reactions

m index for phases

P(1) gas phase

P(2) solid phase
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1. Introduction
Gas-solid reactive flows are increasingly used in industrial applications to convert energy in a clean way,
such as in chemical looping combustion technology [35]. They are also found in conventional industrial
processes for the production of materials such as synthetic polymers, iron or steel, which are now being
redesigned to reduce greenhouse gas emissions [5]. Many of the applications that aim at contributing to
industrial decarbonation use the fluidized bed concept [41]. Industrial design and optimization of fluidized
bed reactors can be advantageously supported by numerical simulation rather than by building prototypes:
it is cheaper, any new geometry of reactor can be easily investigated, and numerical simulation provides data
inside the device that are hardly or not accessible through experimental investigation. However, at the scale
of an industrial reactor, the current computing power only allows solving Eulerian-Lagrangian systems of
equations using parcels instead of particles [50, 44], or Eulerian-Eulerian averaged equations where particles
are considered as a continuum, such as in the Euler-Euler approach (or Two-Fluid Model) [22, 28]. Focusing
on the latter, the averaged equations for both phases feature unclosed terms that need to be modeled [48].
Thus, the reliability of these numerical simulations to predict the reactive flow depends on the models and
on the accuracy of the closure laws used in such an approach.

To develop these closures, a multiscale approach can be adopted [6]. It consists in performing simulations
at a scale smaller than the one needing closures, among the available scales. Each scale corresponds to a
different level of modeling, which is then used to extract information and develop closure models by an a priori
analysis. Considering the particle resolution as a starting point (and not the pore), and a three-dimensional
framework, three scales may be identified. The microscopic scale where the flow is resolved at the scale of
the individual particle. Conservation equations are directly solved, with resolved jump conditions describing
the momentum, mass, and energy transfers between the gas and the dispersed phase. The solid particles
are considered as perfectly rigid. Only particle-particle and particle-wall collisions are modeled (generally
with a soft-sphere model), as well as lubrication effects in the small unresolved gaps. Such simulations are
termed as Particle-Resolved Direct Numerical Simulations (PR-DNS) [16]. The mesoscopic scale where the
flow is no longer resolved at the scale of the individual particle (typically in the boundary layer) but rather
modeled by accounting for the effects of the interactions between the fluid and the particles contained in
a volume of control in an averaged way. Solid collisions are however directly computed with either a soft-
sphere [55] or a hard-sphere model [27]. Averaged equations for mass, momentum, and energy conservation
are solved to describe the gas phase, together with equations modeling the multispecies reactive gas phase
and the turbulent flow when needed. All interactions between the continuous and dispersed phases are
modeled through closure laws, which can be provided by using, for example, PR-DNS. In the literature,
this method ([15, 54]) is mainly referred to as Discrete Element Method (DEM). The macroscopic scale in
which both the continuous and the dispersed phases are described, for example, as interpenetrating media.
Averaged equations are solved for each phase. High-order moments (gas and particle kinetic energies, fluid-
particle covariance, gas turbulent dissipation, etc.) are often used to model the unresolved gas-solid mixture,
accounting for the interphase coupling effects. Compared to DEM, additional models based on the kinetic
theroy for granular flow [31] are necessary to describe the dispersed phase, as well as particle-particle and
particle-wall interactions [30]. Such an approach is the aforementioned Euler-Euler approach or Two-Fluid
Model (TFM). In a multiscale approach, closures may be provided using PR-DNS [52, 26] or CFD-DEM [42]
results.

This study is part of a project that aims at characterizing and modeling hydrogen combustion in fluidized
beds through a multiscale approach (micro versus macroscale modeling). Hydrogen combustion takes place
in a reactor filled with partially inert particles, which may undergo adsorption and recombination of gaseous
radicals on their surfaces, resulting in the desorption of stable species to the gas. In this regard, their
modeling is needed even at the microscopic scale. The development of a theoretical formalism accounting
for surface reactions at microscopic scale is the goal of the present study. This work is therefore concerned
with the PR-DNS approach of such systems.

Several numerical methods exist in the literature to perform PR-DNS. In the last years, the community
has essentially focused on fixed grid strategies, and among them, we can cite:

• Immersed Boundary Methods (IBM), that comprise the method proposed by Uhlmann [56] and en-
hanced by Breugem [7], the Ghost Cell Method [38] and the Cut Cell method [46].
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• Fictitious domain methods, which comprise the Fictitious-Domain Discrete-Lagrange-Multipliers (FD-
DLM) [24, 47] and the Viscous Penalty Method (VPM) [57, 11].

For an exhaustive review of numerical methods for PR-DNS, the reader is referred to the references [40, 58].
This article focuses on the previously mentioned VPM. This method has been shown to accurately

describe heat and momentum transfers between an incompressible fluid and a fixed array of spherical particles
[10, 52, 12]. It has also been used to successfully reproduce an experimental liquid-solid fluidized bed [43].
The VPM is based on the resolution of a one-fluid formulation on a fixed Cartesian grid, where the solid
particles are described as a fluid with infinite viscosity. To the best of our knowledge, no one-fluid formulation
accounting for homogeneous and surface reactions is available in the literature.

A one-fluid formulation is a set of spatially averaged equations describing the two-phase flow as a single
equivalent fluid. It has mainly been applied in the litterature to gas-liquid and liquid-liquid flows. In these
contexts, examples of rigorous derivations are described in [59, 39, 36, 21, 18, 37]. For a more thorough
review of applications of the one-fluid formulation in the litterature, the reader can refer to [53]. One-fluid
formulation should not be confused with the single-field representation introduced by Kataoka [33]; a single-
field representation is a set of equations in the sense of distributions describing the evolution of physical
quantities, that is rigorously equivalent to the separate single-phase and jump equations at the interface, for
each quantity. In fact, a one-fluid formulation is as a spatially averaged single-field representation, that takes
the numerical smoothing of discontinuities at the two-phase interface into account. In this regard, our goal
is to establish the fundamental single-field representation describing reactive gas-solid flow in the presence
of surface reactions.

The article is organized as follows. In Sec. 2, the theoretical framework, notations and physical as-
sumptions concerning the description of the gas-solid reactive flow are introduced. In Sec. 3 the two-field
representation is presented. This part focuses on the rigorous derivation of the jump conditions at the gas-
solid interface using integral balances, following the approach of [19]. The local single-phase equations are
also recalled. Then, in Sec. 4 the local single-phase and jump equations are embedded into the single-field
representation in the sense of distributions, extending the work of Kataoka [33] to the reactive gas-solid flows
accounting for surface reactions. Conclusions and perspectives are finally outlined.

2. Assumptions, notations and fundamental relations
This section states the assumptions considered in this study. Physical and modeling assumptions are first
presented in Sec. 2.1. Definitions, conventions, and notations are then progressively introduced in Secs. 2.2,
2.3, 2.4 and 2.5.

2.1. Assumptions
The solid particles are supposed to be partially inert in the following sense: they are not consumed by
heterogeneous reactions or phase change, but the gas-solid interface can undergo surface processes, involving
adsorption of unstable gaseous radicals on the surface, recombination of these radicals into stable molecules,
followed by the desorption of these molecules in the gas phase. The particles are also supposed to be made
of a perfectly non-porous solid. They are modeled as a Newtonian incompressible fluid with an infinite shear
viscosity, and a thermal expansion coefficient equal to zero.

The gas-solid interface is described as a sharp material dividing surface. It is composed of surface sites
where gaseous species can adsorb. It is supposed to feature a single type of surface site. The local density of
sites is considered to be constant over the surface of the particles, and independant of time. Note that this
is a simplified view of the real surface chemistry, as it may exist different types of adsorption sites (terrace
sites, step sites, etc.), with different thermo-chemical properties and whose local density can vary (see the
references [34, 51] for more details). Moreover, the adsorbed species are supposed to be non-interacting
molecules (perfect mixture), and it is assumed that the state of the resulting surface phase does not depend
on the state of the adjacent bulk phases; the surface phase is said autonomous [17], which is a very simplifying
assumption knowing the molecular-size thickness of the surface phase. These two last assumptions follow the
ideal surface model implemented in the Surface Chemkin [13] and Cantera [25] software. Additionally, we
assume the continuity of both the temperature and tangential component of the velocity at the interface. All
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phenomena related to surface diffusion are neglected. Finally, the mechanical effects due to surface tension
are neglected because of the rigid character of the solid.

The reactive gas mixture is described with the conservation equations of [45]. Gravity is the only external
force.

2.2. Domains and phases
In the formalism adopted by Cantera [25], and introduced by Kee et al. [34], the gas-solid flow is divided
into three domains: i) gas, ii) bulk solid, and iii) gas-solid interface. Note that the gas and bulk solid are
volume domains, while the gas-solid interface is a surface domain.

In this formalism, each domain can then feature an arbitrary number of "phases". In our problem, each
domain features in fact only one "phase". The gas domain only contains the gas. The bulk solid domain only
contains homogeneous condensed matter, due to the assumption of non-porosity. The gas-solid interface is
assumed to have only one type of adsorption site. The adsorbed species on the interface and the vacant sites
are then considered to form only one "phase" (in the sense of Kee et al. [34]). Note that in a more refined
description, we could describe the existence of several types of adsorption sites; accordingly, the gas-solid
interface would contain as many "phases" as the number of the different types of adsorption sites.

Therefore, the notion of "phase" as understood in [34] is not retained here, because it is redundant with
the notion of domain. From now on, the term phase is understood in the sense of the multiphase-flow
community: it can refer to one of the two volume domains, that is the gas or the solid phase. These two
phases will be noted

(
P(m)

)
m∈{1,2}, with the index m = 1 corresponding to the gas phase and m = 2

corresponding to the solid phase. The sharp interface between the two phases is noted Σ. As a convention,
we suppose the following set of relations: 

P(1) ∩ Σ = ∅
P(2) ∩ Σ = ∅
P(1) ∪ P(2) ∪ Σ = R3.

(2.1)

To track the phases, we define phase-indicator functions χ(m) such that for m ∈ {1, 2}:

∀x ∈ R3, ∀t ∈ R+, χ(m)(x, t) =

{
1 if x ∈ P(m) at the instant t

0 otherwise.
(2.2)

It is straightforward to show that:
χ(1)χ(2) = 0 (2.3)

and ∀m ∈ {1, 2}, ∀n ∈ N∗, (
χ(m)

)n
= χ(m). (2.4)

Unit normal vectors to the interface Σ, noted as n̂(m), are conventionally defined as oriented outwards
from the phase P(m). The partial derivatives of the phase-indicator functions χ(m) then verify in the sense
of distributions (see Appendix A): 

∇χ(m) = −n̂(m)δΣ

∂χ(m)

∂t
= ŵ · n̂(m)δΣ

(2.5)

where δΣ is the surface Dirac distribution associated with the interface Σ and ŵ is the velocity of the interface
(formalized later).

2.3. Volume and surface fields
2.3.1. Volume fields

We first introduce single-phase fields, that describe local and instantaneous physical quantities in only one
of the separate phases P(m). For m ∈ {1, 2}, a single-phase field is noted in a generic way ϕ(m). It is only
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defined for x ∈ P(m). It is also supposed to be regular and bounded in space throughout P(m), and in time
as well.

From the couple of generic single-phase fields
(
ϕ(1), ϕ(2)

)
, we can then build a two-phase field ϕ defined

in all the space R3, and coinciding for m ∈ {1, 2} with ϕ(m) in the phase P(m). Mathematically, ϕ can be
expressed as follows:

ϕ =

2∑
m=1

χ(m)ϕ(m). (2.6)

Due to the regularity and boundedness assumptions for the single-phase fields ϕ(m) in their associated
phase m, sided limits at the interface Σ can thus be defined for all instant t:

∀m ∈ {1, 2}, ∀xΣ ∈ Σ,


ϕ(m)(xΣ, t) = lim

x→xΣ

x∈P(m)

[
ϕ(m)(x, t)

]
= lim

x→xΣ

x∈P(m)

[ϕ(x, t)] .

∇ϕ(m)(xΣ, t) = lim
x→xΣ

x∈P(m)

[
∇ϕ(m)(x, t)

]
= lim

x→xΣ

x∈P(m)

[
2∑

m=1

χ(m)∇ϕ(m)

]
.

(2.7)

If the sided limits (2.7) differ at Σ, ϕ (respectively
∑2

m=1 χ
(m)∇ϕ(m)) has a jump discontinuity across

Σ. If the sided limits (2.7) coincide at Σ, ϕ (respectively
∑2

m=1 χ
(m)∇ϕ(m)) has at most a removable

discontinuity at Σ 1. In this last situation, ϕ (respectively
∑2

m=1 χ
(m)∇ϕ(m)) will be termed as being

continuous at the interface Σ, despite the formal discontinuity.
Finally, according to the definition (2.6), and equations (2.3) and (2.4), we have for any couple of two-

phase fields ϕ and θ:

2∑
m=1

χ(m)ϕ(m)θ(m) =

(
2∑

m=1

χ(m)ϕ(m)

)(
2∑

m=1

χ(m)θ(m)

)
= ϕθ. (2.8)

The relation (2.8) can be generalized to the product of an arbitrary number of two-phase variables.

2.3.2. Surface fields

Due to adsorption/recombination/desorption of species, the gas-solid interface possesses physical properties,
which evolution is coupled to the dynamic of the gas and the solid phase. Surface fields 2have therefore to
be defined to describe the local and instantaneous physical properties of the interface Σ. These surface fields
will be generically noted ϕ̂.

The velocity of the interface is an example of surface field. It can be decomposed into a normal and a
tangential contribution:

ŵ = ŵn + ŵt, with ŵn = (ŵ · n̂) n̂. (2.9)

As Delhaye [19], we assume the following continuity equation at the interface:

ŵt = u(1) −
(
u(1) · n̂(1)

)
n̂(1) = u(2) −

(
u(2) · n̂(2)

)
n̂(2) at the interface Σ. (2.10)

Eq. (2.10), as well as continuity of temperature at the interface, can be demonstrated by assuming the
production of entropy to be zero at the interface Σ [28].

1Indeed, as a consequence of Eq. (2.1) and Eq. (2.2), ϕ is null on the interface Σ; this value is unimportant, because Σ is a
negligible subset of R3.

2In this work, what we call surface field has another meaning than the classic definition by Aris [4], especially concerning
surface vector fields. In [4], a surface vector field is necessarily tangent to the surface, whereas it is not in the present work.
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2.4. Taxonomy of species
The chemical composition in the volume domains (gas and solid phases) is described in terms of mass
fractions. The single-phase mass fraction of a species k in the phase m is noted Y

(m)
k . At the interface Σ,

the chemical composition is rather described in terms of site fractions. The site fraction of a species k is
noted Ẑk and corresponds to the local fraction of surface sites occupied by the species k. Its relation with
the mass of the species k per unit surface will be detailed in Sec. 3.2.

Moreover, the conventions established in [34] are followed here. The total number of chemical species is
noted K, and each species k ∈ J1,KK is relative to a domain (gas, solid or interface). This formalism then
defines three distinct types of species for our problem. They are listed below.

• Gas species: corresponding to species that compose the gas phase. Their set of indices k is noted Ω(1).
Their mass fractions, diffusion velocity and mass reaction rate verify the conditions:

∑
k∈Ω(1)

Y
(1)
k = 1

∑
k∈Ω(1)

Y
(1)
k V

(1)
k = 0

∑
k∈Ω(1)

ω̇
(1)
k = 0

(2.11)

Although these species are not present in the solid phase P(2) and at the gas-solid interface Σ, we
define a mass fraction in the solid phase P(2) and a site fraction at the interface Σ for the gas species
that are equal to zero:

∀k ∈ Ω(1),

{
Y

(2)
k = 0 in the solid phase P(2)

Ẑk = 0 at the interface Σ.
(2.12)

• Solid species: corresponding to species forming the solid phase. Their set of indices is noted Ω(2). In
our problem their chemical composition does not change with time. Therefore, the description of the
chemical composition in the solid can be reduced to one effective species ks. The associated conditions
thus writes: 

∑
k∈Ω(2)

Y
(2)
k = Y

(2)
ks

= 1

∑
k∈Ω(2)

Y
(2)
k V

(2)
k = V

(2)
ks

= 0

∑
k∈Ω(2)

ω̇
(2)
k = ω̇

(2)
ks

= 0

in the solid phase P(2). (2.13)

Although species ks is not present in the gas phase P(1) and at the gas-solid interface Σ, we define a
mass fraction in the gas phase P(1) and a site fraction at the interface Σ for the species ks that are
equal to zero: {

Y
(1)
ks

= 0 in the gas phase P(1)

Ẑks
= 0 at the interface Σ.

(2.14)

• Surface species: corresponding to species adsorbed on the surface of the solid particles. Their set of
indices is noted Ω(Σ). The normalization condition for these surface species writes:

Ẑ∗ +
∑

k∈Ω(Σ)

Ẑk = 1 at the interface Σ (2.15)

with Ẑ∗ the fraction of vacant sites.
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Although the surface species are not present in the solid and gas phases, we define a mass fraction
there, equal to zero:

∀k ∈ Ω(Σ),

{
Y

(1)
k = 0 in the gas phase P(1)

Y
(2)
k = 0 in the solid phase P(2).

(2.16)

We can then demonstrate the global normalization condition for the two-phase mass fractions::

K∑
k=1

Yk = 1 almost everywhere. (2.17)

Indeed, this equation does not hold on Σ because ∀k ∈ J1,KK, Yk is null at the interface with our conventions.

2.5. Surface reactions
The formal description of homogeneous reactions can be found in [45] and is not reported here. In this
section, an analogous description is carried out for surface reactions.

While homogeneous reactions only involve gas species, surface reactions can involve gas, solid, and in-
terface species. But since we assumed that the solid particles are partially inert, surface reactions do not
involve solid species in our problem. Also, the open-site convention is adopted in this study to describe
adsorption/recombination/desorption processes [34].

We assume the existence of MΣ surface reactions. A particular surface reaction j ∈ J1,MΣK can be
described in this formalism by the general balance chemical relation:∑

k∈Ω(1)∪Ω(Σ)

ν′kjMk + ν′∗jM∗ ⇆
∑

k∈Ω(1)∪Ω(Σ)

ν′′kjMk + ν′′∗jM∗ (2.18)

where, Mk represents a molecule of species k, and M∗ a vacant surface site. The quantities ν′kj and ν′′kj
are the stoichiometric coefficients of species k in reaction j for reactants and products respectively, while ν′∗j
and ν′′∗j are the counterparts of ν′kj and ν′′kj for vacant surface sites. The sum is taken on gas and surface
species, k ∈ Ω(1) ∪ Ω(Σ).

Eq. (2.18) can describe any type of surface reaction relevant to our problem, namely adsorption, recom-
bination, and desorption. Here is an example of surface reactions from [2], where catalytic combustion of
hydrogen on a platinum surface is numerically studied:

• the adsorption from the gas phase (1) of the gas radical H on the surface Σ:

H(1) +M∗ → H(Σ) (2.19)

• the recombination of two adsorbed radicals at the surface, immediately followed by the desorption of
the resulting molecule into the gas phase:

2H(Σ) → H2(1) + 2M∗ (2.20)

As for homogeneous reactions, surface reactions conserve mass. Introducing the molar mass Wk of species
k, this conservation principle writes for all surface reactions j ∈ J1,MΣK:∑

k∈Ω(1)∪Ω(Σ)

(
ν′′kj − ν′kj

)
Wk = 0. (2.21)

If the rate-of-progress of these surface reactions is noted Q̂j , the net molar reaction rate of species k by the
surface reaction j per unit surface is then expressed as:

˙̂skj =
(
ν′′kj − ν′kj

)
Q̂j (2.22)
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and the molar reaction rate of species k by all MΣ surface reactions per unit surface is thus

˙̂sk =

MΣ∑
j=1

˙̂skj . (2.23)

Using Eqs. (2.23) and (2.21) leads to

∑
k∈Ω(1)∪Ω(Σ)

Wk
˙̂sk =

MΣ∑
j=1

 ∑
k∈Ω(1)∪Ω(Σ)

(
ν′′kj − ν′kj

)
Wk

 Q̂j = 0 (2.24)

which shows that the total mass is conserved during the surface reactions.
As the density of surface sites is assumed to be constant in the present article, surface sites should be

conserved by each surface reaction. According to [34], a parameter σk is introduced to account for the fact
that a large molecule can occupy several surface sites. The integer σk is called site occupancy number ; it is
the number of sites that a molecule of species k occupies when it is adsorbed on the surface. It is considered
a property of the species k on the considered surface. Therefore, assuming that a molecule of a surface
species k ∈ Ω(Σ) occupies σk sites, the surface reaction j ∈ J1,MΣK (2.18) should verify: ∑

k∈Ω(Σ)

(
ν′′kj − ν′kj

)
σk

+
(
ν′′∗j − ν′∗j

)
= 0. (2.25)

Coming back to the surface reactions described by Eqs (2.19) and (2.20), the site occupancy number of H(Σ)

is σH(Σ)
= 1. It is straightforward to verify that these two reactions verify Eq. (2.25).

Regarding more general descriptions, if the assumption of constant site density is relaxed, then each
surface reaction does not necessarily verify Eq. (2.25); see [34] to see how such situation can be described.

3. Two-field representation
In this section, the two-field representation of the gas-solid flow is derived. For each physical variable
describing the flow, this representation consists in: i) two local and instantaneous single-phase equations,
each one being associated with one of the two phases and solely valid in it; ii) a local and instantaneous jump
condition at the interface, acting as a boundary condition for the considered variable.

First, the integral-balance method [19] is outlined in Sec. 3.1. Then, this approach is applied to the
conservation of mass (Sec. 3.2), momentum (Sec. 3.3), and energy (Sec. 3.4). The integral balances are
written to obtain the same, well known, local and instantaneous reactive gas-phase equations as in [45]. The
internal structure of the interface and the effects of surface reactions appear in the derived jump equations.
Such jump equations are consistent with previously derived ones, for single-component [19, 28] and multi-
component [49, 29] two-phase flow with a material interface. They are consistent with the formalism of the
Surface Chemkin [13] or Cantera [25] software, which can be used to numerically compute physical quantities
that are left unmodeled in the present study. Precisions on this matter are provided in the last part of this
section (Sec. 3.5).

3.1. General approach
The two-field representation can be obtained by systematically applying conservation principles to a material
volume V that is spread over the two phases (see Fig. 1). The following notations are adopted:

• V (m) = V ∩ P(m) is the part of the volume V containing the phase P(m).

• S = Σ ∩ V is the portion of the interface Σ contained in the volume V .

• (∂V )(m) = ∂V ∩ V (m) is the portion of the surface ∂V delimiting the volume V that is included in
V (m).
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• ∂
(
V (m)

)
= (∂V )(m) ∪ S is the closed surface that surrounds the volume V (m).

• n(m) is the normal vector to ∂
(
V (m)

)
that is directed outward from V (m). On S = Σ ∩ ∂

(
V (m)

)
, it

coincides with the normal vector to Σ noted n̂(m) in Sec. 2.2.

• C = ∂S is the closed contour that circles the surface S. We also have the relation C = ∂V ∩ Σ.

• N̂ is the vector that is normal to C, tangent to Σ, and directed outwards from S.

V (2)V (1)

(∂V )(1) (∂V )(2)

C

S

Σ

n(1)

n(2)

N̂

Figure 1: The material volume V = V (1) ∪ V (2) used to apply conservation principles.

Any conservation principle applied to the material volume V can be put in the general form:

d

dt

(
2∑

m=1

∫
V (m)

ϕ(m)d3V +

∫
S
ϕ̂d2S

)
=



−
2∑

m=1

[∫
(∂V )(m)

J(m) · n(m)d2S

]

−
∮
C
Ĵ · N̂dl

+

2∑
m=1

[∫
V (m)

Θ(m)d3V

]
+

∫
S
Θ̂d2S

(3.1)

where

• for m ∈ {1, 2}, ϕ(m) is the conserved quantity per unit volume in the phase P(m);

• ϕ̂ is the conserved quantity per unit surface at the interface Σ;

• for m ∈ {1, 2}, J(m) is a generic diffusion flux in the phase P(m);

• Ĵ is a generic diffusion flux at the interface Σ. This vector is tangent to Σ;

• for m ∈ {1, 2}, Θ(m) is a generic volume source term in the phase P(m).
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• Θ̂ is a generic surface source term.

From the fundamental equation (3.1), the application of mathematical transformations enables to find the
corresponding local equations in each separate phase m ∈ {1, 2} and the local jump equation at the interface
Σ.

• Total derivative term: the application of the Reynolds transport theorem (see Appendix C and
Theorem 2) yields

d

dt

∫
V (m)

ϕ(m)d3V =

∫
V (m)

∂ϕ(m)

∂t
d3V +

∫
(∂V )(m)

ϕ(m)u(m) · n(m)d2S +

∫
S
ϕ(m)ŵ · n̂(m)d2S

=



∫
V (m)

∂ϕ(m)

∂t
d3V

+

∫
(∂V )(m)

ϕ(m)u(m) · n(m)d2S

+

∫
S

[
ϕ(m)ŵ · n̂(m) + ϕ(m)u(m) · n̂(m) − ϕ(m)u(m) · n̂(m)

]
d2S

=

∫
V (m)

∂ϕ(m)

∂t
d3V +

∮
∂(V (m))

ϕ(m)u(m) · n(m)d2S +

∫
S
ϕ(m)

(
ŵ − u(m)

)
· n̂(m)d2S

so that

d

dt

∫
V (m)

ϕ(m)d3V =

∫
V (m)

[
∂ϕ(m)

∂t
+∇ ·

(
ϕ(m)u(m)

)]
d3V −

∫
S
ϕ(m)

(
u(m) − ŵ

)
· n̂(m)d2S. (3.2)

The application of the transport theorem for Surface (see Appendix C and Theorem 3) provides

d

dt

(∫
S
ϕ̂d2S

)
=

∫
S

(
dϕ̂

dt
+ ϕ̂∇Σ · ŵ

)
d2S. (3.3)

• Flux term term in volume:∫
(∂V )(m)

J(m) · n(m)d2S =

∮
∂(V (m))

J(m) · n(m)d2S −
∫
S
J(m) · n̂(m)d2S

such that ∫
(∂V )(m)

J(m) · n(m)d2S =

∫
V (m)

∇ · J(m)d3V −
∫
S
J(m) · n̂(m)d2S. (3.4)

• Flux term on the surface: The application of the Gauss theorem for surface (see Appendix C and
Theorem 4) gives ∮

C
Ĵ · N̂dl =

∫
S
∇Σ · Ĵd2S. (3.5)

By substituting Eqs. (3.2),(3.3),(3.4),(3.5) into Eq. (3.1), we obtain:

0 =



2∑
m=1

∫
V (m)

{
∂ϕ(m)

∂t
+∇ ·

(
ϕ(m)u(m)

)
−
(
−∇ · J(m) +Θ(m)

)}
d3V

−
∫
S

{
2∑

m=1

[
ϕ(m)

(
u(m) − ŵ

)
+ J(m)

]
· n̂(m) −

(
dϕ̂

dt
+ ϕ̂∇Σ · ŵ +∇Σ · Ĵ− Θ̂

)}
d2S.

(3.6)

Since Eq. (3.6) has been obtained for any material volume V cut by the interface Σ (any V (m), any S), the
development finally leads to
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• the local single-phase equation for each m ∈ {1, 2}

∂ϕ(m)

∂t
+∇ ·

(
ϕ(m)u(m)

)
= −∇ · J(m) +Θ(m) in the phase P(m); (3.7)

• the jump equation

2∑
m=1

[
ϕ(m)

(
u(m) − ŵ

)
+ J(m)

]
· n̂(m) =

dϕ̂

dt
+ ϕ̂∇Σ · ŵ +∇Σ · Ĵ− Θ̂ at the interface Σ. (3.8)

Since the solid phase is not consumed by any heterogeneous process, the interface velocity ŵ and the
velocity field u(2) coincide at Σ. This statement is rigorously demonstrated in Eq. (3.19). In this case,
the general jump equation (3.8) can take the simplified form

ϕ(1)
(
u(1) − ŵ

)
· n̂(1) +

2∑
m=1

J(m) · n̂(m) =
dϕ̂

dt
+∇Σ · Ĵ− Θ̂ at the interface Σ. (3.9)

3.2. Species and mass
Let k ∈ J1,KK, where K is the total number of chemical species in the overall system (including all the
domains). We apply the conservation principle (3.1) using the following quantities:

• ϕ(m) = ρ(m)Y
(m)
k the mass of the species k per unit volume in the phase P(m), for m ∈ {1, 2};

• ϕ̂ = Wk

σk
Γ̂Ẑk the mass of the species k per unit surface on the interface Σ, with Γ̂ the density of surface

sites at Σ, and σk the site occupancy number (cf. Sec. 2.5). According to the assumptions enunciated
in Sec. 2.1, the density of surface sites Γ̂ is a constant, characterizing the considered surface. To lighten
the notation we write

ρ̂k =
Wk

σk
Γ̂Ẑk; (3.10)

• J(m) = ρ(m)Y
(m)
k V

(m)
k the diffusion flux of the species k in the phase P(m), for m ∈ {1, 2};

• Ĵ = 0 (no surface diffusion of species);

• Θ(m) = ω̇
(m)
k the mass reaction rate of the species k per unit volume due to homogeneous reactions in

the phase P(m). It is zero in the solid phase;

• Θ̂ = Wk
˙̂sk the mass reaction rate of species k per unit surface due to surface reactions at the interface

Σ.

From Eq. (3.7), we deduce the general local species equation in each phase m ∈ {1, 2} [45]:

∀k ∈ J1,KK,
∂

∂t

(
ρ(m)Y

(m)
k

)
+∇ ·

[
ρ(m)Y

(m)
k

(
u(m) +V

(m)
k

)]
= ω̇

(m)
k in the phase P(m). (3.11)

According to Eq. (3.9), the solution of these local equations shall satisfy the following jump condition:

∀k ∈ J1,KK, ρ(1)Y
(1)
k

(
u(1) − ŵ

)
· n̂(1) +

2∑
m=1

ρ(m)Y
(m)
k V

(m)
k · n̂(m) =

dρ̂k
dt

−Wk
˙̂sk at the interface Σ.

(3.12)
Eq. (3.12) being written for any type of species, we consider the special cases of gas, solid, and surface species
in the following paragraphs.
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3.2.1. Gas species

The special case of a gas species k ∈ Ω(1) is considered. Such a species is absent from the solid phase and
the interface, so that only the local equation in the gas phase P(1) is of interest. According to Eq. (3.11)
and Eq. (2.12), this equation writes [45]:

∀k ∈ Ω(1),
∂

∂t

(
ρ(1)Y

(1)
k

)
+∇ ·

[
ρ(1)Y

(1)
k

(
u(1) +V

(1)
k

)]
= ω̇

(1)
k in the phase P(1). (3.13)

According to Eq. (3.12) and Eq. (2.12) the jump equation for the gas species is then:

∀k ∈ Ω(1), ρ(1)Y
(1)
k

(
u(1) +V

(1)
k − ŵ

)
· n̂(1) = −Wk

˙̂sk at the interface Σ. (3.14)

If all equations (3.13) are summed over k ∈ Ω(1) with the use of (2.11), the mass conservation writes:

∂ρ(1)

∂t
+∇ ·

(
ρ(1)u(1)

)
= 0 in the phase gas P(1). (3.15)

If all jump equations (3.14) are summed over k ∈ Ω(1) with the use of (2.11), one can obtain the following
condition at the interface:

ρ(1)
(
u(1) − ŵ

)
· n̂(1) = −

∑
k∈Ω(1)

Wk
˙̂sk. (3.16)

3.2.2. Solid species

The special case of the unique solid species ks is considered. In this case, the application of Eq. (3.11) and
(2.13) directly provides the local equation for mass conservation:

∂ρ(2)

∂t
+∇ ·

(
ρ(2)u(2)

)
= 0 in the solid phase P(2). (3.17)

To derive the corresponding condition at the interface, we have to use the general jump condition Eq. (3.8)
instead of Eq. (3.9). Applying Eq. (3.8) to the particular case of the solid species ks, together with (2.13)
and Eq. (2.14), we obtain:

ρ(2)
(
u(2) − ŵ

)
· n̂(2) = −Wk

˙̂sks
at the interface Σ. (3.18)

Since we assumed that the solid particles are not consumed by heterogeneous combustion, and that the
surface reactions are written in the open-site convention, the mass reaction rate per unit surface Wk

˙̂sks
is

zero, and Eq. (3.18) becomes (
u(2) − ŵ

)
· n̂(2) = 0 at the interface Σ. (3.19)

Eq. (3.19) has been used to simplify Eq. (3.8) into Eq. (3.9), and will be constantly used in this work. Note
that this relation would not hold anymore for a solid particle consumed by heterogeneous combustion.

3.2.3. Surface species

The special case a surface species k ∈ Ω(Σ) is considered. Such a species is only present at the interface Σ.
Its description thus reduces to the surface equation (3.12), that writes together with Eq. (2.16)

∀k ∈ Ω(Σ),
dρ̂k
dt

= Wk
˙̂sk at the interface Σ. (3.20)

Using Eq. (3.10) and the assumption of constant density of surface sites Γ̂, we can obtain the local equation
for the site fractions:

∀k ∈ Ω(Σ),
dẐk

dt
= σk

˙̂sk

Γ̂
at the interface Σ. (3.21)
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If Eq. (3.20) is summed over k ∈ Ω(Σ), one obtains the evolution equation for the total excess mass ρ̂:

dρ̂

dt
=

∑
k∈Ω(Σ)

Wk
˙̂sk = −

∑
k∈Ω(1)

Wk
˙̂sk. (3.22)

The second equality in (3.22) is provided by Eq. (2.24).

3.3. Momentum
In this section, the conservation of momentum is written for the material volume V . The general balance
equation (3.1) has been written for a scalar quantity. Here we extend its formulation for a physical quantity
described by the single-phase vector fields

(
ϕ(m)

)
m∈{1,2} and the surface vector field ϕ̂:

d

dt

(
2∑

m=1

∫
V (m)

ϕ(m)d3V +

∫
S
ϕ̂d2S

)
=



−
2∑

m=1

[∫
(∂V )(m)

J (m) · n̂(m)d2S

]

−
∮
C
Ĵ · N̂dl

+

2∑
m=1

[∫
V (m)

Θ(m)d3V

]
+

∫
S
Θ̂d2S

(3.23)

where J (m) are volume second-order tensor fields modeling diffusion fluxes in their respective phase, Ĵ is a
surface second-order tensor field, Θ(m) are volume vector fields modeling a volume source term, and Θ̂ is a
surface vector field modeling a surface source term.

For simplification purposes, we consider the special case where the surface tensor field Ĵ is diagonal;
therefore, there exists a surface scalar field Ĵ such that the contour integral in Eq. (3.23) writes:∮

C
Ĵ · N̂dl =

∮
C
ĴN̂dl (3.24)

The same mathematical manipulation used for Eq. 3.1 can be applied to Eq. (3.23) (for each component),
except for the integral on the contour C (3.24), that is transformed using Eq. (C.4). This provides generic
local equations for m ∈ {1, 2}:

∂ϕ(m)

∂t
+∇ ·

(
ϕ(m)u(m)

)
= −∇ · J (m) +Θ(m) in the phase P(m) (3.25)

and a generic jump equation:

ϕ(1)
[(

u(1) − ŵ
)
· n̂(1)

]
+

2∑
m=1

J (m) · n̂(m) =
dϕ̂

dt
+∇ΣĴ − (∇Σ · n̂) Ĵ n̂− Θ̂ at the interface Σ, (3.26)

where ∇ΣĴ designates the surface gradient of the scalar surface field Ĵ . We apply the balance (3.23) using
the following quantities:

• ϕ(m) = ρ(m)u(m) the momentum per unit volume in the phase P(m), for m ∈ {1, 2};

• ϕ̂ = ρ̂ŵ the momentum per unit surface at the interface Σ;

• J (m) = −σ(m), with σ(m) the stress tensor in the phase P(m), for m ∈ {1, 2}. It is assumed to have
the form:

σ(m) = −P (m)I+ µ(m)

(
∇u(m) +∇⊤u(m) − 2

3

(
∇ · u(m)

)
I

)
+ κ(m)

(
∇ · u(m)

)
I (3.27)
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where P (m), µ(m) and κ(m) are respectively the pressure, the shear viscosity and the bulk viscosity in
the phase P(m). According to our assumptions, the shear viscosity in the solid phase P(2) verifies

µ(2) → ∞ (3.28)

that has for consequence to enforce a rigid-body motion in the solid phase:

∇u(2) +∇⊤u(2) = 0 in the solid phase P(2); (3.29)

• Ĵ = 0 (no surface tension effects);

• Θ(m) = ρ(m)g the weight force per unit volume exerted on the phase P(m),

• Θ̂ = ρ̂g the weight force per unit surface exerted on the interface Σ.

From Eq. (3.25), we deduce the local equations in each phase m ∈ {1, 2} [45]:

∂

∂t

(
ρ(m)u(m)

)
+∇ ·

(
ρ(m)u(m)u(m)

)
= ∇ · σ(m) + ρ(m)g in the phase P(m). (3.30)

According to Eq. (3.26), the solution of these local equations shall satisfy the following jump condition:

ρ(1)u(1)
[(

u(1) − ŵ
)
· n̂(1)

]
−

2∑
m=1

σ(m) · n̂(m) =
d

dt
(ρ̂ŵ)− ρ̂g. (3.31)

The dynamical effects due to the mass of the interface are considered to be negligible, so the retained jump
equation is:

ρ(1)u(1)
[(

u(1) − ŵ
)
· n̂(1)

]
−

2∑
m=1

σ(m) · n̂(m) = 0. (3.32)

3.4. Energy
In this section, three forms of single-phase energy conservation equations are developed, together with the
related jump conditions.

3.4.1. Total Energy

To obtain the local and instantaneous single-phase equations and jump condition for the total energy, the
conservation principle (3.1) is applied using the following quantities:

• ϕ(m) = ρ(m)e
(m)
t the total energy per unit volume of the phase P(m), for m ∈ {1, 2};

• ϕ̂ = ρ̂ê the internal energy per unit surface of the interface Σ. The mechanical part of the surface
energy can be neglected in this balance because because of the really small surface density of the
interface [28];

• J(m) = q(m) − σ(m) · u(m), which is the sum of the total heat flux q(m) and the flux from the work
of stresses, for m ∈ {1, 2}. According to the assumptions (2.12) and (2.14), the total heat flux in the
phase P(m) can be written under the form [45]:

q(m) = −λ(m)∇T (m) + ρ(m)
∑

k∈Ω(1)

hkY
(m)
k V

(m)
k , (3.33)

with λ(m) the heat conductivity of the phase P(m), and hk the enthalpy per unit mass of species k.
Note that it is because of the property (2.12) that Eq. (3.33) consistently reduces to q(2) = −λ(2)∇T (2)

in the solid phase. In the gas phase, Eq. (3.33) provides the expected expression for the total heat flux
in a gas mixture [45];
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• Ĵ = 0 (no surface heat diffusion and no work of the surface tension forces);

• Θ(m) = ρg · u(m) + Q̇(m), for m ∈ {1, 2}. The first term is the power produced by the volume gravity
force on the phase P(m). The second term is a heat source per unit volume due, for example, to a
radiative transfers in the phase P(m);

• Θ̂ = ρ̂ŵ · g +
˙̂Q. The first term is the power produced by surface gravity force on the interface Σ.

The second term is a heat source per unit surface ˙̂Q (as, for example, a radiative contribution) at the
interface Σ.

From Eq. (3.7), we deduce the local and instantaneous equation in each phase m ∈ {1, 2} [45]:

∂
(
ρ(m)e

(m)
t

)
∂t

+∇·
(
ρ(m)u(m)e

(m)
t

)
= −∇·q(m)+∇·

(
σ(m) · u(m)

)
+Q̇(m)+ρ(m)g ·u(m) in the phase P(m).

(3.34)
According to Eq. (3.9), the solution of these local equations shall satisfy the following jump condition:

ρ(1)e
(1)
t

[
u(1) − ŵ

]
· n̂(1) +

2∑
m=1

[
q(m) − σ(m) · u(m)

]
· n̂(m) =

d (ρ̂ê)

dt
− ρ̂ŵ · g − ˙̂Q at the interface. (3.35)

The contribution of the interface weight is considered to be negligible, so the retained jump equation is:

ρ(1)e
(1)
t

[
u(1) − ŵ

]
· n̂(1) +

2∑
m=1

[
q(m) − σ(m) · u(m)

]
· n̂(m) =

d (ρ̂ê)

dt
− ˙̂Q at the interface Σ. (3.36)

At this point, the total derivative of the surface energy has to be made explicit. According to the approxi-
mation of perfect mixture for the surface phase, the internal energy per unit surface, ρ̂ê, may be written as
the sum of two contributions as follows:

ρ̂ê =
∑

k∈Ω(Σ)

ρ̂kek + [̂X∗]emol,∗ (3.37)

where ek is the internal energy per unit mass of the species k, ρ̂k is the surface density of the species k, [̂X∗]
is the surface molar concentration of vacant site, and emol,∗ is the internal energy per mole of vacant sites.
The total derivative of (3.37) is then computed:

d (ρ̂ê)

dt
=

∑
k∈Ω(Σ)

Wk
˙̂skek + ˙̂s∗emol,∗ +

dT

dt

 ∑
k∈Ω(Σ)

ρ̂k
dek
dT

+ [̂X∗]
demol,∗

dT

 . (3.38)

Because of the small concentrations per unit area at the surface, the heat capacity term can be safely
neglected in Eq. (3.38), and the equation reduces to

d (ρ̂ê)

dt
=

∑
k∈Ω(Σ)

Wk
˙̂skek + ˙̂s∗emol,∗. (3.39)

Finally by injecting Eq. (3.39) into Eq. (3.36) the following jump equation for the total energy is obtained:

ρ(1)e
(1)
t

[
u(1) − ŵ

]
· n̂(1)+

2∑
m=1

[
q(m)−σ(m) ·u(m)

]
· n̂(m) =

∑
k∈Ω(Σ)

Wkek ˙̂sk + emol,∗ ˙̂s∗− ˙̂Q at the interface Σ.

(3.40)
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3.4.2. Enthalpy

In each phase P(m), the enthalpy is defined as

h(m) = e
(m)
t − 1

2
u(m) · u(m) +

P (m)

ρ(m)
. (3.41)

From the local equations of the total energy (3.34), we can demonstrate that the enthalpies
(
h(m)

)
m∈{1,2}

respectively verifie the local equations [45]:

∂
(
ρ(m)h(m)

)
∂t

+∇ ·
(
ρ(m)h(m)u(m)

)
=

dP (m)

dt
−∇ · q(m) + τ (m) : e(m) + Q̇(m) in the phase P(m). (3.42)

where for m ∈ {1, 2}

• τ (m) is the viscous part of the stress tensor σ(m) in the phase P(m) (3.27):

τ = σ(m) + P (m)I = µ(m)

(
∇u(m) +∇⊤u(m) − 2

3

(
∇ · u(m)

)
I

)
+ κ(m)

(
∇ · u(m)

)
I. (3.43)

• e(m) is the rate-of-strain tensor in the phase P(m):

e(m) =
1

2

(
∇u(m) +∇⊤u(m)

)
. (3.44)

The local instantaneous jump equation for total energy (3.40) can be re-written to make the enthalpies(
h(m)

)
m∈{1,2} appear:

[
ρ(1)

(
h(1) +

1

2
u(1) · u(1) − P (1)

ρ(1)

)(
u(1) − ŵ

)]
·n̂(1)+

2∑
m=1

[
q(m)−σ(m)·u(m)

]
·n̂(m) =

∑
k∈Ω(Σ)

Wkek ˙̂sk+emol,∗ ˙̂s∗− ˙̂Q at Σ.

(3.45)
In Eq. (3.45), the term −P (1)u(1) · n̂(1) cancels out with the pressure contribution of the stress tensor, and
using the relation Eq. (3.19), we have:

[
ρ(1)

(
h(1) +

1

2
u(1) · u(1)

)(
u(1) − ŵ

)]
· n̂(1) +

2∑
m=1

[
q(m) − τ (m) · u(m) + P (m)ŵ

]
· n̂(m)

=
∑

k∈Ω(Σ)

Wkek ˙̂sk + emol,∗ ˙̂s∗ − ˙̂Q at Σ

. (3.46)

By using Eq. (3.14) the following equation can be derived:

ρ(1)h(1)
(
u(1) − ŵ

)
· n̂(1) + ρ(1)

∑
k∈Ω(1)

hkY
(1)
k V

(1)
k · n̂(1) = −

∑
k∈Ω(1)

hkWk
˙̂sk at Σ (3.47)

so that thanks to the definition of the total heat flux (3.33), we can rewrite (3.46) as:

[
ρ(1)

(
1

2
u(1) · u(1)

)(
u(1) − ŵ

)]
· n̂(1) +

2∑
m=1

[
P (m)ŵ − τ (m) · u(m) − λ(m)∇T (m)

]
· n̂(m)

=∑
k∈Ω(Σ)

ekWk
˙̂sk + emol,∗ ˙̂s∗ +

∑
k∈Ω(1)

hkWk
˙̂sk − ˙̂Q at Σ.

(3.48)
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Eq. (3.48) is consistent with the boundary condition for a motionless interface (u(2)
∣∣
Σ
= ŵ = 0) derived in

[9] from a balance of non-chemical energy at the gas-solid interface, as long as the internal energy of surface
species is identified with their enthalpy:

∀k ∈ Ω(Σ), ek = hk & emol,∗ = hmol,∗ (3.49)

Eq. (3.49) is explicitly assumed in Cantera, see the Doxygen documentation [1]. Indeed, if the following
additional approximations are made:

[
τ (1) · u(1)

]
· n̂(1) ≃ 0

1

2

(
u(1) · u(1)

)
[u(1) − ŵ] · n̂(1) ≃ 0

(3.50)

then Eq. (3.48) is consistent with the flux-matching condition at a motionless gas-solid interface introduced
in [14, 13, 34]3and used in Cantera.

3.4.3. Temperature

In the gas phase P(1), the local equation for enthalpy (3.41) can be recast as an equation for temperature
[45]:

ρ(1)C(1)
p

dT (1)

dt
=


(ω̇′

T )
(1)

+
dP (1)

dt
−

ρ(1)
∑

k∈Ω(1)

CpkY
(1)
k V

(1)
k

 ·∇T (1)

+∇ ·
(
λ(1)∇T (1)

)
+ τ (1) : e(1) + Q̇(1)

(3.51)

In the solid phase P(2), modeled as a highly viscous fluid with zero thermal expansion coefficient, the local
equation for enthalpy (3.41) becomes [8]:

ρ(2)C(2)
p

dT (2)

dt
= ∇ ·

(
λ(2)∇T (2)

)
+ τ (2) : e(2). (3.52)

In the previous equations, for m ∈ {1, 2}, C(m)
p is the mass heat capacity at constant pressure in the phase

P(m), Cpk is the mass heat capacity at constant pressure of species k, e(m) is the rate-of-strain tensor in the
phase P(m), and (ω̇′

T )
(m) is the heat release in the phase P(m) due to homogeneous reactions:

(ω̇′
T )

(1)
= −

∑
k∈Ω(1)

hkω̇
(1)
k

(ω̇′
T )

(2)
= 0

(3.53)

Moreover, we introduce the thermal expansion coefficient β(m) in the phase m asβ(1) =
1

T (1)
in the gas phase

β(2) = 0 in the solid phase.
(3.54)

Single-phase equations (3.51) and (3.52) can then be written in an unified way:

ρ(m)C(m)
p

dT (m)

dt
=


(ω̇′

T )
(m)

+ β(m)T (m) dP
(m)

dt
−

ρ(m)
∑

k∈Ω(1)

CpkY
(m)
k V

(m)
k

 ·∇T (m)

+∇ ·
(
λ(m)∇T (m)

)
+ τ (m) : e(m) + Q̇(m)

(3.55)

because of Eqs. (2.12), (3.54), (3.54), and the additional relation that applies in the solid phase P(2):

Q̇(2) = 0 (3.56)

3In these references, the vacant surface sites are treated as a surface species, so that the term emol,∗ ˙̂s∗ is included in the
sum over the surface species.
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3.5. Constitutive relations
This work deals with the theoretical formalism used to describe gas-particle reactive flows in the presence
of surface reaction, in the frame of a one-fluid approach. Its derivation is independent of the constitutive
relations used to close the unclosed terms appearing in the system of equations. This section aims to provide
references about those constitutive relations commonly used in the frame of the DNS combustion.

The solid phase requires to specify its thermal conductivity λ(2), heat capacity C
(2)
p density ρ(2), which

are known for a variety of materials and temperature range.
For the reacting gas phase, modelling aspects and their availability/suitability are extensively discussed

in [45, 23, 34]. The models concern:

• the chemical kinetic scheme: what are the involved gas species, the chemical reactions that occur
between them, and the rate of these reactions. Its knowledge enables to compute the gas-species mass
rates ω̇

(1)
k ;

• thermodynamic quantities: how to compute gas-species heat capacities Cpk and enthalpies hk;

• transport phenomena: how to compute the local viscosity µ(1), the thermal conductivity λ(1) and
the diffusion velocities of gas species V

(1)
k with respect to the local thermodynamical state of the gas

mixture.

The numerical evaluation of these models requires the knowledge of some tabulated data, that are available
for a large number of fuels and operating conditions.

Closures related to the gas-solid interface phenomena are the most uncertain part of the modelling,
as surface chemistry is currently less known than gas-phase chemistry. Along a value for the density of
surface sites Γ̂, a chemical kinetic scheme and thermodynamic properties should be specified at the reacting
surface. General relations for surface kinetics and thermodynamics are described in [13, 34]. Their numerical
evaluation requires the knowledge of some tabulated data. A selection of such available data is provided in
the fourth chapter of [20].

For both gas-phase and surface modelling, the open-source software Cantera [25] provides a convenient
solution to exchange the necessary tabulated data under a standard format (based on YAML), and to
numerically evaluate the corresponding models.

4. Single-field representation
In this section, the two-field description previously derived in Section 3 is recast as a single-field representa-
tion, following the approach of Kataoka [33].

4.1. General approach
Let us derive the single-field representation in a generic way for a conservative quantity. The single-phase
local conservation equations (3.7) can be multiplied by the phase function χ(m) and summed over m to
obtain:

2∑
m=1

χ(m)

(
∂ϕ(m)

∂t
+∇ ·

(
ϕ(m)u(m)

))
= −

2∑
m=1

χ(m)∇ · J(m) +

2∑
m=1

χ(m)Θ(m). (4.1)

Using the expression of the partial derivatives of the characteristic phase functions (i.e. Eqs. (2.5)), the
following generic relations can be demonstratedχ(m) ∂ϕ

(m)

∂t
=

∂
(
χ(m)ϕ(m)

)
∂t

− δΣϕ
(m)ŵ · n̂(m)

χ(m)∇ ·
(
u(m)ϕ(m)

)
= ∇ ·

(
χ(m)ϕ(m)u(m)

)
+ δΣϕ

(m)u(m) · n̂(m),

(4.2)
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which lead to write

χ(m)

(
∂ϕ(m)

∂t
+∇ ·

(
u(m)ϕ(m)

))
=

∂
(
χ(m)ϕ(m)

)
∂t

+∇·
(
χ(m)ϕ(m)u(m)

)
+δΣϕ

(m)
(
u(m) − ŵ

)
· n̂(m). (4.3)

Similar algebra provides:

χ(m)∇ · J(m) = ∇ ·
(
χ(m)J(m)

)
+ δΣJ

(m) · n̂(m). (4.4)

Moreover, a direct consequence of Eq. (2.8) is that

2∑
m=1

χ(m)ϕ(m)u(m) = ϕu. (4.5)

Applying Eqs. (4.3), (4.4) and (2.8) to Eq. (4.1), we obtain

∂ϕ

∂t
+∇ · (ϕu) = −∇ · J+Θ− δΣ

(
2∑

m=1

[
ϕ(m)

(
u(m) − ŵ

)
+ J(m)

]
· n̂(m)

)
. (4.6)

Finally, by inserting the general jump equation (3.8) in Eq. (4.6) with the assumption of a rigid interface,
the general form of the single-fluid representation for a conservative quantity is obtained:

∂ϕ

∂t
+∇ · (ϕu) = −∇ · J+Θ− δΣ

(
dϕ̂

dt
+∇Σ · Ĵ− Θ̂

)
. (4.7)

As demonstrated by Kataoka [33], we have the strict equivalence:

Eq. (4.7) ⇐⇒

{
Eq. (3.7) for m ∈ {1, 2}
Eq. (3.8).

(4.8)

4.2. Species and mass
Let k ∈ J1,KK. We apply Eq. (4.7) in the context of the species balance established in Sec. 3.2 to obtain

∀k ∈ J1,KK,
∂

∂t
(ρYk) +∇ · (ρYk (u+Vk)) = ω̇k − δΣ

(
dρ̂k
dt

−Wk
˙̂sk.

)
(4.9)

Let us specify the form of Eq. (4.9) in the special cases of k corresponding to either a gas species, a solid
species or a surface species.

4.2.1. Gas species

Let us take the special case of a gas species, i.e. k ∈ Ω(1). According to Eq. (2.12), Eq. (4.9) simplifies into:

∀k ∈ Ω(1),
∂

∂t
(ρYk) +∇ · (ρYk (u+Vk)) = ω̇k + δΣWk

˙̂sk. (4.10)

If Eq. (4.10) is summed over the gas species k ∈ Ω(1) and by using Eq. (2.12) and Eq. (2.11), we obtain the
single-field representation for the gas mass:

∂

∂t

(
χ(1)ρ

)
+∇ ·

(
χ(1)ρu

)
= δΣ

∑
k∈Ω(1)

Wk
˙̂sk. (4.11)
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4.2.2. Solid species

Let us take the special case of a solid species, i.e. k = ks. According to Eq. (2.14) and Eq. (2.13), Eq. (4.9)
simplifies into:

∂

∂t

(
χ(2)ρ

)
+∇ ·

(
χ(2)ρu

)
= 0. (4.12)

Since the solid density ρ(2) is actually a constant, Eq. (4.12) simplifies into

∂

∂t

(
χ(2)

)
+∇ ·

(
χ(2)u

)
= 0. (4.13)

4.2.3. Mass

If Eq. (4.11) and Eq. (4.12) are added together, the single-field representation for the two-phase density is
obtained:

∂ρ

∂t
+∇ · (ρu) = δΣ

 ∑
k∈Ω(1)

Wk
˙̂sk

 (4.14)

Thanks to Eq. (3.22), the singular term in (4.14) can be equivalently written as

δΣ

 ∑
k∈Ω(1)

Wk
˙̂sk

 = −δΣ

(
dρ̂

dt

)
= −δΣ

 ∑
k∈Ω(Σ)

Wk
˙̂sk

 . (4.15)

4.3. Momentum
The general approach developed in Sec. 4.1 can be applied to the conservation of a vector quantity. The
single-field representation associated with the generic single-phase equations (3.25) and the generic jump
equation (3.26) then writes:

∂ϕ

∂t
+∇ · (ϕu) = ∇ · J +Θ− δΣ

(
dϕ̂

dt
+∇ΣĴ − (∇Σ · n̂) Ĵ n̂− Θ̂

)
. (4.16)

Applying Eq. (4.16) in the context of the balance of momentum established in Section 3.3, the local single-
phase equations (3.30) for m ∈ {1, 2} and the jump equation (3.32) are equivalent to the single field repre-
sentation:

∂

∂t
(ρu) +∇ · (ρuu) = ∇ · σ + ρg (4.17)

4.4. Energy
In the following, the single-field representations for total energy, enthalpy, and temperature are successively
derived.

4.4.1. Total energy

Using Eq. (4.7) in the context of the energy balance established in Sec. 3.4, the local single-phase equa-
tions (3.34) for m ∈ {1, 2} and the jump equation (3.40) are shown to be equivalent to the single-field
representation:

∂

∂t
(ρet) +∇ · (ρetu) = −∇ · q+ Q̇+∇ ·

[
σ · u

]
+ ρg · u+ δΣ

−
∑

k∈Ω(Σ)

Wkek ˙̂sk − emol,∗ ˙̂s∗ +
˙̂Q

 . (4.18)
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4.4.2. Enthalpy

Starting from the single-phase local equations for enthalpy (3.42), we can write

2∑
m=1

χ(m)

[
∂
(
ρ(m)h(m)

)
∂t

+∇ ·
(
ρ(m)h(m)u(m)

)]
=

2∑
m=1

χ(m)

[
dP (m)

dt
−∇ · q(m) + τ (m) : e(m) + Q̇(m)

]
.

(4.19)
The left-hand side (LHS) can be rewritten using Eq. (4.3). In the right-hand side (RHS), the pressure term
can be treated with Eq. (B.2), the flux term with Eq. (4.4), the viscous dissipation term with Eqs (2.8) and
(2.6), and the radiative source term with Eq. (2.6). We then obtain:

∂ (ρh)

∂t
+∇ · (ρhu) =



∂P

∂t
− δΣŵ ·

2∑
m=1

P (m)n̂(m) + u ·
(
∇P + δΣ

2∑
m=1

P (m)n̂(m)

)
−∇ · q+ τ : e+ Q̇

− δΣ

(
ρ(1)h(1)

(
u(1) − ŵ

)
· n(1) +

2∑
m=1

q(m) · n(m)

)
.

(4.20)

Inserting the jump equation (3.46) into Eq. (4.20), we obtain the single field representation for enthalpy:

∂ (ρh)

∂t
+∇ · (ρhu) =



∂P

∂t
+ u ·

(
∇P + δΣ

2∑
m=1

P (m)n(m)

)
−∇ · q+ τ : e+ Q̇

δΣ


[
ρ(1)

(
1

2
u(1) · u(1)

)(
u(1) − ŵ

)]
· n(1)

−
2∑

m=1

[
τ (m) · u(m)

]
· n(m) −

∑
k∈Ω(Σ)

Wkek ˙̂sk − emol,∗ ˙̂s∗ +
˙̂Q

 .

(4.21)

4.4.3. Temperature

To obtain the single-field representation for the temperature, we apply the procedure described in 4.1 to the
local single-phase equations (3.55). The first step writes:

2∑
m=1

ρ(m)C(m)
p χ(m) dT

(m)

dt
=

2∑
m=1

χ(m)


(ω̇′

T )
(m)

+ β(m)T (m) dP
(m)

dt
−

 ∑
k∈Ω(1)

ρ(m)CpkY
(m)
k V

(m)
k

 ·∇T (m)

+∇ ·
(
λ(m)∇T (m)

)
+ τ (m) : e(m) + Q̇(m).

(4.22)
The LHS of Eq. (4.22) can be rewritten thanks to Eqs. (2.8) and (B.1), and the continuity of temperature
at the interface Σ:

2∑
m=1

χ(m)ρ(m)C(m)
p

dT (m)

dt
= ρCp

(
∂T

∂t
+ u ·∇T

)
. (4.23)

In the RHS of Eq. (4.22), the terms needing a special treatment are
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• the sum on gas species, that can be expressed as

2∑
m=1

χ(m)
∑

k∈Ω(1)

ρ(m)CpkY
(m)
k V

(m)
k ·∇T (m) =

∑
k∈Ω(1)

ρCpkYkVk ·

(
∇T + δΣ

[
2∑

m=1

T (m)n̂(m)

])
=
∑

k∈Ω(1)

ρCpkYkVk ·∇T. (4.24)

• the Fourier term

2∑
m=1

χ(m)∇ ·
(
λ(m)∇T (m)

)
= ∇ ·

(
2∑

m=1

χ(m)λ(m)∇T (m)

)
−

2∑
m=1

λ(m)∇T (m) ·∇χ(m)

= ∇ ·
(
λ

(
∇T + δΣ

2∑
m=1

T (m)n̂(m)

))
+ δΣ

2∑
m=1

λ(m)∇T (m) · n̂(m)

=⇒
2∑

m=1

χ(m)∇ ·
(
λ(m)∇T (m)

)
= ∇ · (λ∇T ) + δΣ

2∑
m=1

λ(m)∇T (m) · n̂(m) (4.25)

where ∇T (m) at the interface is given by Eq. (2.7).

• the pressure term: because of Eq. (3.54), we have

2∑
m=1

χ(m)β(m)T (m) = χ(1) (4.26)

so that
2∑

m=1

χ(m)β(m)T (m) dP
(m)

dt
= χ(1) dP

(1)

dt
. (4.27)

Inserting Eqs. (4.23), (4.24), (4.25) and (4.27) in Eq. (4.22) gives

ρCp

(
∂T

∂t
+ u ·∇T

)
=



ω̇′
T +∇ · (λ∇T ) + τ : e+ Q̇

+
∑

k∈Ω(1)

ρCpkYkVk ·∇T

+ χ(1) dP
(1)

dt

+ δΣ

2∑
m=1

λ(m)∇T (m) · n̂(m).

(4.28)

The interfacial term in Eq. (4.28) can be substituted using the jump relation for enthalpy (3.48):

2∑
m=1

λ(m)∇T (m) · n̂(m) =



˙̂Q−

 ∑
k∈Ω(Σ)

ekWk
˙̂sk + emol,∗ ˙̂s∗ +

∑
k∈Ω(1)

hkWk
˙̂sk


+

[
ρ(1)

(
1

2
u(1) · u(1)

)(
u(1) − ŵ

)]
· n̂(1)

+

2∑
m=1

[
− τ (m) · u(m) + P (m)ŵ

]
· n̂(m)

(4.29)

Finally, the RHS of Eq. (4.29) is noted L̂T , so that the single-field representation for the temperature writes
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ρCp

(
∂T

∂t
+ u ·∇T

)
=



ω̇′
T +∇ · (λ∇T ) + τ : e+ Q̇

+
∑

k∈Ω(1)

ρCpkYkVk ·∇T

+ χ(1) dP
(1)

dt

+ δΣL̂T

. (4.30)

with the surface source term L̂T given by

L̂T =



˙̂Q−

 ∑
k∈Ω(Σ)

ekWk
˙̂sk + emol,∗ ˙̂s∗ +

∑
k∈Ω(1)

hkWk
˙̂sk


+

[
ρ(1)

(
1

2
u(1) · u(1)

)(
u(1) − ŵ

)]
· n̂(1)

+
2∑

m=1

[
− τ (m) · u(m) + P (m)ŵ

]
· n̂(m)

(4.31)

5. Conclusion
In this work, a single-field representation has been derived, describing a reactive gas-particle flow in the
presence of both homogeneous and surface reactions. It is a set of compact equations in the meaning of
distributions; each one is associated to the conservation of a physical quantity, and is rigorously equivalent
to the standard two-field description consisting in two single-phase equations and a jump equation. After
introducing the theoretical framework, assumptions and notations, the two-field description of the problem
is first derived using the integral balance method. Then, this description of the problem is embedded into a
single-field representation, thus generalizing the work of Kataoka [33] to reactive gas-particle flows involving
homogeneous and surface reactions. Singular surface terms appear due to the presence of surface reactions
and discontinuities at the interface. In particular, the description of surface reactions is consistent with the
simplified model implemented in the Surface Chemkin [13] and Cantera software [25].

This single-field representation can be used as a starting point to derive a one-fluid formulation through
spatial averaging. Future work will be devoted to the derivation of such a model, and its numerical resolution.
Another prospect of this study would be to extend it by relaxing the assumption that the solid phase is non-
porous, by subsequently incorporating an homogenized description of the solid porous particles through
effective properties. A larger class of physical systems could therefore be described.
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Appendix A. Derivation in the sense of distributions, and surface
Dirac distribution

To locate the different domains, we can define a smooth function f , that verifies:

∀x ∈ R3, ∀t ∈ R+,


f(x, t) > 0 ifx ∈ P(1) at instant t

f(x, t) < 0 ifx ∈ P(2) at instant t
f(x, t) = 0 ifx ∈ Σ at instant t.

(A.1)

The characteristic phase functions (2.2) can then be related to the function f defined in Eq. (A.1):

∀x ∈ R3, ∀t ∈ R+,

{
χ(1)(x, t) = H (f(x, t))

χ(2)(x, t) = 1−H (f(x, t))
(A.2)

where H is the Heaviside function:

∀x ∈ R, H(x) =

{
0 if x ≤ 0

1 if x > 0.
(A.3)

The outwards normal to phase m can be related to the function f defined in Eq. (A.1) by:

n̂(m) = (−1)m
∇f

∥∇f∥
. (A.4)

The velocity of the interface ŵ can also be related to the function f (A.1) with the well-known relation

∂f

∂t
+ ŵ ·∇f = 0. (A.5)

In the sense of distributions, the derivative of the Heaviside function H is:

∀x ∈ R3,
d

dx
H(x) = δ(x) (A.6)

where δ is the 1D Dirac distribution that is defined by its action on any continuous test function g : R → R∫ +∞

−∞
δ(x)g(x)dx = g(0). (A.7)

The gradient of the characteristic phase functions
(
χ(m)

)
m∈{1,2} is then obtained using Eq. (A.2) and

Eq. (A.6): {
∇χ(1)(x, t) = ∇f(x, t).δ (f(x, t))

∇χ(2)(x, t) = −∇f(x, t).δ (f(x, t)) .
(A.8)

These gradients can be related to the normal vectors to the interface Σ,
(
n̂(m)

)
m∈{1,2} and the surface Dirac

distribution δΣ with the following theorem:

Theorem 1 (Gradient in the sense of distributions [3]). Let ϕ ∈ C1
(
R3\Σ

)
, Σ being an eventual surface of

discontinuity of ϕ. The following relation is true in the sense of distributions

∇ϕ =

2∑
m=1

χ(m)∇ϕ(m) +
(
ϕ(2) − ϕ(1)

)
δΣn̂

(1)

=

2∑
m=1

χ(m)∇ϕ(m) +
(
ϕ(1) − ϕ(2)

)
δΣn̂

(2)

where ϕ(1) and ϕ(2) are computed at the interface Σ with Eq. (2.7).
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The application of Theorem 1 to ϕ = χ(m) then provides:

∇χ(m) = −n̂(m)δΣ. (A.9)

Thus, the notion of surface Dirac distribution coincides with the interfacial area concentration ∥∇f∥δ(f)
introduced by Kataoka [32]. Indeed,

∇χ(m) = (−1)m+1(∇f)δ(f) (Eq. (A.8))

=⇒ −n̂(m)δΣ = (−1)m+1(∇f)δ(f) (Eq. (A.9))

=⇒ ∇f

∥∇f∥
δΣ = (∇f)δ(f) (Eq. (A.4))

(A.10)

so that
δΣ = ∥∇f∥δ(f). (A.11)

The partial derivative of the
(
χ(m)

)
m∈{1,2} with respect to time can then be expressed as:

∂χ(m)

∂t
= (−1)m+1 ∂

∂t

(
H(f)

)
(Eq. (A.2))

= (−1)m+1 ∂f

∂t
δ(f) (Eq. (A.6) + chain derivative)

= (−1)mŵ ·∇fδ(f) (Eq. (A.5))

= ŵ · n̂(m)∥∇f∥δ(f) (Eq. (A.4))
(A.12)

so that by using (A.11),
∂χ(m)

∂t
= ŵ · n̂(m)δΣ. (A.13)

Appendix B. A useful relation
Using the expression for the partial derivatives of the characteristic phase functions, Eq. (2.5) and Eq. (2.8),
we can demonstrate for any single-phase fields

(
ϕ(m)

)
m∈{1,2}:

χ(m)

(
∂ϕ(m)

∂t
+ u(m) ·∇ϕ(m)

)
=

∂
(
χ(m)ϕ(m)

)
∂t

−δΣϕ
(m)ŵ ·n̂(m)+χ(m)u(m) ·

(
∇
(
χ(m)ϕ(m)

)
+δΣϕ

(m)n̂(m)

)
(B.1)

As a consequence, we have:

2∑
m=1

χ(m) dϕ
(m)

dt
=

∂ϕ

∂t
− δΣŵ ·

2∑
m=1

ϕ(m)n̂(m) + u ·
(
∇ϕ+ δΣ

2∑
m=1

ϕ(m)n̂(m)

)
. (B.2)

Appendix C. Transformation of volume and surface integrals

Appendix C.1. Reynolds transport theorem
Theorem 2 (Reynolds transport theorem). Let ϕ(m) ∈ C1

(
R3 × R

)
, and V (m)(t) ⊂ R3 a volume delimited

by a closed smooth surface ∂(V (m))(t). The velocity of the surface ∂(V (m))(t) is noted w(m), and the normal
vector to ∂(V (m)) oriented outwards from V (m) is noted n(m). The following relation is true:

d

dt

∫
V (m)

ϕ(m)d3V =

∫
V (m)

∂ϕ(m)

∂t
d3V +

∫
∂(V (m))

ϕ(m)w(m) · n(m)d2S
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Appendix C.2. Integral theorems for surfaces
In many occasions, it is necessary to interchange the differential and integral operators in expressions of the
type:

d

dt

∫
S
ϕ̂d2S. (C.1)

This operation is enabled by the following theorem:

Theorem 3 (Transport theorem for surfaces [4, 49]). Let S be a portion of the interface Σ. Let ϕ̂ a scalar
field defined over the interface Σ. Under conditions of sufficient regularity, the following relation holds

d

dt

(∫
S
ϕ̂d2S

)
=

∫
S

(
dϕ̂

dt
+ ϕ̂∇Σ · ŵ

)
d2S (C.2)

where dϕ̂
dt is the derivative along the interface motion of the surface field ϕ̂ and ∇Σ ·ŵ is the surface divergence

of the interface velocity ŵ.

It will also be useful to transform integrals on a closed contour into surface integrals. This is enabled by
the next theorem.

Theorem 4 (Gauss theorems for surfaces [4, 49]). Let S be a surface delimited by a closed contour C. Let

• Ĵ a scalar field defined over the surface S.

• Ĵ a vector field defined over the surface S and tangent to S.

Under conditions of sufficient regularity, we have the relations∮
C
ĴN̂dl =

∫
S

[
∇ΣĴ − (∇Σ · n̂) Ĵ n̂

]
d2S (C.3)

∮
C
Ĵ · N̂dl =

∫
S
∇Σ · Ĵd2S (C.4)

where

• ∇ΣĴ is the surface gradient of the scalar field Ĵ .

• ∇Σ· is the surface divergence operator.

• n̂ is the normal vector to S (any orientation).

• N̂ is the vector normal to C, tangent to S and directed outwards S.
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