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The Neumann boundary condition

for the two-dimensional Lax-Wendroff scheme. II

Antoine Benoit∗ & Jean-François Coulombel†

May 30, 2024

Abstract

We study the stability of a two-dimensional Lax-Wendroff scheme in a quarter-plane. Following
our previous work [BC23], we aim here at adapting the energy method in order to study second order
extrapolation boundary conditions. We first show on the one-dimensional problem why modifying the
energy is a necessity in order to obtain stability estimates. We then study the two-dimensional case
and propose a modified energy as well as second order extrapolation boundary and corner conditions in
order to maintain second order accuracy and stability of the whole scheme, including near the corner.

AMS classification: 65M12, 65M06, 65M20.
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Notation. For d a positive integer and J ⊂ Zd, we let ℓ2(J ;R) denote the Hilbert space of real
valued, square integrable sequences indexed by J and equipped with the norm:

∀u ∈ ℓ2(J ;R) , ∥u ∥2ℓ2(J ) :=
∑
j∈J

u2j .

The corresponding scalar product is denoted ⟨ ; ⟩ℓ2(J ). We mainly focus below on the case d = 2 but we
shall also encounter the case d = 1.
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1 Introduction

This article is a follow-up of our previous work [BC23] where we have studied the so-called Lax-Wendroff
scheme with a stabilizer in two space dimensions. This scheme was proposed in [LW64] to approximate
solutions to symmetric hyperbolic systems. Previous stability studies for this scheme were based on
Fourier analysis and therefore dealt with problems that were defined on the whole space or that considered
periodic boundary conditions. In [BC23], we have shown that the energy method was a successful technique
for dealing with ℓ2-stability of the Lax-Wendroff scheme in two space dimensions. The energy method
bypasses Fourier analysis and is therefore interesting if one wishes to deal with problems with boundary
conditions. In [BC23], we were able to recover the optimal stability criterion in the whole space (the so-
called Courant-Friedrichs-Lewy condition) and also to study first order extrapolation boundary conditions
for an outflow in the half-plane and in the quarter-plane. For the latter case, the analysis requires
specifying an extrapolation condition at the corner which, up to our knowledge, was new.

Since the Lax-Wendroff scheme gives, at least formally, second order approximations of solutions to
symmetric hyperbolic systems, first order extrapolation at the boundary might deteriorate the overall
accuracy of the scheme. We thus aim here at studying second order extrapolation boundary conditions in
the outflow case, that is when the transport operator does not come with any boundary condition in the
continuous setting. As evidenced in the one-dimensional case (see Section 2 below), the classical energy
method does not predict stability for second order extrapolation, at least not in a straightforward way.
Modifying the energy near the boundary is necessary to obtain stability estimates by energy arguments,
and this is probably one of the very first examples of discrete summation by parts operators (see, e.g.,
[Str94, Str98, Mat03] and subsequent works). Let us note that stability estimates for any order of
extrapolation at the boundary could also be derived through the more complete, though elaborate, GKS
analysis, see e.g. [Gol77, GT81], but we wish to bypass this theory in order, for instance, to cover
problems in a quarter-plane for which an analogous theory is still lacking. Our goal here is therefore
to extend the procedure of devising a suitable energy functional for the Lax-Wendroff scheme to second
order extrapolation boundary conditions in two space dimensions. This is, to some extent, a prototype
example for a “high order” boundary treatment in several space dimensions with a corner in the space
domain, and we shall already see that the algebra becomes rather involved.

The plan of the article is as follows. In Section 2, we introduce and quickly analyze a one-dimensional
problem in order to motivate the necessity of modifying the energy functional to deal with second order
extrapolation. Section 3 is the core of this article. We introduce the two-dimensional Lax-Wendroff
scheme and the associated extrapolation conditions in a quarter-plane. We then state and prove our main
result, namely Theorem 3.1 below. The general methodology is the same as in [BC23] so we shall feel
free at some places to shorten the details and refer to this companion article. At last Section 4 includes
some numerical simulations and a discussion enlightening the theoretical result and more specifically the
assumptions made to obtain such a result.

2 The one-dimensional problem

This section being mostly a presentation of a motivating example, we feel free not to make the functional
framework precise and keep the calculations at a rather formal level. We consider the outgoing transport
equation in one space dimension: {

∂tu + a ∂xu = 0 , t ≥ 0 , x ≥ 0 ,

u|t=0
= u0 ,

(2.1)
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where a is a fixed negative number, which explains why we do not consider any boundary condition on
{x = 0}. The unknown function u in (2.1) is assumed to be real valued. We consider a space step ∆x > 0
and a time step ∆t > 0; we then denote λ := ∆t/∆x the so-called Courant-Friedrichs-Lewy (CFL in what
follows) number. We then approximate the solution to (2.1) by the Lax-Wendroff scheme:

un+1
j = unj − λ a

2
(unj+1 − unj−1) +

(λ a)2

2
(unj+1 − 2unj + unj−1) , n ∈ N , j ∈ N , (2.2)

with the initial condition:

∀ j ∈ N , u0j :=
1

∆x

∫ (j+1)∆x

j∆x
u0(y) dy .

In (2.2), unj is meant to be an approximation of the solution u to (2.1) in the cell [n∆t, (n + 1)∆t) ×
[j∆x, (j + 1)∆x) for any (n, j) ∈ N × N. The iteration (2.2) requires the knowledge of un−1 in order to
determine un+1

0 . For n ∈ N, the cell [n∆t , (n+ 1)∆t)× (−∆x , 0) that corresponds to the index j = −1
is referred to below as a ghost cell since it lies outside of the physical domain R+

x . We consider here a
second order extrapolation procedure in order to maintain, at least formally, second order accuracy of the
whole numerical procedure up to the boundary:

un−1 = 2un0 − un1 , n ∈ N . (2.3)

The scheme (2.2), (2.3) then determines the sequence (unj )j∈N inductively with respect to n.
Multiplying the interior equation of (2.1) by u and integrating with respect to x over R+, we obtain

the energy inequality:
d

dt

∫
R+

u(t, x)2 dx = a u(t, 0)2 ≤ 0 . (2.4)

We aim here at understanding whether the numerical scheme (2.2), (2.3) satisfies an analogous energy
balance law at the discrete level. The calculations below can already be found in [CL20b] but we reproduce
them briefly for the sake of completeness.

We start from the following decomposition that is a direct consequence1 of (2.2):

∀ j ∈ N , (un+1
j )2 − (unj )

2 = − (λ a)2 (1− (λ a)2)

4
(unj+1 − 2unj + unj−1)

2

+ λ a (unj−1 u
n
j − unj u

n
j+1) +

(λ a)2

2

(
(unj−1)

2 − 2 (unj )
2 + (unj+1)

2
)

+
(λ a)3

2

(
(unj − unj−1)

2 − (unj+1 − unj )
2
)
.

The first term on the right-hand side corresponds to the dissipation of the Lax-Wendroff scheme while
the second and third lines are telescopic with respect to j (they would not contribute if we would sum
over Z). We now sum with respect to j ∈ N and then use the boundary condition (2.3) to obtain:

∀n ∈ N ,
∑
j∈N

(un+1
j )2 −

∑
j∈N

(unj )
2 = − (λ a)2 (1− (λ a)2)

4

∑
j∈N

(unj+1 − 2unj + unj−1)
2 (2.5)

+
λ a− 1

2
(un0 )

2 +
1 + λ a

2

(
un0 − λ a (un1 − un0 )

)2
.

1Such decompositions that incorporate dissipation and telescopic terms are derived and used in a systematic way in
[CL20a] to which we refer for more details.
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We assume that the space and time steps are chosen in such a way that the stability condition λ |a| ∈ (0, 1)
holds and we recall that a is negative. In that case, the right-hand side in (2.5) first incorporates a non-
positive term that corresponds to the interior dissipation of the Lax-Wendroff scheme. It also incorporates,
in the second line of (2.5), a boundary term that is a quadratic form with respect to (un0 , u

n
1 ). This

boundary term mimics the right-hand side of (2.4) since the discrete normal derivative un1 − un0 is meant
to be small for smooth solutions and un0 is meant to be close to u(n∆t, 0).

Unfortunately, the above quadratic form on the right-hand side of (2.5) is not negative definite since
λ a − 1 is negative but 1 + λ a is positive. The energy argument thus does not predict stability, at least
not in this straightforward way. However, it can easily be modified to obtain a positive conclusion to the
stability problem of the scheme (2.2), (2.3). The idea, following [Str94] and many subsequent works, is to
modify the energy functional close to the numerical boundary. Namely, a direct adaptation of the above
energy argument gives the identity:

1

2
(un+1

0 )2 +
∑
j≥1

(un+1
j )2 − 1

2
(un0 )

2 −
∑
j≥1

(unj )
2 = − (λ a)2 (1− (λ a)2)

4

∑
j≥1

(unj+1 − 2unj + unj−1)
2

+
λ a

2
(un0 )

2 +
λ a

2

(
un0 − λ a (un1 − un0 )

)2
,

where the interior dissipation term is unchanged but the boundary term is now a negative definite
quadratic form of (un0 , u

n
1 ) since a is negative and λ is a positive number. In particular, under the

CFL condition λ |a| ∈ (0, 1), the energy:

1

2
(un0 )

2 +
∑
j≥1

(unj )
2

is non-increasing with respect to the time index n for any solution to (2.2), (2.3) with square integrable
initial condition. The note [CL20b] explains where the 1/2 coefficient comes from (other coefficients close
to 1/2 could be chosen).

We aim below at extending such a modified energy technique to the two-dimensional case with second
order extrapolation conditions, which would be an extension of (2.3). In [BC23], we have considered first
the half-plane geometry and then the quarter-plane in order to present the associated algebra with slowly
increasing difficulty. Since our main motivation is to investigate boundary conditions in regions with
corners, we only deal here with the quarter-plane and leave the case of the half-plane to the interested
reader.

3 The two-dimensional problem

3.1 The main result

We consider from now on the two-dimensional transport equation in the quarter-plane R+ × R+:{
∂tu + a ∂xu + b ∂yu = 0 , t ≥ 0 , (x, y) ∈ R+ × R+ ,

u|t=0
= u0 ,

(3.1)

where a, b are some given real negative numbers. The initial condition u0 in (3.1) belongs to the Lebesgue
space L2(R+ × R+;R). We consider below a finite difference approximation of (3.1) that is defined as

4



follows. Given some space steps ∆x,∆y > 0 in each spatial direction, and given a time step ∆t > 0, we
introduce the ratios λ := ∆t/∆x and µ := ∆t/∆y. In all what follows, the ratios λ and µ are assumed to
be fixed, meaning that they are given a priori of the computations and are meant to be tuned in order
to satisfy some stability requirements (the so-called Courant-Friedrichs-Lewy condition [CFL28], later
on referred to as the CFL condition). The solution u to (3.1) is then approximated on the time-space
domain [n∆t, (n + 1)∆t) × [j∆x, (j + 1)∆x) × [k∆y, (k + 1)∆y) by a real number unj,k for any n ∈ N
and (j, k) ∈ N2. The discrete initial condition u0 is defined for instance by taking the piecewise constant
projection of u0 in (3.1) on each cell, that is (see [GKO95]):

∀ (j, k) ∈ N2 , u0j,k :=
1

∆x∆y

∫ (j+1)∆x

j∆x

∫ (k+1)∆y

k∆y
u0(x, y) dx dy .

This discrete initial condition satisfies:∑
(j,k)∈N2

∆x∆y (u0j,k)
2 ≤ ∥u0 ∥2L2(R+×R+) .

It then remains to determine the unj,k’s inductively with respect to n. The Lax-Wendroff scheme with a
stabilizer reads (see [LW64]):

un+1
j,k = unj,k −

λ a

2

(
unj+1,k − unj−1,k

)
− µ b

2

(
unj,k+1 − unj,k−1

)
+

(λ a)2

2

(
unj+1,k − 2unj,k + unj−1,k

)
+

(µ b)2

2

(
unj,k+1 − 2unj,k + unj,k−1

)
+

λ aµ b

4

(
unj+1,k+1 − unj+1,k−1 − unj−1,k+1 + unj−1,k−1

)
(3.2)

− (λ a)2 + (µ b)2
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(
unj+1,k+1 − 2unj+1,k + unj+1,k−1

− 2unj,k+1 + 4unj,k − 2unj,k−1 + unj−1,k+1 − 2unj−1,k + unj−1,k−1

)
,

where (j, k) belongs to N2. We refer to [LW64, GKO95] for alternative approximations of (3.1).
Since the computation of un+1

j,k requires the knowledge of all closest neighboring cell values unj+j′,k+k′ ,
with j′, k′ ∈ {−1, 0, 1}, we need to prescribe the values of the discrete solution un in the ghost cells,
which correspond to the values un−1,ℓ and unℓ,−1 with ℓ ∈ N, and to the value un−1,−1. These ghost cells are
depicted in red and green in Figure 3.1. The interior cells are depicted in blue.

Extending the above one-dimensional analysis, we will impose second order extrapolation boundary
conditions:

∀n ∈ N , ∀ k ∈ N , un−1,k = 2un0,k − un1,k , (3.3a)

∀n ∈ N , ∀ j ∈ N , unj,−1 = 2unj,0 − unj,1 , (3.3b)

in conjunction with the numerical scheme (3.2) for (j, k) ∈ N2 (that is, for interior values). It remains
to define the corner cell value un−1,−1. Following [BC23] and trying, as in (3.3), to have a symmetric
treatment of both coordinates, we shall impose here the following procedure:

∀n ∈ N , un−1,−1 = 4un0,0 − 2un1,0 − 2un0,1 + un1,1 . (3.4)

Using (3.3), this amounts equivalently to having:

1

2

(
un1,−1 − 2un0,−1 + un−1,−1

)
+

1

2

(
un−1,1 − 2un−1,0 + un−1,−1

)
= 0 .
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x
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−∆y

∆y

k∆y

−∆x 0 ∆x j∆x
×

×

× × ×

×

×

unj,k

Figure 3.1: The spatial grid for the quarter-plane. Interior cells appear in blue, the boundary ghost cells
appear in red and the corner ghost cell appears in green. The value unj,k corresponds to the approximation
in the cell [n∆t , (n+ 1)∆t)× [j∆x, (j + 1)∆x)× [k∆y, (k + 1)∆y).

The equations (3.2), (3.3), (3.4) then define the sequence (unj,k)(j,k)∈N2 inductively with respect to n ∈ N.
Our main result in this article is a stability estimate for solutions to (3.2), (3.3), (3.4). For u ∈

ℓ2(N2;R), the standard norm is the one defined in the introduction of this article. However, it will be
useful below to rely on the following equivalent norm:

∥u ∥2 :=
∑
j,k≥1

u2j,k +
1

2

∑
k≥1

u20,k +
1

2

∑
j≥1

u2j,0 +
1

4
u20,0 , (3.5)

which is a two-dimensional analogue of the norm that we have shown to be useful in one space dimension
(see Section 2). The corresponding scalar product is denoted ⟨ ; ⟩ without referring to the space domain
since it will be the underlying norm that we shall use from now on. Our main result is the following.

Theorem 3.1. Let M > 0. Let the transport coefficients a, b be negative, and let the associated CFL
parameters λ, µ satisfy2:

λ |a| ≤ M µ |b| and µ |b| ≤ M λ |a| . (3.6)

Then there exists some constant ε > 0 that only depends on M , and there exists a numerical constant3

c > 0 such that, if λ, µ also satisfy:
(λ a)2 + (µ b)2 ≤ ε ,

2A careful reading of the proof below shows that instead of (3.6) one could assume the following bounds:

λ |a| ≤ M µ |b| and µ |b| ≤ M ′ λ |a| ,

with M ̸= M ′. We could thus obtain a non symmetric set (with respect to the first bisector) of admissible CFL parameters.
The maximal radius ε would depend on both M and M ′. We choose to expose the proof for M = M ′ for the sake of
simplicity.

3We shall see for instance that c = 1/10 is a suitable value but we have not tried to optimize the constant c (nor ε).
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| a |λ

| b |µ

ε 1√
2

| b |µ = M | a |λ

| a |λ = M | b |µ

Figure 3.2: An illustration of admissible CFL parameters. The red area corresponds to the CFL param-
eters for which Theorem 3.1 holds, the blue one to the optimal set of parameters (for which stability for
the Cauchy problem holds).

then for any u0 ∈ ℓ2(N2;R), the solution to the numerical scheme (3.2), (3.3), (3.4) satisfies the energy
estimate:

∥un+1 ∥2 − ∥un ∥2 + c (λ a)2
∑
j,k≥1

(unj−1,k − 2unj,k + unj+1,k)
2 + c (µ b)2

∑
j,k≥1

(unj,k−1 − 2unj,k + unj,k+1)
2

+ c λ |a|
∑
k≥0

(un0,k)
2 + c µ |b|

∑
j≥0

(unj,0)
2 ≤ 0 .

Figure 3.2 illustrates the set of CFL parameters for which we obtain the stability of the Lax-Wendroff
scheme with second order boundary and corner extrapolation.

We remark that compared to [BC23], where we recovered the optimal set of parameters (| a |λ)2 +
(| b |µ)2 ≤ 1

2 for the Cauchy problem and for first order extrapolation at the boundary, we now have
some restrictions on the CFL parameters. These restrictions are of two types:

• A restriction of the maximal radius of the ball (the CFL parameters should be “small enough”).

• A restriction to a neighborhood of the first bisector (the CFL parameters should be “comparable”).

These two restrictions are made in order to handle the much more involved algebra compared to [BC23].
We do not claim that such restrictions are mandatory and maybe the energy method could be further
refined in order to recover the maximal set of CFL parameters. Let us however indicate that, in our
opinion, these restrictions are a little price to pay. Indeed reducing the maximal radius is not so restrictive
and the second restriction (making the two ratios comparable) is rather natural from a practical point of
view.
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3.2 Notation

We follow the notation from [BC23] and decompose the quantity un+1
j,k in (3.2) into three pieces:

∀ (j, k) ∈ N2 , un+1
j,k = unj,k − wn

j,k + vnj,k ,

where vnj,k and wn
j,k are defined by:

vnj,k := − λ a

2

(
unj+1,k − unj−1,k

)
− µ b

2

(
unj,k+1 − unj,k−1

)
, (3.7a)

wn
j,k := − (λ a)2

2

(
unj+1,k − 2unj,k + unj−1,k

)
− (µ b)2

2

(
unj,k+1 − 2unj,k + unj,k−1

)
− λµa b

4

(
unj+1,k+1 − unj+1,k−1 − unj−1,k+1 + unj−1,k−1

)
(3.7b)

+
(λ a)2 + (µ b)2

8

(
unj+1,k+1 − 2unj+1,k + unj+1,k−1

− 2unj,k+1 + 4unj,k − 2unj,k−1 + unj−1,k+1 − 2unj−1,k + unj−1,k−1

)
.

We also use the shorthand notation α := λ a and β := µ b. Both α and β are negative real numbers.
The energy method in [BC23] relies on symmetry or skew-symmetry properties of several finite differ-

ence operators. We thus introduce the following discrete first order partial derivatives and Laplacians:

(D1,+U)j,k := Uj+1,k − Uj,k , (D1,−U)j,k := Uj,k − Uj−1,k ,

(D2,+U)j,k := Uj,k+1 − Uj,k , (D2,−U)j,k := Uj,k − Uj,k−1 ,

D1,0 :=
D1,+ +D1,−

2
, D2,0 :=

D2,+ +D2,−
2

, ∆1 := D1,+D1,− , ∆2 := D2,+D2,− .

In order to keep the notation as simple as possible, we write below D1,+uj,k rather than (D1,+u)j,k and
analogously for other operators. All above operators commute. Moreover the definitions allow us to
rewrite (3.7) as:

vn := − αD1,0 u
n − β D2,0 u

n , (3.8a)

wn := − α2

2
∆1 u

n − β2

2
∆2 u

n − αβ D1,0D2,0 u
n +

α2 + β2

8
∆1∆2 u

n . (3.8b)

Eventually, we follow the notation of [BC23] and use the discrete set of indices I := N2 for the interior
values of the numerical solution. It will be convenient below to use the notation I̊ := N∗×N∗. Eventually,
we denote J := ({−1} ∪ N)2 for the set of indices on which each sequence un is defined (including the
indices that correspond to the ghost cells). The underlying Hilbert space that corresponds to the norm
in (3.5) is the following set:

H :=
{
u ∈ ℓ2(J;R) | ∀ k ∈ N , u−1,k = 2u0,k − u1,k ,

∀ j ∈ N , uj,−1 = 2uj,0 − uj,1 ,

and u−1,−1 = 4u0,0 − 2u1,0 − 2u0,1 + u1,1

}
.

When equipped with the norm defined in (3.5), H becomes a Hilbert space, and the question we address
in this article is mainly about understanding whether the numerical scheme defined by (3.2) in I, with
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un ∈ H for any n ∈ N, yields a bounded sequence in H. Let us observe that the sequences vn and wn in
(3.8) are only defined on I and do not belong to H. Nevertheless, we sometimes consider the norm in (3.5)
and its associated scalar product as acting on elements of H or on elements of ℓ2(I;R), see for instance
Lemma 3.2 below, since the norm in (3.5) only involves those indices in I and do not involve the values
in the ghost cells. We hope that this slight abuse will not create any confusion.

3.3 Preliminary calculations

The decomposition of un+1 gives the expression:

∥un+1 ∥2 − ∥un ∥2 =2 ⟨un; vn⟩ − 2 ⟨vn;wn⟩
+ ∥ vn ∥2 − 2 ⟨un;wn⟩ + ∥wn ∥2 . (3.9)

The first two terms on the right-hand side are referred to below as the skew-symmetric terms since they
would not contribute on Z2 (see [BC23]). The three other terms on the second line of the right-hand
side are referred to below as the symmetric terms. They will provide with the interior dissipation of the
Lax-Wendroff scheme and will also give contributions both on the boundaries and at the corner.

We start with the expression of the two skew-symmetric terms.

Lemma 3.2. Let a, b < 0 so that α, β < 0. Let un ∈ H, and let the sequences vn, wn be defined on the
set of interior indices I by (3.8). Then there holds:

2 ⟨un; vn⟩ =− |α|
∑
k≥1

(un0,k)
2 − |β|

∑
j≥1

(unj,0)
2 − |α|+ |β|

2
(un0,0)

2 , (3.10a)

− 2 ⟨vn;wn⟩ =− |α|3

2

∑
k≥1

(D1,+u
n
0,k)

2 − |β|3

2

∑
j≥1

(D2,+u
n
j,0)

2

− |α|β2

2

∑
k≥1

(D2,+u
n
0,k)

2 − α2 |β|
2

∑
j≥1

(D1,+u
n
j,0)

2

+
|α|β2

4

∑
k≥1

(∆2u
n
0,k)

2 +
α2 |β|
4

∑
j≥1

(∆1u
n
j,0)

2

− α2 |β|
∑
k≥1

D2,0u
n
0,k D1,+u

n
0,k − |α|β2

∑
j≥1

D1,0u
n
j,0D2,+u

n
j,0

− |α| α
2 + β2

8

∑
k≥1

(D1,+D2,+u
n
0,k)

2 − |β| α
2 + β2

8

∑
j≥1

(D1,+D2,+u
n
j,0)

2 (3.10b)

+ |β| α
2 + β2

4

∑
k≥1

D2,0u
n
0,k D1,+∆2u

n
0,k + |α| α

2 + β2

4

∑
j≥1

D1,0u
n
j,0D2,+∆1u

n
j,0

− |α|3

4
(D1,+u

n
0,0)

2 − |β|3

4
(D2,+u

n
0,0)

2 − (|α|+ |β|) α
2 + β2

8
(D1,+D2,+u

n
0,0)

2

− α2 |β|
2

(D1,+u
n
0,0)

2 − |α|β2

2
(D2,+u

n
0,0)

2 − |αβ|
2

(|α|+ |β|)D1,+u
n
0,0D2,+u

n
0,0 .

Proof. • We start with the proof of (3.10a). We first use definition (3.8a) and compute:

2 ⟨un; vn⟩ = −2α ⟨un;D1,0u
n⟩ − 2β ⟨un;D2,0u

n⟩ ,

9



and we now compute the first term on the right-hand side (the second one is analogous). An important
observation for what follows is that the boundary condition (3.3b) gives:

∀n ∈ N , ∀ k ∈ N , D1,0u
n
0,k =

un1,k − un−1,k

2
= un1,k − un0,k = D1,+u

n
0,k ,

and, symmetrically:
∀n ∈ N , ∀ j ∈ N , D2,0u

n
j,0 = D2,+u

n
j,0 .

We thus have (see (3.5) for the norm in H and its associated scalar product):

2 ⟨un;D1,0u
n⟩ =

∑
j,k≥1

unj,k (u
n
j+1,k − unj−1,k) +

∑
k≥1

un0,k (u
n
1,k − un0,k)

+
1

2

∑
j≥1

unj,0 (u
n
j+1,0 − unj−1,0) +

1

2
un0,0 (u

n
1,0 − un0,0)

= −
∑
k≥1

un1,k u
n
0,k +

∑
k≥1

un0,k (u
n
1,k − un0,k) − 1

2
un1,0 u

n
0,0 +

1

2
un0,0 (u

n
1,0 − un0,0)

= −
∑
k≥1

(un0,k)
2 − 1

2
(un0,0)

2 .

Here we have used that the sums with respect to the first index j are telescopic. Expression (3.10a)
follows because α and β are negative.

• We now turn to the proof of (3.10b). We start from the definitions (3.8) and compute:

− 2 ⟨vn;wn⟩ = − α3 ⟨D1,0u
n; ∆1u

n⟩ − β3 ⟨D2,0u
n; ∆2u

n⟩
− 2α2 β ⟨D1,0u

n;D1,0D2,0u
n⟩ − 2αβ2 ⟨D2,0u

n;D1,0D2,0u
n⟩

− α2 β ⟨∆1u
n;D2,0u

n⟩ − αβ2 ⟨∆2u
n;D1,0u

n⟩ (3.11)

+
α2 + β2

4
⟨αD1,0u

n + β D2,0u
n; ∆1∆2u

n⟩ .

We then compute each line on the right-hand side of (3.11) separately and, eventually, we combine them.
Observing that (3.3b) gives ∆1u

n
0,k = 0 for any k ∈ N, we write ∆1 = D1,+ − D1,− and recall the

relation D1,0 = (D1,+ +D1,−)/2. We thus compute:

⟨D1,0u
n; ∆1u

n⟩ =
∑
j,k≥1

D1,0u
n
j,k ∆1u

n
j,k +

1

2

∑
j≥1

D1,0u
n
j,0∆1u

n
j,0

=
1

2

∑
j,k≥1

(D1,+u
n
j,k)

2 − (D1,−u
n
j,k)

2 +
1

4

∑
j≥1

(D1,+u
n
j,0)

2 − (D1,−u
n
j,0)

2

= − 1

2

∑
k≥1

(D1,+u
n
0,k)

2 − 1

4
(D1,+u

n
0,0)

2 ,

and similarly for the scalar product ⟨D2,0u
n; ∆2u

n⟩. We thus have:

− α3 ⟨D1,0u
n; ∆1u

n⟩ − β3 ⟨D2,0u
n; ∆2u

n⟩

= − |α|3

2

∑
k≥1

(D1,+u
n
0,k)

2 − |β|3

2

∑
j≥1

(D2,+u
n
j,0)

2 − |α|3

4
(D1,+u

n
0,0)

2 − |β|3

4
(D2,+u

n
0,0)

2 . (3.12)

10



These terms constitute the first line on the right-hand side of (3.10b) as well as the first two terms in the
seventh line of (3.10b).

We now turn to the second line on the right-hand side of (3.11). We first observe that the extrapolation
condition (3.4) gives the relation D1,0D2,0u

n
0,0 = D1,+D2,+u

n
0,0. Using the extrapolation conditions (3.3)

and the definition of the operator D2,+, we therefore compute:

⟨D1,0u
n;D1,0D2,0u

n⟩ =
1

2

∑
j,k≥1

(D1,0u
n
j,k D1,0u

n
j,k+1 − D1,0u

n
j,k D1,0u

n
j,k−1) +

1

2

∑
j≥1

D1,0u
n
j,0D1,0D2,+u

n
j,0

+
1

4

∑
k≥1

(D1,+u
n
0,k D1,+u

n
0,k+1 − D1,+u

n
0,k D1,+u

n
0,k−1) +

1

4
D1,+u

n
0,0D1,+D2,+u

n
0,0

= − 1

2

∑
j≥1

D1,0u
n
j,0D1,0u

n
j,1 +

1

2

∑
j≥1

D1,0u
n
j,0D2,+D1,0u

n
j,0

− 1

4
D1,+u

n
0,0D1,+u

n
0,1 +

1

4
D1,+u

n
0,0D2,+D1,+u

n
0,0

= − 1

2

∑
j≥1

(D1,0u
n
j,0)

2 − 1

4
(D1,+u

n
0,0)

2 .

We then use the following formula that is valid for any ℓ2 sequence on N (see [BC23, Lemma 3.2] for a
similar computation):∑
j≥1

(D1,0Uj)
2 +

1

4

∑
j≥1

(∆1Uj)
2 =

1

2

∑
j≥1

(D1,+Uj)
2 +

1

2

∑
j≥1

(D1,−Uj)
2 =

∑
j≥1

(D1,+Uj)
2 +

1

2
(D1,+U0)

2 ,

(3.13)
and we thus get:

⟨D1,0u
n;D1,0D2,0u

n⟩ = − 1

2

∑
j≥1

(D1,+u
n
j,0)

2 +
1

8

∑
j≥1

(∆1u
n
j,0)

2 − 1

2
(D1,+u

n
0,0)

2 ,

with, of course, a similar expression for the other scalar product in the second line of (3.11). Summarizing,
we have obtained the expression:

− 2αβ2 ⟨D2,0u
n;D1,0D2,0u

n⟩− 2α2 β ⟨D1,0u
n;D1,0D2,0u

n⟩

=− |α|β2
∑
k≥1

(D2,+u
n
0,k)

2 − α2 |β|
∑
j≥1

(D1,+u
n
j,0)

2

+
|α|β2

4

∑
k≥1

(∆2u
n
0,k)

2 +
α2 |β|
4

∑
j≥1

(∆1u
n
j,0)

2 (3.14)

− |α|β2 (D2,+u
n
0,0)

2 − α2 |β| (D1,+u
n
0,0)

2 .

These terms contribute to the second line and give the third line of (3.10b). They will also contribute in
the first two terms of the last line of (3.10b).

We now turn to the third line on the right-hand side of (3.11). Recalling that ∆1u
n
0,k vanishes for any

k ∈ N, see (3.3b), we have:

⟨∆1u
n;D2,0u

n⟩ =
∑
j,k≥1

∆1u
n
j,k D2,0u

n
j,k +

1

2

∑
j≥1

∆1u
n
j,0D2,+u

n
j,0 ,

11



and we now use the discrete integration by parts formula:∑
j≥1

(∆1Uj)Vj = −
∑
j≥1

(D1,+Uj)D1,+Vj − (D1,+U0)V1 , (3.15)

which yields:

⟨∆1u
n;D2,0u

n⟩ = −
∑
j,k≥1

D1,+u
n
j,k D1,+D2,0u

n
j,k −

∑
k≥1

D1,+u
n
0,k D2,0u

n
1,k

− 1

2

∑
j≥1

D1,+u
n
j,0D1,+D2,+u

n
j,0 − 1

2
D1,+u

n
0,0D2,+u

n
1,0 .

The first sum on the right-hand side is telescopic with respect to k and it partially simplifies with the
third term on the right-hand side (the sum with respect to the index j only). We get:

⟨∆1u
n;D2,0u

n⟩ =
1

2

∑
j≥1

(D1,+u
n
j,0)

2 −
∑
k≥1

D1,+u
n
0,k D2,0u

n
1,k − 1

2
D1,+u

n
0,0D2,+u

n
1,0

=
1

2

∑
j≥1

(D1,+u
n
j,0)

2 −
∑
k≥1

D1,+u
n
0,k D2,0u

n
0,k

−
∑
k≥1

D1,+u
n
0,k D2,0D1,+u

n
0,k − 1

2
D1,+u

n
0,0D2,+D1,+u

n
0,0 − 1

2
D1,+u

n
0,0D2,+u

n
0,0

=
1

2

∑
j≥1

(D1,+u
n
j,0)

2 −
∑
k≥1

D1,+u
n
0,k D2,0u

n
0,k +

1

2
(D1,+u

n
0,0)

2 − 1

2
D1,+u

n
0,0D2,+u

n
0,0 .

Summing with the analogous term in the third line of (3.11), this gives the contribution:

−α2 β ⟨∆1u
n;D2,0u

n⟩ − αβ2 ⟨∆2u
n;D1,0u

n⟩

=
α2 |β|
2

∑
j≥1

(D1,+u
n
j,0)

2 +
|α|β2

2

∑
k≥1

(D2,+u
n
0,k)

2

− α2 |β|
∑
k≥1

D2,0u
n
0,k D1,+u

n
0,k − |α|β2

∑
j≥1

D1,0u
n
j,0D2,+u

n
j,0 (3.16)

+
α2 |β|
2

(D1,+u
n
0,0)

2 +
|α|β2

2
(D2,+u

n
0,0)

2 − |α| |β|
2

(|α|+ |β|)D1,+u
n
0,0D2,+u

n
0,0 .

These terms give the final contribution in the second line of (3.10b). They also give the fourth line of
(3.10b). Finally these terms give the final contribution in the eighth line of (3.10b).

We now turn to the fourth and last line on the right-hand side of (3.11). We first observe that the
boundary conditions (3.3) and (3.4) imply that the quantity ∆1∆2u

n
j,k vanishes whenever j or k (or both)

is zero. In particular, (3.3) and (3.4) imply ∆1∆2u
n
0,0 = 0. We thus have:

⟨D1,0u
n; ∆1∆2u

n⟩ =
∑
j,k≥1

D1,0u
n
j,k ∆1∆2u

n
j,k ,

12



and we then perform a discrete integration by parts with respect to k (see (3.15)) to get:

⟨D1,0u
n; ∆1∆2u

n⟩ = −
∑
j,k≥1

D1,0D2,+u
n
j,k ∆1D2,+u

n
j,k −

∑
j≥1

D1,0u
n
j,1∆1D2,+u

n
j,0

=
1

2

∑
k≥1

(D1,+D2,+u
n
0,k)

2 −
∑
j≥1

D1,0u
n
j,1∆1D2,+u

n
j,0

=
1

2

∑
k≥1

(D1,+D2,+u
n
0,k)

2

−
∑
j≥1

D1,0D2,+u
n
j,0∆1D2,+u

n
j,0 −

∑
j≥1

D1,0u
n
j,0∆1D2,+u

n
j,0

=
1

2

∑
k≥1

(D1,+D2,+u
n
0,k)

2 +
1

2
(D1,+D2,+u

n
0,0)

2 −
∑
j≥1

D1,0u
n
j,0∆1D2,+u

n
j,0 .

We thus get the final contribution:

α2 + β2

4
⟨αD1,0u

n+β D2,0u
n; ∆1∆2u

n⟩

= − |α| α
2 + β2

8

∑
k≥1

(D1,+D2,+u
n
0,k)

2 − |β| α
2 + β2

8

∑
j≥1

(D1,+D2,+u
n
j,0)

2 (3.17)

+ |α| α
2 + β2

4

∑
j≥1

D1,0u
n
j,0∆1D2,+u

n
j,0 + |β| α

2 + β2

4

∑
k≥1

D2,0u
n
0,k ∆2D1,+u

n
0,k

− (|α|+ |β|) α
2 + β2

8
(D1,+D2,+u

n
0,0)

2 .

These terms give the fifth and sixth lines of (3.10b) and the last term in the seventh line. It now only
remains to collect the contributions in (3.12), (3.14), (3.16) and (3.17) to obtain the relation (3.10b).

We now explain how to derive the expression of the first symmetric term in (3.9).

Lemma 3.3. Let a, b < 0. Let un ∈ H, and let the sequences vn, wn be defined on the set of interior

13



indices I by (3.8). Then there holds:

∥ vn ∥2 − 2 ⟨un;wn⟩ = − α2

4
∥∆1u

n∥2
ℓ2 (̊I) − β2

4
∥∆2u

n∥2
ℓ2 (̊I) − α2 + β2

16

(
∥D1,−D2,−u

n∥2
ℓ2 (̊I)

+ ∥D1,−D2,+u
n∥2

ℓ2 (̊I) + ∥D1,+D2,−u
n∥2

ℓ2 (̊I) + ∥D1,+D2,+u
n∥2

ℓ2 (̊I)

)
− α2

8

∑
j≥1

(∆1u
n
j,0)

2 − β2

8

∑
k≥1

(∆2u
n
0,k)

2

− α2
∑
k≥1

un0,k D1,+u
n
0,k − β2

∑
j≥1

unj,0D2,+u
n
j,0 (3.18)

− (α2 + β2)

8

∑
j≥1

(D1,+D2,+u
n
j,0)

2 − (α2 + β2)

8

∑
k≥1

(D1,+D2,+u
n
0,k)

2

− (α2 + β2)

4

∑
j≥1

D1,+u
n
j,0D1,+D2,+u

n
j,0 − (α2 + β2)

4

∑
k≥1

D2,+u
n
0,k D1,+D2,+u

n
0,k

+ |αβ| (un0,0)2 − α2

2
un0,0D1,+u

n
0,0 − β2

2
un0,0D2,+u

n
0,0

− (α2 + β2)

4

(
un0,0 +D1,+u

n
0,0 +D2,+u

n
0,0

)
D1,+D2,+u

n
0,0

− 3 (α2 + β2)

16
(D1,+D2,+u

n
0,0)

2 ,

where we recall the notation I̊ = N∗ × N∗.

Proof. We start from the definitions (3.8) and compute:

∥ vn ∥2 − 2 ⟨un;wn⟩ =α2
(
∥D1,0u

n∥2 + ⟨un; ∆1u
n⟩
)
+ β2

(
∥D2,0u

n∥2 + ⟨un; ∆2u
n⟩
)

+ 2αβ
(
⟨D1,0u

n;D2,0u
n⟩ + ⟨un;D1,0D2,0u

n⟩
)

(3.19)

− α2 + β2

4
⟨un; ∆1∆2u

n⟩ .

In order to simplify the first line on the right-hand side of (3.19), we use the telescopic formula (see
[BC23]):

(Uℓ+1 − Uℓ−1)
2

4
+ Uℓ (Uℓ+1− 2Uℓ+Uℓ−1) = −(Uℓ+1 − 2Uℓ + Uℓ−1)

2

4
+

1

2
(U2

ℓ+1−U2
ℓ ) −

1

2
(U2

ℓ −U2
ℓ−1) .

We thus get:∑
j,k≥1

(D1,0u
n
j,k)

2 +
∑
j,k≥1

unj,k ∆1u
n
j,k = − 1

4
∥∆1u

n∥2
ℓ2 (̊I) − 1

2

∑
k≥1

(un1,k)
2 − (un0,k)

2 ,

and we also get a similar expression on one side of the boundary (since the tangential index k is a mere
parameter in this calculation):∑

j≥1

(D1,0u
n
j,0)

2 +
∑
j≥1

unj,0∆1u
n
j,0 = − 1

4

∑
j≥1

(∆1u
n
j,0)

2 − 1

2
(un1,0)

2 +
1

2
(un0,0)

2 .

14



Combining the previous two equalities and recalling that we have ∆1u
n
0,k = 0 for any k ∈ N, we get:

∥D1,0u
n∥2 + ⟨un; ∆1u

n⟩ = − 1

4
∥∆1u

n∥2
ℓ2 (̊I) − 1

8

∑
j≥1

(∆1u
n
j,0)

2 +
1

2

∑
k≥1

(D1,+u
n
0,k)

2 − (un1,k)
2 + (un0,k)

2

+
1

4
(D1,+u

n
0,0)

2 − 1

4
(un1,0)

2 +
1

4
(un0,0)

2

= − 1

4
∥∆1u

n∥2
ℓ2 (̊I) − 1

8

∑
j≥1

(∆1u
n
j,0)

2 −
∑
k≥1

un0,k D1,+u
n
0,k − 1

2
un0,0D1,+u

n
0,0 .

We thus obtain the expression of the first line on the right-hand side of (3.19):

α2
(
∥D1,0u

n∥2+ ⟨un; ∆1u
n⟩
)
+ β2

(
∥D2,0u

n∥2 + ⟨un; ∆2u
n⟩
)

= − α2

4
∥∆1u

n∥2
ℓ2 (̊I) − β2

4
∥∆2u

n∥2
ℓ2 (̊I) − α2

8

∑
j≥1

(∆1u
n
j,0)

2 − β2

8

∑
k≥1

(∆2u
n
0,k)

2 (3.20)

− α2
∑
k≥1

un0,k D1,+u
n
0,k − β2

∑
j≥1

unj,0D2,+u
n
j,0 − α2

2
un0,0D1,+u

n
0,0 − β2

2
un0,0D2,+u

n
0,0 .

These terms give the first two terms of the first line, the third and fourth lines and the last two terms of
the seventh line in (3.18).

We now turn to the second line on the right-hand side of the decomposition (3.19). We use the
telescopic formula:

D1,0u
n
j,k D2,0u

n
j,k + unj,k D1,0D2,0u

n
j,k =

1

4
D1,+D2,+

(
unj−1,k−1 u

n
j,k + unj−1,ku

n
j,k−1

)
,

and thus obtain the relation:∑
j,k≥1

D1,0u
n
j,k D2,0u

n
j,k + unj,k D1,0D2,0u

n
j,k =

1

4
(un0,0 u

n
1,1 + un0,1u

n
1,0) ,

as well as the relations4:∑
j≥1

D1,0u
n
j,0D2,0u

n
j,0 + unj,0D1,0D2,0u

n
j,0 = − 1

2
(un0,0 u

n
1,1 + un0,1 u

n
1,0) + un0,0 u

n
1,0 ,

∑
k≥1

D1,0u
n
0,k D2,0u

n
0,k + un0,k D1,0D2,0u

n
0,k = − 1

2
(un0,0 u

n
1,1 + un0,1 u

n
1,0) + un0,0 u

n
0,1 .

Adding the interior and boundary contributions together with the corner contribution5 at (0, 0), we
eventually get:

⟨D1,0u
n;D2,0u

n⟩ + ⟨un;D1,0D2,0u
n⟩ = − 1

4
(un0,0 u

n
1,1 + un0,1u

n
1,0) +

1

2
un0,0 (u

n
0,1 + un1,0)

+
1

4
D1,+u

n
0,0D2,+u

n
0,0 +

1

4
un0,0D1,+D2,+u

n
0,0

=
1

2
(un0,0)

2 .

4Here we use the boundary conditions (3.3).
5We recall that the boundary conditions (3.3) and (3.4) yieldD1,0u

n
0,0 = D1,+u

n
0,0, D2,0u

n
0,0 = D2,+u

n
0,0 andD1,0D2,0u

n
0,0 =

D1,+D2,+u
n
0,0.
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Recalling that both α and β are negative, we end up with:

2αβ
(
⟨D1,0u

n;D2,0u
n⟩ + ⟨un;D1,0D2,0u

n⟩
)

= |αβ| (un0,0)2 , (3.21)

and this gives the first term of the seventh line in (3.18).
It remains to examine the very last term on the right-hand side of (3.19). We first recall that ∆1∆2u

n
j,k

vanishes whenever j or k is zero. This property has already been used in the proof of Lemma 3.2. We
thus have:

⟨un; ∆1∆2u
n⟩ =

∑
j,k≥1

unj,k ∆1∆2u
n
j,k .

We now use twice (alternatively with respect to the second and first variables) the algebraic relation:

Uℓ (Vℓ+1 − 2Vℓ + Vℓ−1) +
1

2
(Uℓ − Uℓ−1) (Vℓ − Vℓ−1) +

1

2
(Uℓ+1 − Uℓ) (Vℓ+1 − Vℓ)

=
1

2
(Uℓ+1 + Uℓ) (Vℓ+1 − Vℓ) − 1

2
(Uℓ + Uℓ−1) (Vℓ − Vℓ−1) , (3.22)

which yields, using the fact that the right-hand side of (3.22) is telescopic:

⟨un; ∆1∆2u
n⟩ =

1

4
∥D1,−D2,−u

n∥2
ℓ2 (̊I) +

1

4
∥D1,−D2,+u

n∥2
ℓ2 (̊I) +

1

4
∥D1,+D2,−u

n∥2
ℓ2 (̊I)

+
1

4
∥D1,+D2,+u

n∥2
ℓ2 (̊I) − 1

2

∑
j≥1

(unj,0 + unj,1)∆1D2,+u
n
j,0 (3.23)

+
1

4

∑
k≥1

(D2,−u
n
0,k +D2,−u

n
1,k)D1,+D2,−u

n
0,k

+
1

4

∑
k≥1

(D2,+u
n
0,k +D2,+u

n
1,k)D1,+D2,+u

n
0,k .

Let us look at the sums with respect to k arising in the last two lines on the right-hand side of (3.23).
From the definition D1,+D2,−u

n
0,k = D2,−u

n
1,k −D2,−u

n
0,k, we get:∑

k≥1

(D2,−u
n
0,k +D2,−u

n
1,k)D1,+D2,−u

n
0,k =

∑
k≥1

(D2,−u
n
1,k)

2 − (D2,−u
n
0,k)

2

=
∑
k≥1

(D1,+D2,−u
n
0,k)

2 + 2D2,−u
n
0,k D1,+D2,−u

n
0,k

=
∑
k≥0

(D1,+D2,+u
n
0,k)

2 + 2D2,+u
n
0,k D1,+D2,+u

n
0,k .

The sum in the fourth line of (3.23) can be rewritten similarly (except for the very last manipulation
which was a shift on the index k), which yields the following equivalent expression for the scalar product

16



⟨un; ∆1∆2u
n⟩:

⟨un; ∆1∆2u
n⟩ =

1

4
∥D1,−D2,−u

n∥2
ℓ2 (̊I) +

1

4
∥D1,−D2,+u

n∥2
ℓ2 (̊I) +

1

4
∥D1,+D2,−u

n∥2
ℓ2 (̊I)

+
1

4
∥D1,+D2,+u

n∥2
ℓ2 (̊I) − 1

2

∑
j≥1

(unj,0 + unj,1)∆1D2,+u
n
j,0 (3.24)

+
1

2

∑
k≥1

(D1,+D2,+u
n
0,k)

2 +
∑
k≥1

D2,+u
n
0,k D1,+D2,+u

n
0,k

+
1

4
(D1,+D2,+u

n
0,0)

2 +
1

2
D2,+u

n
0,0D1,+D2,+u

n
0,0 .

We now deal with the sum with respect to j in the second line of (3.24). We first decompose:∑
j≥1

(unj,0 + unj,1)∆1D2,+u
n
j,0 = 2

∑
j≥1

unj,0∆1D2,+u
n
j,0 +

∑
j≥1

D2,+u
n
j,0∆1D2,+u

n
j,0 ,

and then apply the integration by parts formula (3.22) to each of the two sums. After a few manipulations,
we obtain the expressions:∑

j≥1

unj,0∆1D2,+u
n
j,0 = −

∑
j≥1

D1,+u
n
j,0D1,+D2,+u

n
j,0 − (un0,0 +D1,+u

n
0,0)D1,+D2,+u

n
0,0∑

j≥1

D2,+u
n
j,0∆1D2,+u

n
j,0 = −

∑
j≥1

(D1,+D2,+u
n
j,0)

2 − (D1,+D2,+u
n
0,0)

2 − D2,+u
n
0,0D1,+D2,+u

n
0,0 .

Going back to (3.24) and substituting, we obtain:

⟨un; ∆1∆2u
n⟩ =

1

4
∥D1,−D2,−u

n∥2
ℓ2 (̊I) +

1

4
∥D1,−D2,+u

n∥2
ℓ2 (̊I) +

1

4
∥D1,+D2,−u

n∥2
ℓ2 (̊I)

+
1

4
∥D1,+D2,+u

n∥2
ℓ2 (̊I)

+
1

2

∑
j≥1

(D1,+D2,+u
n
j,0)

2 +
1

2

∑
k≥1

(D1,+D2,+u
n
0,k)

2 (3.25)

+
∑
j≥1

D1,+u
n
j,0D1,+D2,+u

n
j,0 +

∑
k≥1

D2,+u
n
0,k D1,+D2,+u

n
0,k

+ (un0,0 +D1,+u
n
0,0 +D2,+u

n
0,0)D1,+D2,+u

n
0,0 +

3

4
(D1,+D2,+u

n
0,0)

2 .

We now multiply (3.25) by −(α2+β2)/4 and combine with (3.20) and (3.21) to obtain the decomposition
(3.18).

Eventually we explain how to derive an estimate for the second symmetric term in (3.9).

Lemma 3.4. Let a, b < 0. Let un ∈ H, and let the sequence wn be defined on the set of interior indices

17



I by (3.8). Then there holds:

∥wn ∥2 ≤ 2 (α2 + β2)

{
α2

4
∥∆1u

n∥2
ℓ2 (̊I) +

β2

4
∥∆2u

n∥2
ℓ2 (̊I) +

α2 + β2

16

(
∥D1,−D2,−u

n∥2
ℓ2 (̊I)

+ ∥D1,−D2,+u
n∥2

ℓ2 (̊I) + ∥D1,+D2,−u
n∥2

ℓ2 (̊I) + ∥D1,+D2,+u
n∥2

ℓ2 (̊I)

)}
− α2 β2

8

∑
j≥1

(∆1u
n
j,0)

2 − α2 β2

8

∑
k≥1

(∆2u
n
0,k)

2 (3.26)

− α2 β2

8

∑
j≥1

(D2,+∆1u
n
j,0)

2 − α2 β2

8

∑
k≥1

(D1,+∆2u
n
0,k)

2

− α2 (α2 + β2)

8

∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0 − α2 (α2 + β2)

8

∑
k≥1

(∆2u
n
0,k)D1,+∆2u

n
0,k

+
(α2 + β2)

8

β2
∑
j≥1

(D1,+D2,+u
n
j,0)

2 + α2
∑
k≥1

(D1,+D2,+u
n
0,k)

2


+ |α|3 |β|

∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0 + |α| |β|3

∑
k≥1

(∆2u
n
0,k)D1,+D2,0u

n
0,k

− (α2 + β2)2

16
(D1,+D2,+u

n
0,0)

2 .

Proof. We use the definition (3.5) of the norm to get:

4 ∥wn ∥2 =
∑
j,k≥1

(2wn
j,k)

2 + 2
∑
j≥1

(wn
j,0)

2 + 2
∑
k≥1

(wn
0,k)

2 + (wn
0,0)

2 .

We first make the boundary and corner contributions explicit in Step 1 below. We then derive an estimate
for the interior sum (namely the sum with respect to both indices j, k ∈ N∗) in Steps 2 and 3. We conclude
in Step 4 by collecting all contributions.

Step 1 (the boundary and corner contributions). For j ≥ 1, the boundary condition (3.3b) gives:

∀ j ≥ 1 , wn
j,0 = − α2

2
∆1u

n
j,0 − αβ D2,+D1,0u

n
j,0 ,

and we thus have:

2
∑
j≥1

(wn
j,0)

2 =
α4

2

∑
j≥1

(∆1u
n
j,0)

2 + 2α2 β2
∑
j≥1

(D2,+D1,0u
n
j,0)

2

+ 2α3 β
∑
j≥1

∆1u
n
j,0D2,+D1,0u

n
j,0 .

We then use formula (3.13) to obtain:

2
∑
j≥1

(wn
j,0)

2 =
α4

2

∑
j≥1

(∆1u
n
j,0)

2 + 2α2 β2
∑
j≥1

(D1,+D2,+u
n
j,0)

2 − α2 β2

2

∑
j≥1

(D2,+∆1u
n
j,0)

2

+ 2α3 β
∑
j≥1

∆1u
n
j,0D2,+D1,0u

n
j,0 + α2 β2 (D1,+D2,+u

n
0,0)

2 .
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There is, of course, a similar expression for the analogous contribution on the other side of the boundary.
Recalling that we have wn

0,0 = −αβ D1,+D2,+u
n
0,0, we end up with the relation:

2
∑
j≥1

(wn
j,0)

2 + 2
∑
k≥1

(wn
0,k)

2 + (wn
0,0)

2 =
α4

2

∑
j≥1

(∆1u
n
j,0)

2 +
β4

2

∑
k≥1

(∆2u
n
0,k)

2

+ 2α2 β2

∑
j≥1

(D1,+D2,+u
n
j,0)

2 +
∑
k≥1

(D1,+D2,+u
n
0,k)

2


− α2 β2

2

∑
j≥1

(D2,+∆1u
n
j,0)

2 +
∑
k≥1

(D1,+∆2u
n
0,k)

2


+ 2α3 β

∑
j≥1

∆1u
n
j,0D2,+D1,0u

n
j,0

+ 2αβ3
∑
k≥1

∆2u
n
0,k D1,+D2,0u

n
0,k

+ 3α2 β2 (D1,+D2,+u
n
0,0)

2 .

In particular, α and β being both negative, the product αβ is positive and we easily obtain our first
estimate:

2
∑
j≥1

(wn
j,0)

2 + 2
∑
k≥1

(wn
0,k)

2 + (wn
0,0)

2 ≤ α4

2

∑
j≥1

(∆1u
n
j,0)

2 +
β4

2

∑
k≥1

(∆2u
n
0,k)

2

+
(α2 + β2)2

2

∑
j≥1

(D1,+D2,+u
n
j,0)

2 +
∑
k≥1

(D1,+D2,+u
n
0,k)

2


− α2 β2

2

∑
j≥1

(D2,+∆1u
n
j,0)

2 +
∑
k≥1

(D1,+∆2u
n
0,k)

2

 (3.27)

+ 2α3 β
∑
j≥1

∆1u
n
j,0D2,+D1,0u

n
j,0

+ 2αβ3
∑
k≥1

∆2u
n
0,k D1,+D2,0u

n
0,k

+
3

2
αβ (α2 + β2) (D1,+D2,+u

n
0,0)

2 .

We now turn to the interior contribution.

Step 2 (the interior contribution). It is convenient to introduce the short-hand notation ∥ · ∥o rather

than ∥ · ∥ℓ2 (̊I) for the ℓ
2 norm on the set I̊ = N∗×N∗ (the set of interior indices). The corresponding scalar

product is denoted ⟨ ; ⟩o. In other words, we have:

⟨U ; V ⟩o =
∑
j,k≥1

Uj,k Vj,k .

19



From the definition (3.8b), we thus compute the expression:

4 ∥wn ∥2o = α4 ∥∆1u
n∥2o + β4 ∥∆2u

n∥2o + 2α2 β2 ⟨∆1u
n ; ∆2u

n⟩o

+ 4α2 β2 ∥D1,0D2,0u
n∥2o +

(α2 + β2)2

16
∥∆1∆2u

n∥2o

− α2 + β2

2
⟨∆1∆2u

n ; α2∆1u
n + β2∆2u

n⟩o

+ 4αβ ⟨D1,0D2,0u
n ; α2∆1u

n + β2∆2u
n⟩o

− (α2 + β2)αβ ⟨D1,0D2,0u
n ; ∆1∆2u

n⟩o .

Some of our arguments below are borrowed from our previous work [BC23]. For instance, in the first line
on the right-hand side, we use the inequality:

2 ⟨∆1u
n ; ∆2u

n⟩o ≤ ∥∆1u
n∥2o + ∥∆2u

n∥2o ,

while in the second line of the right-hand side, we use the inequality:

4α2 β2 ≤ (α2 + β2)2 ,

which gives:

4 ∥wn ∥2o ≤ (α2 + β2)
(
α2 ∥∆1u

n∥2o + β2 ∥∆2u
n∥2o

)
+ (α2 + β2)2

(
∥D1,0D2,0u

n∥2o +
1

16
∥∆1∆2u

n∥2o
)

− α2 + β2

2
⟨∆1∆2u

n ; α2∆1u
n + β2∆2u

n⟩o + 4αβ ⟨D1,0D2,0u
n ; α2∆1u

n + β2∆2u
n⟩o

− (α2 + β2)αβ ⟨D1,0D2,0u
n ; ∆1∆2u

n⟩o .

We now use twice the first equality of (3.13) to expand the norm ∥D1,0D2,0u
n∥2o:

∥D1,0D2,0u
n∥2o =

1

4

(
∥D1,−D2,−u

n∥2o + ∥D1,−D2,+u
n∥2o + ∥D1,+D2,−u

n∥2o + ∥D1,+D2,+u
n∥2o

)
− 1

8

(
∥D1,−∆2u

n∥2o + ∥D1,+∆2u
n∥2o + ∥D2,−∆1u

n∥2o + ∥D2,+∆1u
n∥2o

)
+

1

16
∥∆1∆2u

n∥2o ,

and this expression is substituted in the right-hand side of our previous estimate for 4 ∥wn ∥2o. We thus
obtain our first preliminary estimate:

4 ∥wn ∥2o ≤ (α2 + β2)
{
α2 ∥∆1u

n∥2o + β2 ∥∆2u
n∥2o (3.28)

+
(α2 + β2)

4

(
∥D1,−D2,−u

n∥2o + ∥D1,−D2,+u
n∥2o + ∥D1,+D2,−u

n∥2o + ∥D1,+D2,+u
n∥2o

)}
+ A ,
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where the quantity A is defined by:

A :=
(α2 + β2)2

8
∥∆1∆2u

n∥2o

− (α2 + β2)2

8

(
∥D1,−∆2u

n∥2o + ∥D1,+∆2u
n∥2o + ∥D2,−∆1u

n∥2o + ∥D2,+∆1u
n∥2o

)
(3.29)

− α2 + β2

2
⟨∆1∆2u

n ; α2∆1u
n + β2∆2u

n⟩o − (α2 + β2)αβ ⟨D1,0D2,0u
n ; ∆1∆2u

n⟩o

+ 4αβ ⟨D1,0D2,0u
n ; α2∆1u

n + β2∆2u
n⟩o .

We now focus on estimating the quantity A . We use the one-dimensional formula:∑
j≥1

(∆1Uj)Uj = − 1

2

∑
j≥1

(D1,−Uj)
2 − 1

2

∑
j≥1

(D1,+Uj)
2 − 1

2
(U1 − U0)

2 − U0 (U1 − U0) ,

and thus integrate by parts the two scalar products ⟨∆1∆2u
n ; ∆1u

n⟩o and ⟨∆1∆2u
n ; ∆2u

n⟩o. We obtain
the equivalent expression:

A =
(α2 + β2)2

8
∥∆1∆2u

n∥2o +
(α2 + β2)

8

{
(α2 − β2)

(
∥D2,−∆1u

n∥2o + ∥D2,+∆1u
n∥2o

)
+(β2 − α2)

(
∥D1,−∆2u

n∥2o + ∥D1,+∆2u
n∥2o

)}
− (α2 + β2)αβ ⟨D1,0D2,0u

n ; ∆1∆2u
n⟩o + 4αβ ⟨D1,0D2,0u

n ; α2∆1u
n + β2∆2u

n⟩o

+
α2 (α2 + β2)

4

∑
j≥1

(D2,+∆1u
n
j,0)

2 +
β2 (α2 + β2)

4

∑
k≥1

(D1,+∆2u
n
0,k)

2

+
α2 (α2 + β2)

2

∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0 +

β2 (α2 + β2)

2

∑
k≥1

(∆2u
n
0,k)D1,+∆2u

n
0,k .

We now rewrite the scalar product ⟨D1,0D2,0u
n ; ∆1∆2u

n⟩o by using the formula:

⟨D2,0 U ; ∆2 V ⟩o + ⟨D2,0 V ; ∆2 U⟩o = −
∑
j≥1

(D2,+Uj,0)D2,+Vj,0 ,

which gives, after computing the resulting sum with respect to j in yet another telescopic way:

⟨D1,0D2,0u
n ; ∆1∆2u

n⟩o = −⟨D1,0∆2u
n ; D2,0∆1u

n⟩o +
1

2
(D1,+D2,+u

n
0,0)

2 .
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We have thus obtained the expression:

A =
(α2 + β2)2

8
∥∆1∆2u

n∥2o +
(α2 + β2)

8

{
(α2 − β2)

(
∥D2,−∆1u

n∥2o + ∥D2,+∆1u
n∥2o

)
+(β2 − α2)

(
∥D1,−∆2u

n∥2o + ∥D1,+∆2u
n∥2o

)}
+ (α2 + β2)αβ ⟨D1,0∆2u

n ; D2,0∆1u
n⟩o + 4αβ ⟨D1,0D2,0u

n ; α2∆1u
n + β2∆2u

n⟩o

+
α2 (α2 + β2)

4

∑
j≥1

(D2,+∆1u
n
j,0)

2 +
β2 (α2 + β2)

4

∑
k≥1

(D1,+∆2u
n
0,k)

2

+
α2 (α2 + β2)

2

∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0 +

β2 (α2 + β2)

2

∑
k≥1

(∆2u
n
0,k)D1,+∆2u

n
0,k

− αβ
(α2 + β2)

2
(D1,+D2,+u

n
0,0)

2 .

Then, as in [BC23], we focus on the first scalar product in the third line of the right-hand side of the latter
expression for A . We use Cauchy-Schwarz inequality as well as the inequality: for a1, a2, a3, a4 ∈ R,

a1 a2 a3 a4 ≤ 1

4
(a21 + a22) (a

2
3 + a24) , (3.30)

and we end up with the inequality:

A ≤ (α2 + β2)2

8
∥∆1∆2u

n∥2o +
(α2 + β2)

8

{
(α2 − β2)

(
∥D2,−∆1u

n∥2o + ∥D2,+∆1u
n∥2o

)
+(β2 − α2)

(
∥D1,−∆2u

n∥2o + ∥D1,+∆2u
n∥2o

)}
+

(α2 + β2)2

4

(
∥D1,0∆2u

n∥2o + ∥D2,0∆1u
n∥2o

)
+ 4αβ ⟨D1,0D2,0u

n ; α2∆1u
n + β2∆2u

n⟩o

+
α2 (α2 + β2)

4

∑
j≥1

(D2,+∆1u
n
j,0)

2 +
β2 (α2 + β2)

4

∑
k≥1

(D1,+∆2u
n
0,k)

2

+
α2 (α2 + β2)

2

∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0 +

β2 (α2 + β2)

2

∑
k≥1

(∆2u
n
0,k)D1,+∆2u

n
0,k

− αβ
(α2 + β2)

2
(D1,+D2,+u

n
0,0)

2 .

We apply once again the first equality of (3.13) and expand the two norms ∥D1,0∆2u
n∥2o and ∥D2,0∆1u

n∥2o.
After simplifying with other terms, we obtain the following estimate for the quantity A defined in (3.29):

A ≤α2 A1 + β2 A2 +
α2 (α2 + β2)

4

∑
j≥1

(D2,+∆1u
n
j,0)

2 +
β2 (α2 + β2)

4

∑
k≥1

(D1,+∆2u
n
0,k)

2

+
α2 (α2 + β2)

2

∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0 +

β2 (α2 + β2)

2

∑
k≥1

(∆2u
n
0,k)D1,+∆2u

n
0,k (3.31)

− αβ
(α2 + β2)

2
(D1,+D2,+u

n
0,0)

2 ,
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where the expression of the terms A1 and A2 is the following (compare with [BC23] where the analogous
terms are denoted B1 and B2):

A1 :=
(α2 + β2)

4

(
∥D2,−∆1u

n∥2o + ∥D2,+∆1u
n∥2o

)
+ 4αβ ⟨D1,0D2,0u

n ; ∆1u
n⟩o , (3.32a)

A2 :=
(α2 + β2)

4

(
∥D1,−∆2u

n∥2o + ∥D1,+∆2u
n∥2o

)
+ 4αβ ⟨D1,0D2,0u

n ; ∆2u
n⟩o . (3.32b)

The third step of the proof is to estimate both terms A1 and A2.

Step 3 (the interior contribution). Following [BC23], we introduce the averaging operators A1 and A2

defined by:

(A1,+V )j,k :=
Vj,k + Vj+1,k

2
, (A2,+V )j,k :=

Vj,k + Vj,k+1

2
,

(A1,−V )j,k :=
Vj−1,k + Vj,k

2
, (A2,−V )j,k :=

Vj,k−1 + Vj,k

2
,

that verify, for instance, D2,0 = D2,+A2,−. We then use the following formula:

(D2,0Vj,k)Wj,k − (D2,+Vj,k) (A2,+Wj,k) =
1

2
(D2,−Vj,k)Wj,k − 1

2
(D2,+Vj,k)Wj,k+1 ,

where the right-hand side is telescopic with respect to k. We thus obtain the equivalent expression:

⟨D1,0D2,0u
n ; ∆1u

n⟩o = ⟨D2,+D1,0u
n ; A2,+∆1u

n⟩o +
1

2

∑
j≥1

(∆1u
n
j,1)D2,+D1,0u

n
j,0

= ⟨D2,+D1,0u
n ; A2,+∆1u

n⟩o +
1

2

∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0 − 1

4
(D1,+D2,+u

n
0,0)

2 ,

where we write unj,1 = D2,+ unj,0 + unj,0 in the first sum on the right-hand side. Starting from the definition
(3.32a), we thus obtain the expression:

A1 =
(α2 + β2)

4

(
∥D2,−∆1u

n∥2o + ∥D2,+∆1u
n∥2o

)
+ 4αβ ⟨D2,+D1,0u

n ; A2,+∆1u
n⟩o

+ 2αβ
∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0 − αβ (D1,+D2,+u

n
0,0)

2 .

We then apply Cauchy-Schwarz inequality to the scalar product in the first line and we use again inequality
(3.30) to get:

A1 ≤ (α2 + β2)

4

(
∥D2,−∆1u

n∥2o + ∥D2,+∆1u
n∥2o + 4 ∥D2,+D1,0u

n∥2o + 4 ∥A2,+∆1u
n∥2o

)
+ 2αβ

∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0 − αβ (D1,+D2,+u

n
0,0)

2 .

By shifting indices in the norm ∥D2,−∆1u
n∥2o, we therefore have:

A1 ≤ (α2 + β2)

4

(
2 ∥D2,+∆1u

n∥2o + 4 ∥D2,+D1,0u
n∥2o + 4 ∥A2,+∆1u

n∥2o
)

+
(α2 + β2)

4

∑
j≥1

(D2,+∆1u
n
j,0)

2 + 2αβ
∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0 − αβ (D1,+D2,+u

n
0,0)

2 . (3.33)
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We then expand the two norms ∥D2,+D1,0u
n∥o and ∥A2,+∆1u

n∥o as follows. We use again the first
identity of (3.13) for ∥D2,+D1,0u

n∥2o and a straightforward computation for the norm ∥A2,+∆1u
n∥2o:

4 ∥D2,+D1,0u
n∥2o = 2 ∥D1,−D2,+u

n∥2o + 2 ∥D1,+D2,+u
n∥2o − ∥D2,+∆1u

n∥2o ,

4 ∥A2,+∆1u
n∥2o = 4 ∥∆1u

n∥2o − ∥D2,+∆1u
n∥2o − 2

∑
j≥1

(∆1u
n
j,1)

2 .

By substituting the previous two relations in the right-hand side of (3.33), and by further expanding
∆1u

n
j,1 = ∆1u

n
j,0 +D2,+∆1u

n
j,0, we obtain the estimate:

A1 ≤ (α2 + β2)

2

(
∥D1,−D2,+u

n∥2o + ∥D1,+D2,+u
n∥2o + 2 ∥∆1u

n∥2o
)
− (α2 + β2)

2

∑
j≥1

(∆1u
n
j,0)

2

− (α2 + β2)

4

∑
j≥1

(D2,+∆1u
n
j,0)

2 − (α2 + β2)
∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0

+ 2αβ
∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0 − αβ (D1,+D2,+u

n
0,0)

2 .

Combining with the analogous estimate for A2, we end up after a few simplifications with:

α2 A1+β2 A2

≤ (α2 + β2)
(
α2 ∥∆1u

n∥2o + β2 ∥∆2u
n∥2o

)
+

(α2 + β2)2

4

(
∥D1,−D2,−u

n∥2o + ∥D1,−D2,+u
n∥2o + ∥D1,+D2,−u

n∥2o + ∥D1,+D2,+u
n∥2o

)
− α2 (α2 + β2)

4

∑
j≥1

(D2,+∆1u
n
j,0)

2 − β2 (α2 + β2)

4

∑
k≥1

(D1,+∆2u
n
0,k)

2

− α2 (α2 + β2)
∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0 − β2 (α2 + β2)

∑
k≥1

(∆2u
n
0,k)D1,+∆2u

n
0,k (3.34)

− α2 (α2 + β2)

2

∑
j≥1

(∆1u
n
j,0)

2 − β2 (α2 + β2)

2

∑
k≥1

(∆2u
n
0,k)

2

− α2 (α2 + β2)

2

∑
j≥1

(D1,+D2,+u
n
j,0)

2 − β2 (α2 + β2)

2

∑
k≥1

(D1,+D2,+u
n
0,k)

2

+ 2α3 β
∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0 + 2αβ3

∑
k≥1

(∆2u
n
0,k)D1,+D2,0u

n
0,k

− αβ (α2 + β2) (D1,+D2,+u
n
0,0)

2 − (α2 + β2)2

4
(D1,+D2,+u

n
0,0)

2 .

Step 4 (conclusion). We first use the estimate (3.34) in the estimate (3.31) for the quantity A that is
defined in (3.29). The quantity A arises in the right-hand side of the estimate (3.28). We obtain in this

24



way an estimate for the interior norm 4 ∥wn ∥2o. This estimate reads:

4 ∥wn ∥2o ≤ 2 (α2 + β2)
(
α2 ∥∆1u

n∥2o + β2 ∥∆2u
n∥2o

)
+

(α2 + β2)2

2

(
∥D1,−D2,−u

n∥2o + ∥D1,−D2,+u
n∥2o + ∥D1,+D2,−u

n∥2o + ∥D1,+D2,+u
n∥2o

)
− α2 (α2 + β2)

2

∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0 − β2 (α2 + β2)

2

∑
k≥1

(∆2u
n
0,k)D1,+∆2u

n
0,k

− α2 (α2 + β2)

2

∑
j≥1

(∆1u
n
j,0)

2 − β2 (α2 + β2)

2

∑
k≥1

(∆2u
n
0,k)

2

− α2 (α2 + β2)

2

∑
j≥1

(D1,+D2,+u
n
j,0)

2 − β2 (α2 + β2)

2

∑
k≥1

(D1,+D2,+u
n
0,k)

2

+ 2α3 β
∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0 + 2αβ3

∑
k≥1

(∆2u
n
0,k)D1,+D2,0u

n
0,k

− 3

2
αβ (α2 + β2) (D1,+D2,+u

n
0,0)

2 − (α2 + β2)2

4
(D1,+D2,+u

n
0,0)

2 .

We then combine this estimate of the interior norm with the estimate (3.27) for the boundary and
corner terms, and we therefore obtain the estimate (3.26) of Lemma 3.4 (recalling that both α and β are
negative).

3.4 Proof of the main result

We go back to the decomposition (3.9) and then combine Lemma 3.2, Lemma 3.3 and Lemma 3.4. We
obtain the energy inequality:

∥un+1 ∥2 − ∥un ∥2 ≤ I + B1 + B2 + C , (3.35)

where I incorporates the interior contributions, namely:

I :=
(
− 1 + 2 (α2 + β2)

) {
α2

4
∥∆1u

n∥2o +
β2

4
∥∆2u

n∥2o +
α2 + β2

16

(
∥D1,−D2,−u

n∥2o

+ ∥D1,−D2,+u
n∥2o + ∥D1,+D2,−u

n∥2o + ∥D1,+D2,+u
n∥2o

)}
, (3.36)
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the term B1, resp. B2, incorporates all the contributions on the boundary {k = 0, j ≥ 1}, resp. {j =
0, k ≥ 1}, namely6:

B1 := − |β|
∑
j≥1

(unj,0)
2 − |β|3

2

∑
j≥1

(D2,+u
n
j,0)

2 − α2 |β|
2

∑
j≥1

(D1,+u
n
j,0)

2 − α2 (1− |β|)2

8

∑
j≥1

(∆1u
n
j,0)

2

− β2
∑
j≥1

unj,0D2,+u
n
j,0 − |α|β2

∑
j≥1

D1,0u
n
j,0D2,+u

n
j,0 − α2 β2

8

∑
j≥1

(D2,+∆1u
n
j,0)

2

+ |α| (α
2 + β2)

4

∑
j≥1

D1,0u
n
j,0D2,+∆1u

n
j,0 − (1 + |β| − β2) (α2 + β2)

8

∑
j≥1

(D1,+D2,+u
n
j,0)

2 (3.37)

− (α2 + β2)

4

∑
j≥1

D1,+u
n
j,0D1,+D2,+u

n
j,0 − α2 (α2 + β2)

8

∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0

+ |α|3 |β|
∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0 ,

and the term C incorporates the corner contributions, namely:

C :=

(
|α| |β| − |α|+ |β|

2

)
(un0,0)

2

−
(
|α|3

4
+

α2 |β|
2

)
(D1,+u

n
0,0)

2 −
(
|β|3

4
+

|α|β2

2

)
(D2,+u

n
0,0)

2

− α2

2
un0,0D1,+u

n
0,0 − β2

2
un0,0D2,+u

n
0,0 − |αβ|

2
(|α|+ |β|)D1,+u

n
0,0D2,+u

n
0,0 (3.38)

− (α2 + β2)

4

(
un0,0 +D1,+u

n
0,0 +D2,+u

n
0,0

)
D1,+D2,+u

n
0,0 − 3 (α2 + β2)

16
(D1,+D2,+u

n
0,0)

2 ,

− (|α|+ |β|) (α
2 + β2)

8
(D1,+D2,+u

n
0,0)

2 − (α2 + β2)2

16
(D1,+D2,+u

n
0,0)

2 .

Let us split the analysis below in three steps, which correspond to the interior, corner and boundary
contributions. The ordering corresponds to an increasing level of difficulty. There is in the end an easy
concluding argument.

Step 1 (the interior contribution). We first deal with the term I defined in (3.36). We first choose
the parameter ε := 1/4 and assume that (α, β) = (λ a, µ b) satisfy:

α2 + β2 ≤ ε . (3.39)

We see from the defining equation (3.36) that we have:

I ≤ − α2

8
∥∆1u

n∥2o − β2

8
∥∆2u

n∥2o , (3.40)

where we have not kept all non-positive contributions on the right-hand side of (3.36) but only the two
most simple ones. It would be possible to keep more contributions but, in our opinion, that would not

6We only give the definition for the term B1 and leave the analogous definition for B2 to the interested reader.
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change significantly the main result of this article since the main feature of the dissipation estimate for
the Lax-Wendroff scheme is a fourth order dissipation with respect to both spatial directions.

We shall allow ourselves in what follows to further decrease the value of ε and will always assume that
(3.39) holds.

Step 2 (the corner contribution). We consider the quantity C defined in (3.38). We first try to absorb
some of the cross terms. We use Young’s inequality to estimate the fourth line in the right-hand side of
(3.38):

(α2 + β2)

4

∣∣∣un0,0 +D1,+u
n
0,0 +D2,+u

n
0,0

∣∣∣ ∣∣∣D1,+D2,+u
n
0,0

∣∣∣
≤ (α2 + β2)

4

(
(un0,0)

2 + (D1,+u
n
0,0)

2 + (D2,+u
n
0,0)

2
)
+

3 (α2 + β2)

16
(D1,+D2,+u

n
0,0)

2 .

Estimating |α| |β| ≤ (α2 + β2)/2 in the coefficient of (un0,0)
2 in the first line of (3.38), we thus obtain the

first estimate:

C ≤
(
3 (α2 + β2)

4
− |α|+ |β|

2

)
(un0,0)

2

+

(
(α2 + β2)

4
− |α|3

4
− α2 |β|

2

)
(D1,+u

n
0,0)

2 +

(
(α2 + β2)

4
− |β|3

4
− |α|β2

2

)
(D2,+u

n
0,0)

2

− α2

2
un0,0D1,+u

n
0,0 − β2

2
un0,0D2,+u

n
0,0 − |αβ|

2
(|α|+ |β|)D1,+u

n
0,0D2,+u

n
0,0 (3.41)

− (|α|+ |β|) (α
2 + β2)

8
(D1,+D2,+u

n
0,0)

2 − (α2 + β2)2

16
(D1,+D2,+u

n
0,0)

2 .

We keep on estimating some cross terms and now deal with the product D1,+u
n
0,0D2,+u

n
0,0 in the third

line of the right-hand side of (3.41). We use again Young’s inequality to obtain:

α2 |β|
2

∣∣D1,+u
n
0,0

∣∣ ∣∣D2,+u
n
0,0

∣∣ ≤ |α|3

4
(D1,+u

n
0,0)

2 +
|α|β2

4
(D2,+u

n
0,0)

2 ,

|α|β2

2

∣∣D1,+u
n
0,0

∣∣ ∣∣D2,+u
n
0,0

∣∣ ≤ α2 |β|
4

(D1,+u
n
0,0)

2 +
|β|3

4
(D2,+u

n
0,0)

2 .

This gives our second estimate for the corner contribution C :

C ≤
(
3 (α2 + β2)

4
− |α|+ |β|

2

)
(un0,0)

2 − α2

2
un0,0D1,+u

n
0,0 − β2

2
un0,0D2,+u

n
0,0

+

(
(α2 + β2)

4
− α2 |β|

4

)
(D1,+u

n
0,0)

2 +

(
(α2 + β2)

4
− |α|β2

4

)
(D2,+u

n
0,0)

2 (3.42)

− (|α|+ |β|) (α
2 + β2)

8
(D1,+D2,+u

n
0,0)

2 − (α2 + β2)2

16
(D1,+D2,+u

n
0,0)

2 .

The very last term on the right-hand side of (3.42) has the good sign but will not help in the analysis
below. We thus feel free to discard this last term.

Unlike what we did in [BC23], we estimate the cross terms un0,0D1,+u
n
0,0 and un0,0D2,+u

n
0,0 rather

crudely since there are already “bad” terms of the form (un0,0)
2 but more importantly there are “bad”
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terms of the form (D1,+u
n
0,0)

2 and (D2,+u
n
0,0)

2 that cannot be absorbed, even by taking (α, β) small
enough. We have:

α2

2

∣∣un0,0∣∣ ∣∣D1,+u
n
0,0

∣∣ ≤ α2

4
(un0,0)

2 +
α2

4
(D1,+u

n
0,0)

2 ,

β2

2

∣∣un0,0∣∣ ∣∣D2,+u
n
0,0

∣∣ ≤ β2

4
(un0,0)

2 +
β2

4
(D2,+u

n
0,0)

2 ,

and we thus get from (3.42) the estimate:

C ≤
(
α2 + β2 − |α|+ |β|

2

)
(un0,0)

2 − α2 |β|
4

(D1,+u
n
0,0)

2 − |α|β2

4
(D2,+u

n
0,0)

2

+
(2α2 + β2)

4
(D1,+u

n
0,0)

2 +
(α2 + 2β2)

4
(D2,+u

n
0,0)

2 − (|α|+ |β|) (α
2 + β2)

8
(D1,+D2,+u

n
0,0)

2 .

Up to further restricting the parameters (α, β) by choosing a smaller value for ε, the corner contribution
C satisfies the estimate:

C ≤ − |α|+ |β|
4

(un0,0)
2 − α2 |β|

4
(D1,+u

n
0,0)

2 − |α|β2

4
(D2,+u

n
0,0)

2 − (|α|+ |β|) (α
2 + β2)

8
(D1,+D2,+u

n
0,0)

2

+
(α2 + β2)

2

(
(D1,+u

n
0,0)

2 + (D2,+u
n
0,0)

2
)
, (3.43)

where the first line on the right-hand side corresponds to a dissipative contribution and the only two
terms with a bad sign are collected in the second line. We shall see in the concluding argument how to
absorb these terms.

Step 3 (the boundary contribution). We consider the quantity B1 defined in (3.37) and absorb again
some cross terms. The first cross term in the second line on the right-hand side of (3.37) is estimated by
Young’s inequality:

β2

∣∣∣∣∣∣
∑
j≥1

unj,0D2,+u
n
j,0

∣∣∣∣∣∣ ≤ 3 |β|
4

∑
j≥1

(unj,0)
2 +

|β|3

3

∑
j≥1

(D2,+u
n
j,0)

2 .

Moreover, in the third line on the right-hand side of (3.37), we use the inequality |β| ≥ β2 to simplify
the term that involves the sum of the (D1,+D2,+u

n
j,0)

2. At last, in the first line on the right-hand side of

(3.37), we use the inequality (1 − |β|)2 ≥ 1/2 that holds as long as the parameter ε in (3.39) is chosen
small enough. We thus get our first estimate:

B1 ≤ − |β|
4

∑
j≥1

(unj,0)
2 − |β|3

6

∑
j≥1

(D2,+u
n
j,0)

2 − α2 |β|
2

∑
j≥1

(D1,+u
n
j,0)

2 − α2

16

∑
j≥1

(∆1u
n
j,0)

2

− α2 β2

8

∑
j≥1

(D2,+∆1u
n
j,0)

2 − (α2 + β2)

8

∑
j≥1

(D1,+D2,+u
n
j,0)

2 − |α|β2
∑
j≥1

D1,0u
n
j,0D2,+u

n
j,0

− (α2 + β2)

4

∑
j≥1

D1,+u
n
j,0D1,+D2,+u

n
j,0 + |α| (α

2 + β2)

4

∑
j≥1

D1,0u
n
j,0D2,+∆1u

n
j,0 (3.44)

− α2 (α2 + β2)

8

∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0 + |α|3 |β|

∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0 .
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We use again Young’s inequality for the first cross term in the third line on the right-hand side of
(3.44):

(α2 + β2)

4

∣∣∣∣∣∣
∑
j≥1

D1,+u
n
j,0D1,+D2,+u

n
j,0

∣∣∣∣∣∣ ≤ (α2 + β2)

4

∑
j≥1

(D1,+u
n
j,0)

2 +
(α2 + β2)

16

∑
j≥1

(D1,+D2,+u
n
j,0)

2 ,

and we now recall that the CFL parameters λ, µ are subject to the conditions (3.6) where M > 0 is a
fixed constant. This means that the negative parameters α and β satisfy |α| ≤ M |β| and |β| ≤ M |α| so
we have:

(α2 + β2)

4

∣∣∣∣∣∣
∑
j≥1

D1,+u
n
j,0D1,+D2,+u

n
j,0

∣∣∣∣∣∣
≤ (1 +M2) |β|

4
|β|

∑
j≥1

(D1,+u
n
j,0)

2 +
(α2 + β2)

16

∑
j≥1

(D1,+D2,+u
n
j,0)

2 .

Since we have D1,+u
n
j,0 = unj+1,0 − unj,0, we get the (non-optimal !) estimate:∑

j≥1

(D1,+u
n
j,0)

2 ≤ 4
∑
j≥1

(unj,0)
2 ,

and we thus see that choosing ε in (3.39) possibly smaller (but the choice now depends on M !), we get:

(α2 + β2)

4

∣∣∣∣∣∣
∑
j≥1

D1,+u
n
j,0D1,+D2,+u

n
j,0

∣∣∣∣∣∣ ≤ |β|
12

∑
j≥1

(unj,0)
2 +

(α2 + β2)

16

∑
j≥1

(D1,+D2,+u
n
j,0)

2 .

Using this estimate in (3.44), we obtain:

B1 ≤ − |β|
6

∑
j≥1

(unj,0)
2 − |β|3

6

∑
j≥1

(D2,+u
n
j,0)

2 − α2 |β|
2

∑
j≥1

(D1,+u
n
j,0)

2 − α2

16

∑
j≥1

(∆1u
n
j,0)

2

− α2 β2

8

∑
j≥1

(D2,+∆1u
n
j,0)

2 − (α2 + β2)

16

∑
j≥1

(D1,+D2,+u
n
j,0)

2

− |α|β2
∑
j≥1

D1,0u
n
j,0D2,+u

n
j,0 + |α| (α

2 + β2)

4

∑
j≥1

D1,0u
n
j,0D2,+∆1u

n
j,0 (3.45)

− α2 (α2 + β2)

8

∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0 + |α|3 |β|

∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0 .

We now deal with the first term in the third line on the right-hand side of (3.45) and recall the relation
D1,0 = D1,+ −∆1/2. We thus have:

− |α|β2
∑
j≥1

D1,0u
n
j,0D2,+u

n
j,0 = − |α|β2

∑
j≥1

D1,+u
n
j,0D2,+u

n
j,0 +

|α|β2

2

∑
j≥1

∆1u
n
j,0D2,+u

n
j,0 .
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For the cross term with the product D1,+u
n
j,0D2,+u

n
j,0, we use again Young’s inequality and (3.6):

|α|β2

∣∣∣∣∣∣
∑
j≥1

D1,+u
n
j,0D2,+u

n
j,0

∣∣∣∣∣∣ ≤ M |β|3
∣∣∣∣∣∣
∑
j≥1

D1,+u
n
j,0D2,+u

n
j,0

∣∣∣∣∣∣
≤ |β|3

8

∑
j≥1

(D2,+u
n
j,0)

2 + 2M2 |β|3
∑
j≥1

(D1,+u
n
j,0)

2

≤ |β|3

8

∑
j≥1

(D2,+u
n
j,0)

2 + 8M2 |β|3
∑
j≥1

(unj,0)
2 .

We can therefore absorb this term on the right-hand side of (3.45) by choosing ε in (3.39) small enough.
The argument for the cross term with the product ∆1u

n
j,0D2,+u

n
j,0 is similar and we leave it to the

interested reader (it is important here to estimate β in terms of α, which is made possible by (3.6)).
Using Young’s inequality and possibly choosing ε smaller in (3.39) (the choice still depends on M), we

can also absorb the first cross term of the form (∆1u
n
j,0)D2,+∆1u

n
j,0 in the fourth line of the right-hand

side of (3.45). At this stage, by choosing ε small enough and (α, β) that satisfy (3.39), we can enforce
the following estimate7 for the boundary contribution B1:

B1 ≤ − |β|
8

∑
j≥1

(unj,0)
2 − |β|3

32

∑
j≥1

(D2,+u
n
j,0)

2 − α2 |β|
2

∑
j≥1

(D1,+u
n
j,0)

2 − α2

32

∑
j≥1

(∆1u
n
j,0)

2

− α2 β2

16

∑
j≥1

(D2,+∆1u
n
j,0)

2 − (α2 + β2)

16

∑
j≥1

(D1,+D2,+u
n
j,0)

2 (3.46)

+ |α| (α
2 + β2)

4

∑
j≥1

D1,0u
n
j,0D2,+∆1u

n
j,0 + |α|3 |β|

∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0 .

For the very last two cross terms in the last line of the right-hand side of (3.46), we use the relation
D1,0 = D1,+ − ∆1/2 in order to involve only the operators D1,+, D2,+ and ∆1. When we expand the
second cross term, we have to deal with cross terms that involve the products:

(∆1u
n
j,0)D1,+D2,+u

n
j,0 (∆1u

n
j,0)D2,+∆1u

n
j,0 ,

and for each of these two terms, we can apply the above argument that is based on Young’s inequality
(in order to absorb the “worst” square term) and choosing ε sufficiently small (in order to absorb the
remaining square term). The estimate (3.46) thus yields, for instance, by choosing ε small enough:

B1 ≤ − |β|
8

∑
j≥1

(unj,0)
2 − |β|3

32

∑
j≥1

(D2,+u
n
j,0)

2 − α2 |β|
2

∑
j≥1

(D1,+u
n
j,0)

2 − α2

64

∑
j≥1

(∆1u
n
j,0)

2

− α2 β2

32

∑
j≥1

(D2,+∆1u
n
j,0)

2 − (α2 + β2)

32

∑
j≥1

(D1,+D2,+u
n
j,0)

2 (3.47)

+ |α| (α
2 + β2)

4

∑
j≥1

D1,+u
n
j,0D2,+∆1u

n
j,0 − |α| (α

2 + β2)

8

∑
j≥1

∆1u
n
j,0D2,+∆1u

n
j,0 .

7The coefficients are not aimed to be optimal. Our main goal is to show here that all cross terms can be absorbed by
choosing ε small enough, but this requires to be able to estimate α by β and β by α, as is made possible by (3.6).
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The analysis is almost complete. For the first cross term in the last line of the right-hand side of
(3.47), we use the above argument to get:

|α| (α
2 + β2)

4

∣∣∣∣∣∣
∑
j≥1

D1,+u
n
j,0D2,+∆1u

n
j,0

∣∣∣∣∣∣ ≤ α2 β2

64

∑
j≥1

(D2,+∆1u
n
j,0)

2 + C(M)β2
∑
j≥1

(unj,0)
2 ,

where the constant C(M) only depends on M (it is actually a polynomial quantity in M). The trouble
comes with the very last term since the operator ∆1, unlike D1,+ involves a symmetric stencil, and
the control we have on ∆1u

n
j,0 does not seem good enough at this stage. We shall therefore use the

(non optimal) bound
∑

j≥1(∆1 u
n
j,0)

2 ≤ 16
∑

j≥0(u
n
j,0)

2 to take advantage of the good control on unj,0.
Reproducing the above argument, we get the inequality:

|α| (α
2 + β2)

4

∣∣∣∣∣∣
∑
j≥1

∆1u
n
j,0D2,+∆1u

n
j,0

∣∣∣∣∣∣ ≤ α2 β2

64

∑
j≥1

(D2,+∆1u
n
j,0)

2 + C(M)β2
∑
j≥0

(unj,0)
2 ,

with a possibly larger constant C(M) but the important thing is that the very last sum bears on the
indices {j ≥ 0} and not only on {j ≥ 1}.

As a conclusion for this third step, we have seen that we can choose ε small enough (and the choice
depends on M) such that, for CFL parameters that satisfy (3.39), we get:

B1 ≤ C(M)β2 (un0,0)
2 − |β|

9

∑
j≥1

(unj,0)
2 . (3.48)

Here we forget about many of the nonpositive contributions in the right-hand side of (3.47) in order to
simplify the final estimate that is stated in Theorem 3.1. We recall that there is an analogous term B2

on the boundary {j = 0, k ≥ 1} and this term satisfies the analogous estimate:

B2 ≤ C(M)α2 (un0,0)
2 − |α|

9

∑
k≥1

(un0,k)
2 . (3.49)

Conclusion. From the estimate (3.35) and the three estimates (3.40), (3.43) (where we only keep the
first dissipation term), (3.48) and (3.49), we have:

∥un+1 ∥2 − ∥un ∥2 +
α2

8
∥∆1u

n∥2
ℓ2 (̊I) +

β2

8
∥∆2u

n∥2
ℓ2 (̊I)

≤ C(M) (α2 + β2) (un0,0)
2 +

(α2 + β2)

2

(
(D1,+u

n
0,0)

2 + (D2,+u
n
0,0)

2
)
− |α|+ |β|

4
(un0,0)

2

− |α|
9

∑
k≥1

(un0,k)
2 − |β|

9

∑
j≥1

(unj,0)
2 .

There are only three terms on the right-hand side with the “wrong” sign, but each of them can be absorbed
by either one of the three terms with a negative sign since we have:

(D1,+u
n
0,0)

2 + (D2,+u
n
0,0)

2 ≤ 4 (un0,0)
2 + 2 (un1,0)

2 + 2 (un0,1)
2 .
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Up to restricting again the parameter ε, we end up with the estimate:

∥un+1 ∥2 − ∥un ∥2 +
α2

8
∥∆1u

n∥2
ℓ2 (̊I) +

β2

8
∥∆2u

n∥2
ℓ2 (̊I) +

|α|
10

∑
k≥0

(un0,k)
2 +

|β|
10

∑
j≥0

(unj,0)
2 ≤ 0 ,

where we have incorporated the control of the corner value un0,0 in the boundary sums for simplicity. The
proof of Theorem 3.1 is now complete.

4 Discussion and numerical illustrations

In this Section, we briefly discuss the result of Theorem 3.1 and our strategy for its proof. If we compare
with the analogous result in our previous article, that is [BC23, Theorem 4.1], the main difference is that
our stability estimate for the second order boundary and corner extrapolation does not cover the whole
set of parameters (λ a, µ b) that satisfy the stability requirement for the Cauchy problem, namely the CFL
condition:

(λ a)2 + (µ b)2 ≤ 1

2
. (4.1)

In our final arguments, we have been rather crude in estimating the corner and boundary contributions
in the decomposition (3.35). Let us see whether there is a potential room for improvement. We first
look at the corner contribution (3.38). The corner contribution C defined in (3.38) is a quadratic form
with respect to the vector (un0,0, D1,+u

n
0,0, D2,+u

n
0,0, D1,+D2,+u

n
0,0) ∈ R4. Figure 4.1 illustrates the set of

parameters (λ |a|, µ |b|) ∈ [0, 1]2 for which this quadratic form is negative definite (which is what we were
aiming at in the proof of Theorem 3.1). The set of good parameters, that is the parameters for which the
quadratic form is definite negative and (4.1) holds, is depicted in yellow. The exterior of the ball (4.1) is
depicted in dark blue. In the light blue region, (4.1) holds but the quadratic form is not negative definite.
The latter region contains all small values of λ |a|, µ |b|, which is reminiscent of our final estimate (3.43)
and can be deduced by merely looking at the expression of C with either a or b equal to zero.

Figure 4.1: Negativity of the quadratic form associated with the corner contribution C . In dark blue: the
exterior of the ball. In yellow: the parameters (λ |a|, µ |b|) for which (4.1) holds and the quadratic form is
negative definite. In light blue: the parameters (λ |a|, µ |b|) for which (4.1) holds and the quadratic form
is not negative definite.
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The main problem in the analysis of the corner contribution C comes from the cross terms:

D1,+u
n
0,0D1,+D2,+u

n
0,0 , and D2,+u

n
0,0D1,+D2,+u

n
0,0 .

In our analysis, these terms are partly absorbed thanks to the boundary dissipation. If one now looks
at the reduced corner contribution (where we omit the cross terms from which some difficulties arise,
compare with (3.38)):

C̃ :=

(
|α| |β| − |α|+ |β|

2

)
(un0,0)

2

−
(
|α|3

4
+

α2 |β|
2

)
(D1,+u

n
0,0)

2 −
(
|β|3

4
+

|α|β2

2

)
(D2,+u

n
0,0)

2

− α2

2
un0,0D1,+u

n
0,0 − β2

2
un0,0D2,+u

n
0,0 − |αβ|

2
(|α|+ |β|)D1,+u

n
0,0D2,+u

n
0,0 (4.2)

− (α2 + β2)

4
un0,0D1,+D2,+u

n
0,0 − 3 (α2 + β2)

16
(D1,+D2,+u

n
0,0)

2 ,

− (|α|+ |β|) (α
2 + β2)

8
(D1,+D2,+u

n
0,0)

2 − (α2 + β2)2

16
(D1,+D2,+u

n
0,0)

2 ,

we can still try to identify numerically the region of parameters for which the associated quadratic form
is negative definite. The result is shown in Figure 4.2 with the same color scale as in Figure 4.1. The
yellow region is far larger, which confirms that the above two cross terms are the core of the problem.
Nevertheless, there remain very tiny portions near the axes, that is when either λ |a| dominates µ |b| or
the opposite, where the reduced quadratic form C̃ is not negative definite (this can also be seen by setting
either a or b equal to zero). In full generality, it thus seems necessary to absorb part of the “bad” terms
in the corner contribution by part of the good terms in the boundary contributions.

Figure 4.2: Negativity of the quadratic form associated with the reduced corner contribution C̃ . In
dark blue: the exterior of the ball. In yellow: the parameters (λ |a|, µ |b|) for which (4.1) holds and the
quadratic form is negative definite. In light blue: the parameters (λ |a|, µ |b|) for which (4.1) holds and
the quadratic form is not negative definite.

We now examine the boundary contribution B1 in (3.37). Actually, we are going to simplify a little
bit and consider the analogue of this term when extended to the whole set of integers Z. In other words,

33



we consider two sequences u ∈ ℓ2(Z;R) (u being a placeholder for un·,0) and v ∈ ℓ2(Z;R) (v being a
placeholder for the normal derivative D2,+u

n
·,0), and we consider the quantity:

B̃ := − |β|
∑
j∈Z

u2j − |β|3

2

∑
j∈Z

v2j − α2 |β|
2

∑
j∈Z

(D1,+uj)
2 − α2 (1− |β|)2

8

∑
j∈Z

(∆1uj)
2

− β2
∑
j∈Z

uj vj − |α|β2
∑
j∈Z

D1,0uj vj − α2 β2

8

∑
j∈Z

(∆1vj)
2

+ |α| (α
2 + β2)

4

∑
j∈Z

D1,0uj ∆1vj − (1 + |β| − β2) (α2 + β2)

8

∑
j∈Z

(D1,+vj)
2 (4.3)

− (α2 + β2)

4

∑
j∈Z

D1,+uj D1,+vj − α2 (α2 + β2)

8

∑
j∈Z

∆1uj ∆1vj + |α|3 |β|
∑
j∈Z

∆1uj D1,0vj .

After identifying the sequences u and v with square integrable piecewise constant functions on R, we can
apply Plancherel Theorem and obtain:

B̃ =
1

2π

∫
R

(
û(ξ)
v̂(ξ)

)∗
H(ξ)

(
û(ξ)
v̂(ξ)

)
dξ ,

where the 2× 2 Hermitian matrix H(ξ) is defined by:

H(ξ) :=

−|β|(1 + 2α2 x)− 2α2 (1− |β|)2 x2 c+ i d

c− i d −|β|3

2
− (1 + |β| − β2) (α2 + β2)

2
x− 2α2 β2 x2

 ,

where we use the short notation x := sin2(ξ/2), and the quantities c and d are defined by:

c := − β2

2
− (α2 + β2)

x

2
− α2 (α2 + β2)x2 ,

d := sin ξ

(
|α|β2

2
+

|α| (α2 + β2)

2
x− 2 |α|3 |β|x

)
.

If H(ξ) is negative definite for any ξ ∈ R, then we can get an upper bound for the boundary con-
tribution B̃ with the “good” sign. The trace of H(ξ) is easily shown to be negative for parameters
(α, β) = (λ a, µ b) that satisfy (4.1) and β < 0. Thus H(ξ) being negative definite is equivalent to showing
that the determinant of H(ξ) is positive for any ξ ∈ R (this determinant is shown to depend only on x
so there only remains a free parameter x in the interval [0, 1]). Figure 4.3 shows the set of parameters
(λ |a|, µ |b|) for which H(ξ) is negative definite for any ξ ∈ R with the same color scale as in Figures 4.1
and 4.2. The important point here is that for any parameters that satisfy the CFL condition (4.1), the
simplified boundary contribution B̃ does seem to provide some dissipation. However, we have not been
able to derive the optimal scaling of this dissipation in terms of α and β and it is therefore not clear
whether, in a quarter-plane, the boundary terms may compensate for all the contributions at the corner
that do not have the correct sign. This is left open for further studies.
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