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Abstract
Persistent homology is a tool from Topological Data Analysis (TDA) used to summarize the
topology underlying data. It can be conveniently represented through persistence diagrams.
Observing a noisy signal, common strategies to infer its persistence diagram involve plug-in
estimators, and convergence properties are then derived from sup-norm stability. This depen-
dence on the sup-norm convergence of the preliminary estimator is restrictive, as it essentially
imposes to consider regular classes of signals. Departing from these approaches, we design an
estimator based on image persistence. In the context of the Gaussian white noise model, and
for large classes of piecewise-Hölder signals, we prove that the proposed estimator is consistent
and achieves minimax rates. Notably, these rates coincide with the well known minimax rates
for Hölder continuous signals.

Introduction

Topological Data Analysis (TDA) is a field that aims to provide representations to describe the
“shape” of data. A central tool in TDA is persistent homology and its representation through
persistence diagrams. It offers a practical, multiscale, summary of the topology underlying data.
Although in its early years research has primarily focused on deterministic settings, it didn’t take
long for statistical questions to emerge. A prominent topic is the estimation of persistent diagram
and, more specifically, the investigation of convergence properties of considered estimators. A first
historical success in this direction is Bubenik and Kim (2006), that formalizes the problem of per-
sistence diagram estimation from a density in a parametric setting. Following this initial work, in
wider non-parametric settings, Fasy et al. (2014) provide confidence sets for persistence diagrams
from a sampled density and Chazal et al. (2014) provide (nearly) minimax estimators of the den-
sity support controlling its regularity. In the slightly different setting of non-parametric regression,
Bubenik et al. (2009) study a plug-in estimator based on kernel estimation and show that it achieves
minimax rates over Hölder spaces. Most of these works, consider plug-in estimators and the proofs
for convergence properties then exploit stability theorem (Chazal et al., 2009a) for sup norm, lift-
ing results from non-parametric estimation or geometric inference. Although this approach can be
proved to be minimax over regular classes (e.g. Hölder spaces), it falls short for function spaces
where sup norm convergence is not assured. This raises the issue of whether consistent persistence
diagram estimation is achievable outside these regular classes and at which rates. A first step in
this direction is the work of Bobrowski et al. (2017). This work proposes a general, non-plug-in
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approach in both the context of non-parametric regression and the density model. Under a weak
condition (q−tameness) they show some near-consistency properties of their estimators. But they
do not provide convergence rates. The challenge likely stems from the framework being too broad
to quantify convergence rates or to demonstrate proper consistency. Hence, it is interesting to
identify narrower classes on which we can provide stronger and more precise results. Recently, in
Henneuse (2024), we proposed a new approach that also departs from the sup norm stability. This
work study the inference of persistence diagram, from a minimax perspective, for Gaussian white
noise model and non-parametric regression. Although we consider a plug-in estimator, our analysis
of convergence properties did not rely on sup-norm stability (but on a weaker notion of stability).
We introduced and studied classes of piecewise-Hölder continuous function with discontinuities set
having a positive reach. The reach (Federer, 1959) is a popular curvature measure in geometric
inference, that can be thought as a way to describe the geometric regularity of a set. Under this
reach assumption, we manage to show that a histogram plug-in estimator permits to achieve the well
known minimax rates for Hölder-continuous functions. Still, the positive reach assumption imposes
some limitation on the shape of discontinuity sets, typically it does not allow corners or multiple
points (i.e. self intersections of the discontinuities set). Relaxation of this assumption was already
discussed in this earlier work. We highlighted that it would imply to consider other estimators, as,
even in the noiseless setting, the histogram approximation falls short on simple examples (see Figure
6). This serves as a motivation to depart from plug-in approach for persistence diagram inference
and as starting point for this new work.

We consider the Gaussian white noise model given by the following stochastic equation,

dXt1,...,td = f(t1, ..., td)dt1...dtd + θdWt1,...,td

with W a d−parameters Wiener field, f : [0, 1]d → R a signal and θ ≥ 0 the level of noise. In this
context, our goal is to estimate dgm(f), the persistence diagram coming from the sublevel sets of
f .
For a set A ⊂ [0, 1]d, A we denote its adherence and ∂A its boundary. We suppose that f verifies
the following assumptions :

• A1. f is a piecewise (L,α)−Hölder-continuous function, i.e. there exist M1, ...,Ml open sets
of [0, 1]d such that,

l⋃
i=1

Mi = [0, 1]d

and f |Mi is in H(L,α), ∀i ∈ {1, ..., l}, with,

H(L,α) =
{
f : [0, 1]d → R s.t. |f(x)− f(y)| ≤ L∥x− y∥α2 ,∀x, y ∈ [0, 1]d

}
.

• A2. f verifies, ∀x0 ∈ [0, 1]d,
lim inf

x∈
l⋃

i=1
Mi→x0

f(x) = f(x0).

In this context, two signals, differing only on a null set, are statistically undistinguishable.
And persistent homology is sensitive to point-wise irregularity, two signals differing only on a
null set can have persistence diagrams that are arbitrarily far. Assumption A2 prevents such
scenario.
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• A3. Let 1 ≥ µ > 0 and Rµ > 0. For all I ⊂ {1, ..., l} and x ∈
⋂
i∈I B2(∂Mi, Rµ), there exists

a half cone Cx with apex x of angle θ verifying cos(θ/2) ≥ µ and,⋃
i∈I

Γ∂Mi
(x) ⊂ Cx

with Γ∂Mi
(x) the set of closest point of x in ∂Mi. This assumption gives control over the ge-

ometry of the discontinuities and can be compared to a positive µ−reach assumptions (Chazal
et al., 2006). The link with µ−reach is discussed in Section 1.2.

The class of function verifying A1, A2 and A3 is denoted Sd(L,α, µ,Rµ). For our purpose, we
show in Appendix A that persistence diagrams of signals in Sd(L,α, µ,Rµ) are well-defined. This
class is significantly larger than the one considered in Henneuse (2024), allowing multiple points
and corners in the discontinuities set.

Contribution

We extend the main result of Henneuse (2024). Unlike the classes considered there, over the weaker
classes Sd(L,α, µ,Rµ), a plug-in estimator from histogram estimation is no longer consistent (see
Figure 6). To overcome this issue, we propose, d̂gm(f) a non-plug-in estimators of the persistence
diagram of f . Over Sd(L,α, µ,Rµ), we show that this estimator is consistent and achieves conver-
gence rates coinciding with known minimax rates for Hölder-continuous signals. More precisely, our
main result is the following theorem.

Theorem 1. There exists C̃0 and C̃1 such that, for all t > 0,

P

(
sup

f∈Sd(L,α,µ,Rµ)
db

(
d̂gm(f), dgm(f)

)
≥ t

(
θ2 log

(
1

θ

)) α
d+2α

)
≤ C̃0 exp

(
−C̃1t

2
)
.

As these rates are minimax under stronger conditions (see Henneuse, 2024, Theorem 3), they are
evidently minimax over Sd(L,α, µ,Rµ).

The paper is organized as follows. Section 1 recalls the necessary background on geometric measure
theory and persistent homology, Section 2 describes our estimation procedure, and Section 3 is
dedicated to the proof of Theorem 1. Secondary results as long as proofs of technical lemmas can
be found in appendix.

1 Background

This section provides the necessary background to follow this paper.

1.1 Persistent Homology

We here present briefly some notions related to persistence homology. Persistent homology permits
to encode the evolution of topological features (in the homology sense) along a family of nested
spaces, called filtration. Moving along indices, topological features (connected components, cycles,
cavities, ...) can appear or die (existing connected components merge, cycle or cavities are filled,
...). For a broader overview and visual illustrations of persistent homology, we recommend Chazal
and Michel (2021). For detailed and rigorous constructions, see Chazal et al. (2016). Additionally,
since the construction discussed here involves (singular) homology, the reader can refer to Hatcher
(2000).
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Definition 1. Let Λ ⊂ R be a set of indices. A filtration over Λ is a family (Kλ)λ∈Λ of topological
spaces satisfying, ∀λ, λ′ ∈ Λ, λ ⩽ λ′,

Kλ ⊂ Kλ′ .

A typical filtration that we will consider in this paper is, for a function f : Rd → R, the family of
sublevel sets (Fλ)λ∈R = (f−1(] − ∞, λ]))λ∈R. The associated family of homology group of degree

s ∈ N, Vf,s = (Hs (Fλ))λ∈R, equipped with vλ
′

λ the linear application induced by the inclusion
Fλ ⊂ Fλ′ , for all λ ≤ λ

′ , forms a persistence module. To be more precise, in this paper, Hs(.) is the
singular homology functor in degree s with coefficient in a field (typically Z/2Z). Hence, Hs (Fλ)
is a vector space.

Still, the estimator we propose in Section 2, relies on image module (Cohen-Steiner et al., 2009),
that does not come (directly) from sublevel sets filtration. Hence, we need the following, more
general, definition.

Definition 2. Let Λ ⊂ R be a set of indices. A persistence module over λ is a family V = (Vλ)λ∈Λ
of vector spaces equipped with linear application vλ′λ : Vλ → Vλ′ such that, ∀λ ⩽ λ′ ⩽ λ′′ ∈ Λ,

vλλ = id

and
vλ

′′
λ′ ◦ vλ′λ = vλ

′′
λ .

Under q−tameness of the persistence module, it is possible to show that the algebraic structure of
the persistence module encodes exactly the evolution of the topological features along the indices
Λ.

Definition 3. A persistence module V is said to be q-tame if ∀λ < λ′ ∈ Λ, rank
(
vλ

′
λ

)
is finite.

By extension, when considering the persistence modules (Vf,s)s∈N coming from the sublevels sets
filtration of a real functions f , we say that f is q−tame if Vf,s is for all s ∈ N.

Furthermore, the algebraic structure of the persistence module can be summarized by a collection
{(bi, di), i ∈ I} ⊂ R

2, which defined the persistence diagram. Following previous remarks, bi
corresponds to the birth time of a topological feature, di corresponds to its death time and di − bi
to its lifetime. For a detailed construction of persistence diagrams, see Chazal et al. (2016).

(a) graph of f (b) H0-persistence diagram of f

Figure 1: Graph of f(x) = x cos(8πx) over [0, 1] and the persistence diagram associated to its
sublevel sets filtration. a1, ..., a4 correspond to local minima of f and thus birth times in dgm(f).
a5, ..., a7 correspond to local maxima of f and thus death times in dgm(f).
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(a) graph of f (b) persistence diagram of f

Figure 2: Graph of f(x) = sin(4πx) cos(4πy)(x + y + 1) over [0, 1]2 and the persistence diagram
associated to its sublevel sets filtration, red points corresponds to the H0−persistence diagram and
blue points to the H1−persistence diagram.

To compare persistence diagrams, a popular distance, especially in statistical context, is the bottle-
neck distance.

Definition 4. The bottleneck distance between two persistence diagrams D1 and D2 is,

db (D1, D2) = inf
γ∈Γ

sup
p∈D1

||p− γ(p)||∞

with Γ the set of all bijection between D1 and D2 (both enriched with the diagonal).

We now introduce the algebraic stability theorem for the bottleneck distance. This theorem was the
key for proving upper bounds in Henneuse (2024), it is also the case in this work to prove Theorem
1. This theorem relies on interleaving between modules, a notion we extensively exploit.

Definition 5. Two persistence modules V = (Vλ)λ∈Λ⊂R and W = (Wλ)λ∈Λ⊂R are said to be ε-
interleaved if there exists two families of applications ϕ = (ϕλ)λ∈Λ⊂R and ψ = (ψλ)λ∈Λ⊂R where
ϕλ : Vλ → Wλ+ε, ψλ : Wλ → Vλ+ε, and for all λ < λ

′ the following diagrams commutes,

Vλ Vλ′ Wλ Wλ′

Wλ+ε Wλ′+ε Vλ+ε Vλ′+ε

Vλ Vλ+2ε Wλ Wλ+2ε

Wλ+ε Vλ+ε

ϕλ ϕ
λ
′

wλ
′
+ε

λ+ε

wλ
′

λ

ψλ

vλ
′
+ε

λ+ε

ψ
λ
′

vλ
′
+2ε

λ

ϕλ ψλ+ε ψλ

vλ
′

λ

wλ
′
+2ε

λ

ϕλ+ε

Theorem (Chazal et al. 2009a, "algebraic stability"). Let V and W two q−tame persistence
modules. If V and W are ε−interleaved then,

db (dgm(V),dgm(W)) ≤ ε.
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We now give a corollary of this result, proved earlier in special cases (Barannikov, 1994; Cohen-
Steiner et al., 2005). We insist on the fact that this is a strictly weaker result than algebraic
stability.

Theorem ("sup norm stability"). Let f and g two real-valued q-tame function, for all s ∈ N

db (dgm (Vf,s) , dgm (Vg,s)) ≤ ||f − g||∞.

(a) graphs of f0 and f1 (b) persistence diagrams of f0 and f1

Figure 3: 1D Illustration of stability theorems.

This last property is often used to upper bounds the errors (in bottleneck distance) of "plug-
in" estimators of persistence diagrams. It enables the direct translation of convergence rates in
sup-norm to convergence rates in bottleneck distance, which for regular classes of signals provide
minimax upper bounds. Still, for wider classes, this approach falls short. The alternative approach
proposed in this work focuses instead on the estimation of the persistent modules Vf,s, in the sense
of interleaving, and then exploits algebraic stability.

1.2 Generalized gradient

We here present some concepts from geometric measure theory, extensively used in geometric infer-
ence and TDA. The first notion used in this paper is the distance function to compact.

Definition 6. Let K ⊂ [0, 1]d a compact set, the distance function dK is given by,

dK : x 7→ min
y∈K

||x− y||2.

Generally the distance function is not differentiable everywhere, still it is possible to define a gen-
eralized gradient function that matches with the gradient at points where the distance function is
differentiable.

Definition 7. Let,
ΓK(x) = {y ∈ K | ||x− y||2 = dK(x)}

the set of closest point to x in K. For x ∈ [0, 1]d \K, let denote ΘK(x) the center of the unique
smallest ball enclosing ΓK(x), the generalized gradient function ∇K(x) is defined as,

∇K(x) =
x−ΘK(x)

dk(x)
.
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K
x Θ(x)

∇K(x)

dK(x)

Figure 4: 2D example with 2 closest points

With these definitions we can now introduce the notion of µ−reach (Chazal et al., 2006).

Definition 8. Let K ⊂ [0, 1]d a compact set, its µ-reach reachµ(K) is defined by,

reachµ(K) = inf

{
r | inf

d−1
K (r)\K

∥∇K∥2 < µ

}
.

The 1−reach corresponds simply to the reach, a curvature measure introduced by Federer (1959).
∥∇K(x)∥ can be thought as the cosine of the (half) angle of the smallest half cone with apex x that
contains ΓK(x) (see Chazal et al., 2009b, Section 2.1). We then have immediately the following
lemma.

Lemma 1. If M1, ...,Ml verifies Assumption A3, then, for all I ⊂ {1, ..., l},

reachµ

(⋃
i∈I

∂Mi

)
≥ Rµ.

Note that we do not have the converse implication, as illustrated in Figure 5. Assumption A3 is
slightly stronger than having a positive µ−reach.

We now state a particular property of sets with positive µ−reach from Chazal et al. (2007).
This property is used in the proof of Theorem 1 to quantify approximation errors. For a set
K ⊂ [0, 1]d and r ≥ 0 we denote B2(K, r) = {x ∈ [0, 1]d s.t. dK(x) < r} and B2(K, r) = {x ∈
[0, 1]d s.t. dK(x) ≤ r}.

Lemma 2. (Chazal et al., 2007, Lemma 3.1.) Let K ⊂ [0, 1]d a compact set and let µ > 0, r > 0
be such that r < reachµ(K). For any x ∈ B2(K, r)\K, one has

d∂B2(K,r)
(x) ≤ r − dK(x)

µ
≤ r

µ
.
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M1

M2

M3

x

Figure 5: The discontinuities set
⋃
i∈{1,2,3} ∂Mi has a positive µ−reach, for small µ but the smallest

half cone Cx containing
⋃
i∈{1,2,3} Γ∂Mi

(x) is of angle θ = π.

2 Procedure description

We here propose a two-steps estimation procedure.
The first step is a "rough" estimation of sublevel sets via local averaging on a regular grid plus a
thickening. We call these estimators rough, as they are not meant to perform well for the estimation
of sublevel sets evaluated with standard metrics. Typically, over Sd (L,α, µ,Rµ), for a fixed λ ∈ R,
our estimator F̂λ can be (arbitrarily) far in Hausdorff distance from Fλ. But, it captures well the
topological features of the true signals.
Still, cubical approximation and noise may create cycles lying around the boundaries of sublevel
sets estimators that do not correspond to any cycles of true signal (as in Figure 6.b). These cycles
are pretty benign when appearing in regular regions (they will have "short" lifetime), but may have
arbitrarily long lifetime when appearing around the discontinuities of the signal. Hence, for the
second step, instead of considering directly the modules coming from this estimated filtration, we
construct an image persistence module (Cohen-Steiner et al., 2009). This can be seen as a topologi-
cal regularization step. The proposed image module aims to eliminate such cycles (or at least make
their lifetime short) without damaging (too much) the information inferred about true cycles. The
use of image modules to filter out topological noise is not a new idea, for example Cohen-Steiner
et al. (2009); Chazal et al. (2011) used it to estimate persistence diagrams of a signal while working
on noisy domains or closer to our context Bobrowski et al. (2017) that used the image modules
between slightly shifted sublevel sets filtration to infer persistence diagrams in the non-parametric
regression and the sampled density settings.

In the following, for a set A ⊂ Rd and b ≥ 0, we denote,

Ab =
{
x ∈ Rd s.t. d∞ (x,A) ≤ b

}
with

d∞ (x,A) = inf
y∈A

||x− y||∞.
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(a) A true cycle not captured by
cubical approximation

(b) A false cycle created by cubical
approximation

Figure 6: λ−sublevel cubical approximation for f the function defined as 0 on the hatched area and
K outside (for arbitrarily large K). (a) display a case where the histogram approximation fails to
capture true cycle in green, for, at least, all 0 < λ < K/2. (b) displays a case where the histogram
approximation create a cycle in red, not corresponding to any true cycle, with an arbitrarily long
lifetime.

Step 1 : rough sublevel sets estimation. Let h > 0 such that 1/h is an integer, consider Gh
the regular orthogonal grid over [0, 1]d of step h and Ch the collection of all the hypercubes of side
h composing Gh. Let r1 > 0, we define, ∀λ ∈ R, the "rough" λ−sublevel estimator,

F̂λ =

 ⋃
H∈Ch,λ

H

⌈r1⌉h

with Ch,λ =

{
H ∈ Ch such that

∫
H
dX −

∫
H
λ ≤ 0

}

with ⌈.⌉ the ceiling function. This thickening of the sublevel sets obtained by histogram estimation
of f aims to solve the problem exposed in Figure 6.a. The choice of r0 follows from Lemma 2 (see
also the proof of Proposition 1)

Step 2 : construction of the image persistence module and associated diagram. Let,
r2 > 0 and,

ρλ : Hs

(
F̂λ
)
→ Hs

(
F̂⌈r2⌉h
λ

)
the map induced by the inclusion F̂λ ⊂ F̂⌈r2⌉h

λ . For all λ < λ
′ , we have F̂λ ⊂ F̂λ′ and F̂⌈r2⌉h

λ ⊂
F̂⌈r2⌉h
λ′

. Then denote,

v̂λ
′

λ : Hs

(
F̂⌈r2⌉h
λ

)
→ Hs

(
F̂⌈r2⌉h
λ′

)
the map induced by the inclusion. F̂⌈r2⌉h

λ ⊂ F̂⌈r2⌉h
λ′

. Note that the following diagram commutes (all
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maps are induced by inclusions),

Hs

(
F̂λ
)

Hs

(
F̂λ′
)

Hs

(
F̂⌈r2⌉h
λ

)
Hs

(
F̂⌈r2⌉h
λ′

)
ρλ ρ

λ
′

v̂λ
′

λ

Thus for all λ < λ
′ ,

v̂λ
′

λ,h (Im(ρλ)) ⊂ Im(ρλ′ ).

We now introduce V̂f,s the persistence module associated to (Im(ρλ))λ∈R equipped with the collec-
tion of maps (v̂λ

′

λ,h)λ<λ′ for the s-th order homology, ̂dgms(f) the associated persistence diagram,

and d̂gm(f) the collection of such persistence diagrams for all s ∈ N. This diagram is well-defined,
as we prove in Appendix A that V̂f,s is q−tame. This second step aims to solve the problem exposed
in Figure 6.b.

Calibration. A natural question is how to choose the parameters h, r1 and r2. Lemma 2 from
Henneuse (2024) (see also Section 3.2) suggests that a good choice is taking h such that,

hd+α√
hd log

(
1 + 1

hd

) > θ (1)

which implies that we can take,

h ≃
(
θ2 log

(
1

θ

)) 1
d+2α

.

Lemma 2 (see also the proof of Proposition 1) suggests taking,

r1 =
√
d/µ

and Proposition 2 suggests taking,

r2 =
√
d(1 + 2/µ2)(

√
d+ ⌈r1⌉).

Computation. By construction, for all λ ∈ R, F̂λ and F̂⌈r2⌉h
λ are simply unions of cubes from

the regular grid Gh, thus can be thought as (geometric realization of) cubical complexes or even
simplicial complexes. Hence, the computation of d̂gm(f) is made possible by the algorithm for
image persistence gave in Cohen-Steiner et al. (2009).

Another strategy, would be to consider,

F̂λ = B2

 ⋃
H∈Ch,λ

cH , r1h


with cH the center of the hypercube H and V̂f,s, the image module induced by,

ρλ : Hs

(
F̂λ
)
→ Hs

(
B2

(
F̂λ, r2h

))
.
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One can show, adapting the proofs of Section 3, that the subsequent estimator achieve the same
convergence rates (up to slight change in constant). As F̂λ and B2

(
F̂λ, r2h

)
are union of Euclidean

balls, they can be replaced by Čech complexes. To justify properly that it lead to the same estimated
persistence diagram, one can adapt the "parameter nerve theorem" (Lemma 3.4) from Chazal and
Oudot (2008). Again, the computation of this persistence diagram is then made possible by the
algorithm provided in Cohen-Steiner et al. (2009).

3 Convergence results

This section is dedicated to the proof of Theorem 1.

3.1 Main proof

The idea of proof follows similarly to the proof for upper bounds in Henneuse (2024). The general
idea is to construct an interleaving between the module Vf,s and V̂f,s and apply the algebraic stabil-
ity theorem. This implies to construct two morphism, ψ : Vf,s → V̂f,s and ϕ : V̂f,s → Vf,s satisfying
definition 5. Propositions 1 and 2 give the necessary ingredients.

We recall some useful notations from Henneuse (2024). Let,

||W ||G(h) = sup
H∈Ch

|W (H)|
ω(hd)

with ω(r) =
√
r log(1 + 1/r), W (H) =

∫
H dW .

Proposition 1. Let f ∈ Sd (L,α, µ,Rµ), h ≃
(
θ2 log

(
1
θ

)) 1
d+2α and r1 =

√
d/µ. For θ sufficiently

small such that h < Rµ/
√
d, we have, for all λ ∈ R,

Fλ−(||W ||G(h)+L(⌈
√
d/µ⌉+

√
d)

α
)hα ⊂ F̂λ ⊂ F (

√
d+⌈

√
d/µ⌉)h

λ+||W ||G(h)h
α .

The proof of Proposition 1 can be found in Section 3.2. The lower inclusion given by this proposition
induced directly a morphism from Vf,s to V̂f,s, this will be our ψ. But the upper inclusion is not
sufficient to induce a converse morphism, the construction of ϕ require additional work. To be
able to use this upper inclusion, we need a map from the homology groups of (Fh

λ )λ∈R, h > 0 into
the homology groups of (Fλ)λ∈R. Proposition 2 provides such a map, exploiting the geometrical
properties of the discontinuities set imposed by Assumption A3 to construct a deformation retract.

Definition 9. A subspace A of X is called a deformation retract of X if there is a continuous
F : X × [0, 1] → X (called a homotopy) such that for all x ∈ X and a ∈ A,

• F (x, 0) = x

• F (x, 1) ∈ A

• F (a, 1) = a.

The function F is called a deformation retraction from X to A.

Homotopy, and thus homology, is invariant under deformation retract. Thus, a deformation retrac-
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tion from X to A induces isomorphism between homology groups. More precisely, for all t ∈ [0, 1],
F (., t) induces a morphism F (., t)# : Cs(X) → CS(X) between s−cycles of X defined by composing
each singular s-simplex σ : ∆s → X with F (., t) to get a singular s-simplex F#(σ, t) = F (., t) ◦ σ :
∆s → A, then extending F#(., t) linearly via F# (

∑
i niσi, t) =

∑
i niF

# (σi, t) =
∑

i niF (., t) ◦ σi.
Then, F ∗(., t) : Hs(X) → HS(X) defined by [C] 7→ [F#(C, t)] can be shown to be an isomorphism
for all t ∈ [0, 1] (see Hatcher, 2000, pages 110-113). In particular, F ∗(., 1) : Hs(X) → Hs(A) is an
isomorphism.

Proposition 2. For all 0 < h <
Rµ

2 and all λ ∈ R there exists Gλ,h,Kλ,h and Fλ,h : Kλ,h × [0, 1] →
Kλ,h such that,

• Fλ ⊂ Gλ,h ⊂ Fλ+L(8(1+2/µ2))αhα

• B2(Fλ, h) ⊂ Kλ,h ⊂ B2(Fλ, (1 + 2/µ2)h)

• Fλ,h is a deformation retraction of Kλ,h onto Gλ,h

• for all x ∈ Kλ,h and all t ∈ [0, 1], Fλ,h(x, t) ∈ B2

(
x, 2d⋃

i∈{1,...,l} ∂Mi
(x)/µ2

)
.

The proof of Proposition 2 can be found in Section 3.3. Using the inclusion Fh
λ ⊂ B2(Fλ, h) ⊂ Kλ,h,

Gλ,h ⊂ Fλ+L(8(1+2/µ2))αhα and the homology map induced by the retraction of Kλ,
√
dh onto Gλ,√dh

we get the desired maps from the homology groups of (Fh
λ )λ∈R (for all Rµ > h > 0) into the

homology groups of (Fλ)λ∈R. Combine with the upper inclusion of Proposition 1, we have all the
necessary ingredients to construct ϕ and prove Theorem 1.

Theorem 1. Let h ≃
(
θ2 log

(
1
θ

)) 1
d+2α , r1 =

√
d/µ and r2 =

√
d(1+2/µ2)(

√
d+ ⌈r1⌉). There exists

C̃0 and C̃1 such that, for all t > 0,

P

(
sup

f∈Sd(L,α,µ,Rµ)
db

(
d̂gm(f),dgm(f)

)
≥ t

(
θ2 log

(
1

θ

)) α
d+2α

)
≤ C̃0 exp

(
−C̃1t

2
)
.

Proof. It suffices to show the result for (arbitrarily) small θ (up to rescaling C̃0). Hence, we suppose
that θ is sufficiently small for the application of Propositions 1 and 2 used in this proof.

Denote k1 =
√
d+ ⌈r1⌉ and define the morphism,

ψλ : Hs (Fλ) → Hs

(
F̂λ+(||W ||G(h)+Lk

α
1 )h

α

)
following from the inclusion Fλ ⊂ F̂λ+(||W ||G(h)+Lk

α
1 )h

α given by Proposition 1.

For the second morphism, denote k2 = k1 + ⌈r2⌉ and consider,

j1,λ : Im (ρλ) → Hs

(
Kλ+||W ||G(h)h

α,k2h

)
the map induced by the inclusion F̂⌈r2⌉h

λ h ⊂ Fk2h
λ+||W ||G(h)h

α ⊂ Kλ+||W ||G(h)h
α,k2h given by Proposition

1 and Proposition 2,

j2,λ : Hs

(
Kλ+||W ||G(h)h

α,k2h

)
→ Hs

(
Gλ+||W ||G(h)h

α,k2h

)
12



induced by the deformation retract of Proposition 2, and,

j3,λ : Hs

(
Gλ+||W ||G(h)h

α,k2h

)
→ Hs

(
Fλ+(||W ||G(h)+L(8(1+2/µ2)k2)

α)h

)
induced by the inclusion Gλ+||W ||G(h)h

α,k2h ⊂ Fλ+(||W ||G(h)+L(8(1+2/µ2)k2)
α)h given by Proposition 2.

We then define, {
ϕλ : Im (ρλ) → H2

(
Fλ+(||W ||G(h)+L(8(1+2/µ2)k2)

α)h

)
ϕλ = j3,λ ◦ j2,λ ◦ j1,λ

We now show that ψ and ϕ induce an interleaving between V̂f,s and Vs,f . More precisely, we show
that the following diagrams commute, for all λ < λ

′ . For compactness of notations, we denote
K1 = ||W ||G(h) + Lkα1 and K2 = ||W ||G(h) + L

(
8(1 + 2/µ2)k2

)α.

Im (ρλ) Im
(
ρλ′
)

Hs (Fλ+K2hα) Hs

(
Fλ′+K2hα

)ϕλ

v̂λ
′

λ

ϕ
λ
′

v
λ
′
+K2h

α

λ+K2h
α

(2)

Hs (Fλ) Hs

(
Fλ′
)

Im (ρλ+K1hα) Im
(
ρλ′+K1hα

)ψλ

vλ
′

λ

ψ
λ
′

v̂
λ
′
+K1h

α

λ+K1h
α

(3)

Im (ρλ) Im
(
ρλ+(K1+K2)hα

)

Hs (Fλ+K2hα)

ϕλ ψλ+K2h
α

v̂
λ+(K1+K2)h

α

λ

(4)

Hs (Fλ) Hs

(
Fλ+(K1+K2)hα

)

Im (ρλ+K1hα)

v
λ+(K1+K2)h

α

λ

ψλ
ϕλ+K1h

α (5)

• Diagram 2 : We can rewrite the diagram as (unspecified maps are simply induced by set

13



inclusion),
Im (ρλ) Im

(
ρλ′
)

Hs

(
Kλ+||W ||G(h)h

α,k2h

)
Hs

(
Kλ′+||W ||G(h)h

α,k2h

)

Hs

(
Gλ+||W ||G(h)h

α,k2h

)
Hs

(
Gλ′+||W ||G(h)h

α,k2h

)

Hs (Fλ+K2hα) Hs

(
Fλ′+K2hα

)

j
2,λ

′j2,λ

By inclusions the upper and lower faces commutes and the central faces commutes as for all
λ ∈ R, j2,λ comes from a deformation retract, thus the diagram is commutative.

• Diagram 3: One can check that it can be decomposed as diagram 2 and thus the same
reasoning applies.

• Diagram 4: Let [C] ∈ Im (ρλ). By construction, we can suppose C ∈ Cs(F̂λ). The map ϕλ
maps [C] to [C

′
] with,

C
′
= F#

λ+||W ||G(h)h
α,k2h

(C, 1).

Combining the upper inclusion of Proposition 1 and the last assertion of Proposition 2, we
know that, for all x ∈ F̂λ,

Fλ+||W ||G(h)h
α,k2h(x, [0, 1]) ⊂ F̂⌈r2⌉h

λ+(K1+K2)hα

and thus,
F#
λ+||W ||G(h)h

α,k2h
(C, [0, 1]) ⊂ Cs

(
F̂⌈r2⌉h
λ+(K1+K2)hα

)
.

Thus, C and C ′ are homologous in F̂⌈r2⌉h
λ+(K1+K2)hα

. As ψλ+K1hα is simply an inclusion map, it
maps [C ′

] to [C
′
], and hence, [C] = [C

′
] = ψλ+K2hα

(
ϕλ ([C])

)
, which proves the commutativ-

ity.

• Diagram 5: Let C ∈ Cs (Fλ), ψλ([C]) = [C] as it is simply an inclusion induced map. By
Proposition 2, we have Fλ ⊂ Gλ,h, thus,

ϕλ+K1
([C]) =

[
F#
λ+(K1+||W ||G(h))h

α,k2h
(C, 1)

]
= [C]

which establish the commutativity.

The commutativity of diagrams 2,3,4 and 5 means that V̂f,s and Vf,s are (K1 +K2)h
α interleaved,

and thus we get from the algebraic stability theorem (Chazal et al., 2009a) that,

db

(
dgm

(
V̂f,s

)
,dgm (Vf,s)

)
≤ (K1 +K2)h

α

and as it holds for all s ∈ N and f ∈ Sd(L,α, µ,Rµ),

sup
f∈Sd(L,α,µ,Rµ)

db

(
d̂gm(f),dgm(f)

)
≤ (K1 +K2)h

α.

14



We then conclude, using the concentration of ||W ||G(h). From Lemma 4 of Henneuse (2024), we
know that there exist two constant C0 and C1 (depending only on d and α) such that,

P
(
||W ||G(h) ≤ t

)
≤ C0 exp

(
−C1t

2
)
.

Then,

P

(
sup

f∈Sd(L,α,µ,Rµ)
db

(
d̂gm(f), dgm(f)

)
≥ th

)
≤ P (K1 +K2 ≥ t)

= P

(
||W ||G(h) ≥

t− L
(
kα1 +

(
8(1 + 2/µ2)k2

)α)
2

)

≤ C0 exp

−C1

(
t− L

(
kα1 +

(
8(1 + 2/µ2)k2

)α)
2

)2


≤ C0 exp

(
−C1

4
t2
)
exp

(
C1L

(
kα1 +

(
8(1 + 2/µ2)k2

)α)
t
)

× exp

−C1

(
L
(
kα1 +

(
8(1 + 2/µ2)k2

)α)
2

)2


and the result follows.

From this result, we can derive from this result bounds in expectation.

Corollary 1. Let p ≥ 1,

sup
f∈Sd(L,α,µ,Rµ)

E
(
db

(
d̂gm(f), dgm(f)

)p)
≲

(
θ2 log

(
1

θ

)) pα
d+2α

Proof. The sub-Gaussian concentration provided by Theorem 1, gives that, for all t > 0,

P

db
(
d̂gm(f),dgm(f)

)
hα

≥ t

 ≤ C̃0 exp
(
−C̃1t

2
)
.

Now, we have,

E

db
(
d̂gm(f),dgm(f)

)p
hpα


=

∫ +∞

0
P

db
(
d̂gm(f), dgm(f)

)p
hpα

≥ t

 dt

≤
∫ +∞

0
C̃0 exp

(
−C̃1t

2/p
)
dt < +∞.
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3.2 Proof of Proposition 1

This section is dedicated to the proof of Proposition 1. It relies on Lemma 2 (stated in Section 1)
and on the following lemma from Henneuse (2024).

Lemma 3. (Henneuse, 2024, Lemma 2) Let f : [0, 1]d → R and h > 0 verifying (1). Let H ⊂
Fc
λ+||W ||G(h)h

α ∩ Ch and H ′ ⊂ Fλ−||W ||G(h)h
α ∩ Ch. We then have that,∫

H
dX −

∫
H
λ > 0 and

∫
H′
dX −

∫
H
λ < 0.

Proof. Let consider here the case where in H ′ ⊂ Fλ−∥W∥G(h)h
α (The proof being the same in both

cases). Note that, ∫
H′
dX −

∫
H′
λ

=

∫
H′
(f − λ) + θ

∫
H′
dW

≤ −∥W∥cube ,hh
α
∣∣H ′∣∣+ ∥W∥cube ,hθω

(
hd
)

≤ ∥W∥cube ,h

(
−hd+α + θω

(
hd
))

< 0

by the choice made for h.

Proof of Proposition 1. We begin by proving the lower inclusion, let x ∈ Fλ−(||W ||G(h)+L(⌈
√
d/µ⌉+

√
d)

α
)hα .

Without loss of generality, let suppose x ∈M i. If,

B2

(
x,

√
dh
)
⊂

(
l⋃

i=1

∂Mi

)c

then, Hx,h, the hypercube of Ch,λ containing x is included in M i. Assumption A1 and A2 then
give Hx,h ⊂ Fλ−||W ||G(h)h

α . Hence, it follows from Lemma 3 that Hx,h ∈ Ch,λ and consequently
x ∈ F̂λ. Else, by Lemma 2 (which we can apply thanks to Lemma 1 and Assumption A3), there
exists,

y ∈

( l⋃
i=1

∂Mi

)√
dh

c

∩Mi such that ||x− y||2 ≤
√
dh/µ.

Let Hy,h the closed hypercube of Ch containing y. Hence, Hy,h ⊂Mi. and dHy,h
(x) ≤

√
dh(1+1/µ).

Then, Assumption A1 and A2 ensure that,

Hy,h ⊂ Fλ−||W ||G(h)h
α .

Then, Lemma 3 givesHy,h ∈ Ch,λ and thus, as x ∈ H
√
dh/µ

y,h , x ∈ F̂λ, which proves the lower inclusion.

For the upper inclusion, let x ∈
(
F

√
dh

λ+||W ||G(h)h
α

)c
, and Hx,h the hypercube of Ch containing x.

We then have, Hx,h ⊂ Fc
λ+||W ||G(h)h

α . Hence, Lemma 3 gives that,

Hx,h ⊂

 ⋃
H∈Ch,λ

H

c
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and thus, ⋃
H∈Ch,λ

H ⊂ F
√
dh

λ+||W ||G(h)h
α .

Consequently,  ⋃
H∈Ch,λ

H

⌈
√
d/µ⌉h

= F̂λ ⊂ F (
√
d+⌈

√
d/µ⌉)h

λ+||W ||G(h)h
α

and the proof is complete.

3.3 Proof of Proposition 2

To construct the desired deformation retract, we follow the idea of proof of Proposition 2 in Hen-
neuse (2024). In the proof of this proposition, the deformation retract involved the projection on
the discontinuities set. Under the positive reach assumption on sufficiently small neighborhoods of
the discontinuities set, the closest point is unique. Here, we do not have such a nice property. To
overcome this issue, inspired by the proof of Theorem 12 from Kim et al. (2020), we construct a
smooth flow from the generalized gradient of the discontinuities set, that essentially play the same
role as the projection in the positive reach case.

Let h < Rµ/2 and x ∈ B2(Fλ, 2(1 + 2/µ2)h) ∩B2(
⋃l
i=1 ∂Mi, h). We denote,

Ix =
{
i ∈ {1, ..., l} s.t B2

(
x, 4(1 + 2/µ2)h

)
∩Mi ∩ Fλ ̸= ∅

}
.

For all x ∈ B2(Fλ, 2(1 + 2/µ2)h) ∩ B2(
⋃l
i=1 ∂Mi, h) \

⋃l
i=1 ∂Mi, note that Ix ̸= ∅. By assumption

A3 there exist v(x) ∈ Cx, verifying, for all i ∈ {1, ..., l} such that x ∈ B2(∂Mi, Rµ), and for all
y ∈ Γ∂Mi

(x),
cos((v(x)− x, y − x)) ≥ µ. (6)

We then define the following vector field,

W (x) =
v(x)− x

||v(x)− x||2
.

Unfortunately, this field is not continuous, and thus we cannot derive a continuous flow from it. The
idea is then to approximate it by a continuous field W that shares essentially the same dynamic.
To do so, W needs to be not too wild, which is ensured by the following lemmas.

Lemma 4. For all x ∈ B2(Fλ, 2(1 + 2/µ2)h) ∩ B2(
⋃l
i=1 ∂Mi, h) \

⋃l
i=1 ∂Mi, there exists Ux a

neighborhood of x, such that for all y ∈ Ux,

Ix ⊂ Iy.

Proof. For all i ∈ Ix, there exists εi > 0 such that,

dMi∩Fλ
(x) ≤ 4(1 + 2/µ2)h− εi.

Let 0 < ε < mini∈Ix(εi)/2 and y ∈ B2(x, ε), for all i ∈ Ix, we have,

dMi∩Fλ
(y) ≤ 4(1 + 2/µ2)h− εi + ε ≤ 4(1 + 2/µ2)h− ε.

Thus, Ix ⊂ Iy.
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Lemma 5. For all x ∈ B2(Fλ, 2(1 + h/µ) ∩ B2(
⋃l
i=1 ∂Mi, h) \

⋃l
i=1 ∂Mi there exists Vx a neigh-

borhood of x such that for all y ∈ Vx,

⟨W (x),−∇∪i∈Iy∂Mi
(y)⟩ ≥ µ2/2.

Proof. Let I ⊂ {1, ..., l}, consider a sequence (yn)n∈N in [0, 1]d converging to x and take zn ∈
Γ∪i∈I∂Mi

(yn). The sequence (zn)n∈N take its value in the compact [0, 1]d, hence up to extracting
a subsequence we can suppose it converges, we denote z its limit. By continuity of the distance
function we got lim

n→∞
d2(zn, x) = d2(z, x) and lim

n→∞
d2(zn, x) = d∪i∈I∂Mi

(x). Thus, z ∈ Γ∪i∈I∂Mi
(x).

Consequently, as there is of finite number of different I, for all ε > 0, there exists Vx ⊂ B2(x, h) a
neighborhood of x such that, for all y ∈ Vx,

Γ∪i∈Iy∂Mi
(y) ⊂ B2(Γ∪i∈Iy∂Mi

(x), ε).

Thus, let ε > 0, for all z ∈ Γ∪i∈Iy∂Mi
(y) there exists z̄ ∈ Γ∪i∈Iy∂Mi

(x) such that ||y−z−(x−z̄)|| ≤ 2ε.
As for all y ∈ B2(x, h), and i ∈ Iy, x ∈ B2(∂Mi, 2h) ⊂ B2(∂Mi, Rµ), we have by (6),〈

z − y

||z − y||
,
v(x)− x

||v(x)− x||

〉
≥
〈

z̄ − x

||z̄ − x||
,
v(x)− x

||v(x)− x||

〉
−
∥∥∥∥ z − y

||z − y||
− z̄ − x

||z̄ − x||

∥∥∥∥
2

= cos (z − y, v(x)− x)−
∥∥∥∥ z − y

||z − y||
− z̄ − x

||z̄ − x||

∥∥∥∥
2

≥ µ− ||y − z − (x− z̄)||
d∪i∈Iy∂Mi

(x)
− ||z − x||

∣∣∣d∪i∈Iy∂Mi
(x)− d∪i∈Iy∂Mi

(y)
∣∣∣

≥ µ− 2 +
√
d

d∪i∈Iy∂Mi
(x)

ε

≥ µ− 2 +
√
d

min
I⊂{1,...,l}

d∪i∈I∂Mi
(x)

ε

Taking ε > 0 sufficiently small we have, for all y ∈ Vx and z ∈ Γ∪i∈Iy∂Mi
(y),〈

z − y

||z − y||
,
v(x)− x

||v(x)− x||

〉
≥ µ/2.

and hence,

Cy ⊂
{
u− y with u ∈ [0, 1]d s.t

〈
u− y

||u− y||
,
v(x)− x

||v(x)− x||

〉
≥ µ/2

}
.

By definition, ∇∪i∈Iy∂Mi
(y) belongs to the cone Cy. Consequently, as

∥∥∥∇∪i∈Iy∂Mi
(y)
∥∥∥
2
≥ µ by

Assumption A3 and Lemma 1, we have,

〈
W (x),−∇∪i∈Iy∂Mi

(y)
〉
=

〈
W (x),−

∇∪i∈Iy∂Mi
(y)∥∥∥∇∪i∈Iy∂Mi
(y)
∥∥∥
2

〉∥∥∥∇∪i∈Iy∂Mi
(y)
∥∥∥
2
≥ µ2/2.

With this two lemmas we can now prove Proposition 2.
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Proof of Proposition 2. Let Wx = Ux∩Vx and extract a locally finite open cover {Wxj , j ∈ N} from

{Wx, x ∈ B2(Fλ, 2(1+2/µ2)h)∩B2(
⋃l
i=1 ∂Mi, h) \

l⋃
i=1

∂Mi}. Let {ρj , j ∈ N} an associated smooth

partition of unity, and define the C∞ vector field,

W =
∑
j∈N

ρjW (xj).

By the fundamental theorem of flow (see e.g. Kim et al., 2020, Theorem 25), there exists a maximal
open domain,

D ⊂ B2(Fλ, 2(1 + 2/µ2)h) ∩B2

(
l⋃

i=1

∂Mi, h

)
\

l⋃
i=1

∂Mi × [0,+∞[

and a unique smooth flow,

C : D → B2(Fλ, 2(1 + 2/µ2)h) ∩B2

(
l⋃

i=1

∂Mi, h

)
\

l⋃
i=1

∂Mi.

verifying d
dtC(x, t) =W (C(x, t)). Let (x, s) ∈ D, by Lemma 4 and continuity of C, for t sufficiently

small IC(x,s) ⊂ IC(x,s+t). Hence, from Lemma 5, it follows that,

lim
t→0

d⋃
i∈IC(x,s+t)∂Mi

(C(x, s+ t))− d⋃
i∈IC(x,s)∂Mi

(C(x, s))

t

≤ lim
t→0

d⋃
i∈IC(x,s)∂Mi

(C(x, s+ t))− d⋃
i∈IC(x,s)∂Mi

(C(x, s))

t

=

〈
∇⋃

i∈IC(x,s)∂Mi
(C(x, s)),W (C(x, s)),

〉
=
∑
j∈N

ρj(C(x, s))

〈
∇⋃

i∈IC(x,s)∂Mi
(C(x, s)),W (xj),

〉
≤ −µ2/2.

Let x ∈ B2(Fλ, h) ∩B2(
⋃l
i=1 ∂Mi, h) \

l⋃
i=1

∂Mi and s ∈ [0,+∞[ such that (x, s) ∈ D, the foregoing

implies,
d⋃

i∈IC(x,s)∂Mi
(C(x, s)) ≤ d⋃

i∈Ix∂Mi
(x)− sµ2/2 (7)

Let sx = sup {s ∈ [0,∞[ s.t. (x, s) ∈ D}, by (7), for such x,

sx ≤ 2d⋃
i∈{1,...,l} ∂Mi

(x)/µ2 ≤ 2h/µ2.

Denote dC the arc length distance along C, as ||W (x)|| ≤ 1, we then have,

dC(x,C(x, sx)) =

∫ sx

0

∣∣∣∣ ∂∂tC(x, t)
∣∣∣∣ dt

≤
∫ sx

0
||W (C(x, t)||2dt
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≤ sx ≤ 2d⋃
i∈{1,...,l} ∂Mi

(x)/µ2 ≤ 2h

µ2
. (8)

Thus ||x− C(x, sx)||2 ≤ 2d⋃
i∈{1,...,l} ∂Mi

(x)/µ2 ≤ 2h/µ2. Now, If C(x, sx) /∈
⋃
s∈[0,sx[

⋃
i∈IC(x,t)

∂Mi

then C(x, sx) ∈ B2(Fλ, (1 + 2/µ2)h) ∩ B2(
⋃l
i=1 ∂Mi, Rµ) \

l⋃
i=1

∂Mi and by (7) the flow can be

extended which contradicts the definition of sx. Thus,

C(x, sx) ∈
⋃

s∈[0,sx[

⋃
i∈IC(x,t)

∂Mi.

From the foregoing we can extend continuously C(x, .) on [0,+∞[, taking C(x, s) = C(x, sx) for all
s > sx.

Now, let

Kλ,h := B2(Fλ, h) ∪

 ⋃
x∈Sλ,h

{C(x, t), t ∈ [0, sx]}


with

Sλ,h =

(
l⋃

i=1

B2 (Fλ ∩Mi, h) ∩Mi

)c
∩B2(Fλ, h).

Using C we then define the following retract : if

x ∈
⋃

x∈Sλ,h

{C(x, t), t ∈ [0, sx]} ∩Mi (9)

and
dMi∩Fλ+Lhα

(C(x, sx)) ≥ 4h/µ2 − dC(C(x, sx), x) (10)

then,
Fλ,h(x, t) = C (x, ts̃x)

with s̃x verifying,

dC(C(x, sx), C(x, s̃x)) =
(
4h/µ2 − dMi∩Fλ+Lhα

(C(x, sx))
)
+
.

Else,
Fλ,h(x, t) = x.

Let Gλ,h = Im (x 7→ Fλ,h(x, 1)). Then, by definition, Fλ,h(x, 1) ∈ Gλ,h, for all x ∈ Kλ,h. As
C(x, 0) = x then Fλ,h(x, 0) = x, for all x ∈ Kλ,h. Remark that, for all x verifying (9) and (10),

dC(C(C(x, s̃x), sC(x,s̃x)), C(C(x, s̃x), s̃C(x,s̃x))) =
(
4h/µ2 − dMi∩Fλ+Lhα

(
C(C(x, s̃x), sC(x,s̃x))

))
+

=
(
4h/µ2 − dMi∩Fλ+Lhα

(C(x, sx))
)
+

=dC(C(x, sx), C(x, s̃x))

and

dC(C(C(x, s̃x), sC(x,s̃x)), C(C(x, s̃x), s̃C(x,s̃x))) =dC(C(x, sx), C(x, s̃x + s̃C(x,s̃x))).
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Hence, dC(C(x, sx), C(x, s̃x+s̃C(x,s̃x))) = dC(C(x, sx), C(x, s̃x)). If s̃x < sx then
∥∥ d
dtC(x, s̃x + t)

∥∥ >
0 and thus s̃C(x,s̃x) = 0. In this case, we then have,

C(C(x, s̃x), s̃C(x,s̃x)) = C(x, s̃x).

In the case where s̃x = sx, directly, we have,

C(C(x, sx), s̃C(x,s̃x)) = C(x, sx + s̃C(x,s̃x)) = C(x, sx).

It follows, by construction of Fλ,h, that Fλ,h(x, 1) = x, for all x ∈ Gλ,h. The proof for the continuity
of Fλ,h can be found in Appendix B. Hence, Fλ,h is a deformation retract onto Gλ,h. Furthermore,
by (8), we have, for all x ∈ Kλ,h and all t ∈ [0, 1],

Fλ,h(x, t) ∈ B2(x, 2d⋃
i∈{1,...,l} ∂Mi

(x)/µ) ⊂ B2(x, 2h/µ
2)).

Let’s now prove that Gλ,h ⊂ Fλ+L(8(1+2/µ2))αhα . Suppose that x ∈ M i ∩ Kα,h and let’s look at the
following different cases.

• If x /∈
⋃
x∈Sλ,h

{C(x, t), t ∈ [0, sx]}∩Mi, then directly Fλ,h(x, 1) = x ∈ Fλ+Lhα , by Assump-
tions A1 and A2.

• If x ∈
⋃
x∈Sλ,h

{C(x, t), t ∈ [0, sx]} ∩ Mi and dFλ+Lhα∩Mi (C(x, sx)) ≤ 4h/µ2, then, as
Fλ,h(x, 1) ∈ {C(x, t), t ∈ [0, sx]}, Fλ,h(x, 1) ∈M i and,

dFλ+Lhα∩Mi (Fλ,h(x, 1)) ≤
4h

µ2
+ ||x− C(x, sx)||2 ≤

6h

µ2
.

By Assumptions A1 and A2, it then follows that Fλ,h(x, 1) ∈ Fλ+L(1+6/µ2)αhα .

• Else, Fλ,h(x, 1) = C(x, sx) ∈
⋃
s∈[0,sx[

⋃
i∈IC(x,t)

∂Mi. Suppose that C(x, sx) ∈ ∂Mi, i ∈⋃
s∈[0,sx[ IC(x,t), thus there exist s ∈ [0, sx[ such that C(x, s) ∩ B2(Fλ, 4(1 + 2/µ2) ∩Mj ̸= ∅.

Hence, we have,

dMi∩Fλ
(C(x, sx)) ≤ 4(1 + 2/µ2) + ∥C(x, sx)− C(x, s)∥

≤ 4(1 + 2/µ2) + ∥C(x, sx)− x∥
≤ 4(1 + 2/µ2) + 2h/µ2.

By Assumptions A1 and A2, it then follows that Fλ,h(x, 1) ∈ Fλ+L(4(1+2/µ2)+2h/µ2)αhα .

Hence, in all cases we have Fλ,h(x, 1) ∈ Fλ+L(8(1+2/µ2))αhα and the result is proved.

4 Discussion

In this work, we extend main results of Henneuse (2024), relaxing the positive reach condition over
the discontinuities into A3. It allows considering signals with pretty wild discontinuities, for ex-
amples, exhibiting multiple points or (arbitrarily narrow) corners, cases that were excluded by the
positive reach assumption. Once again, the convergence rates obtained here coincides with the ones
known for Hölder-continuous signals. This means that there is (constant-wise) no additional cost
to tackle such irregular signals. This highlights the robustness to signal irregularity of the persis-
tence diagram inference and the interest of breaking free from analysis relying on sup norm stability.
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A main difference with this previous work, is that under our relaxed conditions, a histogram plug-in
estimator fails to converge consistently to the true persistence diagram. Consequently, we had to
depart from usual plug-in approaches and propose a new estimator based on image module. This
highlights the appeal of non-plug-in methods in TDA.

Similarly to what is done in Appendix C of Henneuse (2024), one can extend the method and
results obtained here in the setting of non-parametric regression. Motivated by applications to
modes detection, we are also interested in extension to the density model, which will be the object
of forthcoming works.

A practical limitation of the proposed method is that it require some knowledge on the param-
eters α to calibrate h and on µ to calibrate r1 and r2. The dependence on α can be handled (while
preserving the convergence rates), as in Section 2.4 of Henneuse (2024), via the Lespki’s method
(Lepskii, 1991, 1992). The dependence on µ is more problematic but rather common in homol-
ogy/homotopy inference. Exploring methodologies to develop adaptive procedures requires further
dedicated research.

Also, from a computational perspective (and in order to perform a numerical evaluation of this
method), an important step forward would be to provide an efficient algorithm to compute the
image persistence for general filtrations. This would permit to compare this method to plug-in ap-
proach, specifically to the histogram estimator. While Bauer and Schmahl (2022) offers an efficient
such algorithm, it is tailored for Rips complexes, complicating its direct application to our context.
In particular, this would permit to investigate practical selection of the parameters h, r1 and r2.
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A Proof for q-tameness

This section is devoted to prove the claim that the persistence diagrams we consider and esti-
mated persistence diagrams we propose are well-defined, by proving that the underlying persistence
modules are q−tame.

Lemma 6. Let f ∈ Sd(L,α, µ,Rµ). ∀s ∈ N, ∀h < Rµ

2 , there exist a morphism ϕ such that, ∀λ ∈ R,

Hs (Fλ) Hs

(
Fλ+L(8(1+2/µ2))αhα

)
Hs

(
Fh
λ

) ϕλ

(11)

is a commutative diagram (unspecified map come from set inclusions).

Proof. Let ϕ̃λ : Hs (Kλ,h) → Hs (Gλ,h) the morphism associated to the deformation retract from
Proposition 2. We also denote i1,λ : Hs

(
Fh
λ

)
→ Hs (Kλ,h) the morphism induced by the inclusion

Fh
λ ⊂ Kλ,h and i2,λ : Hs (Gλ,h) → Hs

(
Fλ+L(8(1+2/µ2))αhα

)
the morphism induced by the inclusion

Gλ,h ⊂ Fλ+L(8(1+2/µ2))αhα , also provided by Proposition 2. We take ϕλ = i2,λ ◦ ϕ̃λ ◦ i1,λ. Diagram
11 then is (unspecified maps are the one induced by set inclusion),

Hs (Fλ) Hs

(
Fλ+L(8(1+2/µ2))αhα

)
(F1) (F2) (F3)

Hs

(
Fh
λ

)
Hs (Kλ,h) Hs (Gλ,h)i1,λ

i2,λ

ϕ̃λ

(12)

Faces (F1) and (F3) simply commute by inclusion. Face (F2) commutes as ϕ̃λ is an isomorphism.
All faces of diagram 12 are commutative, hence diagram 12 (and equivalently diagram 11) is com-
mutative.

Proposition 3. Let f ∈ Sd(L,α, µ,Rµ) then f is q-tame.

Proof. Let s ∈ N and Vs,f the persistence module (for the s−th homology) associated to the sublevel
filtration, F and for fixed levels λ < λ

′ let denote vλ
′

λ the associated map. Let λ ∈ R and h < Rµ/2.

By Lemma 6, v
λ+L(8(1+2/µ2))

α
hα

λ = ϕλ ◦ ĩλ, with ĩλ : Hs (Fλ) → Hs

(
Fh
λ

)
. By assumption A1

24



and A2, Fλ is compact. As [0, 1]d is triangulable, Fλ is covered by finitely many cells of the
triangulation, and so there is a finite simplicial complex K such that Fλ ⊂ K ⊂ Fh

λ . Consequently,
ĩλ factors through the finite dimensional space Hs(K) and is then of finite rank by Theorem 1.1 of

Crawley-Boevey (2012). Thus, v
λ+L(8(1+2/µ2))

α
hα

λ is of finite rank for all 0 < h < R
2 . As for any

λ < λ
′
< λ

′′ , vλ
′′

λ = vλ
′′

λ′
◦ vλ

′

λ we then have that vλ
′

λ is of finite rank for all λ < λ
′ . Hence, f is

q-tame.

Proposition 4. Let f ∈ Sd(R,L, α) and h > 0 then, for all s ∈ N, V̂s,f is q-tame.

Proof. The results also follows from by Theorem 1.1 of Crawley-Boevey (2012). Let h > 0 and
λ ∈ R. F̂λ and F̂⌈r2⌉h

λ are unions of cubes of Ch and thus finite dimensional. Hence, Im (ρλ) is finite
dimensional. Thus V̂s,f is q-tame.

B Proof of the continuity of Fλ,h

This section is devoted to the proof of the continuity of the deformation retract Fλ,h, claimed in
the proof of Proposition 2.

Lemma 7. Let h > 0 and λ ∈ R, Fλ,h is continuous.

Proof. Let δ, δ′ > 0, x, y ∈ Kλ,h such that ||x − y||2 ≤ δ and t, s ∈ [0, 1] a such that |t − s| ≤ δ
′ .

Let’s look at the different cases.

First let’s tackle the cases where x ∈ M i and y ∈ M j , i ̸= j. In this case, we have d⋃l
i=1 ∂Mi

(x) ≤
||x− y||2 ≤ δ and d⋃l

i=1 ∂Mi
(y) ≤ ||x− y||2 ≤ δ.

• If x verifies (9) and (10), by (8), we have

||Fλ,h(x, t)− x||2 = ||x− C(x, ts̃x)||2 ≤ dC(x,C(x, sx)) ≤ 2δ/µ2

• If x does not verify (9) or (10), Fλ,h(x, t) = x, and directly,

||Fλ,h(x, t)− x||2 = 0.

following the same reasoning we also have, in both cases for y, ||Fλ,h(y, s) − y||2 ≤ 2δ/µ2. Conse-
quently, in any cases,

||Fλ,h(x, t)− Fλ,h(y, s)||2 ≤ ||Fλ,h(x, t)− x||2 + ||Fλ,h(y, s)− y||2 + ||x− y||2 ≤ δ(1 + 4/µ2).

This concludes for the cases where x ∈ M i and y ∈ M j , i ̸= j. From now, we suppose that
x, y ∈Mi.

• If x and y do not verify (9) or (10), then directly,

||Fλ,h(x, t)− Fλ,h(y, s)||2 = ||x− y||2 ≤ δ.

• If x verifies (9) and (10) and y does not verify (9). Then, y ∈ Fλ+Lhα . Thus,

dMi∩Fλ+Lhα
(C(x, sx)) ≤ dC(x,C(x, sx)) + ||x− y||2 ≤ 2h/µ2 + δ
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and, by (10),

dC(x,C(x, s)) ≥ 4h/µ2 − dMi∩Fλ+Lhα
(C(x, sx)) ≥ 2h/µ2 − δ ≥ dC(x,C(x, s))− δ.

Consequently, Fλ,h(x, t) ∈ {C(x, t), t ∈ [0, δ]}. As,

||Fλ,h(x, t)− Fλ,h(y, s)||2 = ||Fλ,h(x, t)− y||2 ≤ ||Fλ,h(x, t)− x||2 + δ

we can conclude in this case by continuity of C.

• If x verifies (9) and (10) and y verifies (9) but not (10), then,

dC(x,C(x, sx)) ≥ 4h/µ2 − dMi∩Fλ+Lhα
(C(x, sx))

= 4h/µ2 − dMi∩Fλ+Lhα
(C(y, sy)) + dMi∩Fλ+Lhα

(C(y, sy))− dMi∩Fλ+Lhα
(C(x, sx))

≥ 4h/µ2 − dMi∩Fλ+Lhα
(C(y, sy))− ||C(x, sx)− C(y, sy)||2

≥ dC(y, C(y, sy))− ||C(x, sx)− C(y, sy)||2
≥ dC(x,C(x, sx))− |dC(x,C(x, sx))− dC(y, C(y, sy))| − ||C(x, sx)− C(y, sy)||2.

Hence, by definition of s̃x, Fλ,h(x, t) ∈ {C(x, t), t ∈ [0, |dC(y, C(y, sy)) − dC(x,C(x, sx))| +
||C(x, sx)−C(y, sy)||2]}. Suppose without loss of generality that, sx ≥ sy, then we can write,

C(x, sx) = C(C(x, sy), sC(x,sy)) = C(x, sy + sC(x,sy)).

By (7), sC(x,sy) ≤ 2∥C(x, sy) − C(y, sy)∥2/µ2. And by continuity of C, lim
δ→0

∥C(x, sy) −
C(y, sy)∥2 = 0, thus, lim

δ→0
|sx−sy| = 0. Hence, by continuity of C again, lim

δ→0
∥Fλ,h(x, t)−x∥2 =

0. As,

||Fλ,h(x, t)− Fλ,h(y, s)||2 = ||Fλ,h(x, t)− y||2 ≤ ||Fλ,h(x, t)− x||2 + ||x− y||2 −→
δ→0

0

we conclude in this case.

• Finally, If both x and y verifies (9) and (10), then,

||Fλ,h(x, t)− Fλ,h(y, s)||2 = ∥C (x, ts̃x)− C (y, ss̃y)∥2

As in the previous case, it follows again in this case by continuity of C, that lim
δ→0

|sx− sy| = 0.

Consequently, by continuity of C and definition of s̃x and s̃y, lim
δ→0

|s̃x − s̃y| = 0. And using
again the continuity of C, we then have,

lim
δ,δ

′→0
∥C (x, ts̃x)− C (y, ss̃y)∥2 = 0

which gives the conclusion in this case.

Combining all the previous cases, we proved that Fλ,h is continuous.
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