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Abstract
Persistent homology is a tool from Topological Data Analysis (TDA) used to summarize the
topology underlying data. It can be conveniently represented through persistence diagrams.
Observing a noisy signal, common strategies to infer its persistence diagram involve plug-in
estimators, and convergence properties are then derived from sup-norm stability. This depen-
dence on the sup-norm convergence of the preliminary estimator is restrictive, as it essentially
imposes to consider regular classes of signals. Departing from these approaches, we design an
estimator based on image persistence. In the context of the Gaussian white noise model, and
for large classes of piecewise-Hölder signals, we prove that the proposed estimator is consistent
and achieves minimax rates. Notably, these rates coincide with the well known minimax rates
for Hölder continuous signals.

Introduction

Motivation

Topological Data Analysis (TDA) is a field that aims to provide representations to describe the
“shape” of data. A central tool in TDA is persistent homology and its representation through
persistence diagrams. It offers a practical, multiscale, summary of the topology underlying data.
Although in its early years research has primarily focused on deterministic settings, it didn’t take
long for statistical questions to emerge. A prominent topic is the estimation of persistent diagram
and, more specifically, the investigation of convergence properties of considered estimators. A first
historical success in this direction is Bubenik and Kim (2006), that formalizes the problem of per-
sistence diagram estimation from a density in a parametric setting. Consistent efforts have been
made to extend this model to wider, non-parametric settings. This includes the work of Balakr-
ishnan et al. (2012), which addresses the estimation of Betty numbers for smooth manifolds with
different noise models, as long as the work of Fasy et al. (2014), who provide confidence sets for
persistence diagrams in a similar context and Chazal et al. (2014) that provide a minimax estimator
while controlling the regularity of the density support. Closer to the context considered in this
paper, Bubenik et al. (2009) and Bobrowski et al. (2017), tackle the problem of persistence diagram
estimation in the context of the non-parametric regression settings. Most of these works, consider
plug-in estimators and the proofs for convergence properties then exploit stability theorem (Chazal
et al., 2009) for usual norm (typically sup norm or Gromov-Hausdorff norm), lifting results from
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non-parametric estimation or geometric inference. Although this approach can be proved to be
minimax over regular classes (Hölder, Sobolev, Besov), it falls short for signals where sup norm
convergence is not assured. A natural question is then, outside this regular classes, is consistent
persistence diagram estimation achievable and at which rates ?

Bobrowski et al. (2017) open the door to break free from this approach, making use of image
persistence (Cohen-Steiner et al., 2009). This work proposes a general approach in both the context
of non-parametric regression and the density model. Under a really weak condition (q−tameness)
they show some near-consistency properties of their estimator. But they do not provide conver-
gence rates. A difficulty is maybe that this framework is too wide to quantify convergence rates
or even prove proper consistency. Hence, it is interesting to identify narrower classes on which we
can provide stronger and more precise results. Recently, in Henneuse (2024), we proposed a new
approach that also break free from the sup norm stability. This work study the inference of per-
sistence diagram, from a minimax perspective, for Gaussian white noise model and non-parametric
regression. Although we consider a plug-in estimator, our analysis of convergence properties did
not rely on sup-norm stability (but on a weaker notion of stability). We introduced and studied
classes of piecewise-Hölder continuous function with discontinuities set having a positive reach. The
reach (Federer, 1959) is a popular curvature measure in geometric inference, that can be thought
as a way to describe the geometric regularity of a set. Under this reach assumption, we manage
to show that a histogram plug-in estimator permits to achieve the well known minimax rates for
Hölder-continuous functions. Relaxation of this assumption into a µ−reach (generalization of the
reach, Chazal et al., 2006) assumption was already discussed in this earlier work. We highlighted
that it would imply to consider other estimators, as, even in the noiseless setting, the histogram
approximation falls short (this is also illustrated here in Figure 5). Still, being able to infer the
persistence diagram under this relaxation is interesting as it allows considering considerably wider
classes of signal, as illustrated in Figure 2. This serves as a motivation to depart from plug-in
approach for persistence diagram inference and as starting point for this new work.

Framework

Our goal is to investigate the estimation of persistence diagrams in the following setting. It is
similar to the framework of Henneuse (2024), the only difference is assumption A3 involving the
µ−reach instead of the reach. For the reader unfamiliar with persistent homology, we provide a
brief introduction, recalling some basic definitions and key properties in Section 1.2.

Statistical model. We considered the Gaussian white noise model given by the following stochastic
equation,

dXt1,...,td = f(t1, ..., td)dt1...dtd + θdWt1,...,td

with W a d−parameters Wiener field, f : [0, 1]d → R a signal and θ ≥ 0 the level of noise.

Regularity assumptions. Let f : [0, 1]d → R, we make the following assumptions over f :

• A1. f is a piecewise (L,α)−Hölder-continuous function, i.e. there exist M1, ...,Ml open sets
of [0, 1]d such that,

l⋃
i=1

Mi = [0, 1]d
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and f |Mi is in H(L,α), ∀i ∈ {1, ..., l}, with,

H(L,α) =
{
f : [0, 1]d → R s.t. |f(x)− f(y)| ≤ L∥x− y∥α2 ,∀x, y ∈ [0, 1]d

}
.

• A2. f verifies, ∀x0 ∈ [0, 1]d,
lim inf

x∈
l⋃

i=1
Mi→x0

f(x) = f(x0).

In this context, two signals, differing only on a null set, are statistically undistinguishable.
And persistent homology is sensitive to point-wise irregularity, two signals differing only on a
null set can have persistence diagrams that are arbitrarily far. Assumption A2 prevents such
scenario.

• A3. For µ ∈]0, 1] and Rµ > 0,

reachµ

(
l⋃

i=1

∂Mi

)
≥ Rµ.

Here, reachµ denotes the µ−reach, the generalization of the reach defined in Chazal et al.
(2006). We invite the reader to see Section 1.1, where we recall the definition of the µ−reach
and make a few remarks about Assumption A3.

The class of function verifying A1,A2 and A3 is denoted Sd(L,α, µ,Rµ). For our purpose, we show
in Appendix A that signals in Sd(L,α, µ,Rµ) are q−tame, which ensures that their persistence
diagram is well-defined.

Contribution

We extend the main result of Henneuse (2024). Unlike the classes considered there, over the weaker
classes Sd(L,α, µ,Rµ), a histogram estimator may fail to capture the topological features of the
signal (see Figure 5.a), or may display additional false topological features due to cubical approxi-
mation and/or noise (See Figure 5.b). To overcome this issue, we propose, d̂gm(f) an estimator of
the persistence diagram of f , making use of image persistence, as described in Section 2. We show
that this estimator achieves, over Sd(L,α, µ,Rµ), rates coinciding with known minimax rates for
Hölder-continuous signals. More precisely, our main result is the following theorem.

Theorem 1. There exists C̃0 and C̃1 such that, for all t > 0,

P

(
sup

f∈Sd(L,α,µ,Rµ)
db

(
d̂gm(f),dgm(f)

)
≥ t

(
θ2 log

(
1

θ

)) α
d+2α

)
≤ C̃0 exp

(
−C̃1t

2
)
.

As these rates are minimax under stronger conditions (see Henneuse, 2024, Theorem 3), they are
evidently minimax over Sd(L,α, µ,Rµ). Section 3 is dedicated to the proof of Theorem 1.

1 Background

This section provides the necessary background to follow this paper.

3



1.1 Distance function, generalized gradient and µ-reach

We here present some concepts from geometric measure theory, extensively used in geometric infer-
ence and TDA. The first notion used in this paper is the distance function to compact.

Definition 1. Let K ⊂ [0, 1]d a compact set, the distance function dK is given by,

dK : x 7→ min
y∈K

||x− y||2.

Generally the distance function is not differentiable everywhere, still it is possible to define a gen-
eralized gradient function that match with the gradient at points where the distance function is
differentiable.

Definition 2. Let,
ΓK(x) = {y ∈ K | ||x− y||2 = dK(x)}

the set of closest point to x in K. For x ∈ [0, 1]d \K, let denote ΘK(x) the center of the unique
smallest ball enclosing ΓK(x), the generalized gradient function ∇K(x) is defined as,

∇K(x) =
x−ΘK(x)

dk(x)
.

K
x Θ(x)

∇K(x)

dK(x)

Figure 1: 2D example with 2 closest points

With this definitions we can now introduce the notion of µ−reach (Chazal et al., 2006), on which
this paper relies.

Definition 3. Let K ⊂ [0, 1]d a compact set, its µ-reach reachµ(K) is defined by,

reachµ(K) = inf

{
r | inf

d−1
K (r)\K

∥∇K∥2 < µ

}
.

The 1−reach corresponds simply to the reach, a curvature measure introduced by Federer (1959).
The µ−reach is positive for a large class of sets. In deed, any compact set is arbitrarily close to a
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positive µ−reach set. For example, all piecewise linear surfaces have positive µ−reach. In our con-
text, considering the µ−reach instead of the reach in assumption A3 allow considering a significantly
wider class of irregular signals, tolerating cusps and multiple points (for an illustration, see Figure 2).

We now state a particular property of sets with positive µ−reach from Chazal et al. (2007). This
property is used in the proof of Theorem 1 to quantify approximation errors.

Lemma 1. (Chazal et al., 2007, Lemma 3.1.) Let K ⊂ [0, 1]d a compact set and let µ > 0, r > 0
be such that r < reachµ(K). For any x ∈ Kr\K, one has

d2 (x, ∂Kr) ≤
r − dK(x)

µ
≤ r

µ
.

M1

M2

M3

M4

M6

M5

(a) Positive (1−)reach

M1

M2

M3

M4

M5

M6

(b) Positive µ−reach (µ small)

Figure 2: (a) display a partition M1,..., M6 such that reach1 (∂M1 ∪ ... ∪ ∂M6) > 0. (b) display
a partition M1,..., M6 such that reach1 (∂M1 ∪ ... ∪ ∂M6) = 0 (in red are highlighted problematic
points) but for sufficiently small µ > 0, reachµ (∂M1 ∪ ... ∪ ∂M6) > 0.

1.2 Filtration, persistence module and persistence diagram

We here present briefly some notions related to persistence homology. Persistent homology permits
to encode the evolution of topological features (in the homology sense) along a family of nested
spaces, called filtration. Moving along indices, topological features (connected components, cycles,
cavities, ...) can appear or die (existing connected components merge, cycle or cavities are filled,
...). The construction presented here involve singular homology. For an introduction to (singular)
homology, the reader can refer to Hatcher (2000).

Definition 4. Let Λ ⊂ R be a set of indices. A filtration over Λ is a family (Kλ)λ∈Λ of topological
spaces satisfying, ∀λ, λ′ ∈ Λ, λ ⩽ λ′,

Kλ ⊂ Kλ′ .

The typical filtration that we will consider in this paper is, for a function f : Rd → R, the
family of sublevel sets (Fλ)λ∈R. The associated family of homology group of degree s ∈ N,

Vf,s = (Hs (Fλ))λ∈R, equipped with vλ
′

λ the linear application induced by the inclusion Fλ ⊂ Fλ′ ,
forms a persistence module. To be more precise, in this paper, Hs(.) is the singular homology
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functor in degree s with coefficient in a field (typically Z/2Z). Hence, Hs (Fλ) is a vector space.
persistence modules play a key role in this paper and can be defined more generally.

Definition 5. Let Λ ⊂ R be a set of indices. A persistence module over λ is a family V = (Vλ)λ∈Λ
of vector spaces equipped with linear application vλ′λ : Vλ → Vλ′ such that, ∀λ ⩽ λ′ ⩽ λ′′ ∈ Λ,

vλλ = id

and
vλ

′′
λ′ ◦ vλ′λ = vλ

′′
λ .

Under q−tameness of the persistence module, it is possible to show that the algebraic structure of
the persistence module encodes exactly the evolution of the topological features along the indices
Λ. For details, we encourage the reader to look at Chazal et al. (2016).

Definition 6. A persistence module V is said to be q-tame if ∀λ < λ′ ∈ Λ, rank
(
vλ

′
λ

)
is finite.

By extension, when considering the persistence modules (Vf,s)s∈N coming from the sublevels sets
filtration of a real functions f , we say that f is q−tame if Vf,s is for all s ∈ N.

Furthermore, the algebraic structure of the persistence module can be summarized by a collection
{(bi, di), i ∈ I} ⊂ R

2, which defined the persistence diagram. Following previous remarks, bi
corresponds to the birth time of a topological feature, di corresponds to its death time and di − bi
to its lifetime.

(a) graph of f (b) persistence diagram of f

Figure 3: Graph of f(x) = sin(4πx) cos(4πy)(x + y + 1) over [0, 1]2 and the persistence diagram
associated to its sublevel sets filtration, horizontal axis corresponds to birth times, vertical axis
to death times, red points corresponds to the H0 persistence diagram and blue points to the H1

persistence diagram.

To compare persistence diagrams, a popular distance, especially in statistical context, is the bottle-
neck distance.

Definition 7. The bottleneck distance between two persistence diagrams D1 and D2 is,

db (D1, D2) = inf
γ∈Γ

sup
p∈D1

||p− γ(p)||∞

with Γ the set of all bijection between D1 and D2 (both enriched with the diagonal).
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We now present the algebraic stability theorem for the bottleneck distance. This theorem was the
key for proving upper bounds in Henneuse (2024), it is also the case in this work to prove Theorem
1. This theorem relies on interleaving between modules, a notion we extensively exploit.

Definition 8. Two persistence modules V = (Vλ)λ∈I⊂R and W = (Wλ)λ∈I⊂R are said to be ε-
interleaved if there exists two families of applications ϕ = (ϕλ)λ∈I⊂R and ψ = (ψλ)λ∈I⊂R where
ϕλ : Vλ → Wλ+ε, ψλ : Wλ → Vλ+ε, and for all λ < λ

′ the following diagrams commutes,

Vλ Vλ′ Wλ Wλ′

Wλ+ε Wλ′+ε Vλ+ε Vλ′+ε

Vλ Vλ+2ε Wλ Wλ+2ε

Wλ+ε Vλ+ε

ϕλ ϕ
λ
′

wλ
′
+ε

λ+ε

wλ
′

λ

ψλ

vλ
′
+ε

λ+ε

ψ
λ
′

vλ
′
+2ε

λ

ϕλ ψλ+ε ψλ

vλ
′

λ

wλ
′
+2ε

λ

ϕλ+ε

Theorem (Chazal et al. 2009, "algebraic stability"). Let V and W two q−tame persistence
modules. If V and W are ε−interleaved then,

db (dgm(V),dgm(W)) ≤ ε.

We now give a corollary of this result, proved earlier in special cases (Barannikov, 1994; Cohen-
Steiner et al., 2005). We insist on the fact that this is a strictly weaker result than algebraic
stability.

Theorem ("sup norm stability"). Let f and g two real-valued q-tame function, for all s ∈ N

db (dgm (Vf,s) , dgm (Vg,s)) ≤ ||f − g||∞.

(a) graphs of f0 and f1 (b) persistence diagrams of f0 and f1

Figure 4: 1D Illustration of stability theorems.

This last property is often used to upper bounds the errors (in bottleneck distance) of "plug-in"
estimators of persistence diagrams. It enables the direct translation of convergence rates in sup-norm
to convergence rates in bottleneck distance, which for regular classes of signals provide minimax
upper bounds. Still, for wider classes, this approach falls short.
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2 Procedure description

We here propose a two-steps estimation procedure.
The first step is a "rough" estimation of sublevel sets via local averaging on a regular grid plus a
thickening. We call these estimators rough, as they are not meant to perform well for the estimation
of sublevel sets evaluated with standard metrics. Typically, over Sd (L,α, µ,Rµ), for a fixed λ ∈ R,
our estimator F̂λ can be (arbitrarily) far in Hausdorff distance from Fλ. But, it captures well the
topological features of the true signals.
Still, cubical approximation and noise may create cycles lying around the boundaries of sublevel
sets estimators that do not correspond to any cycles of true signal (as in Figure 5.b). These cycles
are pretty benign when appearing in regular regions (they will have "short" lifetime), but may have
arbitrarily long lifetime when appearing around the discontinuities of the signal. Hence, for the
second step, instead of considering directly the modules coming from this estimated filtration, we
construct an image persistence module (Cohen-Steiner et al., 2009). This can be seen as a topologi-
cal regularization step. The proposed image module aims to eliminate such cycles (or at least make
their lifetime short) without damaging (too much) the information inferred about true cycles. The
use of image modules to filter out topological noise is not a new idea, for example Cohen-Steiner
et al. (2009); Chazal et al. (2011) used it to estimate persistence diagrams of a signal while working
on noisy domains or closer to our context Bobrowski et al. (2017) that used the image modules
between slightly shifted filtrations to infer the persistence diagram in the non-parametric regression
settings.

(a) A true cycle not captured by
cubical approximation

(b) A false cycle created by cubical
approximation

Figure 5: λ−sublevel cubical approximation for f the function defined as 0 on the hatched area and
K outside (for arbitrarily large K). (a) display a case where the histogram approximation fails to
capture true cycle in green, for, at least, all 0 < λ < K/2. (b) displays a case where the histogram
approximation create a cycle in red, not corresponding to any true cycle, with an arbitrarily long
lifetime.

In the following, for a set A ⊂ Rd and b ≥ 0, we denote,

Ab =
{
x ∈ Rd s.t. d2 (x,A) ≤ b

}
8



with
d2 (x,A) = inf

y∈A
||x− y||2.

Step 1 : rough sublevel sets estimation. Let h > 0 such that 1/h is an integer, consider Gh
the regular orthogonal grid over [0, 1]d of step h and Ch the collection of all the hypercubes of side
h composing Gh. We define, ∀λ ∈ R, the "rough" λ−sublevel estimator,

F̂λ,h =

 ⋃
H∈Ch,λ

H


√
dh/µ

with Ch,λ =

{
H ∈ Ch such that

∫
H
dX −

∫
H
λ ≤ 0

}
.

Step 2 : construction of the image persistence module and associated diagram. Let,

ρλ,h : Hs

(
F̂λ,h

)
→ Hs

(
F̂2

√
d(1 + 1/µ)h/µ

λ,h

)
the map induced by the inclusion F̂λ,h ⊂ F̂2

√
d(1 + 1/µ)h/µ

λ,h . For all λ < λ
′ , we have F̂λ,h ⊂ F̂λ′ ,h and

F̂2
√
d(1 + 1/µ)h/µ

λ,h ⊂ F̂2
√
d(1 + 1/µ)h/µ

λ′ ,h
. Then denote,

v̂λ
′

λ,h : Hs

(
F̂2

√
d(1 + 1/µ)h/µ

λ,h

)
→ Hs

(
F̂2

√
d(1 + 1/µ)h/µ

λ′ ,h

)
the map induced by the inclusion. F̂2

√
d(1 + 1/µ)h/µ

λ,h ⊂ F̂2
√
d(1 + 1/µ)h/µ

λ′ ,h
. Note that the following diagram

commute (all maps are induced by inclusions),

Hs

(
F̂λ,h

)
Hs

(
F̂λ′ ,h

)

Hs

(
F̂2

√
d(1 + 1/µ)h/µ

λ,h

)
Hs

(
F̂2

√
d(1 + 1/µ)h/µ

λ′ ,h

)
ρλ,h ρ

λ
′
,h

v̂λ
′

λ,h

Thus for all λ < λ
′ ,

v̂λ
′

λ,h (Im(ρλ,h)) ⊂ Im(ρλ′ ,h).

We now introduce V̂hf,s the persistence module associated to (Im(ρλ,h))λ∈R equipped with the col-

lection of maps (v̂λ
′

λ,h)λ<λ′ for the s-th order homology, ̂dgms(f) the associated persistence diagram,

and d̂gm(f) the collection of such persistence diagrams for all s ∈ N. This diagram is well-defined,
as we prove in Appendix A that V̂hf,s is q−tame. The computation of this persistence diagram is
(theoretically) made possible by the algorithm for image persistence gave in Cohen-Steiner et al.
(2009).

Interestingly, if we are only interested in estimating H0-persistence diagrams, the second step is
unnecessary, as shown in Appendix C.

Calibration. A natural question is how to calibrate the window-size h. Lemma 2 from Henneuse
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(2024) suggests that a good choice is taking hθ,α such that,

hd+αθ,α√
hdθ,α log

(
1 + 1

hdθ,α

) > θ

which implies that we can take,

hθ,α ≃
(
θ2 log

(
1

θ

)) 1
d+2α

.

3 Proof of Theorem 1

The proof follows similarly to the proof for upper bounds in Henneuse (2024), the structure of
our estimator even allows avoiding some technical consideration. The general idea is to construct
an interleaving between the true persistence module and the estimated persistence module. The
following two propositions give the necessary ingredients. The morphism from true to estimated
module is simply induced by the lower inclusion of Proposition 1. The morphism from estimated to
true module is build, combining the upper inclusion of Proposition 1 and the deformation retract
of Proposition 2.

Before proving those two propositions, we recall Lemma 2 and some useful notations from Hen-
neuse (2024). Let,

||W ||cube,h = sup
H∈Ch

|W (H)|
ω(L(H))

with ω(r) =
√
r log(1 + 1/r), W (H) =

∫
H dW and L the Lebesgue measure.

Lemma 2 (Henneuse 2024). Let f : [0, 1]d → R. Let H ⊂ Fc
λ+||W ||cube,hθ,αh

α
θ,α

∩ Chθ,α and H
′ ⊂

Fλ−||W ||cube,hθ,αh
α
θ,α

∩ Chθ,α . We then have that,∫
H
dX −

∫
H
λ > 0 and

∫
H′
dX −

∫
H
λ < 0.

Proposition 1. Let f ∈ Sd (L,α, µ,Rµ), and θ sufficiently small, For all λ ∈ R,

F
λ−

(
||W ||cube,hθ,α+Ldα/2(1/µ+1)α

)
hαθ,α

⊂ F̂λ,hθ,α ⊂ F
√
d(1+1/µ)hθ,α

λ+||W ||cube,hθ,αh
α
θ,α
.

Proof. We begin by proving the lower inclusion, let x ∈ F
λ−

(
||W ||cube,hθ,α+Ldα/2(1/µ+1)α

)
hαθ,α

. With-

out loss of generality, let suppose x ∈M i. If,

B2

(
x,

√
dhθ,α

)
⊂

(
l⋃

i=1

∂Mi

)c

then, Hx,hθ,α , the hypercube of Chθ,α,λ containing x is included in M i. Assumption A1 and A2
then give Hx,hθ,α ⊂ Fλ−||W ||cube,hθ,αh

α
θ,α

. Hence, it follows from Lemma 2 that Hx,hθ,α ∈ Chθ,α,λ and
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consequently x ∈ F̂λ. Else, by Lemma 1, there exists,

y ∈

( l⋃
i=1

∂Mi

)√
dhθ,α


c

∩Mi such that ||x− y||2 ≤
√
dhθ,α/µ.

Let Hy,hθ,α the closed hypercube of Chθ,α containing y. Hence, Hy,hθ,α ⊂Mi. and d2
(
x,Hy,hθ,α

)
≤√

dh(1 + 1/µ). Then, Assumption A1 and A2 ensure that,

Hy,hθ,α ⊂ Fλ−||W ||cube,hθ,αh
α
θ,α
.

Then, Lemma 2 gives Hy,hθ,α ∈ Chθ,α,λ and thus, as x ∈ H
√
dhθ,α/µ

y,hθ,α
, x ∈ F̂λ, which proves the lower

inclusion.

For the upper inclusion, let x ∈
(
F

√
dhθ,α

λ+||W ||cube,hθ,αh
α
θ,α

)c
, and Hx,hθ,α the hypercube of Chθ,α con-

taining x. We then have, Hx,hθ,α ⊂ Fc
λ+||W ||cube,hθ,αh

α
θ,α

. Hence, Lemma 2 gives that,

Hx,hθ,α ⊂

 ⋃
H∈Ch,λ

H

c

and thus, ⋃
H∈Chθ,α,λ

H ⊂ F
√
dhθ,α

λ+||W ||cube,hθ,αh
α
θ,α
.

Consequently,  ⋃
H∈Chθ,α,λ

H


√
dhθ,α/µ

= F̂λ,hθ,α ⊂ F
√
d(1+1/µ)hθ,α

λ+||W ||cube,hθ,αh
α
θ,α

and the proof is complete.

Proposition 2. For all 0 < h <
Rµ

2 and A ⊂ there exists two collections of spaces G = (Gλ,h)λ∈R
and K = (Kλ,h)λ∈R such that ∀λ ∈ R,

Fλ ⊂ Gλ,h ⊂ Fλ+L(4(1+2/µ))αhα

and
Fh
λ ⊂ Kλ,h ⊂ F (1+2/µ)h

λ

and Kλ,h retracts by deformation onto Gλ,h.

Proof. To construct the desired deformation retract, we follow the idea from the proof of Theorem
12 in Kim et al. (2020) combine with the idea of Proposition 1 in Henneuse (2024). In Proposition
1 in Henneuse (2024), the deformation retract involved the projection on the discontinuities set, as
on sufficiently small neighborhood of the discontinuities set, the closest point is unique thanks to
the positive reach assumption. Here, we do not have such nice property. Still, from the generalized
gradient of the discontinuities set, we construct a smooth flow, following Kim et al. (2020), that
essentially play the same role as the projection in the positive reach case.
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Let denote,

∂Mλ,h =
l⋃

i=1

{
x ∈ ∂Mi∩]0, 1[d s.t. B2(x, 4(1 + 2/µ)h) ∩Mi ∩ Fλ ̸= ∅

}
.

Let x ∈ F2(1+2/µ)h
λ ∩

(
l⋃

i=1
∂Mi

)h
\

l⋃
i=1

∂Mi, and,

Ixλ,h =
{
i ∈ 1, ..., l s.t. B2(x, h) ∩M i ∩ Fλ ̸= ∅

}
.

Assumption A3 ensures that,

reachµ

 ⋃
i∈Ixλ,h

∂Mi

 ≥ Rµ

and thus, ∥∥∇∂Mλ,h
(x)
∥∥ =

∥∥∥∥∇⋃
i∈Ix

λ,h
∂Mi

(x)

∥∥∥∥ ≥ µ.

By Lemma 38 of Kim et al. (2020), there exists Ux a neighborhood of x such that, for all y ∈ Ux,〈
∇∂Mλ,h

(x),∇∂Mλ,h
(y)
〉
≥ µ/2.

We then define,

Wx(y) =

{
−∇∂Mλ,h

(x) if y ∈ Ux

0 Else

consider the open cover, Ux, x ∈ Fh
λ ∩

(
l⋃

i=1

∂Mi

)h
\

l⋃
i=1

∂Mi


and extract a locally finite open cover {Uxi , i ∈ N}. Let {ρi, i ∈ N} an associated smooth partition
of unity, and define the vector field W =

∑
i∈N ρiWxi .

By the fundamental theorem of flow (see Kim et al., 2020, Theorem 25), there exists a domain

D ⊂ F2(1+2/µ)h
λ ∩

(
l⋃

i=1
∂Mi

)h
\

l⋃
i=1

∂Mi× [0,+∞[ and the unique smooth flow C : D → F2(1+2/µ)h
λ ∩(

l⋃
i=1

∂Mi

)h
\

l⋃
i=1

∂Mi. Let (x, s) ∈ D and remark that,

lim
h→0

d∂Mλ,h
(C(x, s+ h))− d∂Mλ,h

(C(x, s))

h
≤
〈
∇∂Mλ,h

,
d

ds
C(x, s)

〉
=
〈
∇∂Mλ,h

,W (C(x, s))
〉

≤ −µ/2 (1)

Let x ∈ Fh
λ , and sx = sup {s ∈ [0,∞[ s.t. (x, s) ∈ D}. By 1, we have C(x, sx) /∈ ∂Mh

λ,h and
sx ≤ 2h/µ2. Denote dC the arc length distance along C, as ||W || ≤ µ, we then have,

dC(x,C(x, sx)) =

∫ sx

0

∣∣∣∣ ∂∂tC(x, t)
∣∣∣∣ dt

12



≤
∫ sx

0
||W (C(x, t)||2dt

≤ sxµ ≤ 2h

µ
(2)

Thus ||x− C(x, sx)||2 ≤ 2h/µ. Hence, if C(x, sx) /∈ ∂Mλ,h then C(x, sx) ∈ F (1+2/µ)h
λ and thus the

flow can be extended, which is contradictory. Consequently, C(x, sx) ∈ ∂Mλ,h.

From the foregoing we can extend continuously C(x, .) on [0,+∞[, taking C(x, s) = C(x, sx) for all
s > sx.

Let

Kλ,h := Fh
λ ∪

 ⋃
x∈Sλ,h

{C(x, t), t ∈ [0, sx]}


with

Sλ,h =

(
l⋃

i=1

(Fλ ∩Mi)
h ∩Mi

)c
∩ Fh

λ .

Using C we then define the deformation retract : if

x ∈
⋃

x∈Sλ,h

{C(x, t), t ∈ [0, sx]} ∩Mi (3)

and
d2 (C(x, sx),Mi ∩ Fλ+Lhα) ≥ 4h/µ− dC(C(x, sx), x) (4)

then,
Fλ,h(x, t) = C (x, ts̃x)

with s̃x verifying,

dC(C(x, sx), C(x, s̃x)) = (4h/µ− d2 (C(x, sx),Mi ∩ Fλ+Lhα))+ .

Else,
Fλ,h(x, t) = x.

Let Gλ,h = Im (x 7→ Fλ,h(x, 1)). Then, by definition, Fλ,h(x, 1) ∈ Gλ,h, for all x ∈ Kλ,h. As
C(x, 0) = x then Fλ,h(x, 0) = x, for all x ∈ Kλ,h. Remark that, by construction, s̃C(x,sx) = s̃x.
Then, we have Fλ,h(x, 1) = x, for all x ∈ Gλ,h. The proof for the continuity of Fλ,h can be found in
Appendix B. Hence, Fλ,h is a deformation retract onto Gλ,h.

Let’s now prove that Gλ,h ⊂ Fλ+L(4(1+2/µ))αhα . Suppose that x ∈ M i ∩ Kα,h and let’s look at
the following different cases.

• If x /∈
⋃

x∈Sλ,h

{C(x, t), t ∈ [0, sx]} ∩Mi, then directly Fλ,h(x, 1) = x ∈ Fλ+Lhα , by Assump-

tions A1 and A2.

• If x ∈
⋃

x∈Sλ,h

{C(x, t), t ∈ [0, sx]} ∩ Mi and d2 (C(x, sx),Fλ+Lhα ∩Mi) ≤ 4h/µ, then, as

13



Fλ,h(x, 1) ∈ {C(x, t), t ∈ [0, sx]}, Fλ,h(x, 1) ∈M i and

d2
(
Fλ,h(x, 1),Fλ+Ldα/2hα ∩Mi

)
≤ 4h

µ
+ ||x,C(x, sx)||2 ≤

6h

µ
.

By Assumptions A1 and A2, it then follows that Fλ,h(x, 1) ∈ F
λ+L

(
6
µ

)α
hα

.

• Else, Fλ,h(x, 1) = C(x, sx) ∈ ∂Mλ,h or Fλ,h(x, 1) = x and x ∈ ∂Mλ,h. By definition of ∂Mλ,h

there exists j ∈ {1, ..., l} such that C(x, sx) ∈ ∂Mj and y ∈ Mj such that ||C(x, sx) − y||2 ≤
4(1+2/µ)h. By Assumptions A1 and A2, it then follows that Fλ,h(x, 1) ∈ Fλ+L(4(1+2/µ))αhα .

Hence, in all cases we have Fλ,h(x, 1) ∈ Fλ+L(4(1+2/µ))αhα and the result is proved.

Now equipped with these two lemmas, we can prove Theorem 1.

Theorem 1. There exists C̃0 and C̃1 such that, for all t > 0,

P

(
sup

f∈Sd(L,α,µ,Rµ)
db

(
d̂gm(f),dgm(f)

)
≥ t

(
θ2 log

(
1

θ

)) α
d+2α

)
≤ C̃0 exp

(
−C̃1t

2
)
.

Proof. The strategy here is to exploit the inclusions from Proposition 1 and the deformation retracts
from Proposition 2 to construct an interleaving between V̂

hθ,α
f,s and Vs,f and then apply the algebraic

stability theorem (Chazal et al., 2009). The first step is the construction of two persistence module
homomorphisms, ϕ : V̂

hθ,α
f,s → Vs,f and ψ : Vs,f → V̂

hθ,α
f,s . The second step is checking that ϕ and

ψ verify the commutativity conditions required to induce an interleaving. It suffices to show the
result for (arbitrarily) small θ (up to rescaling C̃0), then suppose that θ is sufficiently small for the
application of Propositions 1 and 2 used in this proof.

Denote k1 =
√
d(1 + 1/µ), the morphism,

ψλ : Hs (Fλ) → Hs

(
F̂λ+(||W ||cube,hθ,α+Lkα1 )h

α
θ,α,hθ,α

)
follows directly from the inclusion Fλ ⊂ F̂λ+(||W ||cube,hθ,α+Lkα1 )h

α
θ,α,hθ,α

given by Proposition 1.

For the second morphism, denote k2 =
√
d(1 + 1/µ)(1 + 2/µ) and consider,

j1,λ : Im (ρλ,h) → Hs

(
Kλ+||W ||cube,hθ,αh

α
θ,α,k2hθ,α

)
the map induced by the inclusion F̂2k1hθ,α/µ

λ,hθ,α
hθ,α ⊂ Fk2hθ,α

λ+||W ||cube,hθ,αh
α
θ,α

⊂ Kλ+||W ||cube,hθ,αh
α
θ,α,k2hθ,α

given by Proposition 1 and Proposition 2,

j2,λ : Hs

(
Kλ+||W ||cube,hθ,αh

α
θ,α,k2hθ,α

)
→ Hs

(
Gλ+||W ||cube,hθ,αh

α
θ,α,k2hθ,α

)
induced by the deformation retracts of Proposition 2, and,

j3,λ : Hs

(
Gλ+||W ||cube,hθ,αh

α
θ,α,k2hθ,α

)
→ Hs

(
F
λ+

(
||W ||cube,hθ,α+L(4(1+2/µ)k2)

α
)
hθ,α

)

14



induced by the inclusion Gλ+||W ||cube,hθ,αh
α
θ,α,k2hθ,α

⊂ F
λ+

(
||W ||cube,hθ,α+L(4(1+2/µ)k2)

α
)
hθ,α

given by

Proposition 2. We then define, ϕλ : Im
(
ρλ,hθ,α

)
→ H2

(
F
λ+

(
||W ||cube,hθ,α+L(4(1+2/µ)k2)

α
)
hθ,α

)
ϕλ = j3,λ ◦ j2,λ ◦ j1,λ

We now show that ψ and ϕ induced an interleaving between V̂
hθ,α
f,s and Vs,f . More precisely, we

show that the following diagrams commute, for all λ < λ
′ (for compactness of notation we denote

K1 = ||W ||cube,hθ,α + Lkα1 and K2 = ||W ||cube,hθ,α + L (4(1 + 2/µ)k2)
α),

Im
(
ρλ,hθ,α

)
Im
(
ρλ′ ,hθ,α

)

Hs

(
Fλ+K2hαθ,α

)
Hs

(
Fλ′+K2hαθ,α

)
ϕλ

v̂λ
′

λ,hθ,α

ϕ
λ
′

v
λ
′
+K2h

α
θ,α

λ+K2h
α
θ,α

(5)

Hs (Fλ) Hs

(
Fλ′
)

Im
(
ρλ+K1hαθ,α,hθ,α

)
Im
(
ρλ′+K1hαθ,α,hθ,α

)
ψλ

vλ
′

λ

ψ
λ
′

v̂
λ
′
+K1h

α
θ,α

λ+K1h
α
θ,α

,hθ,α

(6)

Im
(
ρλ,hθ,α

)
Im
(
ρλ+(K1+K2)hαθ,α,hθ,α

)

Hs

(
Fλ+K2hαθ,α

)
ϕλ

ψλ+K2h
α
θ,α

v̂
λ+(K1+K2)h

α
θ,α

λ,hθ,α

(7)

Hs (Fλ) Hs

(
Fλ+(K1+K2)hαθ,α

)

Im
(
ρλ+K1hαθ,α,hθ,α

)

v
λ+(K1+K2)h

α
θ,α

λ

ψλ
ϕλ+K1h

α
θ,α (8)

• Diagram 5 : We can rewrite the diagram as (unspecified maps are simply induced by set
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inclusion),

Im
(
ρλ,hθ,α

)
Im
(
ρλ′ ,hθ,α

)

Hs

(
Kλ+||W ||cube,hθ,αh

α
θ,α,k2hθ,α

)
Hs

(
Kλ′+||W ||cube,hθ,αh

α
θ,α,k2hθ,α

)

Hs

(
Gλ+||W ||cube,hθ,αh

α
θ,α,k2hθ,α

)
Hs

(
Gλ′+||W ||cube,hθ,αh

α
θ,α,k2hθ,α

)

Hs

(
Fλ+K2hαθ,α

)
Hs

(
Fλ′+K2hαθ,α

)

j
2,λ

′j2,λ

By inclusions the upper and lower faces commutes and the central faces commutes as for all
λ ∈ R, j2,λ come from a deformation retract, thus the diagram is commutative.

• Diagram 6: One can check that it can be decomposed as diagram 5 and thus the same
reasoning applies.

• Diagram 7: Let [C] ∈ Im
(
ρλ,hθ,α

)
. By construction, we can suppose C ∈ Cs(F̂λ,hθ,α). The

map ϕλ maps [C] to [C
′
] with C ′ ∈ Cs

(
Fλ+K2hαθ,α

)
. By construction, C ′ is the retraction of C

in Kλ+||W ||cube,hθ,αh
α
θ,α,k2hθ,α

via the deformation retract constructed in the proof of Proposition
2. From the proof of Proposition 2 (more precisely the bound on the arc length distance
2) we know that the support of this retraction is included in F̂2k1hθ,α/µ

λ,hθ,α
. Thus, C and C

′

are homologous in F̂2k1hθ,α/µ
λ,hθ,α

and consequently they are homologous in F̂2k1hθ,α/µ
λ+(K1+K2)hαθ,λ,hθ,α

.

As ψλ+K1hαθ,α
is simply an inclusion map, it maps [C

′
] to [C

′
], and hence, [C] = [C

′
] =

ψλ+K2hαθ,α

(
ϕλ ([C])

)
, which proves the commutativity.

• Diagram 8: Let C ∈ Cs (Fλ), ψλ([C]) = [C] as it is simply an inclusion induced map and
by construction of the deformation retract in the proof of Proposition 2, ϕλ+K1

([C]) = [C],
which establish the commutativity.

The commutativity of diagrams 5,6,7 and 8 means that V̂
hθ,α
f,s and Vf,s are (K1+K2)h

α
θ,α interleaved,

and thus we get from the algebraic stability theorem (Chazal et al., 2009) that,

db

(
dgm

(
V̂
hθ,α
f,s

)
, dgm (Vf,s)

)
≤ (K1 +K2)h

α
θ,α

and as it holds for all s ∈ N and f ∈ Sd(L,α, µ,Rµ),

sup
f∈Sd(L,α,µ,Rµ)

db

(
d̂gm(f),dgm(f)

)
≤ (K1 +K2)h

α
θ,α.

We then conclude, using the concentration of ||W ||cube,hθ,α , as in the proof proposition 5 in Henneuse
(2024). More precisely, from Lemma 4 of Henneuse (2024), we have,

P (||W ||cube,h ≤ t) ≤ C0 exp
(
−C1t

2
)
.
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Then,

P

(
sup

f∈Sd(L,α,µ,Rµ)
db

(
d̂gm(f), dgm(f)

)
≥ thθ,α

)
≤ P (K1 +K2 ≥ t)

= P

(
||W ||cube,hθ,α ≥ t− L (kα1 + (4(1 + 2/µ)k2)

α)

2

)
≤ C0 exp

(
−C1

(
t− L (kα1 + (4(1 + 2/µ)k2)

α)

2

)2
)

≤ C0 exp

(
−C1

4
t2
)
exp (C1L (kα1 + (4(1 + 2/µ)k2)

α) t)

× exp

(
−C1

(
L (kα1 + (4(1 + 2/µ)k2)

α)

2

)2
)

and the result follows.

From this result, we can derive from this result bounds in expectation.

Corollary 1. Let p ≥ 1,

sup
f∈Sd(L,α,µ,Rµ)

E
(
db

(
d̂gm(f), dgm(f)

)p)
≲

(
θ2 log

(
1

θ

)) pα
d+2α

Proof. The sub-Gaussian concentration provided by Theorem 1, gives that, for all t > 0,

P

db
(
d̂gm(f),dgm(f)

)
hαθ,α

≥ t

 ≤ C̃0 exp
(
−C̃1t

2
)
.

Now, we have,

E

db
(
d̂gm(f),dgm(f)

)p
hpαθ,α


=

∫ +∞

0
P

db
(
d̂gm(f), dgm(f)

)p
hpαθ,α

≥ t

 dt

≤
∫ +∞

0
C̃0 exp

(
−C̃1t

2/p
)
dt < +∞.

4 Discussion

In this work, we extend main results of Henneuse (2024), relaxing the positive reach condition over
the discontinuities set to a µ−reach condition. It allows considering signals with pretty wild discon-
tinuities, for examples, exhibiting multiple points or cusps, cases that were excluded by the positive

17



reach assumption. More precisely, we show that persistence diagrams of piecewise Hölder-continuous
signals with sets of discontinuities having a positive µ−reach can be inferred consistently, with iden-
tical convergence rates to the ones known for Hölder-continuous signals. This means that there is
(constant-wise) no additional cost to tackle such irregular signals. Once again, this highlights the
robustness to signal irregularity of the persistence diagram inference and the interest of breaking
free from analysis relying on sup norm stability.

Under these relaxed conditions, as illustrated in Figure 5, a histogram plug-in estimator fails to
converge consistently to the true persistence diagram. Departing from the usual plug-in approach,
we propose a new estimator, to overcome this issue. The significant improvements gained by relax-
ing assumptions call for exploration of non-plug-in methods in future research.

Similarly to what is done in Appendix C of Henneuse (2024), one can extend the method and
results obtained here in the setting of non-parametric regression. Motivated by applications to
modes detection, we are also interested in extension to the density model, which will be the object
of forthcoming works.

A practical limitation of the proposed method is that it require some knowledge on the param-
eters µ and α (at least lower bounds). The dependence on α can be handled (while preserving the
convergence rates), as in Section 2.4 of Henneuse (2024), via the Lespki’s method (Lepskii, 1991,
1992). The dependence on µ is more problematic but rather common in homology/homotopy infer-
ence. Exploring methodologies to develop adaptive procedures requires further dedicated research.

Also, from a computational perspective (and in order to perform a numerical evaluation of this
method), an important step forward would be to provide an efficient algorithm to compute the
image persistence for general filtrations. This would permit to compare this method to plug-in ap-
proach, specifically to the histogram estimator. While Bauer and Schmahl (2022) offers an efficient
such algorithm, it is tailored for Rips complexes, complicating its direct application to our context.
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A Proof for q-tameness

This section is devoted to prove the claim that the persistence diagrams we consider and esti-
mated persistence diagrams we propose are well-defined, by proving that the underlying persistence
modules are q−tame.

Lemma 3. Let f ∈ Sd(L,α, µ,Rµ). ∀s ∈ N, ∀h < Rµ

2 , there exist a morphism ϕ such that, ∀λ ∈ R,

Hs (Fλ) Hs

(
Fλ+L(4(1+2/µ))αhα

)
Hs

(
Fh
λ

) ϕλ

(9)

is a commutative diagram (unspecified map come from set inclusions).

Proof. Let ϕ̃λ : Hs (Kλ,h) → Hs (Gλ,h) the morphism associated to the deformation retract from
Proposition 2. We also denote i1,λ : Hs

(
Fh
λ

)
→ Hs (Kλ,h) the morphism induced by the inclusion

Fh
λ ⊂ Kλ,h and i2,λ : Hs (Gλ,h) → Hs

(
Fλ+L(4(1+2/µ))αhα

)
the morphism induced by the inclusion

Gλ,h ⊂ Fλ+L(4(1+2/µ))αhα , also provided by Proposition 2. We take ϕλ = i2,λ ◦ ϕ̃λ ◦ i1,λ. Diagram 9
then is (unspecified maps are the one induced by set inclusion),

Hs (Fλ) Hs

(
Fλ+L(4(1+2/µ))αhα

)
(F1) (F2) (F3)

Hs

(
Fh
λ

)
Hs (Kλ,h) Hs (Gλ,h)i1,λ

i2,λ

ϕ̃λ

(10)

Faces (F1) and (F3) simply commute by inclusion. Face (F2) commutes as ϕ̃λ is an isomorphism.
All faces of diagram 10 are commutative, hence diagram 10 (and equivalently diagram 9) is com-
mutative.

Proposition 3. Let f ∈ Sd(L,α, µ,Rµ) then f is q-tame.

Proof. Let s ∈ N and Vs,f the persistence module (for the s−th homology) associated to the sublevel
filtration, F and for fixed levels λ < λ

′ let denote vλ
′

λ the associated map. Let λ ∈ R and h <
Rµ

2 .
By Lemma 3, vλ+L(4(1+2/µ))αhα

λ = ϕλ ◦ ĩλ, with ĩλ : Hs (Fλ) → Hs

(
Fh
λ

)
. And, due to sublevel

thickening by h, Fλ ⊂ Fh
λ , and consequently ĩλ is of finite rank. Thus, vλ+L(4(1+2/µ))αhα

λ is of finite
rank for all 0 < h <

Rµ

2 . As for any λ < λ
′
< λ

′′ , vλ
′′

λ = vλ
′′

λ
′ ◦ vλ

′

λ we then have that vλ
′

λ is of finite
rank for all λ < λ

′ . Hence, f is q-tame.

Proposition 4. Let f ∈ Sd(R,L, α) and h > 0 then, for all s ∈ N, V̂hs,f is q-tame.

Proof. Let h > 0 and λ ∈ R. Again, thanks to the
√
dh/µ-thickening, ρλ,h is of finite rank. Hence,

Im (ρλ,h) is finite dimensional. Thus V̂s,f is q-tame by Theorem 1.1 of Crawley-Boevey (2012).
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B Proof of the continuity of Fλ,h

This section is devoted to the proof of the continuity of the deformation retract Fλ,h, introduced in
the proof of Proposition 2.

Lemma 4. Let h > 0 and λ ∈ R, Fλ,h is continuous.

Proof. Let δ, δ′ > 0, x, y ∈ Kλ,h such that ||x − y||2 ≤ δ and t, s ∈ [0, 1] a such that |t − s| ≤ δ
′ .

Let’s look at the different cases.

First let’s tackle the cases where x ∈M i and y ∈M j , i ̸= j.

• If x verifies 3 and 4. Supposing 8h
µ − d2 (C(x, sx),Mi ∩ Fλ+Lhα) > 0, for sufficiently small δ,

we would have,

dC(x,C(x, sx)) ≤ 2δ/µ <

(
4h

µ
− d2 (C(x, sx),Mi ∩ Fλ+Lhα)

)
+

which contradicts 4. Hence, we can suppose
(
4h
µ − d2

(
C(x, sx),Mi ∩ Fλ+Ldα/2hα

))
+

= 0.

Then, s̃x = sx and Fλ,h (x, t) = C(x, tsx), thus,

||Fλ,h(x, t)− x||2 = ||x− C(x, tsx)||2 ≤ ||x− C(x, sx)||2 ≤ 2δ/µ.

• If x does not verify 3 or 4, Fλ,h(x, t) = x, and directly,

||Fλ,h(x, t)− x||2 = 0.

following the same reasoning we also have, in both cases for y, ||Fλ,h(y, s) − y||2 ≤ 2δ/µ. Conse-
quently, in any cases,

||Fλ,h(x, t)− Fλ,h(y, s)||2 ≤ ||Fλ,h(x, t)− x||2 + ||Fλ,h(y, s)− y||2 + ||x− y||2 ≤ δ(1 + 4/µ).

This concludes for the cases where x ∈ M i and y ∈ M j , i ̸= j. From now, we suppose that
x, y ∈Mi.

• If x and y do not verify 3 or 4, then directly,

||Fλ,h(x, t)− Fλ,h(y, s)||2 = ||x− y||2 ≤ δ.

• If x verifies 3 and 4 and y does not verify 3. Then, y ∈ Fλ+Lhα . Thus,

d2 (C(x, sx),Mi ∩ Fλ+Lhα) ≤ dC(x,C(x, sx)) + ||x− y||2 ≤ 2h/µ+ δ

and,
4h/µ− d2 (C(x, sx),Mi ∩ Fλ+Lhα) ≥ 2h/µ− δ.

Consequently, Fλ,h(x, t) ∈ {C(x, t), t ∈ [0, δ]}. As,

||Fλ,h(x, t)− Fλ,h(y, s)||2 = ||Fλ,h(x, t)− y||2 ≤ ||Fλ,h(x, t)− x||2 + δ

we can conclude in this case by continuity of C.
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• If x verifies 3 and 4 and y verifies 3 but not 4, then,

4h/µ− d2 (C(x, sx),Mi ∩ Fλ+Lhα) = 4h/µ− d2 (C(y, sy),Mi ∩ Fλ+Lhα)
+ d2 (C(y, sy),Mi ∩ Fλ+Lhα)
− d2 (C(x, sx),Mi ∩ Fλ+Lhα)

≥ 4h/µ− d2 (C(y, sy),Mi ∩ Fλ+Lhα)− ||C(x, sx)− C(y, sy)||2
≥ dC(y, C(y, sy))− ||C(x, sx)− C(y, sy)||2.

Hence, by definition of s̃x, Fλ,h(x, t) ∈ {C(x, t), x ∈ [0, |dC(y, C(y, sy)) − dC(x,C(x, sx))| +
||C(x, sx)−C(y, sy)||2]}. Suppose without loss of generality that, sx ≥ sy, then we can write,

C(x, sx) = C(C(x, sy), sC(x,sy)) = C(x, sy + sC(x,sy)).

By 2, sC(x,sy) ≤ 2∥C(x, sy)−C(y, sy)∥2/µ. And by continuity of C, lim
δ→0

∥C(x, sy)−C(y, sy)∥2 =
0, thus, lim

δ→0
|sx − sy| = 0. Hence, by continuity of C again, lim

δ→0
∥Fλ,h(x, t)− x∥2 = 0. As,

||Fλ,h(x, t)− Fλ,h(y, s)||2 = ||Fλ,h(x, t)− y||2 ≤ ||Fλ,h(x, t)− x||2 + ||x− y||2 −→
δ→0

0

we conclude in this case.

• Finally, If both x and y verifies 3 and 4, then,

||Fλ,h(x, t)− Fλ,h(y, s)||2 = ∥C (x, ts̃x)− C (y, ss̃y)∥2

As in the previous case, it follows again in this case by continuity of C, that lim
δ→0

|sx− sy| = 0.

Consequently, by continuity of C and definition of s̃x and s̃y, lim
δ→0

|s̃x − s̃y| = 0. And using
again the continuity of C, we then have,

lim
δ→0

∥C (x, ts̃x)− C (y, ss̃y)∥2 = 0

which gives the conclusion in this case.

Combining all the previous cases, we proved that Fλ,h is continuous.

C Simplification for H0-homology

The trick of looking at the persistence module induced by the homology groups
(
Im
(
ρλ,hθ,α

))
λ∈R

instead of directly look at the one induced by
(
Hs(F̂λ,hθ,α)

)
permits to remove false topological

features due to cubical approximation, thickening and noise. And particularly, the one lying around
the discontinuity set that can potentially have an arbitrarily long lifetime. But, for inferring H0

persistence diagrams, we show that this is unnecessary. Informally, this holds because for any set
A and h > 0, the number of connected components of Ah is less or equal than the number of
connected components of A (which is not true for higher order homology, cycles can be created by
the thickening).

Here, V̂
hθ,α
f,0 is defined as the persistence module corresponding to

(
H0(F̂λ,hθ,α)

)
equipped with

inclusion induced maps.
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Theorem 1 bis. There exists C̃0 and C̃1 such that, for all A > 0,

P

(
sup

f∈Sd(L,α,µ,Rµ)
db

(
dgm

(
V̂
hθ,α
f,0

)
, dgm (Vf,0)

)
≥ t

(
θ2 log

(
1

θ

)) α
2α+d

)
≤ C̃0 exp

(
−C̃1t

2
)
.

Proof. The proof follows essentially as the proof of Theorem 1. The only notable difference is con-
tained in the two following remarks.

Let λ ∈ R, Lemma 2 imply that any connected component A of F̂λ,hθ,α intersects a connected
component B of Fλ+||W ||cubehαθ,α . Now suppose that A intersects 2 such components B1 and B2,

then, by Proposition 1, B1 and B2 are connected in F
√
d(1+1/µ)hθ,α

λ+||W ||cube,hθ,αh
α
θ,α

. Thus, as a consequence
of Lemma 3, B1 and B2 are connected in Fλ+(||W ||cube+L(4(

√
d(1+2/µ)(1+1/µ)))

α
)hαθ,α

. We can then
define properly the applications,{

ϕλ : H0

(
F̂λ,hθ,α

)
−→ H0

(
Fλ+(||W ||cube+L(4(

√
d(1+2/µ)(1+1/µ)))

α
)hαθ,α

)
[A] 7−→ [B]

with B of any connected components of Fλ+||W ||cube,hθ,αh
α
θ,α

intersecting A, the previous remark
ensuring that [B] is independent of the choice of B.

Conversely, let A a connected component of Fλ. By Proposition 1, A is contained in a connected
component B of F̂

λ+
(
||W ||cube,hθ,α+Ldα/2(1/µ+1)α

)
hαθ,α

. We can then define properly the applications,

 ψλ : H0 (Fλ) −→ H0

(
F̂
λ+

(
||W ||cube,hθ,α+Ldα/2(1/µ+1)α

)
hαθ,α

)
[A] 7−→ [B]

with B the connected component of F̂
λ+

(
||W ||cube,hθ,α+Ldα/2(1/µ+1)α

)
hαθ,α

containing A.

Denote K̃1 = ||W ||cube,hθ,α +Ldα/2 (1 + 1/µ)α and K̃2 = ||W ||cube+Ldα/2 (4 (1 + 2/µ) (1 + 1/µ))α.
As in the proof of Theorem 1, one can check that the following diagrams commute (unspecified
maps are the one induced by set inclusion),

H0 (Fλ) H0

(
Fλ′
)

H0

(
F̂λ+K̃1hαθ,α,hθ,α

)
H0

(
F̂λ′+K̃1hαθ,α,hθ,α

)
ψλ ψ

λ
′

H0

(
F̂λ,hθ,α

)
H0

(
F̂λ′ ,hθ,α

)

H0

(
Fλ+K̃2hαθ,α

)
H0

(
Fλ′+K̃2hαθ,α

)
ϕλ ϕ

λ
′
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H0 (Fλ) H0

(
Fλ+(K̃1+K̃2)hαθ,α

)

H0

(
F̂λ+K̃1hαθ,α,hθ,α

)
ψλ

ϕλ+K̃1h
α
θ,α

H0

(
F̂λ,hθ,α

)
H0

(
F̂λ+(K̃1+K̃2)hαθ,α,hθ,α

)

H0

(
Fλ+K̃2hαθ,α

)ϕλ
ψλ+K̃2h

α
θ,α

Hence V̂
hθ,α
f,0 and Vf,0 are (K̃1 + K̃2)h

α
θ,α-interleaved, and we conclude as in the proof of Theorem

1.

Note that the thickening of the first step is somehow necessary. A classical histogram estimator
can fail to capture the right H0 persistence diagram, even in the noiseless setting, as illustrated in
Figure 6.

Figure 6: λ−sublevel cubical approximation for f the function defined as 0 on the hatched area and
K outside (for arbitrarily large K). The histogram approximation fails to identify the connectivity
of the two triangle.
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