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Abstract

Biological signalling systems are complex, and efforts to build mechanistic models must
confront a huge parameter space, indirect and sparse data, and frequently encounter
multiscale and multiphysics phenomena. We present HOSS, a framework for
Hierarchical Optimization of Systems Simulations, to address such problems. HOSS
operates by breaking down extensive systems models into individual pathway blocks
organized in a nested hierarchy. At the first level, dependencies are solely on signalling
inputs, and subsequent levels rely only on the preceding ones. We demonstrate that
each independent pathway in every level can be efficiently optimized. Once optimized,
its parameters are held constant while the pathway serves as input for succeeding levels.
We develop an algorithmic approach to identify the necessary nested hierarchies for the
application of HOSS in any given biochemical network. Furthermore, we devise two
parallelizable variants that generate numerous model instances using stochastic
scrambling of parameters during initial and intermediate stages of optimization. Our
results indicate that these variants produce superior models and offer an estimate of
solution degeneracy. Additionally, we showcase the effectiveness of the optimization
methods for both abstracted, event-based simulations and ODE-based models.

Keywords: systems biology, mechanistic models, optimization, modularity,
AutoML.

Author summary

Biochemical pathway models integrate quantitative and qualitative data to understand
cell functioning, disease effects, and to test treatments in silico. Constructing and
optimizing these models is challenging due to the complexity and multitude of variables
and parameters involved. Although hundreds of biochemical models have been
developed and are available in repositories, they are rarely reused. To enhance the
utilization of these models in biomedicine, we propose HOSS, an innovative hierarchical
model optimization method. HOSS takes advantage of the modular structure of
pathway models by breaking down large mechanistic computational models into smaller
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modules. These modules are then optimized progressively, starting with input modules
and following causality paths. This method significantly reduces the computational
burden as each step involves solving a simpler problem. By making the optimization
process more manageable, HOSS accelerates the lifecycle of biochemical models and
promotes their broader use in biomedical research and applications.

Introduction 1

Many large biochemical pathway models have been developed since the early days of 2

systems biology. These models take many different formalisms, including visual 3

representations of data, such as protein interaction networks [1], and executable models 4

like chemical reaction networks which can be solved with ordinary differential 5

equations [2], or using stochastic calculations [3], boolean models [4], and more recently, 6

HillTau abstractions [5]. Among executable models, ODEs provide accurate 7

representation of pathway dynamics, but incorporate many unknown parameters. 8

Two key advances have opened up the possibility of scaling up systems models 9

substantially, in terms of complexity and reproducibility. First, there is now a rich 10

ecosystem of data resources and data mining resources, both from structured databases 11

and from the much broader but unstructured scientific literature. These approaches 12

have already been used to scale up pathway diagrams and interaction networks [6]. 13

Second, the advent of numerous high-throughput methods such as phosphoproteomics, 14

imaging, and mass spectrometry promise far larger and internally consistent datasets 15

(see [7]) than the extant patchwork of precise but once-off biochemical experiments 16

performed by individual laboratories. 17

However, in spite of a few attempts [8, 9], the model development process is far from 18

being automatic and standardized. Parameter optimization frameworks have been 19

implemented in a diverse manner, with different specification formats for the 20

parameters, the experimental datasets, the parameter bounds, the objective functions 21

and the choice of optimization methods [10–23]. This is in part due to the very wide 22

diversity of experimental inputs used to constrain such models, but also due to the 23

inherent contradictions and sparseness of the data. For example, to compensate for the 24

sparseness of specific datasets and further constrain the model, it is not uncommon to 25

amalgamate the findings from various publications. These data sources may utilize 26

experimental preparations that differ significantly or even involve different classes of 27

organisms [2]. This practice introduces inconsistent experimental inputs into the model. 28

Consequently, model development is highly idiosyncratic, and different modelers may 29

arrive at quite distinct models or parameter sets despite drawing on similar data 30

sources. Our framework systematizes how experiments are used for optimization, and 31

provides a way to assign a numerical confidence in each, thus ensuring that optimization 32

runs are reproducible and can evolve as better experiments become available. 33

There have been previous ambitious efforts to systematically funnel many 34

experimental inputs into detailed and biologically driven models [24]. Such efforts 35

require the integration of large-scale systematic data gathering with data management 36

and modelling (e.g, SPEDRE [25]). The current paper focuses on standardizing the 37

calibration and optimization stages of model development, given a large but sparse set 38

of experimental data. We build on our recently developed framework (FindSim [26]) for 39

curating a very wide range of biochemical and physiological experiments, representing it 40

in a consistent format, and using such curated experiment definitions to drive multiscale 41

models. In principle, each new experiment should improve our understanding of 42

biological systems, and thus help us to refine models of these systems. This amounts to 43

a multi-parameter optimization problem. Its result should be a model that fits 44

experiments as well as possible within the limitations of the model, while incorporating 45
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expert evaluation of the relative reliability of different experiments. 46

We formalize and implement a general methodology for solving multi-parameter 47

optimization problems by leveraging the modularity property of biochemical networks. 48

These networks consist of groups of species and biochemical reactions that function 49

autonomously. In this work, we present innovative algorithmic approaches for 50

systematically performing modular decomposition of biochemical networks, described by 51

various methods including ordinary differential equations and event-based modelling. 52

Additionally, we connect the modular approach to hierarchical optimization, offering 53

fully automated methods to handle data and models in a hierarchical manner. 54

Inspired by game theory and now with multiple applications in science and 55

engineering, hierarchical optimization decomposes a complex optimization problem into 56

several coupled simpler problems [27,28]. Although NP-hard in general, hierarchical 57

optimization becomes easier for nested hierarchies, where lower levels depend on fewer 58

parameters than the upper levels. We refer to such a method as nested hierarchical 59

optimization and provide algorithmic solutions for implementing it in pathways. 60

We report the development of an optimization pipeline, HOSS, implementing nested 61

hierarchical optimization. We illustrate its use on an extant database of over 100 62

experiment definitions in the domain of synaptic signalling’ encoded into the FindSim 63

format, to improve the parameterization of a set of models of major signalling pathways 64

involved in synaptic signalling and cell proliferation. HOSS utilizes FindSim [26] in 65

order to consistently evaluate models based on a specified set of experiments. 66

We show how our hierarchical approach addresses many of the challenges of 67

parameter optimization problems, and outperforms a flat (i.e., non hierarchical single 68

stage) optimization approach in efficiency, structure, and accuracy. 69

Our pipeline implements tools and standard formats for automatically handling 70

models, data and machine learning (ML) scenarios. All our models are encoded using 71

the Systems Biology Markup Language (SBML), a well-established format in Systems 72

Biology. Both data and optimization choices, including flat and hierarchical 73

optimization, with the definition of submodels in the hierarchical case, are encoded 74

using JavaScript Object Notation (JSON) files. The goal is to make ML more 75

reproducible and accessible to non-experts, while increasing productivity for experts. 76

This situates our effort within the field of Automated Machine Learning (AutoML), a 77

relatively new area that makes advanced ML techniques more accessible and accelerates 78

research processes in computational biology [29]. 79

Decomposition of optimization problems has been previously explored for hybrid 80

Petri Net models of signalling [30], using autonomous modules, though without 81

extending the approach to networks with feedback. In cases involving sparse data, 82

under more restrictive conditions, the decomposition of objective functions into a sum 83

of independent terms has been proposed as a way to split optimization into simpler 84

independent problems [31]. Decomposition in the presence of feedback has also been 85

addressed through the method of dependent inputs [32]. Hierarchical optimization has 86

been applied to the optimization of systems biology models, particularly in its simplest 87

form, known as bilevel optimization [33,34]. In this paper, we present a comprehensive 88

mathematical and algorithmic solution for the hierarchical decomposition and multilevel 89

hierarchical optimization of general networks, including feedback, and implement it in 90

software. Our toolset employs JSON format specifications for both optimization 91

configuration and experimental datasets, ensuring easy interoperability and reusability, 92

even across toolsets with different syntaxes. 93
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Methods 94

Mathematical formalism 95

Objective (cost) function 96

A popular choice of objective function is the log likelihood. For data with normally 97

distributed deviations, it reads: 98

L(θ, s, σ) =
1

2

N∑
i=1

[
log(2πσ2

i ) +

(
yi − sixi(θ)

σi

)2
]
, (1)

where yi and xi(θ) are observed and predicted concentrations of the ith observed 99

species, respectively, and θ are kinetic parameters. Parameters si are scaling 100

parameters, accounting for the fact that the measurements are not absolute and σi are 101

standard deviation parameters (see [33]). 102

In the HOSS calculations we perform two levels of scoring. First, for each 103

experiment for which a model is tested, we obtain a normalized root-mean-square cost 104

similar to the above calculation, except it is normalized to the maximum of the 105

experiment readout for molecule yi among all the observations of the same variable at 106

different times or in different conditions: 107

NRMS(θ) =

√√√√ 1

Nd

∑
i,k

(
yik − xi(tk, θ)

mi

)2

, (2)

where mi is the maximum value of the observed variable yi and xi(tk, θ) is its predicted 108

value at the time tk, and Nd is the number of data points (terms in the sum). 109

To handle multiple data sets and multi-objective optimization we adopt a weighted 110

sum approach. We define the weighted normalized cost, that combines values of (2) 111

obtained in multiple datasets: 112

WNRMS(θ) =

√∑
j wj(NRMSj(θ))2∑

j wj
, (3)

where wj , and NRMSj are positive weights, and normalized root mean costs of 113

individual datasets, respectively. 114

We used this simple way to rescale the terms in the least-squares objective function, 115

rather than the log likelihood (1), because the highly heterogeneous nature of the 116

experimental datasets does not lend itself to mathematically expressed statistical 117

quantification of uncertainty. Specifically, different experiments disagree (e.g., 118

Figure 6 C) and are performed under different biological contexts. While some 119

experiments do provide error bars, there is no rigorous way to combine such estimates 120

when the main source of difference between readings is not measurement noise, but 121

details of the experimental system being employed. We instead chose to incorporate a 122

semi-quantitative expert assessment of data reliability by assigning weights to each 123

experiment used for estimating the cost function value. Our experimental data format 124

(FindSim format, [26]) includes error estimates for future use of more elaborate 125

objective functions in cases where datasets are more homogeneous. 126

Flat and Hierarchical optimization 127

Parameter optimization involves minimization of an objective function f : C ⊂ Rn → R, 128

where C is a space of constraints, p ∈ C a vector of parameters. The flat method 129
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consists of solving the problem: 130

min
p∈C

f(p). (4)

There are many methods to solve (4). In our framework we use multistart optimization, 131

by launching local search procedures from randomly chosen starting points generated 132

uniformly in logarithmic scale: 133

p = p̃ exp(log(a) + log(b/a)U), (5)

where p̃ is a nominal guess, U = (U1, U2, . . . , Un) a vector of random, independent 134

variables whose distribution is uniform over [0, 1] or standard normal, 135

a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) are vectors of positive scales, such that 136

0 < ai < 1 < bi for 1 ≤ i ≤ n. All the vector multiplications in (5) are elementwise. By 137

using this procedure, the range of start parameters is from p̄iai to p̄ibi. 138

We refer to this procedure as parameter scrambling. Despite its simplicity, multistart 139

optimization with logarithmic sampling has proven to be effective in benchmarks of 140

biochemical pathways [35]. Similar to [35], which uses a logarithmic scale for both 141

initial and evolving parameter values, we allow an option between logarithmic and linear 142

scales for the optimizer, with logarithmic as the default. 143

In hierarchical optimization [27], K sub-problems, each one defined by an objective 144

function fi : C −→ R, i = 0, . . . ,K − 1, are solved iteratively. Parameters of the 145

problem are grouped in K groups p = (p0, . . . , pK−1), where pi ∈ Rni for 0 ≤ i ≤ K − 1 146

and n = n0 + . . .+ nK−1 is the total number of parameters. We look for 147

p∗ = (p∗0, . . . , p
∗
K−1) ∈ C ⊂ Rn, solution of: 148

min
pK−1

fK−1(p
∗
0, . . . , p

∗
K−2, pK−1) where p∗K−2 solves

min
pK−2

fK−2(p
∗
0, . . . , p

∗
K−3, pK−2, pK−1) where p∗K−3 solves

...
...

min
p1

f1(p
∗
0, p1, . . . , pK−1) where p∗0 solves

min
p0

f0(p0, p1, . . . , pK−1) p ∈ C.

(6)

The case K = 2 is known as bilevel optimization [28]. In this case the optimization of f0 149

is called lower-level problem, whereas the optimization of f1 is the upper-level problem. 150

The problem (6) is difficult, because each individual problem has to be solved for 151

multiple values of the remaining variables, all subjected to the constraints C. Indeed, it 152

has been proved that even apparently simple bilevel optimization problems are 153

NP-hard [28]. However, the solution of bilevel optimization is straightforward if the 154

lower-level problem has unique analytic solution. In this case, the naive algorithm, 155

utilizes the solution of the lower-level problem to eliminate p0 and reduce the 156

upper-level optimization to minimizing a composed function that depends on p1 only, is 157

effective. Bilevel optimization with analytic solution for the lower-level problem has 158

already been used for systems biology models. In this case the lower-level parameters 159

are the scaling and standard deviation parameters si, σi introduced in (1), that can be 160

optimized by analytic formulas, see [33]. 161

Another simple hierarchical optimization case is when the functions fi, 0 ≤ i ≤ K − 1 162

depend on nested sets of parameters and the set of constraints factorizes 163
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C = C0 × C1 × . . .× CK−1. Then, (6) reads: 164

min
pK−1∈CK−1

fK−1(p
∗
0, . . . , p

∗
K−2, pK−1) where p∗K−2 solves

min
pK−2∈CK−2

fK−2(p
∗
0, . . . , p

∗
K−3, pK−2) where p∗K−3 solves

...
...

min
p1∈C2

f1(p
∗
0, p1) where p∗0 solves

min
p0∈C0

f0(p0)

(7)

We call the problem (7), nested hierarchical optimization. Nested hierarchical 165

optimization can be solved iteratively, starting with the last problem in (7). 166

Nested hierarchical decompositions 167

A biochemical model is defined by a set of reactions R and a set of species S. We also 168

define the stoichiometric matrix S, whose elements Sij represent the number of 169

molecules of the species i produced (if Sij > 0) or consumed (if Sij < 0) by the reaction 170

j. Furthermore, the reaction rate vector R(x,p) = (R1(x,p), . . . , Rr(x,p)) is a 171

function of species concentrations x = (x1, . . . , xN ) and kinetic parameters p. Each 172

reaction j is characterized by a parameter vector pj , therefore we have p = (p1, . . . ,pr). 173

Species concentrations evolve in time as a result of chemical reactions. These define 174

a semiflow (time dependent mapping of the species concentrations, enabling the 175

computation of future concentrations based on the present ones) ϕ(t,x;p), t ≥ 0 such 176

that x(t) = ϕ(t,x0;p) represents the species concentration vector starting from initial 177

values x(0) = x0. The semiflow results from the integration of ODEs in chemical 178

kinetics models or from the simulation of event driven dynamics in HillTau 179

abstractions [5]. 180

Some species forming a subset BS ⊂ S are buffered, and their concentrations are 181

kept constant. 182

Our construction relies on the following concept. We call autonomous pair, a pair 183

of reaction and species subsets (I, J), I ⊂ S, J ⊂ R that satisfy: 184

1. if a species is in the subset I, then all the reactions consuming or producing this 185

species are in the corresponding reaction subset J , namely if i ∈ I then j ∈ J 186

whenever Sij ̸= 0. 187

2. if a reaction is in the subset J , then all the species on which the reaction rate 188

depends are in the corresponding species subset I, unless these species are 189

buffered, i.e. if j ∈ J then i ∈ I whenever
∂Rj

∂xi
̸= 0 and i /∈ BS. 190

Let xI be the concentration vector of the species in I and pJ the kinetic constants 191

of the reactions in J . From the above definition it follows that xI can be computed at 192

any positive time t by a semiflow depending only on the parameters pJ , namely 193

xI(t) = ϕI(t,xI(0);pJ). Consider the data subset DI , consisting of observations yI of 194

the species xI only. Then, the objective function measuring the difference between 195

observed and predicted values of xI depends only on pJ , namely 196

fJ(pJ) =
∑
i∈I

∑
k

(yik − ϕi(tk,xI(0);pJ))
2. (8)

Suppose now that we find species and reaction subsets, 197

I0 ⊂ I1 ⊂ . . . ⊂ IK−1 = S,
J0 ⊂ J1 ⊂ . . . ⊂ JK−1 = R,

(9)
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such that (Ik, Jk) are autonomous pairs for all 0 ≤ k ≤ K − 1. 198

We call (9) a nested hierarchical decomposition. Optimization of the objective 199

functions (8) can then be done hierarchically, as in (7). 200

Constructing nested hierarchical decompositions using the interaction graph 201

Let us define the interaction digraph as I = (V,E), where V is the set of vertices (all 202

species) and E is the set of edges. A pair of species (j, i) ∈ E defines an edge from j to 203

i if and only if there is a reaction that consumes or produces the species i, and its rate 204

depends on the concentration of the species j. This graph is used to define causality 205

relations between species, namely we say that j is causal to i, j ⇝ i, if j is connected to 206

i by a path in I. All the species j causal to i are needed for computing the time 207

evolution of xi. 208

Strongly connected components (SCC) of I are subsets K ⊂ V such that j ⇝ i and 209

i⇝ j for all i, j ∈ K, maximal with respect to this property. In this paper, we refer to 210

SCCs as blocks. Blocks form a partition of the species set I. This partition can be 211

used to define a SCC quotient graph as follows: blocks are vertices of the SCC quotient 212

graph, and two blocks are connected if there is one species in one block connected in the 213

interaction graph to a species in the other block. The SCC quotient graph is always 214

acyclic (see Figure 1 and [36]). 215

The following property is important for building nested hierarchical decompositions. 216

Property: For any block K and any subset I of an autonomous pair (I, J), one has 217

either K ⊂ I or K ∩ I = ∅. 218

Thus, we can build a nested hierarchical decomposition by using the blocks and the 219

quotient graph. The lowest level subset I0 is the union of blocks that are roots of the 220

quotient graph, i.e. blocks having no incoming connections. The corresponding reaction 221

subset J0 is made of all reactions producing or consuming species from I0. The next 222

level I1 is obtained by adding to the roots all the blocks receiving direct connections 223

only from the roots, and so on and so forth. Algorithmically, one must associate a 224

hierarchical level l to each block, defined as the length of the longest path from the 225

roots to the block (see Figure1). Then, the set Il is the union of all blocks with a 226

hierarchical level smaller than l (see Figure1). 227

Although the nested hierarchical decomposition (9) is not unique, the decomposition 228

obtained by this procedure is unique and has the advantage of minimality. More 229

precisely, I0 is the minimal subset containing the root blocks, such that (I0, J0) is 230

autonomous. I1 is the minimal subset containing the species I0 and all the species 231

receiving direct interactions only from I0. 232

The quotient graph also provides a useful data structure for parallel optimization of 233

the parameters. Thus, each tree originating from a root corresponds to terms in the 234

objective function that can be optimized independently of the others. 235

Hierarchical decompositions with feedback 236

In some signalling pathway models, downstream molecules regulate upstream ones 237

through feedback [37]. This can result in all species influencing each other, forming a 238

single block where hierarchical and flat optimizations are equivalent. However, even in 239

these cases, we can identify smaller blocks and decompose the network hierarchically. 240

Some blocks are no longer autonomous in the presence of feedback, because they 241

receive input from higher level blocks. In order to compute the ODE solutions and 242

objective functions, we use a standard approach known as dependent input in systems 243

biology [32]: the time dependent signal coming from higher level blocks is replaced by 244

experimental data. 245
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We summarize the hierarchical decomposition procedure in the case with feedback, 246

leaving the details to a separate paper. 247

In the presence of feedback, two concepts are key for the hierarchical decomposition. 248

The first concept is r-causality. A species j is r-causal to a species i, j
r
⇝ i, if j is 249

connected to i by a path in the interaction graph I, of length smaller than or equal to r. 250

The introduction of r-causality imposes an upper limit on the length of paths 251

connecting species in the interaction graph. By taking the value of r sufficiently large 252

one can thus break feedback loops. 253

The other concept is agony, a measure used to quantify the hierarchical organization 254

of directed networks [38,39]. It helps in identifying and evaluating the hierarchical 255

structure within a network by penalizing the inconsistencies present in the hierarchy. 256

More precisely, integer variables representing the level in the hierarchy are associated to 257

each species in the network. Then agony is a function of all these levels and of the 258

interaction graph, that penalizes the edges for a node with high level to a node with 259

lower level. The levels that minimize agony are then used to define the hierarchy. 260

Our procedure to compute the hierarchical decomposition of a network with 261

feedback is as follows: 262

• First define r-blocks, such as maximal subsets such that any species is r-causal to 263

any other. 264

• Because r-causality is not an equivalence relation, r-blocks can overlap. Generate 265

a consolidated r-block partition (also named r-SCC partition) by agglutinating 266

r-blocks that overlap. 267

• Use the r-SCC partition to define a r-quotient graph in the same way as the 268

quotient graph was defined from the SCC partition. The nodes of the r-quotient 269

graph are the consolidated r-blocks. 270

• Use agony to define hierarchical levels in the r-quotient graph. In cases where 271

block labeling has multiple solutions, such as in cycles, use biological information 272

to define as roots (level zero) the blocks that receive extracellular signals. 273

Another strategy would be to apply agony directly to the interaction graph. However, 274

the computational burden is reduced, and the optimization result is robust by using the 275

r-quotient graph instead. The value of r has to be chosen not too large to avoid one 276

r-block that contains all the species, and not too small to avoid many r-blocks that 277

contain just one species. For the models studied in this paper r equal to one or two is 278

good enough to avoid having just one block or many blocks containing just one species. 279

This is because, even for r = 1, the blocks are large enough for these models, so we 280

typically use small values of r. 281

The hierarchical decomposition algorithms used in this paper were implemented in 282

Python (see HiNetDecom in the Availability section). 283

The application of this procedure to signalling networks with feedback is illustrated 284

in the Figures 4 and 5. 285

Signal back-propagation, reduced Michaelis-Menten mechanisms, and 286

irreversible reactions 287

Although in a signalling cascade the signal usually propagates in only one directions, 288

there are situations when both forward and backward propagation are possible. Similar 289

to the case of feedback, minimal blocks and autonomous pairs can encompass the entire 290

pathway in this instance as well. Signal backpropagation can occur due to enzyme 291

sequestration, a phenomenon in which the active enzyme from an upstream tier of the 292
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signalling cascade is sequestered as part of the enzyme-substrate complex [40]. The 293

back-propagation phenomenon disappears under quasi-steady state (QSS) conditions, 294

when the enzyme-substrate complexes have low concentrations [41,42]. As signalling 295

pathways models often assume QSS, it is useful to have a tool that reduces mass action 296

models by eliminating complexes. The reduced models can then be decomposed 297

hierarchically using methods proposed above. As a result of the reduction, the 298

hierarchical decomposition is improved: some large blocks split into smaller ones. This 299

holds whenever there is sequestration-related back-propagation, whether or not it is 300

accompanied by feedback. 301

The QSS reduction of Michaelis-Menten mechanism is based on identifying in the
reaction network of motifs of the type:

Si + Ei

k+
i

⇌
k−
i

ESi
ki
cat−−→ Pi + Ei,

and finding all the motifs that share the same enzyme Ei. 302

Let Ei be the subset of reactions using the same enzyme Ei, i.e. Ej = Ei, ∀j ∈ Ei.
Then ∀j ∈ Ei the Michaelis-Menten mechanism is replaced by a single reaction

Sj
Vj→ Pj ,

with the rate

Vj = kjcat
EiSj/k

j
m

1 +
∑
l∈Ei

Sl/klm
,

where kjm = (k−j + kjcat)/k
+
j . 303

The rates of the reduced reaction depend on the concentration of the substrate Sj , 304

but also on enzyme Ei and on the substrates Sk, k ∈ Ei, k ̸= j, that should be added to 305

the list of modifiers of this reaction. 306

Other sources of signal back-propagation are the reversible reactions connecting 307

species from different levels of the hierarchy. A reversible reaction allows the 308

propagation of the signal in both directions and establishes interaction graph 309

connections in both directions between reactants and products. However, some 310

reversible reaction effectively function in only one direction. We say that a reaction is 311

forward irreversible if R+ >> R− where R+, R− are the forward and backward reaction 312

rates. This condition can be verified using numerical simulations or any information 313

about the orders of magnitude of the kinetic constants and concentrations of reactants 314

and products. When it is satisfied we can consider that the reaction is irreversible. 315

As an illustration, we tested by simulation the forward irreversibility in the 316

signalling model D4 b2AR-PKA. We found several forward irreversible reactions, but 317

the reaction CaMCa3 + Ca⇌ CaMCa4 is particularly important for the directionality 318

of the signal propagation. By considering this reaction to be forward irreversible, a large 319

block containing AC1,AC2 and CaM splits into two blocks, one of level one containing 320

CaM and the other of level two containing CaMCa4 (see Figure 5). Indeed, the signal 321

propagates from CaMCa3 to CaMCa4 and not backwards. 322

Although QSS reduction or forward irreversibility can improve hierarchical 323

decomposition by decreasing the size of some modules, these two approaches are 324

optional in HOSS. r-causality alone, or in combination with agony, can be used to 325

identify sufficiently small modules. Furthermore, QSS reduction and forward 326

irreversibility are applied only during the module definition phase and not during 327

simulation, which implements the full mechanism. 328
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The HOSS Optimization framework 329

The HOSS software is designed to orchestrate complex, multi-level hierarchical 330

optimizations. To do this it deploys numerous individual optimization steps, each of 331

which fits a subset of a model to a number of individual experiments (Figure 2 A). 332

HOSS works on signalling and other models which are subdivided into blocks, typically 333

individual signalling pathways in a signalling network. The blocks are organized into a 334

hierarchy informed by the above mathematical formalism, where each level depends only 335

on signalling input coming from preceding levels, and blocks within a level are 336

independent of each other (Figure 2 B). During operation, HOSS reads a configuration 337

file in JSON format, which specifies the metadata and overall optimization parameters, 338

such as optimization algorithm and tolerance (Figure 2 B). The configuration file 339

further specifies a weighted set of experimental protocols defined in the FindSim JSON 340

format [26]. Finally, within each block it identifies which parameters are to be adjusted, 341

and optionally their bounds. HOSS calls the FindSim utility [26] to set the parameter 342

vector, and to compute the objective (cost) function giving the accuracy of the model fit 343

for each experiment. The default objective function is the normalized root-mean-square 344

difference between experimental data and simulation readout (2). When several 345

experiments pertaining to different readouts, or datasets of different origins are 346

available for the same model, a consolidated objective function is obtained by combining 347

individual objective functions scaled by weights (3). This consolidated objective 348

function is used in the optimization algorithm which is provided by scipy.minimize. 349

HOSS can employ nested parallelization by simultaneously running FindSim on each 350

experiment within a block, and independently optimizing each block on different 351

processes. For the purposes of subsequent discussion, we refer to the optimization 352

routine (provided by scipy.optimize) as the optimization algorithm, and the hierarchical 353

optimization program (provided by HOSS) as the HOSS method. 354

FindSim is the Framework for Integration of Neuronal Data and SIgnalling 355

Models [26]. Briefly, it does three things: 1) reads a model and tweaks its parameters, 2) 356

reads the definition of an experiment and runs it on the model, and 3) compares the 357

output of the model with data from an experiment (Figure 2 D - H). FindSim is 358

agnostic to model definition format and simulator. It currently works with the 359

HillTau [5] format and simulator, and with ODE and mass action models specified in 360

SBML and other formats, and solved using the MOOSE simulator [43]. FindSim utilizes 361

a JSON format file to specify experiment inputs and readouts. Crucially, an experiment 362

defined in FindSim format can be applied to completely different models even using 363

different modelling formalisms, provided the input and output entities are common. We 364

illustrate these capabilities below. In the context of HOSS, we use FindSim on four 365

kinds of experiments applicable to cellular signalling: dose-response, time-series, 366

bar-charts and direct parameter estimates (Figure 2 D - H). FindSim has additional 367

capabilities to handle common electrophysiological experiments [44,45] but these are not 368

used in the current study. 369

Large Models overview 370

For the purposes of this report, we model two signalling pathways in two formalisms 371

each (Figure 3 A - B,4 B,5 B). The pathways are the beta-adrenergic receptor activation 372

of protein kinase A (the b2AR pathway) and the epidermal growth factor activation of 373

MAPK/ERKII (the EGFR pathway). The reaction topologies of these pathways are 374

based on and simplified from [2]. The two formalisms are HillTau [5], which is an 375

abstracted reduced signalling model specification which maintains direct experimental 376

mapping of selected parameters such as concentrations and rates; and well-mixed 377

chemical kinetics specified in SBML or other compatible formats. In the current study, 378
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SBML models are based on ODE dynamics. However, in HillTau, species dynamics are 379

not computed using ODEs, but by a hybrid system. 380

The ODE models are subsets of the model presented in [2], DOQCS accession 3 381

https://doqcs.ncbs.res.in/template.php?&y=accessiondetails&an=3. They have been 382

modified slightly as part of the subsetting process. The HillTau models were derived 383

from the ODE models by abstracting the reaction steps. The selected experiments were 384

obtained programmatically from an in-house dataset by selecting for those experiments 385

having stimulus and readout molecules that were present in the models. All models and 386

experiment files used in the optimization are provided on GitHub and were generated to 387

answer specific biological questions in neuroscience independent of the current study. 388

The composition of the models is reported in Table 1. 389

Pathway Formalism Number
of species

Number
of reac-
tions

Number
of param-
eters

Number
of experi-
ments

Number
of data
points

D3 EGFR-MAPK HillTau 14 7 29 21 97
D3 b2AR-PKA HillTau 21 12 37 20 129

D4 EGFR-MAPK ODE 36 22 54 32 241
D4 b2AR-PKA ODE 53 40 93 27 178

Table 1. Composition of large test models used in this study. The number of
parameters is contrasted with the number of experiments available to constrain them.
The number of data points refers to the count of all data readings in all the experiments,
such as successive points in a time-series.

Experimental database 390

We have used manual curation of the experimental literature to build up a repository of 391

over 350 signalling experiments with a focus on synaptic signalling pathways. There are 392

two key characteristics of this dataset, which drives several of the design choices in 393

HOSS. First, the number of experiments pertaining to each pathway is limited, and 394

even though some experiments provide multiple sample points (Table 1), the constraints 395

remain considerably below the number of parameters even for HillTau models. For 396

instance, many time-series and dose-response curves are asymptotically converging. 397

Hence they may have many points but only constrain a single parameter. Second, there 398

are frequently overlapping experiments which disagree on the quantitative values of 399

readouts (Figure 6 C, D). Due to such conflicts within the datasets, a single model 400

cannot be perfectly fitted to data from different laboratories. As a result, some species 401

in some experiments exhibit larger training errors, despite the overall optimization cost 402

being low. 403

Results 404

Hierarchical optimization outperforms flat optimization for a 405

paradigmatic model with synthetic datasets 406

In order to illustrate and test the hierarchical optimization method we first use a 407

paradigmatic model of the MAPK signalling cascade, introduced by Huang and 408

Ferrel [46]. The SBML model is available in the Biomodels [47] database. The 409

corresponding ODE system can be found in ODEbase [48] database 410

https://www.odebase.org/detail/1330. The original SBML model consists of 411

mass-action elementary reactions. Because of multiple Michaelis-Menten mechanisms 412

sharing the same enzyme there is back-propagation of the signal and the application of 413
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the hierarchical decomposition algorithm to this model results in only one autonomous 414

pair that includes the entire model. 415

By applying the QSS reduction transformation, the 22 ODEs in the ODEbase model 416

are simplified to 8 differential equations. Notably, 4 species exclusively function as 417

enzymes, and are considered buffered after the transformation (MAPKKK activator, 418

MAPKKK inactivator, MAPKKPase, MAPKPase). As shown in Figure 7 A, the 419

reduced MAPK model lends itself to a hierarchical cascade with 3 levels. 420

We tested hierarchical optimization using time series produced in [49], consisting of 421

10 in silico experiments. Each experiment employed a different concentration of 422

MAPKKK activator. For the flat optimization we used 12 distinct starting points 423

log-uniformly distributed in a hypercube with edges [10−10, 10], and for hierarchical 424

optimization (with parameter scrambling) we used 12 starting points per level. 425

Figure 7 B shows that flat optimization takes longer compared to hierarchical 426

optimization in terms of total duration. Additionally, the hierarchical optimization 427

outperforms classical optimization significantly in terms of the objective function value 428

(Figure 7 C). 429

Black-box, non-gradient optimization methods work well for flat 430

optimization. 431

To scale up our analysis to moderately large models, we utilized the HOSS pipeline on a 432

set of four signalling pathways as described in Table 1. Notably all details required for 433

execution of the optimization pipeline, such as applicable experiments (FindSim files in 434

JSON format), experiment weights, parameter lists, and parameter bounds were 435

incorporated into the HOSS files. Thus a single command triggers execution of a 436

complex pipeline, and a single file orchestrates all the data, models, optimization 437

options, and parameter specification. As a reference, we first ran the HOSS pipeline 438

using flat (non-hierarchical) optimization on the models, employing a number of 439

standard optimization methods in the scipy.minimize library (Figure 8 A). Our initial 440

models were initially parameterized manually using inspection of a limited subset of 441

experiments. Following the flat optimization, all of the algorithms produced better 442

fitting models than the start models. This was reflected in the modest improvement in 443

the model-fitting objective function, which we refer to as cost (Figure 8 B). We found 444

that COBYLA (black-box, non-gradient algorithm based on linear programming and 445

linearization of the problem and constraints) and SLSQP (iterative quadratic 446

programming method, also using linearized constraints) were considerably faster to 447

converge than gradient algorithms such as BFGS (quasi-Newton algorithm based on an 448

approximated inverse Hessian matrix) (Figure 8 C). COBYLA was more reliable in 449

producing small costs. A possible explanation for this effect is the conflict within the 450

multiple datasets used in the weighted cost (3). This conflict may lead to ill-conditioned 451

Hessians and degenerate quadratic approximations of the cost functions, which 452

disadvantage the BFGS and SLSQP algorithms. Accordingly we used COBYLA for 453

subsequent hierarchical optimization runs. 454

We have not tested here more precise methods to estimate the gradients, such as 455

forward sensitivity, that may have good performance even with flat cost functions. 456

These will be implemented in future versions of HOSS. 457

Hierarchical optimization is more efficient than flat optimization 458

for biochemical models with real datasets 459

We next tested the HOSS pipeline for hierarchical optimization (Figure 9 A). We have 460

shown above that nested hierarchical optimization is more efficient than flat 461
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optimization for fitting a medium-sized model with synthetic data. Our results here 462

show that this efficiency carries over to complex real-world cases involving large models 463

(Figures 3,4,5), large but sparse datasets (Figure 6 A, B), and noisy and sometimes 464

inconsistent data (Figure 6 C, D). We implemented hierarchical optimization in HOSS 465

as schematized in (Figure 9 A). 466

The signalling reactions from Figures 3,4, 5 were subdivided into individual 467

pathways reflecting their biological organization. Within the HOSS configuration file 468

for each model, the pathways were placed in a hierarchy which reflected their position in 469

the signalling cascade (e.g., Figure 2 C, Figure 9 B). We again tested three different 470

algorithms for optimization: BFGS, COBYLA and SLSQP. We found that hierarchical 471

optimization worked for all algorithms, though COBYLA gave smaller costs than BFGS 472

and SLSQP in most cases (Figure 9 B). The runtimes followed the same pattern as for 473

flat optimization, that is, BFGS > COBYLA > SLSQP. We then compared how 474

hierarchical optimization performed compared to flat optimization (Figure 9 D, E). 475

HOSS gave smaller or comparable costs to flat optimization in all except the 476

ODE-based EGFR model, labeled D4 EGFR. We speculate that a loop unrolling pass 477

would improve the EGFR pathway cost, since there is a feedback loop in the EGFR 478

pathway which violates the hierarchy assumptions. Notably, the runtime for hierarchical 479

optimization was considerably faster in all cases. 480

Multistart methods yield lower cost function value: initScram 481

method. 482

As the basic HOSS algorithm may be susceptible to local minima, we implemented a 483

version which generated a large number of initial models with parameters randomized in 484

a log-normal distribution of half-width scramble Range (scramRange, defined as 485

b = 1/a = scramRange > 1 in (5)) (Figure 10 A, B). This is a known approach, with 486

roots in simulated annealing methods [35, 50, 51]. We extended the HOSS framework to 487

overlay model parameter scrambling and process farming onto the hierarchical 488

optimization method. This is an embarrassingly parallel problem and each of the 489

optimization processes could run in parallel. In the course of these runs we identified 490

one necessary refinement to the algorithm. In some cases, a subset of the initial models 491

took an enormously long time to converge. Thus we implemented a timeout for each 492

elementary minimization run. This may slightly reduce the number of completed runs, 493

but frequently led to considerable improvement in runtime. In an analogy with 494

simulated annealing, we asked if successive rounds of optimization would find still lower 495

minima. We found that multiple rounds of optimization tended to converge rapidly 496

(Figure 10 C). Hence in most cases a single optimization step should suffice. 497

The cost function values resulting from a typical run with 200 initial models fell into 498

a distribution which depended both on model and on scramRange (Figure 10 D, E). As 499

expected, the width of the cost distribution increased with scramRange. The best fits 500

were at the left of the distribution and in these examples they were obtained with a 501

scramRange of ∼5.0, that is, log-normal random scaling from 1/5 to 5-fold of each 502

initial parameter (Figure 10 D, E). The costs for these fits were considerably lower than 503

those obtained with plain HOSS. To relate the NRMS divergence between parameters to 504

scrambleRange, we generated a set of models at a series of scrambleRange values, and 505

computed NRMS between each population (Figure 10 F). Interestingly, the best few 506

models (lowest costs) were not necessarily very similar in their parameters. We did a 507

normalized RMS comparison of parameters of the top 10 D4 b2AR models and found no 508

obvious clusters (Figure 10 G). Using the relationship from (Figure 10 F), we observed 509

that the NRMS range of ∼1.0, as seen in these best 10 models, corresponded to a 510

scrambleRange of ∼2.0. This means that the parameters of these models differed by as 511
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much as a factor of two. As another measure of the parameter similarity of ’good’ 512

models, we plotted the distribution of (model parameter) / (mean parameter) across all 513

parameters taken from the best 25% of models, that is, those whose costs were in the 514

lowest quartile (Figure 10 H, I). We found that this clustered around one, suggesting 515

that there is indeed a global optimum to which most models converge. Note that this 516

parameter distribution is narrower with a broad tail, as compared to the source model 517

parameter distribution from (Figure 10 B). To directly compare the performance of 518

HOSS with the flat method, we ran multi-start optimizations for all four models using 519

the two methods. We generated 200 initial models in each case, and recorded 520

distributions of solution time and of initial and final cost functions (Figure 11). The 521

peak of the HOSS solution time was around one-third that of the flat method 522

(Figure 11 A - D) except for the D3 EGFR model, where there was only a small 523

improvement. Likewise, the cost functions for the HOSS optimization were better than 524

those for flat optimization, except for D3 EGFR, in which case they overlapped 525

(Figure 11 E, F). 526

Multi-stage Monte-Carlo yields further improvements of the cost 527

function value: hossMC method. 528

As a final refinement of our code-base, we implemented a similar model-scrambling step 529

within each stage of the HOSS algorithm (Figure 12 A). Thus, each subset of the model 530

was subject to scrambling to give S variants (S∼200 for a full run). These S variants 531

were individually optimized in an elementary minimization step similar to a single stage 532

in the original HOSS method (Figure 9 A). If there were multiple model subsets within 533

a given level of the HOSS hierarchy, each was subject to this process to give S optimized 534

variants. The best of each subset were then recombined so as to obtain the top N 535

solutions for a given level. Typical values for N were ∼10. These top N sub-models were 536

then used as separate starting points for further scrambled models for the next level of 537

HOSS, such that we again had S variants to optimize. After the program ran through 538

all levels, we had a set of the best-fitting N models obtained by the overall pipeline. 539

This method generated excellent fits to the data, slightly better than the previous 540

multi-start method initScram (Figure 12 B). Wallclock time was similar to that of the 541

initScram method provided there were enough CPU cores available to run all the steps 542

in parallel (Figure 12 C). The total CPU time for both randomized methods was also 543

quite similar (Figure 12 D). 544

To summarize the performance of the four methods employed here (flat, hoss, 545

initScram and hossMC), we compared three metrics across the four optimization 546

methods in the HOSS framework. The metrics were the final cost (Figure 12 B), 547

wallclock time (Figure 12 C), and total CPU time (Figure 12 D). As detailed above, the 548

hossMC method was most effective but most CPU-costly, followed closely both in time 549

and model fitting cost by the initScram method. The plain HOSS method was 550

uniformly the fastest, but its cost function values did not compare well with the two 551

multi-start methods (initScram and hossMC) for any of our models. The conventional 552

flat method is not a good choice by any criterion. 553

Discussion and conclusion 554

We have developed a pipeline for hierarchically optimizing large signalling models with 555

hundreds of parameters. We show that hierarchical optimization gives better model fits, 556

and does so faster than conventional flat optimization. We extend this approach to two 557

further methods which use Monte Carlo sampling of multiple parameter start points to 558

give still better final models. 559
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Model provenance and modelling disease variants 560

Complex biological models, and signalling models in particular, frequently draw upon 561

diverse sources of data. Such models are often hand-tuned, and such tuning may be 562

very effective because it draws upon expert intuition and implicit knowledge about the 563

behaviour of familiar pathways. However, many model parameters are adopted from the 564

literature without clearly documenting the parameter optimization procedures or the 565

data used in these procedures. This makes model provenance problematic. How did the 566

modeller end up with a particular set of parameters? The HOSS framework introduces 567

model optimization pipelines that are efficient, scalable, repeatable and above all, 568

transparent. The development of a well-structured optimization configuration format in 569

HOSS ensures that all experimental data and model choices, their weights, and all 570

hyperparameter selections are as clearly defined as the algorithms and the simulators. 571

This emphasis on provenance is designed to place the HOSS framework in line with 572

FAIR principles [52]. We highlight two use cases to illustrate how HOSS supports reuse. 573

First, model rederivation: A different scientist may feel that some of the original 574

experiments should be considered more authoritative than others. This can be done 575

simply by assigning a greater numerical weight to the selected experiments, rerunning 576

the pipeline, and seeing what changes in the resultant optimized model. Similarly, a 577

researcher could include some new experiments into the dataset against which the 578

model is to be optimized. This simplicity of model derivation brings a more data-driven 579

flavor to debates over model assumptions and how well they represent the known 580

experimental literature. As HOSS is agnostic to model formalism, it follows that these 581

comparisons could even extend over distinct models implemented with different 582

formalisms (e.g., HillTau vs mass action chemistry). Although not yet implemented, the 583

same principles may apply to optimizing qualitative models such as Boolean networks. 584

Second, The HOSS structure is highly effective for model specialization. A 585

researcher may wish to make a family of models for different disease mutations, based 586

on a dataset of readouts for experiments in a set of mutant animal or cell lines. Using 587

the HOSS pipeline, it is straightforward to replace the original (wild-type) experiments 588

with the respective mutant line experiments, rerun the optimization, and obtain 589

disease-specific models. Thus the HOSS framework encourages best practice in 590

developing complex models which can be easily reused. 591

Large models and large datasets 592

HOSS is scalable. This is in large part due to the efficiency of the hierarchical 593

optimization core method we have described. Based on this, we have shown that even 594

large models can be optimized quickly. Beyond this, HOSS organizes systems 595

optimization problems in a modular manner which scales well with complex models and 596

datasets. As a key part of this, HOSS organizes models into hierarchies, within which 597

data, parameter choices, and multiple optimization stages of a pipeline can be triggered 598

using a single command. Thus, once it is set up, a HOSS optimization run does not 599

require many steps of inspection and tweaking by the investigator, and is simple to 600

incrementally extend with new experiments and updated models. Rerunning a pipeline 601

is trivial, and is limited only by computational resources. Several tools also provide 602

model optimization (e.g., COPASI [50]) 603

Model building is not limited just by resources and datasets, but also by how 604

manageable is the organization of the dataset. The traditional way to associate model 605

parameters with experiments is to provide citations (e.g., refs: DOQCS [53], 606

BioModels [47], ODEbase [48]). This is neither complete, due to the previously 607

mentioned lack of documentation, nor automated, because every iteration of the model 608

would, in principle, require human intervention to produce or find new data, reorganize 609
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it and reparametrize the models. Several efforts have sought to reorganize experimental 610

data into a standardized machine-readable format [54,55], and HOSS uses the FindSim 611

format to do so [26]. The organization of a HOSS pipeline lends itself to version control, 612

since every component of the pipeline is a file in a standard location and standard 613

format. Specifically, the HOSS configuration file is in JSON, the model definition files 614

may be SBML or HillTau, and the experiment specification files are FindSim JSON files. 615

HOSS encourages the clear subdivision of models and experiments into groupings 616

around individual signalling steps, such as the activation of a kinase by its immediate 617

second messengers. This has implications for experimental design geared to tightly 618

defining large signalling systems, because it lays out the kinds of experiments that are 619

needed to achieve full coverage of all the reaction steps. Notably, we find that two kinds 620

of experiments can greatly tighten parameters: local experiments that probe 621

input-output properties of a given signalling step, and readouts of all key intermediates 622

along a receptor-driven pathway to ensure that signal propagation remains intact. 623

Model degeneracy, granularity, and completeness 624

In cellular signalling models, it is now clear that many parameter combinations may 625

yield the same input-output properties. The origins of this degeneracy could be 626

epistemic and due to data sparseness [56], but also biological; being a feature of cells 627

themselves, that can perform the same biological function in multiple ways [57–59]. The 628

HOSS framework may provide a useful tool to study such degeneracy. Most directly, the 629

two Monte Carlo methods supported by HOSS (initScram and hossMC) generate 630

multiple ‘good’ models, which can be tested for degeneracy (e.g., Figure 10). Because 631

HOSS is agnostic to model detail, simulator, and model formalism, it also lends itself to 632

asking how model granularity affects degeneracy. We have previously suggested that it 633

is useful to develop a family of models at different resolution for any given signalling 634

system [42,60,61]. HOSS is well equipped to facilitate this, as it can use the same 635

experimental dataset for models at different detail. We demonstrate this in the model 636

choices in this paper, since the D3 models using HillTau, and the D4 models using the 637

MOOSE simulator [43], are parameterized using overlapping sets of experiments, 638

separated only by the fact that some experiments in the D4 set depend on molecules 639

that are not defined in the simpler D3 models. Model completeness, referring to how 640

well a model incorporates all necessary details to accurately representing a system or 641

phenomenon, is quite difficult to ascertain in biology as it is in all scientific fields 642

confronting theory and experiments [62]. Several methods have attempted to explore 643

model topology space along with parameters [8, 9, 63,64], but HOSS supports a more 644

pragmatic interpretation: Is a model complete enough to account for a given set of 645

observations? It does so by trying a large number of possible parameter sets and seeing 646

whether any of these initial conditions result in well-fitting models. A failure to do so 647

suggests that the model topology may need to be reconsidered. We have previously 648

illustrated the behaviour of a series of models of activity-driven synaptic signalling at 649

different levels of granularity, and show that more detailed models fit additional features 650

of the response [5]. However, an overly detailed model can lead to over-fitting if the 651

data is not sufficiently rich. We suggest that multi-grain hierarchical approaches, 652

including automated model granularity (level of detail) selection, may represent a future 653

evolution of hierarchical optimization. 654

Code availability 655

Code locations: 656

HOSS https://github.com/BhallaLab/HOSS, 657
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Figure generation scripts for paper https://github.com/BhallaLab/hossFigs, 658

FindSim https://github.com/BhallaLab/FindSim, 659

HillTau https://github.com/BhallaLab/HillTau, 660

MOOSE https://github.com/BhallaLab/moose-core, 661

HiNetDecom https://github.com/Computational-Systems-Biology-LPHI/HiNetDecom. 662
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35. Villaverde AF, Fröhlich F, Weindl D, Hasenauer J, Banga JR. Benchmarking 781

optimization methods for parameter estimation in large kinetic models. 782

Bioinformatics. 2019;35(5):830–838. 783

November 15, 2024 19/35



36. Bloem R, Gabow HN, Somenzi F. An algorithm for strongly connected 784

component analysis in n log n symbolic steps. In: International Conference on 785

Formal Methods in Computer-Aided Design. Springer; 2000. p. 56–73. 786

37. Bhalla US, Ram PT, Iyengar R. MAP kinase phosphatase as a locus of flexibility 787

in a mitogen-activated protein kinase signaling network. Science. 788

2002;297(5583):1018–1023. 789

38. Gupte M, Shankar P, Li J, Muthukrishnan S, Iftode L. Finding hierarchy in 790

directed online social networks. In: Proceedings of the 20th international 791

conference on World wide web; 2011. p. 557–566. 792

39. Tatti N. Faster way to agony: Discovering hierarchies in directed graphs. In: 793

Machine Learning and Knowledge Discovery in Databases: European Conference, 794

ECML PKDD 2014, Nancy, France, September 15-19, 2014. Proceedings, Part III 795

14. Springer; 2014. p. 163–178. 796

40. Ventura AC, Sepulchre JA, Merajver SD. A hidden feedback in signaling 797

cascades is revealed. PLoS computational biology. 2008;4(3):e1000041. 798

41. Briggs GE, Haldane JBS. A note on the kinetics of enzyme action. Biochemical 799

journal. 1925;19(2):338. 800

42. Radulescu O, Gorban AN, Zinovyev A, Noel V. Reduction of dynamical 801

biochemical reactions networks in computational biology. Frontiers in Genetics. 802

2012;3:131. doi:10.3389/fgene.2012.00131. 803

43. Ray S, Bhalla US. PyMOOSE: interoperable scripting in Python for MOOSE. 804

Frontiers in Neuroinformatics. 2008;0. doi:10.3389/neuro.11.006.2008. 805

44. Bhalla US, Bower JM. Exploring parameter space in detailed single neuron 806

models: simulations of the mitral and granule cells of the olfactory bulb. Journal 807

of neurophysiology. 1993;69(6):1948–1965. 808

45. Brown SA, Moraru II, Schaff JC, Loew LM. Virtual NEURON: a strategy for 809

merged biochemical and electrophysiological modeling. Journal of computational 810

neuroscience. 2011;31:385–400. 811

46. Huang CY, Ferrell JE. Ultrasensitivity in the mitogen-activated protein kinase 812

cascade. Proceedings of the National Academy of Sciences. 813

1996;93(19):10078–10083. doi:10.1073/pnas.93.19.10078. 814

47. Malik-Sheriff RS, Glont M, Nguyen TVN, Tiwari K, Roberts MG, Xavier A, et al. 815

BioModels — 15 years of sharing computational models in life science. Nucleic 816

Acids Research. 2020;48(D1):D407–D415. doi:10.1093/nar/gkz1055. 817
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Fig 1. Interaction and quotient graphs used for the hierarchical decomposition. A) The
interaction graph is a directed graph whose nodes are biochemical species. One source
species acts on a target species if there is a reaction consuming or producing the target,
whose rate depends on the concentration of the source. In this example, all species are
considered self-causal; however, for simplicity, self-interactions are not shown. The
strongly connected components (SCC) are maximal sets of nodes such that there are
paths connecting each node to any other node. This graph has six SCCs: A0 = {a1, a2},
B0 = {b}, D1 = {d1, d2, d3}, C2 = {c}, E2 = {e1, e2, e3, e4}, F3 = {f}. B) The quotient
graph is an acyclic directed graph, whose vertices are the SCC of the interaction graph.
Two SCC are connected in the quotient graph if there is a species in one connected to a
species in the other. The hierarchy level of a block (SCC) is the length of the longest
path in the quotient graph, connecting a root to the block. In this example, blocks A,B
are roots and have level 0, block D has level 1, blocks C,E have level 2 and F have
level 3. The corresponding autonomous subsets are defined as I0 = A0 ∪B0,
I1 = A0 ∪B0 ∪D1, I2 = A0 ∪B0 ∪D1 ∪ C2 ∪ E2, I3 = A0 ∪B0 ∪D1 ∪ C2 ∪ E2 ∪ F3.
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Level2 {…},
…

]

L3

L2

L1b2ARCaM

PDE AC+ 
cAMP

PKA

A

B

C

Fig 2. Optimization framework.
A: Schematic of optimization pipeline. HOSS follows a pipeline defined in a JSON
configuration file. HOSS orchestrates the operations of FindSim which takes a model,
modifies its parameters, runs the model against specified experiments, and returns a
cost representing the distance between data and model predictions. This cost is used by
the algorithm. B: Typical model decomposition into levels. L1 depends only on inputs,
L2 depends only on L1 and inputs, and L3 depends on all upstream pathways. Within a
level we can have multiple signalling blocks provided they do not depend on each other.
However, we may have cross-interactions or feedback (arrows with dashed lines), which
may require the pipeline to repeat one or more levels. C: pseudocode for definition of
the HOSS pipeline. Within each level we can have multiple pathways, each of which
needs a list of experiments, parameters and optionally parameter bounds. Colors map
to corresponding levels of the model from panel B. D - H: Examples of experiments
from database run using FindSim to obtain cost function values. D: Bar chart. EGF is
provided at baseline level (0.1 nM, named EGF 1) and at stimulus level (1.5625 nM,
named EGF 2), and the resultant level of activated EGF receptor (aEGFR) is found. E:
Dose-response. EGF is provided at a series of fixed input levels, and the steady-state
levels of aEGFR are measured F: Time-series. A 7.8125 nM step stimulus of EGF is
applied at t=4000s, and the level of activated MAPK is read out. G: Time-series. At
4000 seconds, after settling, EGF is raised from 0.5 nM to 1.5625 nM, and level of
aEGFR is read out. H: Time-series. EGF is set to 0.15625 nM from t = 0, and level of
internalized EGFR is read out.
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Fig 3. Hill tau versions of models used in current study. A: Beta-2 adrenergic
receptor pathway leading to Protein Kinase A activation (D3 b2AR pathway),
implemented in HillTau format. B: Epidermal growth factor receptor pathway leading
to Mitogen-Activated Protein Kinase activation (D3 EGFR pathway), implemented in
HillTau format.
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Fig 4. D4 EGFR pathway implemented in ODE format. Note that the ODE format
implementations are more chemically detailed, but retain overlap with HillTau
implementations for several key readouts. Blocks and quotient graph are computed by
automated hierarchical decomposition. (A) r-blocks and quotient graph after
Michaelis-Menten type reduction. One has the same blocks for r = 1, 2. (B) r-blocks
and reaction bipartite graph. For the decomposition, we have considered that the
reaction EGFR + EGF⇌ LEGFR is forward irreversible. The forward irreversibility
conditions were verified by numerical simulations.
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Fig 5. D4 b2AR pathway implemented in ODE format compatible with SBML. Blocks
and quotient graph are computed by automated hierarchical decomposition. (A)
r-blocks and quotient graph after Michaelis-Menten type reduction. One has the same
blocks for r = 1, 2. (B) r-blocks and reaction bipartite graph. For the decompositon, we
have considered that the reaction CaMCa3 + Ca⇌ CaMCa4 is forward irreversible.
The forward irreversibility conditions were verified by numerical simulations.
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Fig 6. Features of experimental database. A, B: Number of parameters (blue) and
number of experiments (orange) to constrain them, for different blocks in the model,
sorted in order of decreasing number of experiments. In almost all cases the number of
experiments falls well short of the number of parameters, that is, the model is
underconstrained. A: Reduced (HillTau) models. B: ODE (SBML) models. C, D:
Experiments may be inconsistent. C: Three time-series experiments for EGFR
activation following a pulse of EGF, normalized to maximal response. These
experiments were performed on different cell lines and not surprisingly, the time-courses
differ [65–67]. D: Three dose-response experiments for PKA activation by cAMP. These
experiments use purified preparations and despite somewhat different conditions the Kd
is quite similar [68–70].
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Fig 7. Optimization of the reduced MAPK model introduced by Huang and Ferrell [46].
This paradigmatic model was optimized using synthetic data. A) Blocks definitions
with their levels. Nested hierarchies are made of nested sets of blocks (all blocks of level
smaller or equal to a given one) as follows level 0 (E1 g, E2 g, E3 g, E4 g), level 1
(E1 g, E2 g, E3 g, E4 g, KKK g), level 2 (E1 g, E2 g, E3 g, E4 g, KKK g, KK g),
level3 (E1 g, E2 g, E3 g, E4 g, KKK g, KK g, K g). B,C,D) Performance of flat and
hierarchical optimization.
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parameters across model subsets, for each iteration. B: Barchart of costs for the four
different models, comparing the initial cost with the final cost obtained using three
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cost. C: Barchart of runtimes for the different algorithms. BFGS is always slower.
Although SLSQP is typically the fastest algorithm, it sometimes produces high costs as
seen in panel B.
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Fig 9. Hierarchical Optimization on large models. A: Schematic of hierarchical
optimization as implemented in HOSS. First, the upper level of the model hierarchy is
optimized, in this case the CaM and b2AR sub-models. Each is individually optimized,
and any of the standard algorithms such as BFGS or COBYLA may be employed.
Experiments specific to each sub-model are used to compute individual costs and
independently update the sub-model parameters. Then, these sub-models are held fixed
and the next level of the hierarchy is optimized (PDE and AC+cAMP sub-models).
Finally, the lowest level of hierarchy (PKA) is optimized. With this the entire
optimization is complete. B: Barchart of costs for the four different models, comparing
the initial cost with the final cost obtained using three different algorithms from the
scipy.minimize library. C: Barchart of runtimes for the different algorithms. As in the
flat method, SLSQP is the fastest. D: Hierarchical optimization vs flat costs using
COBYLA. With a single exception, HOSS gives lower or comparable costs. This
exception is likely due to relaxation of hierarchy assumptions due to feedback. E:
Timing of optimizations run using hierarchical optimization vs flat optimization timing
using COBYLA. Hierarchical optimization is faster.
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Fig 10. Multistart (InitScram) method. A. Schematic of method. B. log-normal
distribution of parameter scaling from reference values for scrambleRange (SR) of 1.2,
2.0, and 5.0. C. Improvement of fit over successive optimizations. A second
optimization produces a small improvement, and little improvement results from a third
round. D. Cost distributions for three values of SR, D3 b2AR model. Note that the
peaks are similar but the widths greater for larger SR, hence there are parameter sets
with smaller costs (left tail of distribution) for large SR. E. Cost distributions for 3
values of SR, D4 b2AR model. Here the peaks of the cost distribution moves to the left
with smaller SR. F. Mapping between parameter scrambling range and NRMS metric
for similarity of models shows that this is independent of model. G. Model cost function
value cluster-map for top 10 optimized D4 b2AR models. H: Distribution of parameter
scaling for optimized D3 b2AR models, normalized to mean of respective parameter for
the best 10 models from that run. The optimized parameters converge very closely to
the best 10 means. I: Distribution of parameter scaling for optimized D4 b2AR models.
Here the tails of the distributions are somewhat wider, but there is still a narrow peak
around 1.0 showing convergence from different start points. Note that peaks are
narrower than the initial parameter ranges from panel B.
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Fig 11. Comparing HOSS with flat method. Optimizations were carried out using 200
start points for each method, launched on 16 processes on a 128-core server. Solution
times were computed individually for each optimization on each process. A-D:
Distribution of solution times for HOSS (blue) and flat (orange) methods, for each of the
four models. HOSS converges faster. E-H: Distribution of initial cost (blue, green) and
final cost (red=HOSS; orange=flat) for the two methods. HOSS produces better costs in
most models but in one case (D3 EGFR) the distribution overlaps with the flat method.
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Fig 12. hossMC method A. Schematic of method. The model subsets in the first
hierarchical level of the model are each scrambled 200 times, and each such starting
point is optimized. The best N models (N=5) are taken from each sub-model and
recombined to obtain the overall best N models for the first level. These are then
merged with a sub-model from the next level, and these N models are then used as
starting points for another round of model scrambling. The 200 scrambled models are
again individually optimized as before, and the cycle repeats till we have optimized all
levels. The best N merged models are provided as solutions. B, C, D: Comparing the 4
methods (flat, HOSS, initScram and hossMC). B: Cost function values, including the
initial cost for reference. The InitScram and hossMC methods worked the best. C.
Wallclock time. The plain HOSS method was fastest. The two randomized methods
initScram and hossMC were run on 24 processes, but still were much slower because
they performed 200 repeats of all optimizations. D. Total CPU time. Here we factor in
the number of processes and the parallelization of experiment cost estimation. By this
metric, the HOSS method is substantially better than any other, and the two multistart
methods are much more computationally costly.
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Thesaurus 886

Autonomous pair: submodel consisting of subset of species and subset of reactions 887

whose time evolution can be autonomously computed; if a species is in the subset of 888

species, then also all the species causal to it are in. 889

Causality: a source species is causal to a target species if there is a path in the 890

interaction graph from the source to the target. 891

r-causality: a source species is r-causal to a target species if the source is related to the 892

target by an interaction graph path containing r arcs or less. 893

Cost function value: distance between data and model predictions. Synonyms: 894

optimization score. 895

Cost function: cost dependence on the model’s parameters. Synonyms: objective 896

function, loss function. 897

Block: strongly connected component of the interaction graph. Synonyms: strongly 898

connected component (SCC). 899

r-block: maximal subset of species such that any two species from it are r-causal one to 900

another. 901

Evaluation: computing the cost for a model. 902

Flat optimization: minimizing the cost function non-hierarchically. Synonyms: plain 903

optimization. 904

Hierarchical level: integer defining the position in the hierarchy. 905

Hierarchical optimization: minimizing the cost function sequentially by starting 906

with lower level parameters and proceeding to parameters having higher level in the 907

hierarchy. 908

Interaction graph: directed graph whose nodes are the species, and a source and 909

target species are connected by an arc if the production or consumption of the target 910

depends on the source’s concentration. 911

Quotient graph: acyclic directed graph whose vertices are blocks and two blocks are 912

connected if one species in one is connected to a species in the other. 913

r-quotient graph: directed graph whose vertices are r-SCC and two r-SCC are 914

connected if one species in one is connected to a species in the other. The r-quotient 915

graph can contain cycles. 916

r-strongly connected component (r-SCC): union of non-disjoint r-blocks. 917

Synonyms: consolidated r-block. 918

November 15, 2024 35/35


