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Abstract

Biological signalling systems are complex, and efforts to build mechanistic models must
confront a huge parameter space, indirect and incomplete data, and frequently
encounter multiscale and multiphysics phenomena. We present HOSS, a framework for
Hierarchical Optimization of Systems Simulations, to address such problems. HOSS
operates by breaking down extensive systems models into individual pathway blocks
organized in a nested hierarchy. At the first level, dependencies are solely on signalling
inputs, and subsequent levels rely only on the preceding ones. We demonstrate that
each independent pathway in every level can be efficiently optimized. Once optimized,
its parameters are held constant while the pathway serves as input for succeeding levels.
We develop an algorithmic approach to identify the necessary nested hierarchies for the
application of HOSS in any given biochemical network. Furthermore, we devise two
parallelizable variants that generate numerous model instances using stochastic
scrambling of parameters during initial and intermediate stages of optimization. Our
results indicate that these variants produce superior models and offer an estimate of
solution degeneracy. Additionally, we showcase the effectiveness of the optimization
methods for both abstracted, event-based simulations and ODE-based models.

Keywords: systems biology, mechanistic models, optimization, modularity,
AutoML.

Author summary

Biochemical pathway models integrate quantitative and qualitative data to understand
cell functioning, disease effects, and to test treatments in silico. Constructing and
optimizing these models is challenging due to the complexity and multitude of variables
and parameters involved. Although hundreds of biochemical models have been
developed and are available in repositories, they are rarely reused. To enhance the
utilization of these models in biomedicine, we propose HOSS, an innovative hierarchical
model optimization method. HOSS takes advantage of the modular structure of
pathway models by breaking down large mechanistic computational models into smaller
modules. These modules are then optimized progressively, starting with input modules
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and following causality paths. This method significantly reduces the computational
burden as each step involves solving a simpler problem. By making the optimization
process more manageable, HOSS accelerates the lifecycle of biochemical models and
promotes their broader use in biomedical research and applications.

Introduction 1

Many large biochemical pathway models have been developed since the early days of 2

systems biology. These models take many different formalisms, including visual 3

representations of data, such as protein interaction networks [1], and executable models 4

like ordinary differential equations [2], boolean models [3], and more recently, HillTau 5

abstractions [4]. Among executable models, ODEs provide accurate representation of 6

pathway dynamics, but incorporate many unknown parameters. 7

Two key advances have opened up the possibility of scaling up systems models 8

substantially, in terms of complexity and reproducibility. First, there is now a rich 9

ecosystem of data resources and data mining resources, both from structured databases 10

and from the much broader but unstructured scientific literature. These approaches 11

have already been used to scale up pathway diagrams and interaction networks [5]. 12

Second, the advent of numerous high-throughput methods such as phosphoproteomics, 13

imaging, and mass spectrometry promise far larger and internally consistent datasets 14

(see [6]) than the extant patchwork of precise but once-off biochemical experiments 15

performed by individual laboratories. 16

However, in spite of a few attempts [7, 8], the model development process is far from 17

being automatic and standardized. In particular, parameter optimization methods have 18

been implemented in a fragmented manner [9–17]. This is in part due to the very wide 19

diversity of experimental inputs used to constrain such models, but also due to the 20

inherent contradictions and incompleteness of the parameter constraints. For example, 21

to compensate for the incompleteness of specific datasets and further constrain the 22

model, it is not uncommon to amalgamate the findings from various publications. These 23

data sources may utilize experimental preparations that differ significantly or even 24

involve different classes of organisms [2]. This practice introduces inconsistent 25

experimental inputs into the model. Consequently, model development is highly 26

idiosyncratic, and different modelers may arrive at quite distinct models or parameter 27

sets despite drawing on similar data sources. 28

There have been previous ambitious efforts to systematically funnel many 29

experimental inputs into detailed and biologically driven models [18]. Such efforts 30

require the integration of large-scale systematic data gathering with data management 31

and modeling (e.g, SPEDRE [19]). The current paper focuses on standardizing the 32

calibration and optimization stages of model development, given a large but incomplete 33

set of experimental data. We build on our recently developed framework (FindSim [20]) 34

for curating a very wide range of biochemical and physiological experiments, 35

representing it in a consistent format, and using such curated experiment definitions to 36

drive multiscale models. In principle, each new experiment should improve our 37

understanding of biological systems, and thus help us to refine models of these systems. 38

This amounts to a multi-parameter optimization problem. Its result should be a model 39

that fits experiments as well as possible within the limitations of the model, while 40

incorporating expert evaluation of the relative reliability of different experiments. 41

We formalize and implement a general methodology for solving multi-parameter 42

optimization problems by leveraging the modularity property of biochemical networks. 43

These networks consist of groups of species and biochemical reactions that function 44

autonomously. Utilizing modularity for stepwise parametric optimization is a natural 45

approach and has been applied to Petri Net models of signaling pathways [21]. However, 46

August 6, 2024 2/30



this application lacked generality and was not algorithmically formulated. In this work, 47

we present innovative algorithmic approaches for systematically performing modular 48

decomposition of biochemical networks, described by various methods including 49

ordinary differential equations and event-based modeling. Additionally, we connect the 50

modular approach to hierarchical optimization, offering fully automated methods to 51

handle data and models in a hierarchical manner. 52

Inspired by game theory and now with multiple applications in science and 53

engineering, hierarchical optimization decomposes a complex optimization problem into 54

several coupled simpler problems [22,23]. Although NP-hard in general, hierarchical 55

optimization becomes easier for nested hierarchies, where lower levels depend on fewer 56

parameters than the upper levels. We refer to such a method as nested hierarchical 57

optimization and provide algorithmic solutions for implementing it in pathways. 58

We report the development of an optimization pipeline, HOSS, implementing nested 59

hierarchical optimization. We illustrate its use on an extant database of over 100 60

experiment definitions in the domain of synaptic signalling to improve the 61

parameterization of a set of models of major signalling pathways involved in synaptic 62

signalling and cell proliferation. HOSS utilizes FindSim [20] in order to consistently 63

evaluate models based on a specified set of experiments. 64

We show how our hierarchical approach addresses many of the challenges of 65

parametric optimization problems, and outperforms a flat (i.e., non hierarchical single 66

stage) optimization approach in efficiency, structure, and accuracy. 67

Our pipeline implements tools and standard formats for automatically handling 68

models, data and machine learning (ML) scenarios. All our models are encoded using 69

the Systems Biology Markup Language (SBML), a well-established format in Systems 70

Biology. Both data and optimization choices, including flat and hierarchical 71

optimization, with the definition of submodels in the hierarchical case, are encoded 72

using JavaScript Object Notation (JSON) files. The goal is to make ML more 73

reproducible and accessible to non-experts, while increasing productivity for experts. 74

This situates our effort within the field of Automated Machine Learning (AutoML), a 75

relatively new area that makes advanced ML techniques more accessible and accelerates 76

research processes in computational biology [24]. 77

Methods 78

Mathematical formalism 79

Objective (cost) function 80

A popular choice of objective function is the log likelihood. For data with normally 81

distributed deviations, it reads: 82

L(θ, s, σ) =
1

2

N∑
i=1

[
log(2πσ2

i ) +

(
yi − sixi(θ)

σi

)2
]
, (1)

where yi and xi(θ) are observed and predicted concentrations of the ith observed 83

species, respectively, and θ are kinetic parameters. Parameters si are scaling 84

parameters, accounting for the fact that the measurements are not absolute and σi are 85

standard deviation parameters (see [25]). 86

In the HOSS calculations we perform two levels of scoring. First, for each 87

experiment for which the sub-model is tested, we obtain a normalized root-mean-square 88

cost similar to the above calculation, except it is normalized to the maximum of the 89

experiment readout for molecule yi among all the observations of the same variable at 90
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different times or in different conditions: 91

NRMS(θ) =

√√√√ 1

Nd

∑
i,k

(
yik − xi(tk, θ)

mi

)2

, (2)

where mi is the maximum value of the observed variable yi and xi(tk, θ) is its predicted 92

value at the time tk, and Nd is the number of data points (terms in the sum). 93

To handle multiple data sets and multi-objective optimization we adopt a weighted 94

sum approach. We define the weighted normalized cost, that combines values of (2) 95

obtained in multiple datasets: 96

WNRMS(θ) =

√∑
j wj(NRMSj(θ))2∑

j wj
, (3)

where wj , and NRMSj are positive weights, and normalized root mean costs of 97

individual datasets, respectively. 98

Flat and Hierarchical optimization 99

Parameter optimization involves minimization of an objective function f : S ⊂ Rn → R, 100

where S is a space of constraints, p ∈ S a vector of parameters. The flat method 101

consists of solving the problem: 102

min
p∈S

f(p). (4)

There are many methods to solve (4). In our framework we use multistart optimization, 103

by launching local search procedures from randomly chosen starting points generated 104

uniformly in logarithmic scale: 105

p = p̃ exp(log(a) + log(b/a)U), (5)

where p̃ is a nominal guess, U = (U1, U2, . . . , Un) a vector of random, independent 106

variables whose distribution is uniform over [0, 1] or standard normal, 107

a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) are vectors of positive scales, such that 108

0 < ai < 1 < bi for 1 ≤ i ≤ n. All the vector multiplications in (5) are elementwise. By 109

using this procedure, the range of start parameters is from p̄iai to p̄ibi. 110

We refer to this procedure as parameter scrambling. Despite its simplicity, multistart 111

optimization with logarithmic sampling has proven to be effective in benchmarks of 112

biochemical pathways [26]. 113

In hierarchical optimization [22], K sub-problems, each one defined by an objective 114

function fi : S −→ R, i = 1, . . . ,K, are solved iteratively. Parameters of the problem 115

are grouped in K groups p = (p1, . . . , pK), where pi ∈ Rni for 1 ≤ i ≤ K and 116

n = n1 + . . .+ nK . We look for p∗ = (p∗1, . . . , p
∗
K) ∈ S ⊂ Rn, solution of: 117

min
pK

fK(p∗1, . . . , p
∗
K−1, pK) where p∗K−1 solves

min
pK−1

fK−1(p
∗
1, . . . , p

∗
K−2, pK−1, pK) where p∗K−2 solves

...
...

min
p2

f2(p
∗
1, p2, . . . , pK) where p∗1 solves

min
p1

f1(p1, p2, . . . , pK) p subject to S.

(6)
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The case K = 2 is known as bilevel optimization [23]. In this case the optimization of f1 118

is called lower-level problem, whereas the optimization of f2 is the upper-level problem. 119

The problem (6) is difficult, because each individual problem has to be solved for 120

multiple values of the remaining variables, all subjected to the constraints S. Indeed, it 121

has been proved that even apparently simple bilevel optimization problems are 122

NP-hard [23]. However, the solution of bilevel optimization is straightforward if the 123

lower-level problem has unique analytic solution. In this case, the naive algorithm, 124

utilizes the solution of the lower-level problem to eliminate p1 and reduce the 125

upper-level optimization to minimizing a composed function that depends on p2 only, is 126

effective. Bilevel optimization with analytic solution for the lower-level problem has 127

already been used for systems biology models. In this case the lower-level parameters 128

are the scaling and standard deviation parameters si, σi introduced in (1), that can be 129

optimized by analytic formulas, see [25]. 130

Another simple hierarchical optimization case is when the functions fi, 1 ≤ i ≤ K 131

depend on nested sets of parameters and the set of constraints factorizes 132

S = S1 × S2 × . . .× SK . Then, (6) reads: 133

min
pK∈SK

fK(p∗1, . . . , p
∗
K−1, pK) where p∗K−1 solves

min
pK−1∈SK−1

fK−1(p
∗
1, . . . , p

∗
K−2, pK−1) where p∗K−2 solves

...
...

min
p2∈S2

f2(p
∗
1, p2) where p∗1 solves

min
p1∈S1

f1(p1)

(7)

We call the problem (7), nested hierarchical optimization. Nested hierarchical 134

optimization can be solved iteratively, starting with the last problem in (7). 135

Nested hierarchical decompositions 136

A biochemical model is defined by a set of reactions R and a set of species S. We also 137

define the stoichiometric matrix S, whose elements Sij represent the number of 138

molecules of the species i produced (if Sij > 0) or consumed (if Sij < 0) by the reaction 139

j. Furthermore, the reaction rate vector R(x,p) = (R1(x,p), . . . , Rr(x,p)) is a 140

function of species concentrations x = (x1, . . . , xN ) and kinetic parameters p. Each 141

reaction j is characterized by a parameter vector pj , therefore we have p = (p1, . . . ,pr). 142

Species concentrations evolve in time as a result of chemical reactions. These define 143

a semiflow (time dependent mapping of the species concentrations, enabling the 144

computation of future concentrations based on the present ones) ϕ(t,x;p), t ≥ 0 such 145

that x(t) = ϕ(t,x0;p) represents the species concentration vector starting from initial 146

values x(0) = x0. The semiflow results from the integration of ODEs in chemical 147

kinetics models or from the simulation of event driven dynamics in HillTau 148

abstractions [4]. 149

Some species forming a subset BS ⊂ S are buffered, and their concentrations are 150

kept constant. 151

Our construction relies on the following concept. We call autonomous pair, a pair 152

of reaction and species subsets (I, J), I ⊂ S, J ⊂ R that satisfy: 153

1. if a species is in the subset I, then all the reactions consuming or producing this 154

species are in the corresponding reaction subset J , namely if i ∈ I then j ∈ J 155

whenever Sij ̸= 0. 156
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2. if a reaction is in the subset J , then all the species on which the reaction rate 157

depends are in the corresponding species subset I, unless these species are 158

buffered, i.e. if j ∈ J then i ∈ I whenever
∂Rj

∂xi
̸= 0 and i /∈ BS. 159

Let xI be the concentration vector of the species in I and pJ the kinetic constants 160

of the reactions in J . From the above definition it follows that xI can be computed at 161

any positive time t by a semiflow depending only on the parameters pJ , namely 162

xI(t) = ϕI(t,xI(0);pJ). Consider the data subset DI , consisting of observations yI of 163

the species xI only. Then, the objective function measuring the difference between 164

observed and predicted values of xI depends only on pJ , namely 165

fJ(pJ) =
∑
i∈I

∑
k

(yik − ϕi(tk,xI(0);pJ))
2. (8)

Suppose now that we find species and reaction subsets, 166

I1 ⊂ I2 ⊂ . . . ⊂ IK = S,
J1 ⊂ J2 ⊂ . . . ⊂ JK = R,

(9)

such that (Ik, Jk) are autonomous pairs for all 1 ≤ k ≤ K. 167

We call (9) a nested hierarchical decomposition. Optimization of the objective 168

functions (8) can then be done hierarchically, as in (7). 169

Constructing nested hierarchical decompositions using the interaction graph 170

Let us define the interaction digraph as I = (V,E), where V is the set of vertices (all 171

species) and E is the set of edges. A pair of species (i, j) ∈ E defines an edge from i to 172

j if and only if there is a reaction that consumes or produces the species j, and its rate 173

depends on the concentration of the species i. This graph is used to define causality 174

relations between species, namely we say that j is causal to i, j ⇝ i, if j is connected to 175

i by a path in I. All the species j causal to i are needed for computing the time 176

evolution of xi. 177

Strongly connected components (SCC) of I are subsets K ⊂ V such that j ⇝ i and 178

i⇝ j for all i, j ∈ K, maximal with respect to this property. In this paper, we refer to 179

SCCs as blocks. Blocks form a partition of the species set I. This partition can be 180

used to define a SCC quotient graph as follows: blocks are vertices of the SCC quotient 181

graph, and two blocks are connected if there is one species in one block connected in the 182

interaction graph to a species in the other block. The SCC quotient graph is always 183

acyclic (see Figure 1 and [27]). 184

The following property is important for building nested hierarchical decompositions. 185

Property: For any block K and any subset I of an autonomous pair (I, J), one has 186

either K ⊂ I or K ∩ I = ∅. 187

Thus, we can build a nested hierarchical decomposition by using the blocks and the 188

quotient graph. The first level subset I1 is the union of blocks that are roots of the 189

quotient graph, i.e. blocks having no incoming connections. The corresponding reaction 190

subset J1 is made of all reactions producing or consuming species from I1. The next 191

level I2 is obtained by adding to the roots all the blocks receiving direct connections 192

only from the roots, and so on and so forth. Algorithmically, one must associate a 193

hierarchical level l to each block, defined as the length of the longest path from the 194

roots to the block (see Figure1). Then, the set Il is the union of all blocks with a 195

hierarchical level smaller than l. 196

Although the nested hierarchical decomposition (9) is not unique, the decomposition 197

obtained by this procedure is unique and has the advantage of minimality. More 198

precisely, I1 is the minimal subset containing the root blocks, such that (I1, J1) is 199
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autonomous. I2 is the minimal subset containing the species I1 and all the species 200

receiving direct interactions only from I1. 201

The quotient graph also provides a useful data structure for parallel optimization of 202

the parameters. Thus, each tree originating from a root corresponds to terms in the 203

objective function that can be optimized independently of the others. 204

Hierarchical decompositions with feedback 205

In some signaling pathway models, downstream molecules regulate upstream ones 206

through feedback [28]. This can result in all species influencing each other, forming a 207

single block where hierarchical and flat optimizations are equivalent. However, even in 208

these cases, we can identify smaller blocks and decompose the network hierarchically. 209

The autonomy of these resulting blocks is only approximate, but it allows us to benefit 210

from hierarchical optimization. An iterative approach, starting with approximate 211

hierarchical optimization and continuing with flat optimization, is a good option in this 212

scenario. 213

We summarize the hierarchical decomposition procedure in the case with feedback, 214

leaving the details to a separate paper. 215

In the presence of feedback, two concepts are key for the hierarchical decomposition. 216

The first concept is r-causality. A species j is r-causal to a species i, j
r
⇝ i, if j is 217

connected to i by a path in the interaction graph I, of length smaller than or equal to r. 218

The introduction of r-causality imposes an upper limit on the length of paths 219

connecting species in the interaction graph. By taking the value of r sufficiently large 220

one can thus break feedback loops. 221

The other concept is agony, a measure used to quantify the hierarchical organization 222

of directed networks [29,30]. It helps in identifying and evaluating the hierarchical 223

structure within a network by penalizing the inconsistencies present in the hierarchy. 224

More precisely, integer scores representing the level in the hierarchy are associated to 225

each species in the network. Then agony is a function of all these scores and of the 226

interaction graph, that penalizes the edges for a node with high level to a node with 227

lower level. The set of scores that minimizes agony is then used to define the hierarchy. 228

Our procedure to compute the hierarchical decomposition of a network with 229

feedback is as follows: 230

• First define r-blocks, such as maximal subsets such that any species is r-causal to 231

any other. 232

• Because r-causality is not an equivalence relation, r-blocks can overlap. Generate 233

a consolidated r-block partition (also named r-SCC partition) by agglutinating 234

r-blocks that overlap. 235

• Use the r-SCC partition to define a r-quotient graph in the same way as the 236

quotient graph was defined from the SCC partition. The nodes of the r-quotient 237

graph are the consolidated r-blocks. 238

• Use agony to define hierarchical levels in the r-quotient graph. 239

Another strategy would be to apply agony directly to the interaction graph. However, 240

the computational burden is reduced, and the optimization result is robust by using the 241

r-quotient graph instead. The value of r has to be chosen not too large to avoid one 242

r-block that contains all the species, and not too small to avoid many r-blocks that 243

contain just one species. For the models studied in this paper r equal to one or two is 244

good enough to avoid having just one block or many blocks containing just one species. 245

The hierarchical decomposition algorithms used in this paper were implemented in 246

Python (see HiNetDecom in the Availability section). 247
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The application of this procedure to signalling networks with feedback is illustrated 248

in the Figure 2. 249

Signal back-propagation, reduced Michaelis-Menten mechanisms, and 250

irreversible reactions 251

Although in a signalling cascade the signal usually propagates in only one directions, 252

there are situations when both forward and backward propagation are possible. Similar 253

to the case of feedback, minimal blocks and autonomous pairs can encompass the entire 254

pathway in this instance as well. Signal backpropagation can occur due to enzyme 255

sequestration, a phenomenon in which the active enzyme from an upstream tier of the 256

signalling cascade is sequestered as part of the enzyme-substrate complex [31]. The 257

back-propagation phenomenon disappears under quasi-steady state (QSS) conditions, 258

when the enzyme-substrate complexes have low concentrations [32,33]. As signalling 259

pathways models often assume QSS, it is useful to have a tool that reduces mass action 260

models by eliminating complexes. The reduced models can then be decomposed 261

hierarchically using methods proposed above. As a result of the reduction, the 262

hierarchical decomposition is improved: some large blocks split into smaller ones. This 263

holds whenever there is sequestration related back-propagation, whether this is 264

accompanying by feedback or not. 265

The QSS reduction of Michaelis-Menten mechanism is based on identifying in the
reaction network of motifs of the type:

Si + Ei

k+
i

⇌
k−
i

ESi
ki
cat−−→ Pi + Ei,

and find all motifs that the same enzyme Ei. 266

Let Ii be the subset of reactions using the same enzyme Ei, i.e. Ej = Ei, ∀j ∈ Ii.
Then ∀j ∈ Ii the Michaelis-Menten mechanism is replaced by a single reaction

Sj
Vj→ Pj ,

with the rate

Vj = kjcat
EiSj/k

j
m

1 +
∑
l∈Ii

Sl/klm
,

where kjm = (k−j + kjcat)/k
+
j . 267

The rates of the reduced reaction depends on the concentration of the substrate Sj , 268

but also on enzyme Ei and on the substrates Sk, k ∈ Ii, k ≠ j, that should be added to 269

the list of modifiers of this reaction. The corresponding reduction algorithm was 270

implemented in Python. 271

The resulting decomposition may be useful even if QSS conditions are not rigorously 272

satisfied. In this case, the hierarchical levels are autonomous only approximately, but 273

the hierarchical optimization may still be better than the plain optimization. 274

Other sources of signal backpropagation are the reversible reactions connecting 275

species from different levels of the hierarchy. A reversible reaction allows the 276

propagation of the signal in both directions and establishes interaction graph 277

connections in both directions between reactants and products. However, some 278

reversible reaction effectively function in only one direction. We say that a reaction is 279

forward irreversible if R+ >> R− where R+, R− are the forward and backward reaction 280

rates. This condition can be verified using numerical simulations or any information 281

about the orders of magnitude of the kinetic constants and concentrations of reactants 282

and products. When it is satisfied we can consider that the reaction is irreversible. 283
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As an illustration, we tested by simulation the forward irreversibility in the signaling 284

model b2AR-PKA (see Table 1). We found several forward irreversible reactions, but 285

the reaction CaMCa3 +Ca⇌ CaMCa4 is particularly important for the directionality 286

of the signal propagation. By considering this reaction to be forward irreversible, a large 287

block containing AC1,AC2 and CaM splits into two blocks, one of rank one containing 288

CaM and the other of rank two containing CaMCa4 (see Figure 2). Indeed, the signal 289

propagates from CaMCa3 to CaMCa4 and not backwards. 290

The HOSS Optimization framework 291

The HOSS software is designed to orchestrate complex, multi-level hierarchical 292

optimizations. To do this it deploys numerous individual optimization steps, each of 293

which fits a subset of a model to a number of individual experiments (Figure 3 A). 294

HOSS works on signalling and other models which are subdivided into blocks, typically 295

individual signalling pathways in a signalling network. The blocks are organized into a 296

hierarchy informed by the above mathematical formalism, where each level depends only 297

on signalling input coming from preceding levels, and blocks within a level are 298

independent of each other (Figure 3 B). During operation, HOSS reads a configuration 299

file in JSON format, which specifies the metadata and overall optimization parameters, 300

such as optimization algorithm and tolerance (Figure 3 B). The configuration file 301

further specifies a weighted set of experimental protocols defined in the FindSim JSON 302

format [20]. Finally, within each block it identifies which parameters are to be adjusted, 303

and optionally their bounds. HOSS calls the FindSim utility [20] to set the parameter 304

vector, and to compute the objective (cost) function giving the accuracy of the model fit 305

for each experiment. The default objective function is the normalized root-mean-square 306

difference between experimental data and simulation readout (2). When several 307

experiments pertaining to different readouts, or datasets of different origins are 308

available for the same model, a consolidated objective function is obtained by combining 309

individual objective functions scaled by weights (3). This consolidated objective 310

function is used in the optimization algorithm which is provided by scipy.minimize. 311

HOSS can employ nested parallelization by simultaneously running FindSim on each 312

experiment within a block, and independently optimizing each block on different 313

processes. For the purposes of subsequent discussion, we refer to the optimization 314

routine (provided by scipy.optimize) as the optimization algorithm, and the hierarchical 315

optimization program (provided by HOSS) as the HOSS method. 316

FindSim is the Framework for Integration of Neuronal Data and SIgnalling 317

Models [20]. Briefly, it does three things: 1) reads a model and tweaks its parameters, 2) 318

reads the definition of an experiment and runs it on the model, and 3) compares the 319

output of the model with data from an experiment (Figure 3 D, E, F). FindSim is 320

agnostic to model definition format and simulator. It currently works with the 321

HillTau [4] format and simulator, and with ODE and mass action models specified in 322

SBML and other formats, and solved using the MOOSE simulator [34]. FindSim utilizes 323

a JSON format file to specify experiment inputs and readouts. Crucially, an experiment 324

defined in FindSim format can be applied to completely different models even using 325

different modelling formalisms, provided the input and output entities are common. We 326

illustrate these capabilities below. In the context of HOSS, we use FindSim on four 327

kinds of experiments applicable to cellular signalling: dose-response, time-series, 328

bar-charts and direct parameter estimates (Figure 3 D, E, F). FindSim has additional 329

capabilities to handle common electrophysiological experiments [35,36] but these are not 330

used in the current study. 331
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Large Models overview 332

For the purposes of this report, we model two signalling pathways in two formalisms 333

each (Figure 4 A-D). The pathways are the beta-adrenergic receptor activation of 334

protein kinase A (the b2AR pathway) and the epidermal growth factor activation of 335

MAPK/ERKII (the EGFR pathway). The reaction topologies of these pathways are 336

based on and simplified from [2]. The two formalisms are HillTau [4], which is an 337

abstracted reduced signalling model specification which maintains direct experimental 338

mapping of selected parameters such as concentrations and rates; and well-mixed 339

chemical kinetics specified in SBML or other compatible formats. In the current study, 340

SBML models are based on ODE dynamics. However, in HillTau, species dynamics are 341

not computed using ODEs, but by a hybrid system. The composition of the models is 342

reported in Table 1. 343

Pathway Formalism Number of species Number of reactions Number of parame-
ters

EGFR-MAPK HillTau 14 7 29
b2AR-PKA HillTau 21 12 37

EGFR-MAPK ODE 36 22 54
b2AR-PKA ODE 53 40 93

Table 1. Composition of large test models used in this study.

Experimental database 344

We have used manual curation of the experimental literature to build up a repository of 345

over 350 signalling experiments with a focus on synaptic signalling pathways. There are 346

two key characteristics of this dataset, which drives several of the design choices in 347

HOSS. First, the number of experiments pertaining to each pathway is limited, and 348

considerably below the number of parameters even for HillTau models (Figure 5 A, B). 349

Second, there are frequently overlapping experiments which disagree on the quantitative 350

values of readouts (Figure 5 C, D). 351

Results 352

Hierarchical optimization outperforms flat optimization for a 353

paradigmatic model with synthetic datasets 354

In order to illustrate and test the hierarchical optimization method we first use a 355

paradigmatic model of the MAPK signalling cascade, introduced by Huang and 356

Ferrel [37]. The SBML model is available in the Biomodels [38] database. The 357

corresponding ODE system can be found in ODEbase [39] database 358

https://www.odebase.org/detail/1330. The original SBML model consists of 359

mass-action elementary reactions. Because of multiple Michaelis-Menten mechanisms 360

sharing the same enzyme there is back-propagation of the signal and the application of 361

the hierarchical decomposition algorithm to this model results in only one autonomous 362

pair that includes the entire model. 363

By applying the QSS reduction transformation, the 22 ODEs in the ODEbase model 364

are simplified to 8 differential equations. Notably, 4 species exclusively function as 365

enzymes, and are considered buffered after the transformation (MAPKKK activator, 366

MAPKKK inactivator, MAPKKPase, MAPKPase). As shown in Figure 6 A, the 367

reduced MAPK model lends itself to a hierarchical cascade with 3 levels. 368

We tested hierarchical optimization using time series produced in [40], consisting of 369

10 in silico experiments. Each experiment employed a different concentration of 370
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MAPKKK activator. For the flat optimization we used 12 distinct starting points 371

log-uniformly distributed in a hypercube with edges [10−10, 10], and for hierarchical 372

optimization (with parameter scrambling) we used 12 starting points per level. 373

Figure 6 B shows that flat optimization takes longer compared to hierarchical 374

optimization in terms of total duration. Additionally, the hierarchical optimization 375

outperforms classical optimization significantly in terms of the objective function value 376

(Figure 6 C). 377

Black-box, non-gradient optimization methods work well for flat 378

optimization. 379

To scale up our analysis to moderately large models, we utilized the HOSS pipeline on a 380

set of four signalling pathways as described in Table 1. Notably all details required for 381

execution of the optimization pipeline, such as applicable experiments (FindSim files in 382

JSON format), experiment weights, parameter lists, and parameter bounds were 383

incorporated into the HOSS files. Thus a single command triggers execution of a 384

complex pipeline, and a single file orchestrates all the data, models, optimization 385

options, and parameter specification. As a reference, we first ran the HOSS pipeline 386

using flat (non-hierarchical) optimization on the models, employing a number of 387

standard optimization methods in the scipy.minimize library (Figure 7 A). Our initial 388

models were initially parameterized manually using inspection of a limited subset of 389

experiments. Following the flat optimization, all of the algorithms produced better 390

fitting models than the start models. This was reflected in the modest improvement in 391

the model-fitting objective function, which we refer to as cost (Figure 7 B). We found 392

that COBYLA (black-box, non-gradient algorithm based on linear programming and 393

linearization of the problem and constraints) and SLSQP (iterative quadratic 394

programming method, also using linearized constraints) were considerably faster to 395

converge than gradient algorithms such as BFGS (quasi-Newton algorithm based on an 396

approximated inverse Hessian matrix) (Figure 7 C). COBYLA was more reliable in 397

producing small costs. A possible explanation for this effect is the conflict within the 398

multiple datasets used in the weighted cost (3). This conflict may lead to ill-conditioned 399

Hessians and degenerate quadratic approximations of the cost functions, which 400

disadvantage the BFGS and SLSQP algorithms. Accordingly we used COBYLA for 401

subsequent hierarchical optimization runs. 402

Hierarchical optimization is more efficient than flat optimization 403

for biochemical models with real datasets 404

We next tested the HOSS pipeline for hierarchical optimization (Figure 8 A). We have 405

shown above that nested hierarchical optimization is more efficient than flat 406

optimization for fitting a medium-sized model with synthetic data. Our results here 407

show that this efficiency carries over to complex real-world cases involving large models 408

(Figure 4), large but incomplete datasets (Figure 5), and noisy and sometimes 409

inconsistent data (Figure 5). We implemented hierarchical optimization in HOSS as 410

schematized in (Figure 8 A). 411

The signalling reactions from Figure 4 were manually subdivided into individual 412

pathways reflecting their biological organization. Within the HOSS configuration file for 413

each model, the pathways were placed in a hierarchy which reflected their position in 414

the signalling cascade (e.g., Figure 3 C, Figure 8 B). We again tested three different 415

algorithms for optimization: BFGS, COBYLA and SLSQP. We found that hierarchical 416

optimization worked for all algorithms, though COBYLA gave smaller costs than BFGS 417

and SLSQP in most cases (Figure 8 B). The runtimes followed the same pattern as for 418
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flat optimization, that is, BFGS > COBYLA > SLSQP. We then compared how 419

hierarchical optimization performed compared to flat optimization (Figure 8 D E). 420

HOSS gave smaller or comparable costs to flat optimization in all except the 421

ODE-based EGFR model, labeled D4-EGFR. We speculate that a loop unrolling pass 422

would improve the EGFR pathway cost, since there is a feedback loop in the EGFR 423

pathway which violates the hierarchy assumptions. Notably, the runtime for hierarchical 424

optimization was considerably faster in all cases. 425

Multistart methods yield lower optimization cost: initScram 426

method. 427

As the basic HOSS algorithm may be susceptible to local minima, we implemented a 428

version which generated a large number of initial models with parameters randomized in 429

a log-normal distribution of half-width scramble Range (scramRange, defined as 430

b = 1/a = scramRange > 1 in (5)) (Figure 9 A, B). This is a known approach, with 431

roots in simulated annealing methods [26, 41, 42]. We extended the HOSS framework to 432

overlay model parameter scrambling and process farming onto the hierarchical 433

optimization method. This is an embarrassingly parallel problem and each of the 434

optimization processes could run in parallel. In the course of these runs we identified 435

one necessary refinement to the algorithm. In some cases, a subset of the initial models 436

took an enormously long time to converge. Thus we implemented a timeout for each 437

elementary minimization run. This may slightly reduce the number of completed runs, 438

but frequently led to considerable improvement in runtime. In an analogy with 439

simulated annealing, we asked if successive rounds of optimization would find still lower 440

minima. We found that multiple rounds of optimization tended to converge rapidly 441

(Figure 9 C). Hence in most cases a single optimization step should suffice. 442

The optimization costs resulting from a typical run with 200 initial models fell into a 443

distribution which depended both on model and on scramRange (Figure 9 D, E). As 444

expected, the width of the cost distribution increased with scramRange. The best fits 445

were at the left of the distribution and in these examples were were obtained with a 446

scramRange of ∼5.0, that is, log-normal random scaling from 1/5 to 5-fold of each 447

initial parameter (Figure 9 D, E). The costs for these fits were considerably lower than 448

those obtained with plain HOSS. To relate the NRMS divergence between parameters to 449

scrambleRange, we generated a set of models at a series of scrambleRange values, and 450

computed NRMS between each population (Figure 9 F). Interestingly, the best few 451

models (lowest costs) were not necessarily very similar in their parameters. We did a 452

normalized RMS comparison of parameters of the top 10 D4-b2AR models and found no 453

obvious clusters (Figure 9 G). Using the relationship from (Figure 9 F), we observed 454

that the NRMS range of ∼1.0, as seen in these best 10 models, corresponded to a 455

scrambleRange of ∼2.0. This means that the parameters of these models differed by as 456

much as a factor of two. As another measure of the parameter similarity of ’good’ 457

models, we plotted the distribution of (model parameter) / (mean parameter) across all 458

parameters taken from the best 25% of models, that is, those whose costs were in the 459

lowest quartile (Figure 9 H, I). We found that this clustered around one, suggesting 460

that there is indeed a global optimum to which most models converge. Note that this 461

parameter distribution is narrower with a broad tail, as compared to the source model 462

parameter distribution from (Figure 9 B). 463
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Multi-stage Monte-Carlo yields further improvements of the 464

optimization cost: hossMC method. 465

As a final refinement of our code-base, we implemented a similar model-scrambling step 466

within each stage of the HOSS algorithm (Figure 10 A). Thus, each subset of the model 467

was subject to scrambling to give S variants (S∼200 for a full run). These S variants 468

were individually optimized in an elementary minimization step similar to a single stage 469

in the original HOSS method (Figure 8 A). If there were multiple model subsets within 470

a given level of the HOSS hierarchy, each was subject to this process to give S optimized 471

variants. The best of each subset were then recombined so as to obtain the top N 472

solutions for a given level. Typical values for N were ∼10. These top N sub-models were 473

then used as separate starting points for further scrambled models for the next level of 474

HOSS, such that we again had S variants to optimize. After the program ran through 475

all levels, we had a set of the best-fitting N models obtained by the overall pipeline. 476

This method generated excellent fits to the data, slightly better than the previous 477

multi-start method initScram (Figure 10 B). Wallclock time was similar to that of the 478

initScram method provided there were enough CPU cores available to run all the steps 479

in parallel (Figure 10 C). The total CPU time for both randomized methods was also 480

quite similar (Figure 10 D). 481

To summarize the performance of the four methods employed here (flat, hoss, 482

initScram and hossMC), we compared three metrics across the four optimization 483

methods in the HOSS framework. The metrics were the final cost (Figure 10 B), 484

wallclock time (Figure 10 C), and total CPU time (Figure 10 D). As detailed above, the 485

hossMC method was most effective but most CPU-costly, followed closely both in time 486

and model fitting cost by the initScram method. The plain HOSS method was 487

uniformly the fastest, but its optimization costs did not compare well with the two 488

multi-start methods (initScram and hossMC) for any of our models. The conventional 489

flat method is not a good choice by any criterion. 490

Discussion and conclusion 491

We have developed a pipeline for hierarchically optimizing large signalling models with 492

hundreds of parameters. We show that hierarchical optimization gives better model fits, 493

and does so faster than conventional flat optimization. We extend this approach to two 494

further methods which use Monte Carlo sampling of multiple parameter start points to 495

give still better final models. 496

Model provenance and modelling disease variants 497

Complex biological models, and signalling models in particular, frequently draw upon 498

diverse sources of data. Such models are often hand-tuned, and such tuning may be 499

very effective because it draws upon expert intuition and implicit knowledge about the 500

behaviour of familiar pathways. However, many model parameters are adopted from the 501

literature without clearly documenting the parameter optimization procedures or the 502

data used in these procedures. This makes model provenance problematic. How did the 503

modeller end up with a particular set of parameters? The HOSS framework introduces 504

model optimization pipelines that are efficient, scalable, repeatable and above all, 505

transparent. The development of a well-structured optimization configuration format in 506

HOSS ensures that all experimental data and model choices, their weights, and all 507

hyperparameter selections are as clearly defined as the algorithms and the simulators. 508

This emphasis on provenance is designed to place the HOSS framework in line with 509

FAIR principles [43]. We highlight two use cases to illustrate how HOSS supports reuse. 510
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First, model rederivation: A different scientist may feel that some of the original 511

experiments should be considered more authoritative than others. This can be done 512

simply by assigning a greater numerical weight to the selected experiments, rerunning 513

the pipeline, and seeing what changes in the resultant optimized model. Similarly, a 514

researcher could include some new experiments into the dataset against which the 515

model is to be optimized. This simplicity of model derivation brings a more data-driven 516

flavor to debates over model assumptions and how well they represent the known 517

experimental literature. As HOSS is agnostic to model formalism, it follows that these 518

comparisons could even extend over distinct models implemented with different 519

formalisms (e.g., HillTau vs mass action chemistry). Although not yet implemented, the 520

same principles may apply to optimizing qualitative models such as Boolean networks. 521

Second, The HOSS structure is highly effective for model specialization. A 522

researcher may wish to make a family of models for different disease mutations, based 523

on a dataset of readouts for experiments in a set of mutant animal or cell lines. Using 524

the HOSS pipeline, it is straightforward to replace the original (wild-type) experiments 525

with the respective mutant line experiments, rerun the optimization, and obtain 526

disease-specific models. Thus the HOSS framework encourages best practice in 527

developing complex models which can be easily reused. 528

Large models and large datasets 529

HOSS is scalable. This is in large part due to the efficiency of the hierarchical 530

optimization core method we have described. Based on this, we have shown that even 531

large models can be optimized quickly. Beyond this, HOSS organizes systems 532

optimization problems in a modular manner which scales well with complex models and 533

datasets. As a key part of this, HOSS organizes models into hierarchies, within which 534

data, parameter choices, and multiple optimization stages of a pipeline can be triggered 535

using a single command. Thus, once it is set up, a HOSS optimization run does not 536

require many steps of inspection and tweaking by the investigator, and is simple to 537

incrementally extend with new experiments and updated models. Rerunning a pipeline 538

is trivial, and is limited only by computational resources. Several tools also provide 539

model optimization (e.g., COPASI [41]) 540

Model building is not limited just by resources and datasets, but also by how 541

manageable is the organization of the dataset. The traditional way to associate model 542

parameters with experiments is to provide citations (e.g., refs: DOQCS [44], 543

BioModels [38], ODEbase [39]). This is neither complete, due to the previously 544

mentioned lack of documentation, nor automated, because every iteration of the model 545

would, in principle, require human intervention to produce or find new data, reorganize 546

it and reparametrize the models. Several efforts have sought to reorganize experimental 547

data into a standardized machine-readable format [45,46], and HOSS uses the FindSim 548

format to do so [20]. The organization of a HOSS pipeline lends itself to version control, 549

since every component of the pipeline is a file in a standard location and standard 550

format. Specifically, the HOSS configuration file is in JSON, the model definition files 551

may be SBML or HillTau, and the experiment specification files are FindSim JSON files. 552

HOSS encourages the clear subdivision of models and experiments into groupings 553

around individual signalling steps, such as the activation of a kinase by its immediate 554

second messengers. This has implications for experimental design geared to tightly 555

defining large signalling systems, because it lays out the kinds of experiments that are 556

needed to achieve full coverage of all the reaction steps. Notably, we find that two kinds 557

of experiments can greatly tighten parameters: local experiments that probe 558

input-output properties of a given signalling step, and readouts of all key intermediates 559

along a receptor-driven pathway to ensure that signal propagation remains intact. 560
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Model degeneracy, granularity, and completeness 561

In cellular signaling models, it is now clear that many parameter combinations may 562

yield the same input-output properties. The origins of this degeneracy could be 563

epistemic and due to data incompleteness [47], but also biological; being a feature of 564

cells themselves, that can perform the same biological function in multiple ways [48–50]. 565

The HOSS framework may provide a useful tool to study such degeneracy. Most 566

directly, the two Monte Carlo methods supported by HOSS (initScram and hossMC) 567

generate multiple ‘good’ models, which can be tested for degeneracy (e.g., Figure 9). 568

Because HOSS is agnostic to model detail, simulator, and model formalism, it also lends 569

itself to asking how model granularity affects degeneracy. We have previously suggested 570

that it is useful to develop a family of models at different resolution for any given 571

signalling system [33,51,52]. HOSS is well equipped to facilitate this, as it can use the 572

same experimental dataset for models at different detail. We demonstrate this in the 573

model choices in this paper, since the D3 models using HillTau, and the D4 models 574

using the MOOSE simulator [34], are parameterized using overlapping sets of 575

experiments, separated only by the fact that some experiments in the D4 set depend on 576

molecules that are not defined in the simpler D3 models. Model completeness, referring 577

to how well a model incorporates all necessary details to accurately representing a 578

system or phenomenon, is quite difficult to ascertain in biology as it is in all scientific 579

fields confronting theory and experiments [53]. Several methods have attempted to 580

explore model topology space along with parameters [7, 8, 54, 55], but HOSS supports a 581

more pragmatic interpretation: Is a model complete enough to account for a given set of 582

observations? It does so by trying a large number of possible parameter sets and seeing 583

whether any of these initial conditions result in well-fitting models. A failure to do so 584

suggests that the model topology may need to be reconsidered. We have previously 585

illustrated the behavior of a series of models of activity-driven synaptic signalling at 586

different levels of granularity, and show that more detailed models fit additional features 587

of the response [4]. However, an overly detailed model can lead to overfitting if the 588

data is not sufficiently rich. We suggest that multi-grain hierarchical approaches, 589

including automated model granularity (level of detail) selection, may represent a future 590

evolution of hierarchical optimization. 591
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Figures 792
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Fig 1. Interaction and quotient graphs used for the hierarchical decomposition. A)
The interaction graph is a directed graph whose nodes are biochemical species. One
source species acts on a target species if there is a reaction consuming or producing the
target, whose rate depends on the concentration of the source. The strongly connected
components (SCC) are maximal sets of nodes such that there are paths connecting each
node to any other node. This graph has six SCCs: A0 = {a1, a2}, B0 = {b},
D1 = {d1, d2, d3}, C2 = {c}, E2 = {e1, e2, e3, e4}, F3 = {f}. B) The quotient graph is
an acyclic directed graph, whose vertices are the SCC of the interaction graph. Two
SCC are connected in the quotient graph if there is a species in one connected to a
species in the other. The hierarchy level of a block (SCC) is the length of the longest
path in the quotient graph, connecting a root to the block. In this example, blocks A,B
are roots and have level 0, block D has level 1, blocks C,E have level 2 and F have
level 3.

August 6, 2024 21/30



ATP

rank = 0

AMP

rank = 4

Gs_GDP

Isoproterenol

b2AR

Epinephrine

Gs_alpha_GDP

BetaGamma

L_b2AR

Lb2AR_GsGDPb2AR_GsGDP

PKA_active

R2C2

R2C2_cAMP

R2C_cAMP4

PKA_inhibitor

inhibited_PKA

cAMP

R2C2_cAMP2

R2C2_cAMP3

R2C2_cAMP4

R2_cAMP4

rank = 3

cAMP_PDEp

cAMP_PDE

rank = 0

rank = 0

neurogranin_p

rank = 0

CaM

neurogranin_CaMneurogranin

CaM_Ca3

CaM_Ca

CaM_Ca2

Ca

CaM_Ca4

PDE1CaM_PDE1

AC1_CaM

AC1

AC2pAC2

AC2_Gs

AC1_Gs

Gs_alpha_GTP

AC2p_Gs

rank = 0

rank = 1

rank = 2

MAPKK_ser

MAPKK MAPKK_p

MAPK_tyr

MAPK MAPK_p

PPhosphatase2A MKP_2

Sos_p

Sos_p.Grb Grb2

Shc_p.Sos.Grb2SHC_p

SHC Sos.Grb2

Sos

GDP_Ras GTP_Ras

RGR craf_1

EGF

rank = 0rank = 0

rank = 0

rank = 0

rank = 3

rank = 2

rank = 1 rank = 2

L_EGFREGFR

Internal
L_EGFR

rank = 1

A

B

Fig 2. Blocks and quotient graph computed by automated hierarchical decomposition:
r-blocks with for the EGFR model (A) and for the b2AR model (B) after
Michaelis-Menten type reduction. One has the same blocks for r = 1, 2. In the model
EGFR we have considered that the reaction EGFR+ EGF ⇌ LEGFR is forward
irreversible. In the model b2AR we have considered that the reaction
CaMCa3 + Ca⇌ CaMCa4 is forward irreversible. The forward irreversibility
conditions were verified by numerical simulations.
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Fig 3. Optimization framework.
A: Schematic of optimization pipeline. HOSS follows a pipeline defined in a JSON
configuration file to apply the specified algorithm at each stage of the optimization. HOSS
orchestrates the operations of FindSim which takes a model, modifies its parameters,
runs the model against specified experiments, and returns a cost representing the minimal
distance between data and model predictions. This cost is used by the algorithm. B:
Typical model decomposition into levels. L1 depends only on inputs, L2 depends only
on L1 and inputs, and L3 depends on all upstream pathways. Within a level we can
have multiple signalling blocks provided they do not depend on each other. However, we
may have cross-interactions or feedback (arrows with dashed lines), which may require
the pipeline to repeat one or more levels. C: pseudocode for definition of the HOSS
pipeline. Within each level we can have multiple pathways, each of which needs a list of
experiments, parameters and optionally parameter bounds. Colors map to corresponding
levels of the model from panel B. D, E, F: Typical examples of experiments defined in
FindSim format and run using FindSim to obtain optimization costs. In all these cases
EGF is used as an input to the EGFR pathway. D: Bar chart. Here EGF is provided at
baseline level (0.1 nM, named EGF 1) and at stimulus level (1.5625 nM, named EGF 2),
and the resultant level of activated EGF receptor (aEGFR) is found. E: Dose-response.
Here EGF is provided at a series of fixed input levels, and the steady-state levels of
aEGFR are measured F: Time-series. Here a 7.8125 nM step stimulus of EGF is applied
at t=4000s, and the level of activated MAPK is read out.
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Fig 4. Models used in current study. A: Beta-2 adrenergic receptor pathway leading to
Protein Kinase A activation (b2AR pathway), implemented in HillTau format. B:
Epidermal growth factor receptor pathway leading to Mitogen-Activated Protein Kinase
activation (EGFR pathway), implemented in HillTau format. C: b2AR pathway
implemented in ODE format compatible with SBML. D: EGFR pathway implemented
in ODE format. Note that the ODE format implementations are more chemically
detailed, but retain overlap with HillTau implementations for several key readouts.
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Fig 5. Features of experimental database. A, B: Number of parameters (blue) and
number of experiments (orange) to constrain them, for different blocks in the model,
sorted in order of decreasing number of experiments. In almost all cases the number of
experiments falls well short of the number of parameters, that is, the model is
underconstrained. A: Reduced (HillTau) models. B: ODE (SBML) models. C, D:
Experiments may be inconsistent. C: Three time-series experiments for EGFR
activation following a pulse of EGF, normalized to maximal response. These
experiments were performed on different cell lines and not surprisingly, the time-courses
differ [56–58]. D: Three dose-response experiments for PKA activation by cAMP. These
experiments use purified preparations and despite somewhat different conditions the Kd
is quite similar [59–61].
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Fig 6. Optimization of the reduced MAPK model. A) Blocks in the reduced model; a
three level nested hierarchy is defined as follows: level 1 (E1 g, E2 g, KKK g), level2
(E1 g, E2 g, KKK g, KK g), level3 (E1 g, E2 g, KKK g, KK g, K g). B,C) Performance
of flat and hierarchical optimization.
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Fig 7. Flat optimization method. A: Schematic of flat optimization: Left: Model.
Right: Method. All model subsets and all experiments are run in parallel. The resulting
costs are combined into a single value used by the optimizer. The optimizer adjusts all
parameters across model subsets, for each iteration. B: Barchart of costs for the four
different models, comparing the initial cost with the final cost obtained using three
different algorithms (BFGS, COBYLA, SLSQP) from the scipy.minimize library. BFGS
is a gradient descent algorithm. Note that SLSQP sometimes does not converge to a low
cost. C: Barchart of runtimes for the different algorithms. BFGS is always slower.
Although SLSQP is typically the fastest algorithm, it sometimes produces high costs as
seen in panel B.
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Fig 8. Hierarchical Optimization on large models. A: Schematic of hierarchical
optimization as implemented in HOSS. First, the upper level of the model hierarchy is
optimized, in this case the CaM and b2AR sub-models. Each is individually optimized,
and any of the standard algorithms such as BFGS or COBYLA may be employed.
Experiments specific to each sub-model are used to compute individual costs and
independently update the sub-model parameters. Then, these sub-models are held fixed
and the next level of the hierarchy is optimized (PDE and AC+cAMP sub-models).
Finally, the lowest level of hierarchy (PKA) is optimized. With this the entire
optimization is complete. B: Barchart of costs for the four different models, comparing
the initial cost with the final cost obtained using three different algorithms from the
scipy.minimize library. C: Barchart of runtimes for the different algorithms. As in the
flat method, SLSQP is the fastest. D: Hierarchical optimization vs flat costs using
COBYLA. With a single exception, HOSS gives lower or comparable costs. This
exception is likely due to relaxation of hierarchy assumptions due to feedback. E:
Timing of optimizations run using hierarchical optimization vs flat optimization timing
using COBYLA. Hierarchical optimization is faster.
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Fig 9. InitScram method. A. Schematic of method. B. log-normal distribution of
parameter scaling from reference values for scrambleRange (SR) of 1.2, 2.0, and 5.0. C.
Improvement of fit over successive optimizations. A second optimization produces a
small improvement, and little improvement results from a third round. D. Cost
distributions for three values of SR, D3 b2AR model. Note that the peaks are similar
but the widths greater for larger SR, hence there are parameter sets with smaller costs
(left tail of distribution) for large SR. E. Cost distributions for 3 values of SR, D4 b2AR
model. Here the peaks of the cost distribution moves to the left with smaller SR. F.
Mapping between parameter scrambling range and NRMS metric for similarity of
models shows that this is independent of model. G. Model optimization cost
cluster-map for top 10 optimized D4 b2AR models. H: Distribution of parameter scaling
for optimized D3-b2AR models, normalized to mean of respective parameter for the
best 10 models from that run. The optimized parameters converge very closely to the
best 10 means. I: Distribution of parameter scaling for optimized D4-b2AR models.
Here the tails of the distributions are somewhat wider, but there is still a narrow peak
around 1.0 showing convergence from different start points. Note that peaks are
narrower than the initial parameter ranges from panel B.
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Fig 10. hossMC method A. Schematic of method. The model subsets in the first
hierarchical level of the model are each scrambled 200 times, and each such starting
point is optimized. The best N models (N=5) are taken from each sub-model and
recombined to obtain the overall best N models for the first level. These are then
merged with a sub-model from the next level, and these N models are then used as
starting points for another round of model scrambling. The 200 scrambled models are
again individually optimized as before, and the cycle repeats till we have optimized all
levels. The best N merged models are provided as solutions. B, C, D: Comparing the 4
methods (flat, HOSS, initScram and hossMC). B: Optimization costs, including the
initial cost for reference. The InitScram and hossMC methods worked the best. C.
Wallclock time. The plain HOSS method was fastest. The two randomized methods
initScram and hossMC were run on 24 processes, but still were much slower because
they performed 200 repeats of all optimizations. D. Total CPU time. Here we factor in
the number of processes and the parallelization of experiment cost estimation. By this
metric, the HOSS method is substantially better than any other, and the two multistart
methods are much more computationally costly.
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Thesaurus 793

Autonomous pair: submodel consisting of subset of species and subset of reactions 794

whose time evolution can be autonomously computed; if a species is in the subset of 795

species, then also all the species casual to it are in. 796

Causality: a source species is causal to a target species if there is a path in the 797

interaction graph from the source to the target. 798

r-causality: a source species is r-causal to a target species if the source is related to the 799

target by an interaction graph path containing r arcs or less. 800

Optimization cost: distance between data and model predictions. Synonyms: 801

optimization score. 802

Cost function: cost dependence on the model’s parameters. Synonyms: objective 803

function, loss function. 804

Block: strongly connected component of the interaction graph. Synonyms: strongly 805

connected component (SCC). 806

r-block: maximal subset of species such that any two species from it are r-causal one to 807

another. 808

Evaluation: computing the cost for a model. 809

Flat optimization: minimizing the cost function non-hierarchically. Synonyms: plain 810

optimization. 811

Hierarchical level: integer defining the position in the hierarchy. Synonyms: rank. 812

Hierarchical optimization: minimizing the cost function sequentially by starting 813

with lower level parameters and proceeding to parameters having higher level in the 814

hierarchy. 815

Interaction graph: directed graph whose nodes are the species, and a source and 816

target species are connected by an arc if the production or consumption of the target 817

depends on the source’s concentration. 818

Quotient graph: acyclic directed graph whose vertices are blocks and two blocks are 819

connected if one species in one is connected to a species in the other. 820

r-quotient graph: directed graph whose vertices are r-SCC and two r-SCC are 821

connected if one species in one is connected to a species in the other. The r-quotient 822

graph can contain cycles. 823

r-strongly connected component (r-SCC): union of non-disjoint r-blocks. 824

Synonyms: consolidated r-block. 825
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