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ABSTRACT

Biological signalling systems are complex, and efforts
to build mechanistic models must confront a huge
parameter space, indirect and incomplete data, and
frequently encounter multiscale and multiphysics
phenomena. We present HOSS, a framework for
Hierarchical Optimization of Systems Simulations, to
address such problems. HOSS operates by breaking
down extensive systems models into individual pathway
blocks organized in a nested hierarchy. At the first
level, dependencies are solely on signalling inputs,
and subsequent levels rely only on the preceding
ones. We demonstrate that each independent pathway
in every level can be efficiently optimized. Once
optimized, its parameters are held constant while
the pathway serves as input for succeeding levels.
We develop an algorithmic approach to identify the
necessary nested hierarchies for the application of
HOSS in any given biochemical network. Furthermore,
we devise two parallelizable variants that generate
numerous model instances using stochastic scrambling
of parameters during initial and intermediate stages of
optimization. Our results indicate that these variants
produce superior models and offer an estimate of
solution degeneracy. Additionally, we showcase the
effectiveness of the optimization methods for both
abstracted, event-based simulations and ODE-based
models.

Keywords: systems biology, mechanistic models,
optimization, modularity, AutoML.

INTRODUCTION

Many large biochemical pathway models have been developed
since the early days of systems biology. These models take
many different formalisms, including visual representations
of data, such as protein interaction networks (1), and
executable models like ordinary differential equations (2),
boolean models (3), and more recently, Hill-tau abstractions
(4). Among executable models, ODEs provide accurate

representation of pathway dynamics, but incorporate many
unknown parameters.

Two key advances have opened up the possibility of scaling
up systems models substantially, in terms of complexity and
reproducibility. First, there is now a rich ecosystem of data
resources and data mining resources, both from structured
databases and from the much broader but unstructured
scientific literature. These approaches have already been used
to scale up pathway diagrams and interaction networks (5).
Second, the advent of numerous high-throughput methods
such as phosphoproteomics, imaging, and mass spectrometry
promise far larger and internally consistent datasets (see (6))
than the extant patchwork of precise but once-off biochemical
experiments performed by individual laboratories.

However, in spite of a few attempts (7, 8), the model
development process is far from being automatic and
standardized. In particular, parameter optimization methods
have been implemented in a fragmented manner (9, 10, 11, 12,
13, 14, 15, 16, 17). This is in part due to the very wide diversity
of experimental inputs used to constrain such models, but
also due to the inherent contradictions and incompleteness
of the parameter constraints. For example, to compensate for
the incompleteness of specific datasets and further constrain
the model, it is not uncommon to amalgamate the findings
from various publications. These data sources may utilize
experimental preparations that differ significantly or even
involve different classes of organisms (2). This practice
introduces inconsistent experimental inputs into the model.
Consequently, model development is highly idiosyncratic, and
different modelers may arrive at quite distinct models or
parameter sets despite drawing on similar data sources.

There have been previous ambitious efforts to
systematically funnel many experimental inputs into detailed
and biologically driven models (18). Such efforts require
the integration of large-scale systematic data gathering
with data management and modeling (e.g, SPEDRE (19)).
The current paper focuses on standardizing the calibration
and optimization stages of model development, given a
large but incomplete set of experimental data. We build
on our recently developed framework (FindSim (20)) for
curating a very wide range of biochemical and physiological
experiments, representing it in a consistent format, and
using such curated experiment definitions to drive multiscale
models. In principle, each new experiment should improve our
understanding of biological systems, and thus help us to refine
models of these systems. This amounts to a multi-parameter© The Author(s)
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optimization problem. Its result should be a model that fits
experiments as well as possible within the limitations of the
model, while incorporating expert evaluation of the relative
reliability of different experiments.

We formalize and implement a general methodology for
solving multi-parameter optimization problems by leveraging
the modularity property of biochemical networks. These
networks consist of groups of species and biochemical
reactions that function autonomously. Utilizing modularity
for stepwise parametric optimization is a natural approach
and has been applied to Petri Net models of signaling
pathways (21). However, this application lacked generality
and was not algorithmically formulated. In this work, we
present innovative algorithmic approaches for systematically
performing modular decomposition of biochemical networks,
described by various methods including ordinary differential
equations and event-based modeling. Additionally, we connect
the modular approach to hierarchical optimization, offering
fully automated methods to handle data and models in a
hierarchical manner.

Inspired by game theory and now with multiple applications
in science and engineering, hierarchical optimization
decomposes a complex optimization problem into several
coupled simpler problems (22, 23). Although NP-hard in
general, hierarchical optimization becomes easier for nested
hierarchies, where lower levels depend on fewer parameters
than the upper levels. We refer to such a method as nested
hierarchical optimization and provide algorithmic solutions
for implementing it in pathways.

We report the development of an optimization pipeline,
HOSS, implementing nested hierarchical optimization. We
illustrate its use on an extant database of over 100
experiment definitions in the domain of synaptic signalling
to improve the parameterization of a set of models of
major signalling pathways involved in synaptic signalling
and cell proliferation. HOSS utilizes FindSim (20) in order
to consistently evaluate models based on a specified set of
experiments.

We show how our hierarchical approach addresses many
of the challenges of parametric optimization problems,
and outperforms a flat (i.e., non hierarchical single stage)
optimization approach in efficiency, structure, and accuracy.

Our pipeline implements tools and standard formats for
automatically handling models, data and machine learning
(ML) scenarios. All our models are encoded using the Systems
Biology Markup Language (SBML), a well-established
format in Systems Biology. Both data and optimization
choices, including flat and hierarchical optimization, with the
definition of submodels in the hierarchical case, are encoded
using JavaScript Object Notation (JSON) files. The goal is to
make ML more reproducible and accessible to non-experts,
while increasing productivity for experts. This situates our
effort within the field of Automated Machine Learning
(AutoML), a relatively new area that makes advanced ML
techniques more accessible and accelerates research processes
in computational biology (24).

METHODS

Mathematical formalism
Objective (cost) function A popular choice of objective
function is the log likelihood. For data with normally
distributed deviations, it reads:

L(θ,s,σ)=
1

2

N∑
i=1

[
log(2πσ2i )+

(
yi−sixi(θ)

σi

)2
]
, (1)

where yi and xi(θ) are observed and predicted concentrations
of the ith observed species, respectively, and θ are kinetic
parameters. Parameters si are scaling parameters, accounting
for the fact that the measurements are not absolute and σi are
standard deviation parameters (see (25)).

In the HOSS calculations we perform two levels of scoring.
First, for each experiment for which the sub-model is tested,
we obtain a normalized root-mean-square cost similar to the
above calculation, except it is normalized to the maximum
of the experiment readout for molecule yi among all the
observations of the same variable at different times or in
different conditions:

NRMS(θ)=

√√√√ 1

Nd

∑
i,k

(
yik−xi(tk,θ)

mi

)2

, (2)

where mi is the maximum value of the observed variable yi
and xi(tk,θ) is its predicted value at the time tk, and Nd is the
number of data points (terms in the sum).

To handle multiple data sets and multi-objective
optimization we adopt a weighted sum approach. We
define the weighted normalized cost, that combines values of
(2) obtained in multiple datasets:

WNRMS(θ)=

√∑
jwj(NRMSj(θ))2∑

jwj
, (3)

where wj , and NRMSj are positive weights, and normalized
root mean costs of individual datasets, respectively.

Flat and Hierarchical optimization Parameter optimization
involves minimization of an objective function f :S⊂Rn→
R, where S is a space of constraints, p∈S a vector of
parameters. The flat method consists of solving the problem:

min
p∈S

f(p). (4)

There are many methods to solve (4). In our framework we use
multistart optimization, by launching local search procedures
from randomly chosen starting points generated uniformly in
logarithmic scale:

p= p̃exp(log(a)+log(b/a)U), (5)

where p̃ is a nominal guess, U=(U1,U2,...,Un) a vector of
random, independent variables whose distribution is uniform
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over [0,1] or standard normal, a=(a1,a2,...,an) and b=
(b1,b2,...,bn) are vectors of positive scales, such that 0<
ai<1<bi for 1≤ i≤n. All the vector multiplications in (5)
are elementwise. By using this procedure, the range of start
parameters is from p̄iai to p̄ibi.

We refer to this procedure as parameter scrambling.
Despite its simplicity, multistart optimization with logarithmic
sampling has proven to be effective in benchmarks of
biochemical pathways (26).

In hierarchical optimization (22), K sub-problems, each
one defined by an objective function fi :S−→R, i=1,...,K,
are solved iteratively. Parameters of the problem are grouped
in K groups p=(p1,...,pK), where pi∈Rni for 1≤ i≤K
and n=n1+...+nK . We look for p∗=(p∗1,...,p

∗
K)∈S⊂

Rn, solution of:

min
pK

fK(p∗1,...,p
∗
K−1,pK) where p∗K−1 solves

min
pK−1

fK−1(p
∗
1,...,p

∗
K−2,pK−1,pK) where p∗K−2 solves

...
...

min
p2

f2(p
∗
1,p2,...,pK) where p∗1 solves

min
p1

f1(p1,p2,...,pK) p subject to S.

(6)

The case K=2 is known as bilevel optimization (23). In this
case the optimization of f1 is called lower-level problem,
whereas the optimization of f2 is the upper-level problem.

The problem (6) is difficult, because each individual
problem has to be solved for multiple values of the remaining
variables, all subjected to the constraints S. Indeed, it has
been proved that even apparently simple bilevel optimization
problems are NP-hard (23). However, the solution of bilevel
optimization is straightforward if the lower-level problem has
unique analytic solution. In this case, the naive algorithm,
utilizes the solution of the lower-level problem to eliminate
p1 and reduce the upper-level optimization to minimizing
a composed function that depends on p2 only, is effective.
Bilevel optimization with analytic solution for the lower-level
problem has already been used for systems biology models.
In this case the lower-level parameters are the scaling and
standard deviation parameters si,σi introduced in (1), that can
be optimized by analytic formulas, see (25).

Another simple hierarchical optimization case is when the
functions fi,1≤ i≤K depend on nested sets of parameters
and the set of constraints factorizes S=S1×S2×...×SK .

Then, (6) reads:

min
pK∈SK

fK(p∗1,...,p
∗
K−1,pK) where p∗K−1 solves

min
pK−1∈SK−1

fK−1(p
∗
1,...,p

∗
K−2,pK−1) where p∗K−2 solves

...
...

min
p2∈S2

f2(p
∗
1,p2) where p∗1 solves

min
p1∈S1

f1(p1)

(7)

We call the problem (7), nested hierarchical optimization.
Nested hierarchical optimization can be solved iteratively,
starting with the last problem in (7).

Nested hierarchical decompositions A biochemical model
is defined by a set of reactions R and a set of species
S. We also define the stoichiometric matrix S, whose
elements Sij represent the number of molecules of the
species i produced (if Sij>0) or consumed (if Sij<0)
by the reaction j. Furthermore, the reaction rate vector
R(x,p)=(R1(x,p),...,Rr(x,p)) is a function of species
concentrations x=(x1,...,xN ) and kinetic parameters p.
Each reaction j is characterized by a parameter vector pj ,
therefore we have p=(p1,...,pr).

Species concentrations evolve in time as a result
of chemical reactions. These define a semiflow (time
dependent mapping of the species concentrations, enabling
the computation of future concentrations based on the present
ones) ϕ(t,x;p),t≥0 such that x(t)=ϕ(t,x0;p) represents
the species concentration vector starting from initial values
x(0)=x0. The semiflow results from the integration of ODEs
in chemical kinetics models or from the simulation of event
driven dynamics in HillTau abstractions (4).

Some species forming a subset BS⊂S are buffered, and
their concentrations are kept constant.

Our construction relies on the following concept. We call
autonomous pair, a pair of reaction and species subsets
(I,J),I⊂S,J⊂R that satisfy:

1. if a species is in the subset I , then all the reactions
consuming or producing this species are in the
corresponding reaction subset J , namely if i∈I then
j∈J whenever Sij ̸=0.

2. if a reaction is in the subset J , then all the species on
which the reaction rate depends are in the corresponding
species subset I , unless these species are buffered, i.e.
if j∈J then i∈I whenever ∂Rj

∂xi
̸=0 and i /∈BS.

Let xI be the concentration vector of the species in I and
pJ the kinetic constants of the reactions in J . From the above
definition it follows that xI can be computed at any positive
time t by a semiflow depending only on the parameters pJ ,
namely xI(t)=ϕI(t,xI(0);pJ ). Consider the data subset
DI , consisting of observations yI of the species xI only.
Then, the objective function measuring the difference between
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observed and predicted values of xI depends only on pJ ,
namely

fJ (pJ )=
∑
i∈I

∑
k

(yik−ϕi(tk,xI(0);pJ ))
2. (8)

Suppose now that we find species and reaction subsets,

I1⊂I2⊂ ...⊂IK=S,
J1⊂J2⊂ ...⊂JK=R,

(9)

such that (Ik,Jk) are autonomous pairs for all 1≤k≤K.
We call (9) a nested hierarchical decomposition.

Optimization of the objective functions (8) can then be done
hierarchically, as in (7).

Constructing nested hierarchical decompositions using the
interaction graph Let us define the interaction digraph as I=
(V,E), where V is the set of vertices (all species) and E is the
set of edges. A pair of species (i,j)∈E defines an edge from i
to j if and only if there is a reaction that consumes or produces
the species j, and its rate depends on the concentration of
the species i. This graph is used to define causality relations
between species, namely we say that j is causal to i, j⇝ i, if
j is connected to i by a path in I. All the species j causal to i
are needed for computing the time evolution of xi.

Strongly connected components (SCC) of I are subsets
K⊂V such that j⇝ i and i⇝j for all i,j∈K, maximal with
respect to this property. In this paper, we refer to SCCs as
blocks. Blocks form a partition of the species set I . This
partition can be used to define a SCC quotient graph as
follows: blocks are vertices of the SCC quotient graph, and
two blocks are connected if there is one species in one block
connected in the interaction graph to a species in the other
block. The SCC quotient graph is always acyclic (see Figure 1
and (27)).

The following property is important for building nested
hierarchical decompositions.

Property: For any block K and any subset I of an
autonomous pair (I,J), one has either K⊂I or K∩I=∅.

Thus, we can build a nested hierarchical decomposition
by using the blocks and the quotient graph. The first level
subset I1 is the union of blocks that are roots of the quotient
graph, i.e. blocks having no incoming connections. The
corresponding reaction subset J1 is made of all reactions
producing or consuming species from I1. The next level I2
is obtained by adding to the roots all the blocks receiving
direct connections only from the roots, and so on and so forth.
Algorithmically, one must associate a hierarchical level l to
each block, defined as the length of the longest path from the
roots to the block (see Figure1). Then, the set Il is the union
of all blocks with a hierarchical level smaller than l.

Although the nested hierarchical decomposition (9) is not
unique, the decomposition obtained by this procedure is
unique and has the advantage of minimality. More precisely,
I1 is the minimal subset containing the root blocks, such that
(I1,J1) is autonomous. I2 is the minimal subset containing
the species I1 and all the species receiving direct interactions
only from I1.

The quotient graph also provides a useful data structure
for parallel optimization of the parameters. Thus, each tree
originating from a root corresponds to terms in the objective
function that can be optimized independently of the others.

Hierarchical decompositions with feedback In some signaling
pathway models, downstream molecules regulate upstream
ones through feedback (28). This can result in all species
influencing each other, forming a single block where
hierarchical and flat optimizations are equivalent. However,
even in these cases, we can identify smaller blocks and
decompose the network hierarchically. The autonomy of these
resulting blocks is only approximate, but it allows us to benefit
from hierarchical optimization. An iterative approach, starting
with approximate hierarchical optimization and continuing
with flat optimization, is a good option in this scenario.

We summarize the hierarchical decomposition procedure in
the case with feedback, leaving the details to a separate paper.

In the presence of feedback, two concepts are key for the
hierarchical decomposition.

The first concept is r-causality. A species j is r-causal to

a species i, j
r
⇝ i, if j is connected to i by a path in the

interaction graph I, of length smaller than or equal to r.
The introduction of r-causality imposes an upper limit on the
length of paths connecting species in the interaction graph.
By taking the value of r sufficiently large one can thus break
feedback loops.

The other concept is agony, a measure used to quantify
the hierarchical organization of directed networks (29, 30). It
helps in identifying and evaluating the hierarchical structure
within a network by penalizing the inconsistencies present in
the hierarchy. More precisely, integer scores representing the
level in the hierarchy are associated to each species in the
network. Then agony is a function of all these scores and of
the interaction graph, that penalizes the edges for a node with
high level to a node with lower level. The set of scores that
minimizes agony is then used to define the hierarchy.

Our procedure to compute the hierarchical decomposition
of a network with feedback is as follows:

• First define r-blocks, such as maximal subsets such that
any species is r-causal to any other.

• Because r-causality is not an equivalence relation, r-
blocks can overlap. Generate a consolidated r-block
partition (also named r-SCC partition) by agglutinating
r-blocks that overlap.

• Use the r-SCC partition to define a r-quotient graph in
the same way as the quotient graph was defined from
the SCC partition. The nodes of the r-quotient graph are
the consolidated r-blocks.

• Use agony to define hierarchical levels in the r-quotient
graph.

Another strategy would be to apply agony directly to the
interaction graph. However, the computational burden is
reduced, and the optimization result is robust by using the r-
quotient graph instead. The value of r has to be chosen not too
large to avoid one r-block that contains all the species, and not
too small to avoid many r-blocks that contain just one species.
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For the models studied in this paper r equal to one or two is
good enough to avoid having just one block or many blocks
containing just one species.

The hierarchical decomposition algorithms used in this
paper were implemented in Python (see HiNetDecom in the
Availability section).

The application of this procedure to signalling networks
with feedback is illustrated in the Figure 2.

Signal back-propagation, reduced Michaelis-Menten
mechanisms, and irreversible reactions Although in a
signalling cascade the signal usually propagates in only
one directions, there are situations when both forward and
backward propagation are possible. Similar to the case
of feedback, minimal blocks and autonomous pairs can
encompass the entire pathway in this instance as well. Signal
backpropagation can occur due to enzyme sequestration, a
phenomenon in which the active enzyme from an upstream
tier of the signalling cascade is sequestered as part of the
enzyme-substrate complex (31). The back-propagation
phenomenon disappears under quasi-steady state (QSS)
conditions, when the enzyme-substrate complexes have low
concentrations (32, 33). As signalling pathways models
often assume QSS, it is useful to have a tool that reduces
mass action models by eliminating complexes. The reduced
models can then be decomposed hierarchically using methods
proposed above. As a result of the reduction, the hierarchical
decomposition is improved: some large blocks split into
smaller ones. This holds whenever there is sequestration
related back-propagation, whether this is accompanying by
feedback or not.

The QSS reduction of Michaelis-Menten mechanism is
based on identifying in the reaction network of motifs of the
type:

Si+Ei

k+i
⇌
k−i

ESi
kicat−−→Pi+Ei,

and find all motifs that the same enzyme Ei.
Let Ii be the subset of reactions using the same enzyme

Ei, i.e. Ej=Ei, ∀j∈Ii. Then ∀j∈Ii the Michaelis-Menten
mechanism is replaced by a single reaction

Sj
Vj→Pj ,

with the rate

Vj=kjcat
EiSj/k

j
m

1+
∑
l∈Ii

Sl/klm
,

where kjm=(k−j +kjcat)/k
+
j .

The rates of the reduced reaction depends on the
concentration of the substrate Sj , but also on enzyme Ei and
on the substrates Sk,k∈Ii,k ̸=j, that should be added to the
list of modifiers of this reaction. The corresponding reduction
algorithm was implemented in Python.

The resulting decomposition may be useful even if QSS
conditions are not rigorously satisfied. In this case, the
hierarchical levels are autonomous only approximately, but

the hierarchical optimization may still be better than the plain
optimization.

Other sources of signal backpropagation are the reversible
reactions connecting species from different levels of the
hierarchy. A reversible reaction allows the propagation of
the signal in both directions and establishes interaction graph
connections in both directions between reactants and products.
However, some reversible reaction effectively function in only
one direction. We say that a reaction is forward irreversible
if R+>>R− where R+,R− are the forward and backward
reaction rates. This condition can be verified using numerical
simulations or any information about the orders of magnitude
of the kinetic constants and concentrations of reactants and
products. When it is satisfied we can consider that the reaction
is irreversible.

As an illustration, we tested by simulation the forward
irreversibility in the signaling model b2AR-PKA (see
Table 1). We found several forward irreversible reactions,
but the reaction CaMCa3+Ca⇌CaMCa4 is particularly
important for the directionality of the signal propagation. By
considering this reaction to be forward irreversible, a large
block containing AC1,AC2 and CaM splits into two blocks,
one of rank one containing CaM and the other of rank
two containing CaMCa4 (see Figure 2). Indeed, the signal
propagates from CaMCa3 to CaMCa4 and not backwards.

The HOSS Optimization framework
The HOSS software is designed to orchestrate complex,
multi-level hierarchical optimizations. To do this it deploys
numerous individual optimization steps, each of which
fits a subset of a model to a number of individual
experiments (Figure 3 A). HOSS works on signalling and
other models which are subdivided into blocks, typically
individual signalling pathways in a signalling network. The
blocks are organized into a hierarchy informed by the above
mathematical formalism, where each level depends only on
signalling input coming from preceding levels, and blocks
within a level are independent of each other (Figure 3 B).
During operation, HOSS reads a configuration file in JSON
format, which specifies the metadata and overall optimization
parameters, such as optimization algorithm and tolerance
(Figure 3 B). The configuration file further specifies a
weighted set of experimental protocols defined in the FindSim
JSON format (20). Finally, within each block it identifies
which parameters are to be adjusted, and optionally their
bounds. HOSS calls the FindSim utility (20) to set the
parameter vector, and to compute the objective (cost) function
giving the accuracy of the model fit for each experiment.
The default objective function is the normalized root-mean-
square difference between experimental data and simulation
readout (2). When several experiments pertaining to different
readouts, or datasets of different origins are available for the
same model, a consolidated objective function is obtained by
combining individual objective functions scaled by weights
(3). This consolidated objective function is used in the
optimization algorithm which is provided by scipy.minimize.
HOSS can employ nested parallelization by simultaneously
running FindSim on each experiment within a block, and
independently optimizing each block on different processes.
For the purposes of subsequent discussion, we refer to
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the optimization routine (provided by scipy.optimize) as the
optimization algorithm, and the hierarchical optimization
program (provided by HOSS) as the HOSS method.

FindSim is the Framework for Integration of Neuronal
Data and SIgnalling Models (20). Briefly, it does three
things: 1) reads a model and tweaks its parameters, 2)
reads the definition of an experiment and runs it on the
model, and 3) compares the output of the model with
data from an experiment (Figure 3 D, E, F). FindSim
is agnostic to model definition format and simulator. It
currently works with the HillTau (4) format and simulator,
and with ODE and mass action models specified in SBML
and other formats, and solved using the MOOSE simulator
(34). FindSim utilizes a JSON format file to specify
experiment inputs and readouts. Crucially, an experiment
defined in FindSim format can be applied to completely
different models even using different modelling formalisms,
provided the input and output entities are common. We
illustrate these capabilities below. In the context of HOSS,
we use FindSim on four kinds of experiments applicable to
cellular signalling: dose-response, time-series, bar-charts and
direct parameter estimates (Figure 3 D, E, F). FindSim has
additional capabilities to handle common electrophysiological
experiments (35, 36) but these are not used in the current
study.

Large Models overview
For the purposes of this report, we model two signalling
pathways in two formalisms each (Figure 4 A-D). The
pathways are the beta-adrenergic receptor activation of protein
kinase A (the b2AR pathway) and the epidermal growth
factor activation of MAPK/ERKII (the EGFR pathway). The
reaction topologies of these pathways are based on and
simplified from (2). The two formalisms are HillTau (4),
which is an abstracted reduced signalling model specification
which maintains direct experimental mapping of selected
parameters such as concentrations and rates; and well-mixed
chemical kinetics specified in SBML or other compatible
formats. In the current study, SBML models are based on
ODE dynamics. However, in HillTau, species dynamics are
not computed using ODEs, but by a hybrid system. The
composition of the models is reported in Table 1.

Pathway Formalism Number of
species

Number of
reactions

Number of
parameters

EGFR-MAPK HillTau 14 7 29
b2AR-PKA HillTau 21 12 37

EGFR-MAPK ODE 36 22 54
b2AR-PKA ODE 53 40 93

Table 1. Composition of large test models used in this study.

Experimental database
We have used manual curation of the experimental literature
to build up a repository of over 350 signalling experiments
with a focus on synaptic signalling pathways. There are two
key characteristics of this dataset, which drives several of the
design choices in HOSS. First, the number of experiments
pertaining to each pathway is limited, and considerably
below the number of parameters even for HillTau models
(Figure 5 A, B). Second, there are frequently overlapping

experiments which disagree on the quantitative values of
readouts (Figure 5 C, D).

RESULTS

Hierarchical optimization outperforms flat optimization
for a paradigmatic model with synthetic datasets
In order to illustrate and test the hierarchical optimization
method we first use a paradigmatic model of the MAPK
signalling cascade, introduced by Huang and Ferrel (37). The
SBML model is available in the Biomodels (38) database. The
corresponding ODE system can be found in ODEbase (39)
database https://www.odebase.org/detail/1330. The original
SBML model consists of mass-action elementary reactions.
Because of multiple Michaelis-Menten mechanisms sharing
the same enzyme there is back-propagation of the signal and
the application of the hierarchical decomposition algorithm to
this model results in only one autonomous pair that includes
the entire model.

By applying the QSS reduction transformation, the 22
ODEs in the ODEbase model are simplified to 8 differential
equations. Notably, 4 species exclusively function as
enzymes, and are considered buffered after the transformation
(MAPKKK activator, MAPKKK inactivator, MAPKKPase,
MAPKPase). As shown in Figure 6 A, the reduced MAPK
model lends itself to a hierarchical cascade with 3 levels.

We tested hierarchical optimization using time series
produced in (40), consisting of 10 in silico experiments. Each
experiment employed a different concentration of MAPKKK
activator. For the flat optimization we used 12 distinct
starting points log-uniformly distributed in a hypercube
with edges [10−10,10], and for hierarchical optimization
(with parameter scrambling) we used 12 starting points
per level. Figure 6 B shows that flat optimization takes
longer compared to hierarchical optimization in terms of
total duration. Additionally, the hierarchical optimization
outperforms classical optimization significantly in terms of the
objective function value (Figure 6 C).

Black-box, non-gradient optimization methods work well
for flat optimization.
To scale up our analysis to moderately large models, we
utilized the HOSS pipeline on a set of four signalling
pathways as described in Table 1. Notably all details
required for execution of the optimization pipeline, such
as applicable experiments (FindSim files in JSON format),
experiment weights, parameter lists, and parameter bounds
were incorporated into the HOSS files. Thus a single
command triggers execution of a complex pipeline, and a
single file orchestrates all the data, models, optimization
options, and parameter specification. As a reference, we
first ran the HOSS pipeline using flat (non-hierarchical)
optimization on the models, employing a number of
standard optimization methods in the scipy.minimize library
(Figure 7 A). Our initial models were initially parameterized
manually using inspection of a limited subset of experiments.
Following the flat optimization, all of the algorithms produced
better fitting models than the start models. This was reflected
in the modest improvement in the model-fitting objective
function, which we refer to as cost (Figure 7 B). We found

https://www.odebase.org/detail/1330
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that COBYLA (black-box, non-gradient algorithm based on
linear programming and linearization of the problem and
constraints) and SLSQP (iterative quadratic programming
method, also using linearized constraints) were considerably
faster to converge than gradient algorithms such as BFGS
(quasi-Newton algorithm based on an approximated inverse
Hessian matrix) (Figure 7 C). COBYLA was more reliable
in producing small costs. A possible explanation for this
effect is the conflict within the multiple datasets used in the
weighted cost (3). This conflict may lead to ill-conditioned
Hessians and degenerate quadratic approximations of the
cost functions, which disadvantage the BFGS and SLSQP
algorithms. Accordingly we used COBYLA for subsequent
hierarchical optimization runs.

Hierarchical optimization is more efficient than flat
optimization for biochemical models with real datasets
We next tested the HOSS pipeline for hierarchical
optimization (Figure 8 A). We have shown above that
nested hierarchical optimization is more efficient than flat
optimization for fitting a medium-sized model with synthetic
data. Our results here show that this efficiency carries over to
complex real-world cases involving large models (Figure 4),
large but incomplete datasets (Figure 5), and noisy and
sometimes inconsistent data (Figure 5). We implemented
hierarchical optimization in HOSS as schematized in
(Figure 8 A).

The signalling reactions from Figure 4 were manually
subdivided into individual pathways reflecting their biological
organization. Within the HOSS configuration file for each
model, the pathways were placed in a hierarchy which
reflected their position in the signalling cascade (e.g.,
Figure 3 C, Figure 8 B). We again tested three different
algorithms for optimization: BFGS, COBYLA and SLSQP.
We found that hierarchical optimization worked for all
algorithms, though COBYLA gave smaller costs than BFGS
and SLSQP in most cases (Figure 8 B). The runtimes
followed the same pattern as for flat optimization, that
is, BFGS > COBYLA > SLSQP. We then compared
how hierarchical optimization performed compared to flat
optimization (Figure 8 D E). HOSS gave smaller or
comparable costs to flat optimization in all except the ODE-
based EGFR model, labeled D4-EGFR. We speculate that a
loop unrolling pass would improve the EGFR pathway cost,
since there is a feedback loop in the EGFR pathway which
violates the hierarchy assumptions. Notably, the runtime for
hierarchical optimization was considerably faster in all cases.

Multistart methods yield lower optimization cost:
initScram method.
As the basic HOSS algorithm may be susceptible to local
minima, we implemented a version which generated a large
number of initial models with parameters randomized in
a log-normal distribution of half-width scramble Range
(scramRange, defined as b=1/a=scramRange>1 in (5))
(Figure 9 A, B). This is a known approach, with roots in
simulated annealing methods (26, 41, 42). We extended the
HOSS framework to overlay model parameter scrambling and
process farming onto the hierarchical optimization method.
This is an embarrassingly parallel problem and each of the

optimization processes could run in parallel. In the course
of these runs we identified one necessary refinement to the
algorithm. In some cases, a subset of the initial models took
an enormously long time to converge. Thus we implemented
a timeout for each elementary minimization run. This may
slightly reduce the number of completed runs, but frequently
led to considerable improvement in runtime. In an analogy
with simulated annealing, we asked if successive rounds of
optimization would find still lower minima. We found that
multiple rounds of optimization tended to converge rapidly
(Figure 9 C). Hence in most cases a single optimization step
should suffice.

The optimization costs resulting from a typical run with
200 initial models fell into a distribution which depended
both on model and on scramRange (Figure 9 D, E). As
expected, the width of the cost distribution increased with
scramRange. The best fits were at the left of the distribution
and in these examples were were obtained with a scramRange
of ∼5.0, that is, log-normal random scaling from 1/5 to 5-
fold of each initial parameter (Figure 9 D, E). The costs
for these fits were considerably lower than those obtained
with plain HOSS. To relate the NRMS divergence between
parameters to scrambleRange, we generated a set of models
at a series of scrambleRange values, and computed NRMS
between each population (Figure 9 F). Interestingly, the best
few models (lowest costs) were not necessarily very similar
in their parameters. We did a normalized RMS comparison
of parameters of the top 10 D4-b2AR models and found
no obvious clusters (Figure 9 G). Using the relationship
from (Figure 9 F), we observed that the NRMS range of
∼1.0, as seen in these best 10 models, corresponded to a
scrambleRange of ∼2.0. This means that the parameters of
these models differed by as much as a factor of two. As
another measure of the parameter similarity of ’good’ models,
we plotted the distribution of (model parameter) / (mean
parameter) across all parameters taken from the best 25% of
models, that is, those whose costs were in the lowest quartile
(Figure 9 H, I). We found that this clustered around one,
suggesting that there is indeed a global optimum to which
most models converge. Note that this parameter distribution
is narrower with a broad tail, as compared to the source model
parameter distribution from (Figure 9 B).

Multi-stage Monte-Carlo yields further improvements of
the optimization cost: hossMC method.
As a final refinement of our code-base, we implemented a
similar model-scrambling step within each stage of the HOSS
algorithm (Figure 10 A). Thus, each subset of the model
was subject to scrambling to give S variants (S∼200 for a
full run). These S variants were individually optimized in an
elementary minimization step similar to a single stage in the
original HOSS method (Figure 8 A). If there were multiple
model subsets within a given level of the HOSS hierarchy,
each was subject to this process to give S optimized variants.
The best of each subset were then recombined so as to obtain
the top N solutions for a given level. Typical values for N
were ∼10. These top N sub-models were then used as separate
starting points for further scrambled models for the next level
of HOSS, such that we again had S variants to optimize.
After the program ran through all levels, we had a set of the
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best-fitting N models obtained by the overall pipeline. This
method generated excellent fits to the data, slightly better
than the previous multi-start method initScram (Figure 10 B).
Wallclock time was similar to that of the initScram method
provided there were enough CPU cores available to run all the
steps in parallel (Figure 10 C). The total CPU time for both
randomized methods was also quite similar (Figure 10 D).

To summarize the performance of the four methods
employed here (flat, hoss, initScram and hossMC), we
compared three metrics across the four optimization methods
in the HOSS framework. The metrics were the final cost
(Figure 10 B), wallclock time (Figure 10 C), and total CPU
time (Figure 10 D). As detailed above, the hossMC method
was most effective but most CPU-costly, followed closely
both in time and model fitting cost by the initScram method.
The plain HOSS method was uniformly the fastest, but its
optimization costs did not compare well with the two multi-
start methods (initScram and hossMC) for any of our models.
The conventional flat method is not a good choice by any
criterion.

DISCUSSION

We have developed a pipeline for hierarchically optimizing
large signalling models with hundreds of parameters. We show
that hierarchical optimization gives better model fits, and does
so faster than conventional flat optimization. We extend this
approach to two further methods which use Monte Carlo
sampling of multiple parameter start points to give still better
final models.

Model provenance and modelling disease variants
Complex biological models, and signalling models in
particular, frequently draw upon diverse sources of data.
Such models are often hand-tuned, and such tuning
may be very effective because it draws upon expert
intuition and implicit knowledge about the behaviour of
familiar pathways. However, many model parameters are
adopted from the literature without clearly documenting
the parameter optimization procedures or the data used in
these procedures. This makes model provenance problematic.
How did the modeller end up with a particular set
of parameters? The HOSS framework introduces model
optimization pipelines that are efficient, scalable, repeatable
and above all, transparent. The development of a well-
structured optimization configuration format in HOSS ensures
that all experimental data and model choices, their weights,
and all hyperparameter selections are as clearly defined as the
algorithms and the simulators. This emphasis on provenance
is designed to place the HOSS framework in line with FAIR
principles(43). We highlight two use cases to illustrate how
HOSS supports reuse. First, model rederivation: A different
scientist may feel that some of the original experiments
should be considered more authoritative than others. This can
be done simply by assigning a greater numerical weight to
the selected experiments, rerunning the pipeline, and seeing
what changes in the resultant optimized model. Similarly,
a researcher could include some new experiments into the
dataset against which the model is to be optimized. This
simplicity of model derivation brings a more data-driven

flavor to debates over model assumptions and how well they
represent the known experimental literature. As HOSS is
agnostic to model formalism, it follows that these comparisons
could even extend over distinct models implemented with
different formalisms (e.g., HillTau vs mass action chemistry).
Although not yet implemented, the same principles may apply
to optimizing qualitative models such as Boolean networks.

Second, The HOSS structure is highly effective for model
specialization. A researcher may wish to make a family of
models for different disease mutations, based on a dataset of
readouts for experiments in a set of mutant animal or cell lines.
Using the HOSS pipeline, it is straightforward to replace the
original (wild-type) experiments with the respective mutant
line experiments, rerun the optimization, and obtain disease-
specific models. Thus the HOSS framework encourages best
practice in developing complex models which can be easily
reused.

Large models and large datasets
HOSS is scalable. This is in large part due to the efficiency of
the hierarchical optimization core method we have described.
Based on this, we have shown that even large models can
be optimized quickly. Beyond this, HOSS organizes systems
optimization problems in a modular manner which scales
well with complex models and datasets. As a key part of
this, HOSS organizes models into hierarchies, within which
data, parameter choices, and multiple optimization stages of
a pipeline can be triggered using a single command. Thus,
once it is set up, a HOSS optimization run does not require
many steps of inspection and tweaking by the investigator, and
is simple to incrementally extend with new experiments and
updated models. Rerunning a pipeline is trivial, and is limited
only by computational resources. Several tools also provide
model optimization (e.g., COPASI (41))

Model building is not limited just by resources and datasets,
but also by how manageable is the organization of the dataset.
The traditional way to associate model parameters with
experiments is to provide citations (e.g., refs: DOQCS (44),
BioModels (38), ODEbase (39)). This is neither complete,
due to the previously mentioned lack of documentation, nor
automated, because every iteration of the model would, in
principle, require human intervention to produce or find new
data, reorganize it and reparametrize the models. Several
efforts have sought to reorganize experimental data into a
standardized machine-readable format (45, 46), and HOSS
uses the FindSim format to do so (20). The organization of
a HOSS pipeline lends itself to version control, since every
component of the pipeline is a file in a standard location and
standard format. Specifically, the HOSS configuration file is
in JSON, the model definition files may be SBML or HillTau,
and the experiment specification files are FindSim JSON files.

HOSS encourages the clear subdivision of models and
experiments into groupings around individual signalling steps,
such as the activation of a kinase by its immediate second
messengers. This has implications for experimental design
geared to tightly defining large signalling systems, because it
lays out the kinds of experiments that are needed to achieve
full coverage of all the reaction steps. Specifically, we find
that two kinds of experiments can greatly tighten parameters:
local experiments that probe input-output properties of a given
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signalling step, and readouts of all key intermediates along
a receptor-driven pathway to ensure that signal propagation
remains intact.

Model degeneracy, granularity, and completeness
In cellular signaling models, it is now clear that many
parameter combinations may yield the same input-output
properties. The origins of this degeneracy could be epistemic
and due to data incompleteness (47), but also biological
being a feature of cells themselves, that can perform the
same biological function in multiple ways (48, 49, 50). The
HOSS framework may provide a useful tool to study such
degeneracy. Most directly, the two Monte Carlo methods
supported by HOSS (initScram and hossMC) generate
multiple ‘good’ models, which can be tested for degeneracy
(e.g., Figure 9). Because HOSS is agnostic to model detail,
simulator, and model formalism, it also lends itself to asking
how model granularity affects degeneracy. We have previously
suggested that it is useful to develop a family of models
at different resolution for any given signalling system (33,
51, 52). HOSS is well equipped to facilitate this, as it can
use the same experimental dataset for models at different
detail. We demonstrate this in the model choices in this
paper, since the D3 models using HillTau, and the D4 models
using the MOOSE simulator (34), are parameterized using
overlapping sets of experiments, separated only by the fact
that some experiments in the D4 set depend on molecules
that are not defined in the simpler D3 models. Model
completeness, referring to how well a model incorporates
all necessary details to accurately representing a system or
phenomenon, is quite difficult to ascertain in biology as it is in
all scientific fields confronting theory and experiments (53).
Several methods have attempted to explore model topology
space along with parameters (7, 8, 54, 55), but HOSS supports
a more pragmatic interpretation: Is a model complete enough
to account for a given set of observations? It does so by
trying a large number of possible parameter sets and seeing
whether any of these initial conditions result in well-fitting
models. A failure to do so suggests that the model topology
may need to be reconsidered. We have previously illustrated
the behavior of a series of models of activity-driven synaptic
signalling at different levels of granularity, and show that
more detailed models fit additional features of the response
(4). However, an overly detailed model can lead to overfitting
if the data is not sufficiently rich. We suggest that multi-
grain hierarchical approaches, including automated model
granularity (level of detail) selection, may represent a future
evolution of hierarchical optimization.

CODE AVAILABILITY

Code locations:
HOSS https://github.com/BhallaLab/HOSS,
FindSim https://github.com/BhallaLab/FindSim,
HillTau https://github.com/BhallaLab/HillTau,
MOOSE https://github.com/BhallaLab/moose-core,
HiNetDecom https://github.com/Computational-Systems-
Biology-LPHI/HiNetDecom.
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Figure 1. Interaction and quotient graphs used for the hierarchical decomposition. A) The interaction graph is a directed graph whose nodes are biochemical
species. One source species acts on a target species if there is a reaction consuming or producing the target, whose rate depends on the concentration of the source.
The strongly connected components (SCC) are maximal sets of nodes such that there are paths connecting each node to any other node. This graph has six SCCs:
A0={a1,a2}, B0={b}, D1={d1,d2,d3}, C2={c}, E2={e1,e2,e3,e4}, F3={f}. B) The quotient graph is an acyclic directed graph, whose vertices are
the SCC of the interaction graph. Two SCC are connected in the quotient graph if there is a species in one connected to a species in the other. The hierarchy level
of a block (SCC) is the length of the longest path in the quotient graph, connecting a root to the block. In this example, blocks A,B are roots and have level 0,
block D has level 1, blocks C,E have level 2 and F have level 3.
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Figure 2. Blocks and quotient graph computed by automated hierarchical decomposition: r-blocks with for the EGFR model (A) and for the b2AR model
(B) after Michaelis-Menten type reduction. One has the same blocks for r=1,2. In the model EGFR we have considered that the reaction EGFR+EGF⇌
LEGFR is forward irreversible. In the model b2AR we have considered that the reaction CaMCa3+Ca⇌CaMCa4 is forward irreversible. The forward
irreversibility conditions were verified by numerical simulations.
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Figure 3. Optimization framework.
A: Schematic of optimization pipeline. HOSS follows a pipeline defined in a JSON configuration file to apply the specified
algorithm at each stage of the optimization. HOSS orchestrates the operations of FindSim which takes a model, modifies its
parameters, runs the model against specified experiments, and returns a cost representing the minimal distance between data and
model predictions. This cost is used by the algorithm. B: Typical model decomposition into levels. L1 depends only on inputs, L2
depends only on L1 and inputs, and L3 depends on all upstream pathways. Within a level we can have multiple signalling blocks
provided they do not depend on each other. However, we may have cross-interactions or feedback (arrows with dashed lines),
which may require the pipeline to repeat one or more levels. C: pseudocode for definition of the HOSS pipeline. Within each
level we can have multiple pathways, each of which needs a list of experiments, parameters and optionally parameter bounds.
Colors map to corresponding levels of the model from panel B. D, E, F: Typical examples of experiments defined in FindSim
format and run using FindSim to obtain optimization costs. In all these cases EGF is used as an input to the EGFR pathway. D:
Bar chart. Here EGF is provided at baseline level (0.1 nM, named EGF 1) and at stimulus level (1.5625 nM, named EGF 2), and
the resultant level of activated EGF receptor (aEGFR) is found. E: Dose-response. Here EGF is provided at a series of fixed input
levels, and the steady-state levels of aEGFR are measured F: Time-series. Here a 7.8125 nM step stimulus of EGF is applied at
t=4000s, and the level of activated MAPK is read out.
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Figure 4. Models used in current study. A: Beta-2 adrenergic receptor pathway leading to Protein Kinase A activation (b2AR pathway), implemented in HillTau
format. B: Epidermal growth factor receptor pathway leading to Mitogen-Activated Protein Kinase activation (EGFR pathway), implemented in HillTau format. C:
b2AR pathway implemented in ODE format compatible with SBML. D: EGFR pathway implemented in ODE format. Note that the ODE format implementations
are more chemically detailed, but retain overlap with HillTau implementations for several key readouts.
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Figure 5. Features of experimental database. A, B: Number of parameters (blue) and number of experiments (orange) to constrain them, for different blocks
in the model, sorted in order of decreasing number of experiments. In almost all cases the number of experiments falls well short of the number of parameters,
that is, the model is underconstrained. A: Reduced (HillTau) models. B: ODE (SBML) models. C, D: Experiments may be inconsistent. C: Three time-series
experiments for EGFR activation following a pulse of EGF, normalized to maximal response. These experiments were performed on different cell lines and not
surprisingly, the time-courses differ (56, 57, 58). D: Three dose-response experiments for PKA activation by cAMP. These experiments use purified preparations
and despite somewhat different conditions the Kd is quite similar (59, 60, 61).
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Figure 6. Optimization of the reduced MAPK model. A) Blocks in the reduced model; a three level nested hierarchy is defined as follows: level 1 (E1 g, E2 g,
KKK g), level2 (E1 g, E2 g, KKK g, KK g), level3 (E1 g, E2 g, KKK g, KK g, K g). B,C) Performance of flat and hierarchical optimization.
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Figure 7. Flat optimization method. A: Schematic of flat optimization: Left: Model. Right: Method. All model subsets and all experiments are run in parallel.
The resulting costs are combined into a single value used by the optimizer. The optimizer adjusts all parameters across model subsets, for each iteration. B:
Barchart of costs for the four different models, comparing the initial cost with the final cost obtained using three different algorithms (BFGS, COBYLA, SLSQP)
from the scipy.minimize library. BFGS is a gradient descent algorithm. Note that SLSQP sometimes does not converge to a low cost. C: Barchart of runtimes for
the different algorithms. BFGS is always slower. Although SLSQP is typically the fastest algorithm, it sometimes produces high costs as seen in panel B.
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Figure 8. Hierarchical Optimization on large models. A: Schematic of hierarchical optimization as implemented in HOSS. First, the upper level of the model
hierarchy is optimized, in this case the CaM and b2AR sub-models. Each is individually optimized, and any of the standard algorithms such as BFGS or COBYLA
may be employed. Experiments specific to each sub-model are used to compute individual costs and independently update the sub-model parameters. Then, these
sub-models are held fixed and the next level of the hierarchy is optimized (PDE and AC+cAMP sub-models). Finally, the lowest level of hierarchy (PKA) is
optimized. With this the entire optimization is complete. B: Barchart of costs for the four different models, comparing the initial cost with the final cost obtained
using three different algorithms from the scipy.minimize library. C: Barchart of runtimes for the different algorithms. As in the flat method, SLSQP is the fastest.
D: Hierarchical optimization vs flat costs using COBYLA. With a single exception, HOSS gives lower or comparable costs. This exception is likely due to
relaxation of hierarchy assumptions due to feedback. E: Timing of optimizations run using hierarchical optimization vs flat optimization timing using COBYLA.
Hierarchical optimization is faster.
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Figure 9. InitScram method. A. Schematic of method. B. log-normal distribution of parameter scaling from reference values for scrambleRange (SR) of 1.2,
2.0, and 5.0. C. Improvement of fit over successive optimizations. A second optimization produces a small improvement, and little improvement results from
a third round. D. Cost distributions for three values of SR, D3 b2AR model. Note that the peaks are similar but the widths greater for larger SR, hence there
are parameter sets with smaller costs (left tail of distribution) for large SR. E. Cost distributions for 3 values of SR, D4 b2AR model. Here the peaks of the
cost distribution moves to the left with smaller SR. F. Mapping between parameter scrambling range and NRMS metric for similarity of models shows that this
is independent of model. G. Model optimization cost cluster-map for top 10 optimized D4 b2AR models. H: Distribution of parameter scaling for optimized
D3-b2AR models, normalized to mean of respective parameter for the best 10 models from that run. The optimized parameters converge very closely to the best
10 means. I: Distribution of parameter scaling for optimized D4-b2AR models. Here the tails of the distributions are somewhat wider, but there is still a narrow
peak around 1.0 showing convergence from different start points. Note that peaks are narrower than the initial parameter ranges from panel B.
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Figure 10. hossMC method A. Schematic of method. The model subsets in the first hierarchical level of the model are each scrambled 200 times, and each
such starting point is optimized. The best N models (N=5) are taken from each sub-model and recombined to obtain the overall best N models for the first level.
These are then merged with a sub-model from the next level, and these N models are then used as starting points for another round of model scrambling. The 200
scrambled models are again individually optimized as before, and the cycle repeats till we have optimized all levels. The best N merged models are provided as
solutions. B, C, D: Comparing the 4 methods (flat, HOSS, initScram and hossMC). B: Optimization costs, including the initial cost for reference. The InitScram
and hossMC methods worked the best. C. Wallclock time. The plain HOSS method was fastest. The two randomized methods initScram and hossMC were run on
24 processes, but still were much slower because they performed 200 repeats of all optimizations. D. Total CPU time. Here we factor in the number of processes
and the parallelization of experiment cost estimation. By this metric, the HOSS method is substantially better than any other, and the two multistart methods are
much more computationally costly.
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THESAURUS

Autonomous pair: submodel consisting of subset of species and subset of reactions whose time evolution can be autonomously
computed; if a species is in the subset of species, then also all the species casual to it are in.
Causality: a source species is causal to a target species if there is a path in the interaction graph from the source to the target.
r-causality: a source species is r-causal to a target species if the source is related to the target by an interaction graph path
containing r arcs or less.
Optimization cost: distance between data and model predictions. Synonyms: optimization score.
Cost function: cost dependence on the model’s parameters. Synonyms: objective function, loss function.
Block: strongly connected component of the interaction graph. Synonyms: strongly connected component (SCC).
r-block: maximal subset of species such that any two species from it are r-causal one to another.
Evaluation: computing the cost for a model.
Flat optimization: minimizing the cost function non-hierarchically. Synonyms: plain optimization.
Hierarchical level: integer defining the position in the hierarchy. Synonyms: rank.
Hierarchical optimization: minimizing the cost function sequentially by starting with lower level parameters and proceeding to
parameters having higher level in the hierarchy.
Interaction graph: directed graph whose nodes are the species, and a source and target species are connected by an arc if the
production or consumption of the target depends on the source’s concentration.
Quotient graph: acyclic directed graph whose vertices are blocks and two blocks are connected if one species in one is connected
to a species in the other.
r-quotient graph: directed graph whose vertices are r-SCC and two r-SCC are connected if one species in one is connected to a
species in the other. The r-quotient graph can contain cycles.
r-strongly connected component (r-SCC): union of non-disjoint r-blocks. Synonyms: consolidated r-block.
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