
HAL Id: hal-04593669
https://hal.science/hal-04593669

Preprint submitted on 30 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchical Optimization of Biochemical Networks
Nisha Ann Viswan, Alexandre Tribut, Manvel Gasparyan, Ovidiu Radulescu,

Upinder S Bhalla

To cite this version:
Nisha Ann Viswan, Alexandre Tribut, Manvel Gasparyan, Ovidiu Radulescu, Upinder S Bhalla. Hi-
erarchical Optimization of Biochemical Networks. 2024. �hal-04593669�

https://hal.science/hal-04593669
https://hal.archives-ouvertes.fr

Hierarchical Optimization of Biochemical Networks

Nisha Ann Viswan1,3, Alexandre Tribut2,4, Manvel Gasparyan2,
Ovidiu Radulescu2,‡, Upinder S. Bhalla1,‡

1 National Centre for Biological Sciences, Tata Institute of Fundamental Research,
Bangalore, India,

2 LPHI, University of Montpellier, CNRS, and INSERM, Montpellier, France,
3 The University of Trans-Disciplinary Health Sciences and Technology, Bangalore,

India,
4 Ecole Centrale de Nantes, Nantes, France.

‡ To whom correspondence should be addressed.

Abstract

Biological signalling systems are complex, and efforts to build mechanistic models must con-
front a huge parameter space, indirect and incomplete data, and frequently encounter multiscale
and multiphysics phenomena. We present HOSS, a framework for Hierarchical Optimization
of Systems Simulations, to address such problems. HOSS operates by breaking down exten-
sive systems models into individual pathway blocks organized in a nested hierarchy. At the
first level, dependencies are solely on signaling inputs, and subsequent levels rely only on the
preceding ones. We demonstrate that each independent pathway in every level can be effi-
ciently optimized. Once optimized, its parameters are held constant while the pathway serves
as input for succeeding levels. We develop an algorithmic approach to identify the necessary
nested hierarchies for the application of HOSS in any given biochemical network. Furthermore,
we devise two parallelizable variants that generate numerous model instances using stochastic
scrambling of parameters during initial and intermediate stages of optimization. Our results in-
dicate that these variants produce superior models and offer an estimate of solution degeneracy.
Additionally, we showcase the effectiveness of the optimization methods for both abstracted,
event-based simulations and ODE-based models. We also present a technique leveraging ab-
stracted modeling properties as a ’scaffold’ to constrain the optimization of more detailed ODE
models.

Keywords: systems biology, mechanistic models, optimization, modularity.

1 Introduction

Many large biochemical pathway models have been developed since the early days of systems biology.
These models are manifold, including visual representations of data, such as protein interaction
networks [1], and executable models like ordinary differential equations [2], Boolean models [3],
and more recently, Hill-tau abstractions [4]. Among executable models, ODEs provide accurate
representation of pathway dynamics, but incorporate many unknown parameters.

Two key advances have opened up the possibility of scaling up systems models substantially, in
terms of complexity and reproducibility. First, there is now a rich ecosystem of data resources and
data mining resources, both from structured databases and from the much broader but unstruc-
tured scientific literature. These approaches have already been used to scale up pathway diagrams
and interaction networks [5]. Second, the advent of numerous high-throughput methods such as
phosphoproteomics, imaging, and mass spectrometry promise far larger and internally consistent
datasets (see [6]) than the extant patchwork of precise but once-off biochemical experiments per-
formed by individual laboratories.

However, in spite of a few attempts [7, 8], the model development process is far from being
automatic and standardized. In particular, parameter optimization methods were deployed in a
piecemeal manner [9, 10, 11, 12]. This is in part due to the very wide diversity of experimental inputs

1

used to constrain such models, but also due to the inherent contradictions and incompleteness of
the parameter constraints. For example, to compensate for the incompleteness of specific datasets
and further constrain the model, it is not uncommon to amalgamate the findings from various
publications. These data sources may utilize experimental preparations that differ significantly
or even involve different classes of organisms [2]. However, this practice introduces inconsistent
experimental inputs into the model. Consequently, this process is highly idiosyncratic, and different
modelers may arrive at quite distinct models or parameter sets despite drawing on similar data
sources.

There have been previous ambitious efforts to systematically funnel many experimental inputs
into detailed and biologically driven models [13]. Such efforts require the integration of large-scale
systematic data gathering with data management and modeling (e.g, SPEDRE [14]). The current
paper focuses on standardizing the calibration and optimization stages of model development, given
a large but incomplete set of experimental data. We build on our recently developed framework
(FindSim [15]) for curating a very wide range of biochemical and physiological experiments, repre-
senting it in a consistent format, and using such curated experiment definitions to drive multiscale
models. In principle, each new experiment should improve our understanding of biological systems,
and thus help us to refine models of these systems. This amounts to a multi-parameter optimiza-
tion problem. Its result should be a model that fits experiments as well as possible within the
limitations of the model, while incorporating expert evaluation of the relative reliability of different
experiments.

We introduce a novel methodology for solving the multi-parameter optimization problem. The
methodology is based on the property of biochemical networks being modular, i.e., having groups of
species and biochemical reactions that function autonomously given their input. Network modular-
ity allows us to employ hierarchical optimization strategies. Inspired by game theory and now with
multiple applications in science and engineering, hierarchical optimization decomposes a complex
optimization problem into several coupled simpler problems [16, 17]. Although NP-hard in general,
hierarchical optimization becomes easier for nested hierarchies, where lower levels depend on fewer
parameters than the upper levels. We refer to such a method as nested hierarchical optimization
and provide algorithmic solutions for implementing it in pathways.

We also report the development of an optimization pipeline, HOSS, implementing nested hierar-
chical optimization. We illustrate its use on an extant database of over 100 experiment definitions
in the domain of synaptic signalling to improve the parameterization of a set of models of major
signalling pathways involved in synaptic signalling and cell proliferation. HOSS utilizes FindSim in
order to consistently evaluate models based on a specified set of experiments.

We show how our hierarchical approach addresses many of the challenges of parametric op-
timization problems, and outperforms a ‘flat’ optimization approach in efficiency, structure, and
accuracy.

2 Methods

2.1 Mathematical formalism

2.1.1 Objective function

A popular choice of objective function is the log likelihood. For time series with normally distributed
deviations, it reads

J(θ, s, σ) =
1

2

∑
i,k

[
log

(
2πσ2

i

)
+

(
yik − sixi(tk, θ)

σi

)2
]

(1)

where yik and xi(tk, θ) are observed and predicted concentrations of the ith observed species at the
time tk, respectively. θ are kinetic parameters. Parameters si are scaling parameters, accounting
for the fact that the measurements are not absolute and σi are standard deviation parameters (see
[18]).

Another popular choice is the least squares objective function:

LS(θ, s) =
∑
i,k

(yik − sixi(tk, θ))
2 (2)

2

Dose response or bar charts data [15] are modeled as steady states, in which case the time
parameters are replaced by dose or qualitative parameters in (1) and (2).

2.1.2 Flat and Hierarchical optimization

Parameter optimization involves minimization of an objective function f : S ⊂ Rn → R, where S
is a space of constraints, p ∈ S a vector of parameters. The flat method consists of solving the
problem:

min
p∈S

f(p). (3)

There are many methods to solve (3). In our framework we use multistart optimization, by launching
local search procedures from randomly chosen starting points generated uniformly in logarithmic
scale:

p = p̃ exp(log(a) + log(b)U), (4)

where p̃ is a nominal guess, U random, independent variables whose distribution is uniform over
[0, 1] or standard normal, a and b are scale parameters. All the vector multiplications in (4) are
elementwise. We refer to this procedure as parameter scrambling. Despite its simplicity, multistart
optimization with logarithmic sampling has proven to be effective in benchmarks of biochemical
pathways [19].

In hierarchical optimization [16], K sub-problems, each one defined by an objective function

fi : S −→ R, i = 1, . . . ,K

are solved iteratively. Parameters of the problem are grouped in K groups p = (p1, . . . , pK), where
pi ∈ Rni for 1 ≤ i ≤ K and n = n1+ . . .+nK . We look for p∗ = (p∗1, . . . , p

∗
K) ∈ S ⊂ Rn, solution of

min
pK

fK(p∗1, . . . , p
∗
K−1, pK) where p∗K−1 solves

min
pK−1

fK−1(p
∗
1, . . . , p

∗
K−2, pK−1, pK) where p∗K−2 solves

...
...

min
p2

f2(p
∗
1, p2, . . . , pK) where p∗1 solves

min
p1

f1(p1, p2, . . . , pK) p subject to S.

(5)

The case K = 2 is known as bilevel optimization [17]. In this case the optimization of f1 is called
lower-level problem, whereas the optimization of f2 is the upper-level problem.

The problem (5) is difficult, because each individual problem has to be solved for multiple
values of the remaining variables, all subjected to the constraints S. Indeed, it has been proved
that even apparently simple bilevel optimization problems are NP-hard [17]. However, the solution
of bilevel optimization is straightforward if the lower-level problem has unique analytic solution.
In this case, the naive algorithm, utilizes the solution of the lower-level problem to eliminate p1
and reduce the upper-level optimization to minimizing a composed function that depends on p2
only, is effective. Bilevel optimization with analytic solution for the lower-level problem has already
been used for systems biology models. In this case the lower-level parameters are the scaling and
standard deviation parameters that can be optimized by analytic formulas, see [18].

Another simple hierarchical optimization case is when the functions fi, 1 ≤ i ≤ K depend on
nested sets of parameters and the set of constraints factorizes S = S1 × S2 × . . . × SK . Then, (5)
reads

min
pK∈SK

fK(p∗1, . . . , p
∗
K−1, pK) where p∗K−1 solves

min
pK−1∈SK−1

fK−1(p
∗
1, . . . , p

∗
K−2, pK−1) where p∗K−2 solves

...
...

min
p2∈S2

f2(p
∗
1, p2) where p∗1 solves

min
p1∈S1

f1(p1)

(6)

We call the problem (6), nested hierarchical optimization. Nested hierarchical optimization
can be solved iteratively, starting with the last problem in (6).

3

2.1.3 Nested hierarchical decompositions

A biochemical model is defined by a set of reactions R and a set of species S. We also define the
stoichiometric matrix S, whose elements Sij represent the number of molecules of the species i
produced (if Sij > 0) or consumed (if Sij < 0) by the reaction j. Furthermore, the reaction rate
vector R(x,p) = (R1(x,p), . . . , Rr(x,p)) is a function of species concentrations x = (x1, . . . , xN)
and kinetic parameters p. Each reaction j is characterized by a parameter vector pj , therefore we
have p = (p1, . . . ,pr).

Species concentrations evolve in time as a result of chemical reactions. These define a semiflow
(time dependent action on the species concentrations, enabling the computation of future concen-
trations based on the present ones) ϕ(t,x;p), t ≥ 0 such that x(t) = ϕ(t,x0;p) represents the
species concentration vector starting from initial values x(0) = x0. The semiflow results from the
integration of ODEs in chemical kinetics models or from the simulation of event driven dynamics
in HillTau abstractions [4].

Some species forming a subset BS ⊂ S are buffered, and their concentrations are kept constant.
Our construction relies on the following concept. We call autonomous pair, a pair of reaction

and species subsets (I, J), I ⊂ S, J ⊂ R that satisfy:

1. if a species is in the subset I, then all the reactions consuming or producing this species are
in the corresponding reaction subset J , namely if i ∈ I then j ∈ J whenever Sij ̸= 0.

2. if a reaction is in the subset J , then all the species on which the reaction rate depends are in
the corresponding species subset I, unless these species are buffered, i.e. if j ∈ J then i ∈ I
whenever

∂Rj

∂xi
̸= 0 and i /∈ BS.

Let xI be the concentration vector of the species in I and pJ the kinetic constants of the
reactions in J . From the above definition it follows that xI can be computed at any positive time
t by a semiflow depending only on the parameters pJ , namely xI(t) = ϕI(t,xI(0);pJ). Consider
the data subset DI , consisting of observations yI of the species xI only. Then objective function
measuring the difference between observed and predicted values of xI depends only on pJ , namely

fJ(pJ) =
∑
i∈I

∑
k

(yik − ϕi(tk,xI(0);pJ))
2. (7)

Suppose now that we find species and reaction subsets,

I1 ⊂ I2 ⊂ . . . ⊂ IK = S,
J1 ⊂ J2 ⊂ . . . ⊂ JK = R,

(8)

such that (Ik, Jk) are autonomous pairs for all 1 ≤ k ≤ K.
We call (8) a nested hierarchical decomposition. Optimization of the objective functions (7) can

then be done hierarchically, as in (6).

2.1.4 Constructing nested hierarchical decompositions using the interaction graph

Let us define the interaction digraph as I = (V,E), where V is the set of vertices (all species) and
E is the set of edges. A pair of species (i, j) ∈ E defines an edge from i to j if and only if there is a
reaction that consumes or produces the species j, and its rate depends on the concentration of the
species i. This graph is used to define causality relations between species, namely we say that j is
causal to i, j ⇝ i, if j is connected to i by a path in I. All the species j causal to i are needed for
computing the time evolution of xi.

Strongly connected components (SCC) of I are subsets K ⊂ V such that j ⇝ i and i ⇝ j for
all i, j ∈ K, maximal with respect to this property. In this paper, we refer to SCCs as blocks.
Blocks form a partition of the species set I. This partition can be used to define a SCC quotient
graph as follows: blocks are vertices of the SCC quotient graph, and two blocks are connected if
there is one species in one block connected in the interaction graph to a species in the other block.
The SCC quotient graph is always acyclic (see Figure 1 and [20]).

The following property is important for building nested hierarchical decompositions.
Property: Any block is either disjoint from or entirely contained within any subset I of an

autonomous pair (I, J).

4

Thus, we build a nested hierarchical decomposition by using the blocks and the quotient graph.
The first level subset I1 is the union of roots of the quotient graph. The corresponding reaction
subset J1 is made of all reactions producing or consuming species from I1. The next level I2 is
obtained by adding to the roots all the blocks directly connected to the roots, so far and so forth.

Although (8) does not define a unique decomposition, the decomposition resulting from the
quotient graph is unique and has some advantages (minimality). For instance, I1 is the minimal
subset containing the roots, such that (I1, J1) is autonomous. I2 is the minimal subset containing
the roots and for each root that is not a sink, at least one species influenced by the root not in the
root.

The quotient graph also provides a useful data structure for parallel optimization of the param-
eters. Thus, each tree originating from a root corresponds to terms in the objective function that
can be optimized independently of the others.

2.1.5 r-blocks and feed-back in signaling networks

In some signaling pathway models, the signal does not propagate solely in the forward direction
but also in reverse. This phenomenon can occur due to mainly two factors. This phenomenon
mainly occurs due to two factors. First, downstream signaling molecules regulate upstream ones
through feedback. Second, enzyme sequestration creates another form of feedback, which will be
discussed in the next subsection. In such cases, it is not uncommon for all species to influence each
other causally, resulting in a single block where hierarchical and plain optimizations are equivalent.
Nevertheless, even in such scenarios, we can delineate smaller blocks.

Feedback regulation [21] can be neglected as a first approximation by imposing an upper limit
on the length of paths connecting species in the interaction graph.

A species j is r-causal to a species i, j
r
⇝ i, if j is connected to i by a path in the interaction

graph I, of length smaller than or equal to r. A r-block is a subset K of species such that i
r
⇝ j

and j
r
⇝ i for all i, j ∈ K, and which is maximal with respect to this property.

Because r-causality is not transitive, r-blocks are not disjoint in general. We therefore define
r-strongly connected components (r-SCC) the sets obtained by lumping r-blocks that have non-
empty intersection. The set of r-SCC is a partition of the set of species. Like the SCC partition,
the r-SCC partition defines a quotient graph as follows: the nodes of the r-SCC quotient graph are
r-SCC, and two r-SCC are connected if there is a species in one connected in the interaction graph
to a species in the other. Contrary to SCC quotient graphs, r-SCC quotient graphs can contain
cycles.

In order to construct hierarchies from the r-SCC quotient graph, one begins with roots. However,
when there are cycles, roots cannot be solely defined using graph theory. In such instances, roots are
determined based on biochemical criteria: the roots of the r-SCC quotient graph consist of species
within the r-SCC that receive external signals. We also suppose that any r-SCC is reachable from
at least one root. With this condition, hierarchies are defined like for the SCC quotient graph. The
lowest level is made by root r-SCC, the next level is made by r-SCC reachable by one step in the
r-SCC quotient graph, so far and so forth.

The application of this procedure to a signaling network with feedback is illustrated in the
Figure 12. The choice of the value of r is made in function of the number of blocks (r-SCCs)
obtained in the decomposition. For the purposes of hierarchical optimization we want to maximize
the number of blocks. In practice, the decomposition is robust. The number of blocks is constant
when r ranges from one to a critical value, and then decreases to a smaller, constant value for all
r larger than or equal to the critical value (Figure 12).

2.1.6 Signal back-propagation and reduced Michaelis-Menten mechanisms

Enzyme sequestration appears in mass action biochemical networks when several Michaelis-Menten
enzymatic mechanisms, explicitly represented as mass action elementary steps, share a common
enzyme. This leads to back-propagation of the signal [22]. The back-propagation phenomenon
disappears under quasi-steady state (QSS) conditions, when the enzyme-substrate complexes have
low concentrations. As signalling pathways models often assume QSS, it is useful to have a tool that

5

reduces mass action models by eliminating complexes. The reduced models can then be decomposed
into nested autonomous sets.

The algorithm performing QSS reduction is based on the following steps:

• First, detect all Michaelis-Menten mechanisms (Algorithm 6 in SM):

Si + Ei

k+
i

⇌
k−
i

ESi
ki
cat−−→ Pi + Ei.

• Then, rewrite the model:

– Let Ii the subset of reactions using the same enzyme Ei, i.e. Ej = Ei, ∀j ∈ Ii.

– ∀j ∈ Ii the Michaelis-Menten mechanism is replaced by a single reaction Sj
Vj→ Pj , with

Vj = kjcatSEj = kjcat
Etot

j
Sj

kj
m

1 +
∑
l∈Ii

Sl

kl
m

, (9)

where
kjm = (k−j + kjcat)/k

+
j . (10)

The algorithm, implemented in Python, handles sbml models and uses the libsbml library. We
use this algorithm to transform mass action pathways into pathways that have non-trivial nested
hierarchies. The resulting decomposition may be useful even if QSS conditions are not rigorously
satisfied. In this case, hierarchical levels are autonomous only approximately, but hierarchical
optimization may still be better than the plain optimization. Quasi-equilibrium (QE) reduction
can be implemented using the same algorithm where (10) is changed to kjm = k−j /k

+
j .

Scoring the hierarchies Hierarchies can be scored to assess the quality of the decomposition.
A rough score can be based, as discussed above, on the number of blocks. We have also defined a
more advanced score, computed with the formula

S =
Npairs −Nnested + growth+ smallest+ 1

0.2+Nspecies−Npairs

Nspecies

where

• Npairs is the number of disjoint minimal autonomous pairs

• Nspecies is the number of species in the model

• smallest is a score to check if the size of the smallest block is not too small or too big compared
to the mean size. Here the mean size is Nspecies/Npairs.

• growth is a score to check if the growth of autonomous pairs is uniform; it is equal to zero if
the same amount of species is added from one pair to the next, for all pairs.

• Nnested is the number of autonomous pairs that are part of a nested hierarchy.

• the last term in the numerator is minimal when the number of pairs is small compared to the
number of species and maximal when Npairs = Nspecies.

A better hierarchy means a smaller score.

6

2.2 The HOSS Optimization framework

The HOSS software is designed to orchestrate complex, multi-level hierarchical optimizations. To
do this it deploys numerous individual optimization steps, each of which fits a subset of a model
to a number of individual experiments (Figure 2 A). HOSS works on signalling and other models
which are subdivided into blocks, typically individual signalling pathways in a signalling network.
The blocks are organized into a hierarchy where each level depends only on signalling input coming
from preceding levels, and blocks within a level are independent of each other (Figure 2 B). The
mathematical basis for this is elaborated upon in Subsection 2.1. HOSS reads a configuration
file in JSON format, which specifies the metadata and overall optimization parameters, such as
optimization algorithm and tolerance (Figure 2 B). The configuration file further specifies a weighted
set of experiments, and parameters to tweak, for each block. HOSS calls the FindSim utility [15] to
set the parameter vector, and obtain scores for model fit for each experiment. The default scoring for
an individual experiment is done by taking the root-mean-square difference between experimental
data and simulation readout and normalizing it by the range of data. Individual experiment scores
in a block are then combined using normalized root-mean square of the experiment score scaled
by weight. This consolidated score is used in the inner optimization algorithm which is provided
by scipy.minimize. HOSS can employ nested parallelization by simultaneously running FindSim on
each experiment within a block, and independently optimizing each block on different processes.
For the purposes of subsequent discussion, we refer to the inner optimization routine (provided
by scipy.optimize) as the optimization algorithm, and the outer hierarchical program (provided by
HOSS) as the HOSS method.

FindSim is the Framework for Integration of Neuronal Data and SIgnalling Models [15]. Briefly,
it does three things: 1) read a model and tweak its parameters, 2) read the definition of an ex-
periment and run it on the model, and 3) compare the output of the model with data from an
experiment (Figure 2 D, E, F). FindSim is agnostic to model definition format and simulator. It
currently works with the HillTau [4] format and simulator, and with ODE and mass action models
specified in SBML and other formats, and solved using the MOOSE simulator. FindSim utilizes a
JSON format file in which to specify experiment inputs and readouts. Crucially, an experiment de-
fined in FindSim format can be applied to completely different models even using different modelling
formalisms, provided the input and output entities are common. We illustrate these capabilities
below. In the context of HOSS, we use FindSim on four kinds of experiments applicable to cellular
signalling: dose-response, time-series, bar-charts and direct parameter estimates (Figure 2 D, E, F).
FindSim has additional capabilities to handle common electrophysiological experiments [23, 24] but
these are not used in the current study.

It is useful to note that optimization can be parallelized at two levels: First, the objective
function typically requires evaluation of multiple distinct experiments on a given subset of the model.
This can be achieved by running multiple FindSim processes in parallel. Second, when a hierarchical
level contains multiple blocks they can be independently optimized in parallel (Figure 8).

2.3 Large Models overview

For the purposes of this report, we model two signalling pathways in two formalisms each (Fig-
ure 3 A-D). The pathways are the beta-adrenergic receptor activation of protein kinase A (the b2AR
pathway) and the epidermal growth factor activation of MAPK/ERKII (the EGFR pathway). The
reaction topologies of these pathways are based on and simplified from [2]. The formalisms are
HillTau [4], which is an abstracted reduced signalling model specification which maintains direct
experimental mapping of selected parameters such as concentrations and rates, and well-mixed
mass-action chemistry specified in the SBML format. The composition of the models is reported
in Table 1.

Pathway Formalism # Species # Reactions # Parameters

EGFR-MAPK HillTau 14 7 29
b2AR-PKA HillTau 21 12 37

EGFR-MAPK ODE 36 22 54
b2AR-PKA ODE 53 40 93

Table 1: Composition of large test models used in this study.

7

2.4 Experimental database

We have used manual curation of the experimental literature to build up a repository of over 350
signalling experiments with a focus on synaptic signalling pathways. There are two key charac-
teristics of this dataset, which drives several of the design choices in HOSS. First, the number of
experiments pertaining to each pathway is limited, and considerably below the number of parame-
ters even for HillTau models (Figure 4 A, B). Second, there are frequently overlapping experiments
which disagree on the quantitative values of readouts (Figure 4 C, D).

3 Results

3.1 Hierarchical optimization outperforms flat optimization for a paradig-
matic model with synthetic datasets

In order to illustrate and test the hierarchical optimization method we first use a paradigmatic
model of the MAPK signaling cascade, introduced by Huang and Ferrel [25]. The SBML model is
available in the Biomodels [26] database. The corresponding ODE system can be found in ODEbase
[27] database https://www.odebase.org/detail/1330. The original SBML model consists of mass-
action elementary reactions. Because of multiple Michaelis-Menten mechanisms sharing the same
enzyme there is back-propagation of the signal and the application of the hierarchical decomposition
algorithm to this model results in only one autonomous pair that includes the entire model.

By applying the QSS reduction transformation, the 22 ODEs in the ODEbase model are simpli-
fied to 8 differential equations. Notably, 4 species exclusively function as enzymes, and are consid-
ered buffered after the transformation (MAPKKK activator, MAPKKK inactivator, MAPKKPase,
MAPKPase). As shown in Figure 5 A, the reduced MAPK model lends itself to a hierarchical
cascade with 3 levels.

We have tested hierarchical optimization using time series produced in [28], consisting of 10 in
silico experiments. Each experiment employs a different concentration of MAPKKK activator. For
the flat optimization we used 12 distinct starting points log-uniformly distributed in a hypercube
with edges [10−10, 10], and for hierarchical optimization (with parameter scrambling) we used 12
starting points per level. Figure 5 B shows that flat optimization takes longer compared to hierarchi-
cal optimization in terms of total duration. Additionally, the hierarchical optimization outperforms
classical optimization significantly in terms of the objective function value (Figure 5 C).

3.2 The automatic generation of nested hierarchies scales well in exten-
sive model repositories

To gain a better understanding of the nested hierarchy algorithm’s performance and to explore the
possibility of constructing hierarchies with other models, we applied the algorithm to 1058 manually
curated models from the Biomodels database [26]. Most of the models have relatively good scores
of the hierarchical decomposition obtained via the method described in Section ??, or get good
scores after reducing Michaelis-Menten mechanisms using the method of Section 2.1.6, Figure 6 A.
The algorithm scales well for rather large models (up to 786 species) with sub-quadratic complexity
in the average, Figure 6 B.

3.3 Black-box optimization methods work well for flat optimization.

To scale up our analysis to moderately large models, we utilized the HOSS pipeline on a set of four
signaling pathways as described in Table 1. As a reference, we first ran the HOSS pipeline using
flat (non-hierarchical) optimization on the models, employing a number of standard optimization
methods in the scipy.minimize library (Figure 7 A). Our initial models were initially parameterized
manually using inspection of a limited subset of experiments. Following the flat optimization, all
of the algorithms produced better fitting models than the start models. This was reflected in
modest improvement in model-fitting scores (Figure 7 B). We found that COBYLA (black-box,
non-gradient algorithm based on linear approximation and programming) and SLSQP (iterative
quasi-Newton algorithm based on quadratic programming sub-problems) were considerably faster
to converge than gradient algorithms such as BFGS (Figure 7 C). COBYLA was more reliable in

8

https://www.odebase.org/detail/1330

producing good scores. Accordingly we used COBYLA for subsequent hierarchical optimization
runs.

3.4 Hierarchical optimization is more efficient than flat optimization for
biochemical models with real datasets

We next tested the HOSS pipeline for hierarchical optimization (Figure 8 A). We have shown in
the methods section that nested hierarchical optimization is more efficient than flat optimization,
and suggested that this efficiency may also carry over to cases which do not strictly obey the
assumptions of autonomy between hierarchical levels. Here we test this for a set of substantial
real-world cases, involving large models (Figure 3), large but incomplete datasets (Figure 4), and
noisy and sometimes inconsistent data (Figure 4). We implemented hierarchical optimization in
HOSS as per (Figure 8 A).

Additional details such as applicable experiments (FindSim files in JSON format), experiment
weights, parameter lists, and parameter bounds were incorporated into the HOSS files. The sig-
naling models from Figure 3 were manually subdivided into individual pathways, and placed in a
hierarchy which reflected their position in the signaling cascade (e.g., Figure 2 C, Figure 8 B), and
this layout was encoded in a HOSS configuration files for each model. We again tested three differ-
ent inner algorithms for optimization: BFGS, COBYLA and SLSQP. We found that hierarchical
optimization worked for all methods, though COBYLA gave better scores than BFGS and SLSQP
for the b2AR models (Figure 8 B). The runtimes followed the same pattern as for flat optimization,
that is, BFGS > COBYLA > SLSQP. We then compared how hierarchical optimization performed
compared to flat optimization (Figure 8 D E) In the b2AR models, hierarchical optimization gave
better scores. We speculate that a loop unrolling pass would improve the EGFR pathway scores,
as we discuss below. Further, the runtime for hierarchical optimization was considerably faster in
two cases, and similar in the other two.

3.5 Multistart methods yield better optimization score: initScram method.

As the basic HOSS algorithm may be susceptible to local minima, we implemented a version which
generated a large number of initial models with parameters randomized in a log-normal distribution
of width scramble Range (scramRange) (Figure 9 A, B). This is a known approach, with roots in
simulated annealing methods [29, 30, 19]. We extended the HOSS framework to overlay model
parameter scrambling and process farming onto the hierarchical optimization method. This is an
embarrassingly parallel problem and each of the optimization processes could run in parallel. In
the course of these runs we identified one necessary refinement to the algorithm. In some cases,
a subset of the initial models took an enormously long time to converge. Thus we implemented a
timeout for each elementary minimization run. This slightly reduces the number of completed runs,
but may considerably reduce runtime. Multiple rounds of optimization tended to converge rapidly
(Figure 9 C). This is similar to simulated annealing.

The optimization scores resulting from a typical run with 200 initial models fell into a distribu-
tion which depended both on model and on scramRange (Figure 9 D, E). Two effects were notable:
The width of the score distribution increased with scramRange, and the peak of the distribution
moved to the right (poorer scores), with increasing scramRange. The best fits were at the left of the
distribution and typically were obtained with a scramRange of ∼2.0, that is, log-normal random
scaling from 1/2 to 2-fold of each initial parameter (Figure 9 D, E). The scores for these fits were
considerably better than those obtained with plain HOSS. Interestingly, the best few models (low-
est scores) were not necessarily very similar in their parameters. To relate the NRMS divergence
between parameters to scrambleRange, we generated a set of models at a series of scrambleRange
values, and computed NRMS between each population (Figure 9 F). We did a normalized RMS com-
parison of parameters of the top 10 D4-b2AR models and found no obvious clusters (Figure 9 G).
Using the relationship from (Figure 9 F), we observed that the NRMS range of ∼1.0, as seen in these
best 10 models, corresponded to a scrambleRange of ∼2.0. As another measure of the parameter
similarity of ’good’ models, we plotted the distribution of (model parameter) / (mean parameter)
across all parameters taken from the best 25% of models, that is, those whose scores were in the
lowest quartile (Figure 9 H, I). We found that this clustered around one for scramble ranges of
2 and below, suggesting that there is indeed a common basin of attraction to which most models

9

converge. Note that this parameter distribution is narrower with a broad tail, as compared to the
source model parameter distribution from (Figure 9 B).

3.6 Multi-stage Monte-Carlo yields further improvements of the opti-
mization score: hossMC method.

As a final refinement of our code-base, we implemented a similar model-scrambling step within
each stage of the HOSS algorithm (Figure 10 A). Thus, each subset of the model was subject to
scrambling to give S variants (S∼200 for a full run). These S variants were individually optimized in
an elementary minimization step similar to a single stage in the original HOSS method (Figure 8 A).
If there were multiple model subsets within a given level of the HOSS hierarchy, each was subject
to this process to give S optimized variants. The best of each subset were then recombined so as to
obtain the top N solutions for a given level. Typical values for N were ∼10. These top N sub-models
were then used as separate starting points for further scrambled models for the next level of HOSS,
such that we again had S variants to optimize. After the program ran through all levels, we had a
set of the best-fitting N models obtained by the overall pipeline. This method generated excellent
fits to the data (Figure 10 B) and wallclock time was similar to that of the initScram method
provided there were enough CPU cores available to run all the steps in parallel (Figure 10 C). The
total CPU time for both randomized methods was also quite similar (Figure 10 D).

To summarize the performance of the four methods employed here (flat, hoss, initScram and
hossMC), we compared three metrics across the four optimization methods in the HOSS framework.
The metrics were the final score (Figure 10 B), wallclock time (Figure 10 C), and total CPU time
(Figure 10 D). As detailed above, the hossMC method is most effective but most CPU-costly,
though the requirement for doing multiple iterations for the initScram method may lessen the gap.
While the plain hoss method is quite fast, it is unlikely to be the method of choice because it did
not come close to the best optimization score for any of our models. The conventional flat method
is not a good choice for this kind of signaling model optimization.

3.7 Using reduced models to generate synthetic data improves optimiza-
tion

One of the biggest challenges in our entire approach is that the models are usually underconstrained,
as there are far fewer experiments than parameters (Figure 4 A, B). An outcome of this is seen in
Figure 9 G, showing that optimized models with very similar and individually excellent scores may
still differ over a 50% or greater range in multiple parameters. We noted that the scores for the
reduced EGFR model (D3EGFR), which used HillTau formalism, were much better than for the
ODE version (D4EGFR)(Figure 11 B). This led us to propose that we use synthetic experiments
generated from the HillTau models to further constrain the behavior of the more complex ODE
models of the same signaling pathway. In effect, we use a well-behaved reduced model as a scaffold
to limit the dynamics of a closely mapped, but more complex ODE model. To accomplish this,
we automatically generated a set of synthetic experiments to provide input-output mappings for
each individual reduced reaction of the source HillTau model (Figure 11 A). In addition, we also
generated input-output mappings where the input was the ligand at the starting level, and the
readouts were output molecules at each level of the pathway (Figure 11 B). We generated two
synthetic experiments for each input-output mapping: a time-series experiment in which the input
molecule was elevated in a step function, and a dose-response experiment in which the input molecule
was systematically varied over a range. We performed this procedure for the EGFR pathway where
the ODE model had not converged well (Figure 11 B), using the D3-EGFR model as the source for
generating synthetic experiments. We curated the synthetic experiment dataset to remove cases
where the reduced model mechanism was inconsistent with the known chemical steps. We then redid
the D4 level optimization using the synthetic experiments along with the real ones (Figure 11 C-F).
We found that the addition of synthetic experiments improved scores and especially helped us ensure
that signal propagation through multiple stages of a signaling pathway retained its dynamic range
(Figure 11 F). Finally, we scored the resultant models on their performance against the original real
experiments in the dataset (Figure 11 G). In other words, we were able to improve the optimization
of a complex system through a hierarchical optimization across scales of granularity of models of

10

the same system.

4 Discussion

We have developed a pipeline for hierarchically optimizing large signalling models with hundreds
of parameters. We show that hierarchical optimization gives better model fits, and does so faster
than conventional flat optimization. We extend this approach to two further methods which use
Monte Carlo sampling to give still better models, and which run in nearly the same time if there
are sufficient parallel threads available. We further show that a hierarchy of model granularity may
improve convergence in the common case of insufficient experimental data.

4.1 Model provenance and modelling disease variants

Complex biological models, and signaling models in particular, frequently draw upon diverse sources
of data. Such models are typically hand-tuned, and such tuning may be very effective because
it draws upon a great deal of intuition and implicit knowledge about the behaviour of familiar
pathways. This does, however, make model provenance problematic. How did the modeller end up
with a particular set of parameters? The HOSS framework introduces model fitting pipelines that
are efficient, scalable, repeatable and above all, transparent. The development of a well-structured
optimization configuration format in HOSS ensures that all experiment choices, their weights, and
all parameter selections are as clearly defined as the algorithms and the simulators. This emphasis
on provenance is designed to place the HOSS framework in line with FAIR principles[31]. We
highlight two use cases to illustrate how HOSS supports reuse. First, model rederivation: A different
scientist may feel that some of the original experiments should be considered more authoritative
than others. This can be done simply by assigning a greater numerical weight to the selected
experiments, rerunning the pipeline, and seeing what changes in the resultant optimized model.
Similarly, a researcher could include some new experiments into the dataset against which the
model is to be optimized. This simplicity of model derivation brings a more data-driven flavor to
debates over model assumptions and how well they represent the known experimental literature.
As HOSS is agnostic to model formalism, it follows that these comparisons could even extend over
distinct models implemented with different formalisms (e.g., HillTau vs mass action chemistry).

Second, The HOSS structure is highly effective for model specialization: A researcher may wish
to make a family of models for different disease mutations, based on a dataset of readouts for
experiments in a set of mutant animal or cell lines. Using the HOSS pipeline, it is straightforward
to replace the original (wild-type) experiments with the respective mutant line experiments, rerun
the optimization, and obtain disease-specific models. Thus the HOSS framework encourages best
practice in developing complex models which can be easily reused.

4.2 Large models and large datasets

HOSS is scalable. This is in large part due to the efficiency of the hierarchical optimization core
method we have described. Based on this, we have shown that even large models can be optimized
quickly. Further, the approach of model decomposition into a hierarchy has informed the design
of the HOSS framework. HOSS organizes models into hierarchies, within which data, parameter
choices, and multiple optimization stages of a pipeline can be triggered using a single command.
Thus, once it is set up, an optimization run does not require many steps of inspection and tweaking
by the investigator, and is limited only by computational resources. Several tools also provide model
optimization (e.g., COPASI [29]) Model building is not limited just by resources and datasets, but
also by how manageable is the organization of the dataset. The traditional way to associate model
parameters with experiments is to provide citations (e.g., refs: DOQCS, BioModels). This is not
scalable - every iteration of the model would in principle require human intervention. Several efforts
have sought to digest such experimental citations into a machine-readable form (refs), and HOSS
uses the FindSim format to do so (refs). The organization of a HOSS pipeline lends itself to version
control, since every component of the pipeline is a file in a standard location and standard format.
We have scaled HOSS pipelines to refine a suite of models of activity-driven synaptic signalling
pathways at different levels of granularity, covering over 40 pathways and 400 experiments (refs).

11

These take from 20 to 48 hours to optimize on a 128-core server using the initScram method.
We anticipate an influx of phosphoproteomics and other large datasets (e.g, Erin Shuman’s recent
work), which will substantially increase the size of the experimental database. HOSS encourages
the clear subdivision of models and experiments into groupings around individual signalling steps,
such as the activation of a kinase by its immediate second messengers. This has implications for
experimental design geared to tightly defining large signalling systems, because it lays out the kinds
of experiments that are needed to achieve full coverage of all the reaction steps. Specifically, we
find that two kinds of experiments can greatly tighten parameters: local experiments that probe
input-output properties of a given signalling step, and readouts of all key intermediates along a
receptor-driven pathway to ensure that signal propagation remains intact (Figure xxyy).

4.3 Model degeneracy, granularity, and completeness

In electrophysiological models, it is now clear that many parameter combinations may yield the
same input-output properties. The origins of this degeneracy could be epistemic and due to data
incompleteness [32], but also biological being a feature of neurons themselves (refs: Prinz, De
Schutter, Turrigiano). The HOSS framework may provide a useful tool to study such degeneracy,
especially in signalling. Most directly, the two Monte Carlo methods supported by HOSS (initScram
and hossMC) generate multiple ‘good’ models, which can be tested for degeneracy (e.g., Figure 9).
Because HOSS is agnostic to model detail, simulator, and model formalism, it also lends itself to
asking how model granularity affects degeneracy. We illustrate this capability in Figure 9, where
we find that for the two sample signalling systems, the more abstract model (HillTau formalism) is
indeed less degenerate than the mass-action one, suggesting that the origin of parameter uncertainty
is epistemic at least partially (for the same data, reduced models are more constrained than detailed
models). We have previously suggested that it is useful to develop a family of models at different
resolution for any given signalling system [33]. HOSS is well equipped to facilitate this, as it can use
the same experimental dataset for models at different detail. Model completeness is quite difficult
to ascertain in biology as it is in all scientific fields confronting theory and experiments [34]. Several
methods have attempted to explore model topology space along with parameters [35, 36, 8, 7], but
HOSS supports a more pragmatic interpretation: Is a model complete enough to account for a
given set of observations? It does so by trying a large number of possible parameter sets and seeing
whether any of these initial conditions result in well-fitting models. A failure to do so suggests that
the model topology may need to be reconsidered. In our examples above, we find that our reduced
kinase pathway models in HillTau formalism are able to fit the experiments almost as well as the
more detailed mass-action models (Figure 8). Thus they are as complete, by this definition. We
have previously illustrated the behavior of a series of models of activity-driven synaptic signalling
at different levels of granularity, and show that more detailed models fit additional features of the
response (ref HillTau paper [4]).

Code availability

Code locations: HOSS https://github.com/upibhalla/HOSS, FindSim https://github.com/BhallaLab/FindSim,
HillTau https://github.com/BhallaLab/HillTau, MOOSE https://github.com/BhallaLab/moose-
core.

Acknowledgments

This work has been supported by CEFIPRA grant 68T08-3 to OR and USB NAV has been
supported by the Department of Biotechnology, Government of India, under the fellowship No.
DBT/2018/NCBS/998. USB and NCBS-TIFR receive the support of the Department of Atomic
Energy, Government of India, under Project Identification No. RTI 4006 Pawan Kumar for help
with supervision of AT.

12

https://github.com/upibhalla/HOSS
https://github.com/BhallaLab/FindSim
https://github.com/BhallaLab/HillTau
https://github.com/BhallaLab/moose-core
https://github.com/BhallaLab/moose-core

Author contributions

NV developed the database of experiments, and provided initial models for the b2AR and EGFR
pathways. AT developed the algorithms and wrote the codes for nested hierarchical composition and
QSS reduction, analysed the MAPK example and benchmarked early versions of the hierarchical
decomposition on Biomodels database. MG implemented the algorithm for automatic hierarchical
decomposition based on r-SCC. OR developed the mathematical framework, designed the research,
and wrote the paper. USB designed the research, implemented the code for the HOSS framework,
ran the simulations, and wrote the paper.

References

[1] Kanehisa, M. and Goto, S. (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic
acids research, 28(1), 27–30.

[2] Bhalla, U. S. and Iyengar, R. (1999) Emergent properties of networks of biological signaling
pathways. Science, 283(5400), 381–387.

[3] Abou-Jaoudé, W., Traynard, P., Monteiro, P. T., Saez-Rodriguez, J., Helikar, T., Thieffry,
D., and Chaouiya, C. (2016) Logical modeling and dynamical analysis of cellular networks.
Frontiers in genetics, 7, 94.

[4] Bhalla, U. S. (2021) HillTau: A fast, compact abstraction for model reduction in biochemical
signaling networks. PLoS Computational Biology, 17(11), e1009621.

[5] Gyori, B. M. and Bachman, J. A. (December, 2021) From knowledge to models: Automated
modeling in systems and synthetic biology. Current Opinion in Systems Biology, 28, 100362.

[6] Nyman, E., Stein, R. R., Jing, X., Wang, W., Marks, B., Zervantonakis, I. K., Korkut, A.,
Gauthier, N. P., and Sander, C. (2020) Perturbation biology links temporal protein changes to
drug responses in a melanoma cell line. PLoS computational biology, 16(7), e1007909.

[7] Büchel, F., Rodriguez, N., Swainston, N., Wrzodek, C., Czauderna, T., Keller, R., Mittag,
F., Schubert, M., Glont, M., Golebiewski, M., van Iersel, M., Keating, S., Rall, M., Wybrow,
M., Hermjakob, H., Hucka, M., Kell, D. B., Müller, W., Mendes, P., Zell, A., Chaouiya, C.,
Saez-Rodriguez, J., Schreiber, F., Laibe, C., Dräger, A., and Le Novère, N. (November, 2013)
Path2Models: large-scale generation of computational models from biochemical pathway maps.
BMC Systems Biology, 7(1), 116.

[8] Gyori, B. M., Bachman, J. A., Subramanian, K., Muhlich, J. L., Galescu, L., and Sorger,
P. K. (November, 2017) From word models to executable models of signaling networks using
automated assembly. Molecular Systems Biology, 13(11), 954 Publisher: John Wiley & Sons,
Ltd.

[9] Banga, J. R. (2008) Optimization in computational systems biology. BMC systems biology,
2(1), 1–7.

[10] Chou, I.-C. and Voit, E. O. (2009) Recent developments in parameter estimation and structure
identification of biochemical and genomic systems. Mathematical biosciences, 219(2), 57–83.

[11] Kravaris, C., Hahn, J., and Chu, Y. (2013) Advances and selected recent developments in state
and parameter estimation. Computers & chemical engineering, 51, 111–123.

[12] Loskot, P., Atitey, K., and Mihaylova, L. (2019) Comprehensive review of models and methods
for inferences in bio-chemical reaction networks. Frontiers in genetics, p. 549.

[13] Gilman, A. G., Simon, M. I., Bourne, H. R., Harris, B. A., Long, R., Ross, E. M., Stull, J. T.,
Taussig, R., Arkin, A. P., Cobb, M. H., et al. (2002) Overview of the alliance for cellular
signaling. Nature, 20, 703–706.

13

[14] Nim, T. H., White, J. K., and Tucker-Kellogg, L. (2013) SPEDRE: a web server for estimating
rate parameters for cell signaling dynamics in data-rich environments. Nucleic acids research,
41(W1), W187–W191.

[15] Viswan, N. A., HarshaRani, G. V., Stefan, M. I., and Bhalla, U. S. (2018) FindSim: a frame-
work for integrating neuronal data and signaling models. Frontiers in neuroinformatics, 12,
38.

[16] Anandalingam, G. and Friesz, T. (December, 1992) Hierarchical optimization: An introduction.
Annals of Operations Research, 34(1), 1–11.

[17] Liu, R., Gao, J., Zhang, J., Meng, D., and Lin, Z. (2021) Investigating Bi-Level Optimization
for Learning and Vision From a Unified Perspective: A Survey and Beyond. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44, 10045–10067.

[18] Loos, C., Krause, S., and Hasenauer, J. (07, 2018) Hierarchical optimization for the efficient
parametrization of ODE models. Bioinformatics, 34(24), 4266–4273.

[19] Villaverde, A. F., Fröhlich, F., Weindl, D., Hasenauer, J., and Banga, J. R. (2019) Benchmark-
ing optimization methods for parameter estimation in large kinetic models. Bioinformatics,
35(5), 830–838.

[20] Bloem, R., Gabow, H. N., and Somenzi, F. (2000) An algorithm for strongly connected com-
ponent analysis in n log n symbolic steps. In International Conference on Formal Methods in
Computer-Aided Design Springer pp. 56–73.

[21] Bhalla, U. S., Ram, P. T., and Iyengar, R. (2002) MAP kinase phosphatase as a locus of
flexibility in a mitogen-activated protein kinase signaling network. Science, 297(5583), 1018–
1023.

[22] Ventura, A. C., Sepulchre, J.-A., and Merajver, S. D. (2008) A hidden feedback in signaling
cascades is revealed. PLoS computational biology, 4(3), e1000041.

[23] Bhalla, U. S. and Bower, J. M. (1993) Exploring parameter space in detailed single neuron
models: simulations of the mitral and granule cells of the olfactory bulb. Journal of neuro-
physiology, 69(6), 1948–1965.

[24] Brown, S.-A., Moraru, I. I., Schaff, J. C., and Loew, L. M. (2011) Virtual NEURON: a strat-
egy for merged biochemical and electrophysiological modeling. Journal of computational neu-
roscience, 31, 385–400.

[25] Huang, C. Y. and Ferrell, J. E. (September, 1996) Ultrasensitivity in the mitogen-activated
protein kinase cascade. Proceedings of the National Academy of Sciences, 93(19), 10078–10083
Publisher: National Academy of Sciences Section: Research Article.

[26] Malik-Sheriff, R. S., Glont, M., Nguyen, T. V. N., Tiwari, K., Roberts, M. G., Xavier, A.,
Vu, M. T., Men, J., Maire, M., Kananathan, S., Fairbanks, E. L., Meyer, J. P., Arankalle,
C., Varusai, T. M., Knight-Schrijver, V., Li, L., Dueñas-Roca, C., Dass, G., Keating, S. M.,
Park, Y. M., Buso, N., Rodriguez, N., Hucka, M., and Hermjakob, H. (1, 2020) BioModels
— 15 years of sharing computational models in life science. Nucleic Acids Research, 48(D1),
D407–D415 gkz1055.

[27] Lüders, C., Sturm, T., and Radulescu, O. (April, 2022) ODEbase: A Repository of ODE
Systems for Systems Biology. Bioinformatics Advances, 2(1) vbac027.

[28] Henriques, D., Villaverde, A. F., Rocha, M., Saez-Rodriguez, J., and Banga, J. R. (02, 2017)
Data-driven reverse engineering of signaling pathways using ensembles of dynamic models.
PLOS Computational Biology, 13(2), 1–25.

[29] Elsts, A., Pentjuss, A., and Stalidzans, E. (2017) SpaceScanner: COPASI wrapper for au-
tomated management of global stochastic optimization experiments. Bioinformatics, 33(18),
2966–2967.

14

[30] Dai, Z. and Lai, L. (2014) Differential simulated annealing: a robust and efficient global op-
timization algorithm for parameter estimation of biological networks. Molecular BioSystems,
10(6), 1385–1392.

[31] Eriksson, O., Bhalla, U. S., Blackwell, K. T., Crook, S. M., Keller, D., Kramer, A., Linne, M.-
L., Saudargienė, A., Wade, R. C., and Hellgren Kotaleski, J. (2022) Combining hypothesis-and
data-driven neuroscience modeling in FAIR workflows. Elife, 11, e69013.

[32] Hüllermeier, E. and Waegeman, W. (2021) Aleatoric and epistemic uncertainty in machine
learning: An introduction to concepts and methods. Machine Learning, 110, 457–506.

[33] Viswan, N. A. and Bhalla, U. S. (2023) Understanding molecular signaling cascades in neural
disease using multi-resolution models. Current Opinion in Neurobiology, 83, 102808.

[34] Hofman, J. M., Watts, D. J., Athey, S., Garip, F., Griffiths, T. L., Kleinberg, J., Margetts,
H., Mullainathan, S., Salganik, M. J., Vazire, S., et al. (2021) Integrating explanation and
prediction in computational social science. Nature, 595(7866), 181–188.

[35] Flöttmann, M., Schaber, J., Hoops, S., Klipp, E., and Mendes, P. (2008) ModelMage: a tool
for automatic model generation, selection and management. Genome Informatics, 20, 52–63.

[36] Fröhlich, F., Loos, C., and Hasenauer, J. (2019) Scalable inference of ordinary differential
equation models of biochemical processes. Gene regulatory networks: methods and protocols,
pp. 385–422.

[37] Mukhin, Y. V., Garnovsky, E. A., Ullian, M. E., and Garnovskaya, M. N. (2003) Bradykinin B2
receptor activates extracellular signal-regulated protein kinase in mIMCD-3 cells via epidermal
growth factor receptor transactivation. Journal of Pharmacology and Experimental Therapeu-
tics, 304(3), 968–977.

[38] Saito, T., Okada, S., Ohshima, K., Yamada, E., Sato, M., Uehara, Y., Shimizu, H., Pessin,
J. E., and Mori, M. (2004) Differential activation of epidermal growth factor (EGF) receptor
downstream signaling pathways by betacellulin and EGF. Endocrinology, 145(9), 4232–4243.

[39] Kholodenko, B. N., Demin, O. V., Moehren, G., and Hoek, J. B. (1999) Quantification of
short term signaling by the epidermal growth factor receptor. Journal of Biological Chemistry,
274(42), 30169–30181.

[40] Solberg, R., Taskén, K., Wen, W., Coghlan, V. M., Meinkoth, J. L., Scott, J. D., Jahnsen,
T., and Taylor, S. S. (1994) Human regulatory subunit RIβ of cAMP-dependent protein ki-
nases: expression, holoenzyme formation and microinjection into living cells. Experimental cell
research, 214(2), 595–605.

[41] Wolter, S., Golombek, M., and Seifert, R. (2011) Differential activation of cAMP-and cGMP-
dependent protein kinases by cyclic purine and pyrimidine nucleotides. Biochemical and bio-
physical research communications, 415(4), 563–566.

[42] Hasler, P., Moore, J. J., and Kammer, G. M. (1992) Human T lymphocyte cAMP-dependent
protein kinase: subcellular distributions and activity ranges of type I and type II isozymes.
The FASEB journal, 6(9), 2735–2741.

15

Figures

a1

a2

b

c

d1

d2

d3

e1 e2

e3e4

f

A0

B0

C2

D1

E2

F3

A B

Figure 1: Interaction and block graphs define the nested hierarchical decomposition. A) Interaction
graph, whose vertices are biochemical species. One source species acts on a target species if there
is a reaction consuming or producing the target, whose rate depends on the concentration of the
source. The blocks are strongly connected components of the interaction graph. B) The block
graph is an acyclic directed graph, whose vertices are the blocks. The hierarchy level of a block is
the length of the longest path on the block graph, starting from the roots. In this example, blocks
A,B are roots and have level 0, block D has level 1, blocks C,E have level 2 and F have level 3.

16

Optimization
(HOSS)

AlgorithmConfig file

Scoring
(FindSim)

Start model Fitted model(s)

Experiment
database

Intermediate
models

Score Parameters

Metadata,
Global config,
HOSS levels [

Level1 {
pathway1: {

Experiments {
file1: weight,
file2: weight,
…

},
Parameters […],
ParamBounds […],

},
pathway2: {…},
…

},

Level2 {…},
…

]

L3

L2

L1b2ARCaM

PDE AC+
cAMP

PKA

A

B

C

Figure 2: Optimization framework.
A: Schematic of optimization pipeline. HOSS follows a pipeline defined in a JSON configuration
file to apply the specified algorithm at each stage of the optimization. HOSS orchestrates the op-
erations of FindSim which takes a model, modifies its parameters, runs the model against specified
experiments, and returns a score. This score is used by the algorithm. B: Typical model decompo-
sition into levels. L1 depends only on inputs, L2 depends only on L1 and inputs, and L3 depends on
all upstream pathways. Within a level we can have multiple signalling events provided they do not
depend on each other. However, we may have cross-interactions or feedback (arrows with dashed
lines), which may require the pipeline to repeat one or more levels. C: pseudocode for definition of
the HOSS pipeline. Within each level we can have multiple pathways, each of which needs a list of
experiments, parameters and optionally parameter bounds. Colors map to corresponding levels of
the model from panel B. D, E, F: Typical examples of experiments defined in FindSim format and
run using FindSim to obtain scores for goodness of fit between experiment and simulation. In all
these cases EGF is used as an input to the EGFR pathway. D: Bar chart. Here EGF is provided
at baseline level (0.1 nM, named EGF 1) and at stimulus level (1.5625 nM, named EGF 2), and
the resultant level of activated EGF receptor (aEGFR) is found. E: Dose-response. Here EGF
is provided at a series of fixed input levels, and the steady-state levels of aEGFR are measured
F: Time-series. Here a 7.8125 nM step stimulus of EGF is applied at t=4000s, and the level of
activated MAPK is read out.

17

A B

C

D

Figure 3: Models used in current study. A: Beta-2 adrenergic receptor pathway leading to Pro-
tein Kinase A activation (b2AR pathway), implemented in HillTau format. B: Epidermal growth
factor receptor pathway leading to Mitogen-Activated Protein Kinase activation (EGFR pathway),
implemented in HillTau format. C: b2AR pathway implemented in ODE format compatible with
SBML. D: EGFR pathway implemented in ODE format. Note that the ODE format implementa-
tions are more chemically detailed, but do retain overlap with HillTau implementations for several
key readouts.

18

MA
PK AC

EG
FR Ca
M

PK
A

PD
E1

b2
AR

0

5

10

15

20

Pa

ra
m

et
er

s;
 #

 E
xp

er
im

en
ts

A
Parameters
Experiments

MA
PK AC

EG
FR Ca
M

So
s_

Ra
s

PK
A

PD
E1 SH
C Gs

b2
AR cra

f0

5

10

15

20

25

Pa

ra
m

et
er

s;
 #

 E
xp

er
im

en
ts

B
Parameters
Experiments

0 250 500 750 1000 1250
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

EG
FR

 a
ct

iv
at

io
n

(ra
tio

)

C

Mukhin2003
Saito2004
Kholodenko1999

100 101 102 103 104

[cAMP] (nM)
0.0

0.2

0.4

0.6

0.8

1.0

PK
A

ac
tiv

at
io

n
(ra

tio
)

D
Solberg1994
Wolter2011
Hasler1992

Figure 4: Features of experimental database. A, B: Number of parameters (blue) and number
of experiments (orange) to constrain them, for different blocks in the model, sorted in order of
decreasing number of experiments. In almost all cases the number of experiments falls well short of
the number of parameters, that is, the model is underconstrained. A: Reduced (HillTau) models. B:
ODE (SBML) models. C, D: Experiments may be inconsistent. C: Three time-series experiments
for EGFR activation following a pulse of EGF, normalized to maximal response. These experiments
were performed on different cell lines and not surprisingly, the time-courses differ [37, 38, 39]. D:
Three dose-response experiments for PKA activation by cAMP. These experiments use purified
preparations and despite somewhat different conditions the Kd is quite similar [40, 41, 42].

E1_g

KK_g

K_g E2_g

KKK_g

Legend

MAPKKK activator (Ras)

Mos-P

MAPKKK inactivator

Mos

Mek1-P

Mek1-PP

Mek1

MAPKK-PaseErk2-P

Erk2-PP

Erk2

MAPK-Pase
Input/Output

Enzyme parent

A

10
1

10
2

10
3

10
4

O
pt

im
iz

at
io

n
tim

e
[s

]

Flat
Hierarchical

0

5

10

O
pt

im
iz

at
io

n
sc

or
e

Flat
Hierarchical

B

C

Figure 5: Optimization of the reduced MAPK model. A) Blocks in the reduced model; a three
level nested hierarchy is defined as follows: level 1 (E1 g, E2 g, KKK g), level2 (E1 g, E2 g, KKK g,
KK g), level3 (E1 g, E2 g, KKK g, KK g, K g). B,C) Performance of flat and hierarchical opti-
mization.

19

−6 −4 −2 0 2 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Log(score)

D
en

si
ty

0

original
reduced

A
100 101 102 10 3

10−4

10−3

10−2

10−1

100

101

102

N
species

T
im

e
[s

]

T ∼ N1.65

original
reduced

B

Figure 6: Benchmarking the hierarchical decomposition algorithm using 1058 models from the
Biomodels repository [26]. A) The probability density of the decomposition score shows that QSS
reduction of models with enzymes shared between multiple substrates improves the score. B) The
algorithm has sub-quadratic complexity in the average.

20

A

CaM

Experiments

FindSim: run experiments

Model parts b2AR PDE
AC+

cAMP PKA

Optimization algorithm

Parameters
Update Parameters

Score

b2ARCaM

PDE AC+
cAMP

PKA

Model

Figure 7: Flat optimization method. A: Schematic of flat optimization: Left: Model. Right:
Algorithim. All model subsets and all experiments are run in parallel. The resulting scores are
combined into a single value used by the optimizer. The optimizer adjusts all parameters across
model subsets, for each iteration. B: Barchart of scores for the four different models, comparing
the initial score with the final score obtained using three different algorithms (BFGS, COBYLA,
SLSQP) from the scipy.minimize library. BFGS is a gradient descent method. Note that SLSQP
sometimes does not converge to a good score. C: Barchart of runtimes for the different methods.
BFGS is always slower. Although SLSQP is typically the fastest method, it sometimes produces
poor scores as seen in panel B.

21

A

PDE
AC+

cAMP

b2ARCaM

PDE AC+
cAMP

PKA

b2ARCaMCaM

Experiments

Sub-models b2AR

Update Parameters

FindSim
Score

Optimization algorithm

Optimization algorithm

Optimized sub-models

Optimization algorithm

b2ARCaM

PDE AC+
cAMP

PKA

Optimized full model

Figure 8: Hierarchical Optimization on large models. A: Schematic of hierarchical optimization as
implemented in HOSS. First, the upper level of the model hierarchy is optimized, in this case the
CaM and b2AR sub-models. Each is individually optimized, and any of the standard algorithms
such as BFGS or COBYLA may be employed. Experiments specific to each sub-model are used
to compute individual scores and independently update the sub-model parameters. Then, these
sub-models are held fixed and the next level of the hierarchy is optimized (PDE and AC+cAMP
sub-models). Finally, the lowest level of hierarchy (PKA) is optimized. With this the entire
optimization is complete. B: Barchart of scores for the four different models, comparing the initial
score with the final score obtained using three different algorithms from the scipy.minimize library.
Note that SLSQP sometimes does not converge to a good score. C: Barchart of runtimes for the
different algorithms. As in the flat method, SLSQP is the fastest. D: Hierarchical optimization vs
flat scores using COBYLA. With a single exception, Hoss gives better scores. This exception is
likely due to relaxation of hierarchy assumptions due to feedback. E: Hierarchical optimization vs
flat timing using COBYLA. Except for the D4-b2AR model, Hoss is as fast or faster.

22

A Optimize in
parallel

Start model

...

Scrambled models Pick best
optimized model

...

G

Figure 9: InitScram method. A. Schematic of method. B. log-normal distribution of parameter
scaling from reference values for scrambleRange (SR) of 1.2, 2.0, and 5.0. C. Improvement of fit
over successive optimizations. A second optimization produces a small improvement, and little
improvement results from a third round. D. Score distributions for three values of SR, D3 b2AR
model. Note that the peaks are similar but the widths greater for larger SR, hence there are more
good scores (left tail of distribution) for large SR. E. Score distributions for 3 values of SR, D4
b2AR model. Here the peaks of the score distribution moves to the right with higher SR, thus the
best scores are similar. F. Mapping between parameter scrambling range and NRMS metric for
similarity of models. This is independent of model. G. Model similarity score cluster-map for top 10
optimized D3 b2AR models. H: Distribution of parameter scaling for optimized D3-b2AR models,
normalized to mean of respective parameter for the best 10 models from that run. The optimized
parameters converge very closely to the best 10 means for SR = 1.2 and 2.0. I: Distribution of
parameter scaling for optimized D4-b2AR models. Here the tails of the distributions are somewhat
wider, but there is still a narrow peak around 1.0 for SR = 1.2 and 2.0. The SR of 5.0 does not
converge tightly.

23

A

b2ARCaM

PDE AC+
cAMP

PKA

Starting model

b2ARCaM

PDE AC+
cAMP

PKA

Best N end models

….. …..

200 versions of each sub-model

Optimize
each

version

Best N

Best N
merged

+next level

200 versions of each sub-model

b2ARCaM

PDE AC+
cAMP

PKA

b2ARCaM

PDE AC+
cAMP

PKA

….

Figure 10: hossMC method A. Schematic of method. The model subsets in the first hierarchical
level of the model are each scrambled 200 times, and each such starting point is optimized. The best
N models (N=5) are taken from each sub-model and recombined to obtain the overall best N models
for the first level. These are then merged with a sub-model from the next level, and these N models
are then used as starting points for another round of model scrambling. The 200 scrambled models
are again individually optimized as before, and the cycle repeats till we have optimized all levels.
The best N merged models are provided as solutions. B, C, D: Comparing the 4 methods (flat,
hoss, initScram and hossMC). B: Scores, including the initial score for reference. The InitScram
and hossMC methods worked the best, except for the D4-EGFR model. C. Wallclock time. The
plain hoss method was usually fastest, or nearly as fast as the flat method. The two randomized
methods initScram and hossMC were run on 24 processes, but still were much slower because they
performed 200 repeats of all optimizations. D. Total CPU time. Here we factor in the number of
processes and the inner parallelization of experiment score estimation. By this metric, the hoss
method is substantially better than any other, and the two randomized methods are much more
computationally costly.

24

Out

In Out

In

In

Out

Out

Out

Out

Out

Out

Out

In

OutOut

In

A

B

Figure 11: Optimization across hierarchy of detail using synthetic experiments. A: Four input-
output relationships are converted to synthetic experiments for the receptor-ligand block of the
EGFR pathway, to model each of the potential input-output relationships. B: Seven input-output
relationships are used to describe ligand activation of the pathway, with readouts at each step. C-F:
Sample input-output mappings of EGF activation of the pathway, to show that adding synthetic
data improves model fit. In each case we plot an example of experimental data, of synthetic data
from the HillTau EGFR model, of the model optimized only to real data, and of the model optimized
to a combined set of synthetic and real data. Note that for some readouts from panel B there were
no experimental datasets, and conversely for other readouts there were multiple datasets which
typically differed from each other. Note also that the synthetic experiments included both time-
series (shown here) and dose-response curves (not shown). C: Activation of EGFR by ligand binding.
D: Activation of SHC. E: Activation of Ras. F: Activation of MAPK, the final stage of the pathway.
G: Optimization scores for models obtained using different methods using Synthetic+Real data.
Left bars score the models against the Synthetic+Real dataset upon which they were optimized,
and right bars score the models against only the Real data.

25

MAPKK

MAPKK_ser

MAPKK_p MAPK

MAPK_tyr

MAPK_p

PPhosphatase2A MKP_2

Grb2Sos_p

Sos

Sos_p.Grb
2

SHC_pSos.Grb2

Shc_p.Sos.Grb2

SHC

EGFR

L_EGFR

Internal_L_EGFR

EGF

RGR

GTP_Ras

craf_1

GDP_Ras

r=1 r=2 r 3

r-value

0

1

2

3

4

5

N
um

be
r o

f r
-b

lo
ck

s w
ith

 m
or

e
th

an
 o

ne
 sp

ec
ie

s

Original model
Reduced model

A B

Figure 12: Automatic hierarchical decomposition. A: r-blocks for the EGFR model, for r ≤ 2,
after Michaelis-Menten type reduction. The links between blocks define the quotient graph. B: the
number of r-blocks for different values of r. Without Michaelis-Menten reduction, there is only one
block for r > 1. The reduction increases the number of blocks.

26

Supplementary Material

Algorithm 1 Create Hierarchies

Input: model
Output: listIJ = list of autonomous pairs (I,J)

classified species = ∅
listIJ = ∅
reactionsBySpecies = getReactionsBySpecies(model)

for species ∈ model’s list of species do
// Initialize Hierarchy returns (subset of species I, subset of reactions J)
(I, J) = Initialize Hierarchy(species, model, reactionsBySpecies)

if sorted(I) /∈ classified species then
// (we use it to avoid redundancy in the list of autonomous pairs)

append (I, J) to listIJ
append sorted(I) to classified species

end

end
return listIJ

Algorithm 2 getReactionsBySpecies

Input: model
Output: a dictionary reactionsBySpecies with all the species as keys, and list of reactions where

the key appears as the values

reactionsBySpecies = empty dictionary
for reaction in model’s list of reactions do

for reactant in reaction’s list of reactants do
append reaction to reactionsBySpecies[key = reactant]

end
for product in reaction’s list of products do

append reaction to reactionsBySpecies[key = product]
end

end
return reactionsBySpecies

Algorithm 3 Initialize Hierarchy

Input: species, model, reactionsBySpecies
Output: (I, J) = autonomous pairs (subset of species I, subset of reactions J)

I = [species]
J = empty list
add subset reactions(species, I, J,model, reactionsBySpecies)

27

Algorithm 4 add subset reactions

Input: list of species lsp, subset of species I, subset of reactions J , model, dictionary
reactionsBySpecies

Output: Void (only update the subset I and the subset J)

lr = ∅
for specie in lsp do

for reaction in reactionsBySpecies[species] do
if reaction neither in J nor in lr then

append reaction to J
append reaction to lr

end

end

end
if lr ̸= ∅ then

add subset species(lr, I, J, model, reactionsBySpecies)
end

Algorithm 5 add subset species

Input: list of reactions lr, subset of species I, subset of reactions J , model, dictionary
reactionsBySpecies

Output: Void (only update the subset I and the subset J)

lsp = ∅
for reaction in lr do

for element in elements of reaction’s kinetic law do
if element is a species in model and element is not in I then

append element to I
append element to lsp

end

end

end
if lsp ̸= ∅ then

add subset reactions(lsp, I, J, model, reactionsBySpecies)
end

28

Algorithm 6 findMMschemes

Input: model
Output: list of schemes

reactionsBySpecies = getReactionsBySpecies(model) // (cf alg2)

listScheme = ∅
for reactionA in model’s list of reactions do

if reactionA is reversible then
if reactionA has 2 reactants and 1 product then

scheme.complexSE = reactionA’s product
reactionB = reactionsBySpecies[scheme.complexSE] - reactionA

if length(reactionB) = 1 and reactionB isn’t reversible and reactionB has 1 reactant and
2 products then

SandE = reactionA’s reactants // # substrat and enzyme

PandE = reactionB’s products // # product and enzyme

enzyme = SandE ∩ PandE

if len(enzyme) = 1 then
scheme.substrate = SandE - enzyme
scheme.product =PandE - enzyme
scheme.enzyme = enzyme
scheme.reactionA = reactionA
scheme.reactionB = reactionB

append scheme to listScheme
end

end

end

end

end
return listScheme

29

	Introduction
	Methods
	Mathematical formalism
	Objective function
	Flat and Hierarchical optimization
	Nested hierarchical decompositions
	Constructing nested hierarchical decompositions using the interaction graph
	r-blocks and feed-back in signaling networks
	Signal back-propagation and reduced Michaelis-Menten mechanisms

	The HOSS Optimization framework
	Large Models overview
	Experimental database

	Results
	Hierarchical optimization outperforms flat optimization for a paradigmatic model with synthetic datasets
	The automatic generation of nested hierarchies scales well in extensive model repositories
	Black-box optimization methods work well for flat optimization.
	Hierarchical optimization is more efficient than flat optimization for biochemical models with real datasets
	Multistart methods yield better optimization score: initScram method.
	Multi-stage Monte-Carlo yields further improvements of the optimization score: hossMC method.
	Using reduced models to generate synthetic data improves optimization

	Discussion
	Model provenance and modelling disease variants
	Large models and large datasets
	Model degeneracy, granularity, and completeness

