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ABSTRACT

Reed musical instruments are known to produce a wealth
of sound regimes. In physical models, this complexity
manifests itself by the coexistence of equilibrium, pe-
riodic and quasiperiodic regimes. From a musical per-
spective, controlling which regime is observed in prac-
tice when different stable regimes coexist for the same pa-
rameters can be particularly challenging. We consider a
physical model of reed instrument, written as a low-order
nonlinear dynamical system. A bifurcation analysis is per-
formed to identify the multistable regions of the parameter
space, where several stable regimes coexist. In these re-
gions, the basins of attraction are investigated by means
of support vector machine. The basin of a given regime
corresponds to the set of initial conditions for which this
regime is observed after any transient dynamics has died
out, and relates to the fact that this regime is easily played
in practice or not. We investigate how basins structure
evolves when the mouth pressure dynamics (correspond-
ing to attack transients) is taken into account, and high-
light significant differences between the classical static
basins (determined for constant values of the mouth pres-
sure) and what we introduce as dynamical basins. In par-
ticular, some regimes are much easier to observe than pre-
dicted by the static case.
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1. INTRODUCTION

Self-sustained musical instruments such as reed instru-
ments, flutes, brass and bowed string instruments, are
complex dynamical systems that can produce a wide di-
versity of sound regimes, whose acoustical and dynami-
cal properties depend, often in a sensitive manner, on both
geometrical parameters fixed by the instrument maker and
control parameters which are adjusted continuously by the
musician.

The dynamics of self-sustained instruments in gen-
eral, and of reed instruments in particular, has been ex-
tensively studied in the literature [1]. Experimentally, ar-
tificial mouths allow to characterise the instrument in a
reproducible manner by controlling and/or fixing the mu-
sician parameters [2, 3]. In physical models, the introduc-
tion of numerical continuation methods has lead to a much
more comprehensive knowlege of the dynamics than with
classical time-domain simulations. In particular, these
methods give access to bifurcation diagrams represent-
ing the evolution of the different coexisting equilibrium
(non-oscillating) and periodic solutions with respect to a
parameter of interest. Both stable and unstable solutions
are computed and bifurcation points, which correspond to
qualitative changes in the system dynamics as a parameter
is changed (for example, the emergence or disappearance
of a periodic solutions), are also highlighted [4].

These experimental and numerical methods provide
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an overall knowledge of the dynamics. In particular, dif-
ferent studies highlighted that the coexistence of several
stable regimes for the same parameters, referred to as mul-
tistability, is very commonly observed [5]. In practice, this
means that different sound regimes can be played for the
exact same parameters (for example, for the same value of
the mouth pressure). This raises the question of the con-
trol: how to produce reliably a particular sound regime
among the different possible ones?

From the dynamical system point of view, this relates
to the question of the basins of attraction. Indeed, which
regime is observed in practice when a system is multi-
stable depends on the considered initial conditions (on the
state variables). The basin of attraction of a particular sta-
ble solution is defined as the set of initial conditions for
which the system converges toward this particular solu-
tion after any transient dynamics has died out. A basin of
attraction thus forms a subset of the phase space (i.e. the
space of state variables).

In physical models of wind musical instruments, state
variables are classically the modal pressures and their
derivatives. It is likely that the musician do not control
directly the initial conditions on these variables. On the
other hand, the dynamics (i.e. time variation) of the blow-
ing pressure has been shown to affect significantly the dy-
namics of the instrument, both in a physical model of reed
instrument and in an actual experiment. This includes the
mouth pressure thresholds at wich transitions between dif-
ferent regimes are observed [3, 6].

We consider here the case of reed instruments, and
investigate in a simple model whether the musician can
use the blowing pressure dynamics to navigate between
the different basins of attraction, and as such, to access
the desired sound regime.

2. BACKGROUND ON THE PHYSICAL MODEL

2.1 Model equations

In reed musical instruments, sound production results
from the nonlinear coupling between an exciter and a res-
onator. The exciter is constituted of an oscillating piece of
wood (the reed) that acts as a valve and modulates the air
flow entering the instrument. The acoustical resonator is
constituted by the air column contained in the pipe of the
instrument. The state-of-the-art model of reed instruments
includes three main elements. First, a single degree-of-
freedom oscillator equation to model the motion the reed.
Secondly, a nonlinear function that links the flow entering

the instrument to the blowing pressure. Importantly, this
depends on the opening of the reed channel as given by the
first equation. Finally, an equation describing, in the fre-
quency domain, the acoustical response of the resonator.

We seek here the simplest model displaying multista-
bility on a range of control parameters. Following [1], the
reed is considered through its sole stiffness (i.e. its dy-
namics is neglected). The reed equation thus reduces to:

Kr(h(t)− h0) = p(t)− pm, (1)

where h(t) and h0 are the height of the reed channel and
its value at rest, respectively, Kr is the equivalent stiffness
of the reed, pm is the blowing pressure and p(t) is the
(acoustical) pressure in the instrument mouthpiece.

The flow entering the instrument through the reed
channel is given by the Bernoulli law. Physically, the reed
motion amplitude is limited as it can come in contact with
the instrument mouthpiece: when h is 0, the reed channel
is closed. Following the so-called ghost reed model [7],
this is taken into account by bringing the flow to zero
when h ≤ 0. Overall, the flow u(t) entering the instru-
ment is written as follows:

u(t) = sign(pm − p(t))Wh(t)

√
2
|pm − p(t)|

ρ
H(h),

(2)
with W the width of the reed channel, ρ the air density
and H the Heaviside step function.

The response of the resonator is described in the fre-
quency domain through its input impedance Zin(ω), writ-
ten as a (truncated) sum of n resonance modes:

Z(ω) =
P (ω)

U(ω)
= Zc

n∑
i=1

Zijω

ω2
i − ω2 + jω ωi

Qi

, (3)

with Zi, ωi and Qi the modal amplitude, resonance pul-
sation and quality factor, respectively, of the ith mode.
Because we seek here the minimal model displaying mul-
tistability, we take into account a single resonance mode,
with Z1 = 50, ω1 = 1440 and Q1 = 36.6 [8].

The model is written in dimensionless form by defin-
ing the rescaled pressure p̃(t) = p(t)/PM , flow ũ(t) =
Zc/PMu(t) and time t̃ = ω1t. Here, PM = Krh0 is
the minimal blowing pressure for which the reed channel
closes. Additionally, one defines the dimensionless blow-
ing pressure γ = pm/PM and dimensionless reed opening
at rest ζ = ZcWh0

√
2/(ρPM ). Overall, the model can

be written as a system of two first-order ordinary differen-
tial equations for the pressure in the mouthpiece p̃(t̃) and
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its time derivative w̃(t̃):

˙̃p(t̃) = w̃(t̃)

˙̃w(t̃) =
Z1

Q1

˙̃u(t̃)− 1

Q1
w̃(t̃)− p̃(t̃)

(4)

with:

ũ(t̃) = sign(γ − p̃(t̃))(1− γ + p̃(t̃))ζ

√
|γ − p̃(t̃)|H(h)

2.2 Bifurcation diagram

A bifurcation analysis is performed using AUTO [9], a
software for numerical continuation. The results, sum-
marised in Figure 1, illustrate the behaviour of the instru-
ment with respect to γ.

0 0.42 1 1.32

stable equilibrium

 stable periodic

solution

 unstable periodic

solution

stable

equilibrium

unstable equilibrium

 stable periodic solution
 stable equilibrium

Figure 1. Results of the bifurcation analysis of
(4), showing the existence and stability ranges of
the different solutions with respect to γ. Vertical
plain (dashed) lines indicate supercritical (subcriti-
cal) Hopf bifurcations. The red vertical line indicates
a saddle-node bifurcation of periodic solutions.

For γ < 0.42, an equilibrium (non-oscillating)
regime, for which no sound is produced, is the only so-
lution. At γ = 0.42, the equilibrium solution destabilises
in a supercritical Hopf bifurcation, and a stable periodic
regime emerges. Increasing γ further, a subcritical Hopf
bifurcation is found at γ = 1, where the equilibrium so-
lution stabilises back and an unstable periodic solution
emerges. Finally, the stable and the unstable periodic so-
lutions collide and disappear in a saddle-node bifurcation
of periodic orbits at γ = 1.32. For γ > 1.32 the only
solution is the stable equilibrium. Overall, this bifurca-
tion analysis shows that, for γ ∈ [1; 1.32], the system
is bistable: in this parameter region, a stable equilibrium
(where no sound is produced) coexist with a stable peri-
odic solution corresponding to a musical note.

p

w
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Figure 2. Left: Phase portrait of (4) for γ = 1.05 in
the phase plane (p̃, w̃). Blue (red) closed lines show
a stable (unstable) periodic solution, and the blue dot
represents a stable equilibrum. Right: Saturating lin-
ear ramps of γ for γ(0) = 0.05, γt = 1.05 and two
different slopes.

2.3 Static basins of attraction

In this region of bistability, which regime is observed in
practice depends on the initial conditions considered for
the two state variables p̃ and w̃. Because we consider here
a very simple system with only two dimensions (two state
variables), the boundary between the two basins of attrac-
tion is trivial, and is constituted by the unstable periodic
solution that emerges from the subcritical Hopf bifurca-
tion (see Figure 1). This is illustrated in Figure 2 (left)
which shows the phase portrait of system (4) for a fixed
value γ = 1.05. Depending whether the initial conditions
p̃(0) and w(0) are chosen inside or outside the unstable
periodic solution (red closed loop), the system converges
towards the stable equilibrium (blue dot) or toward the sta-
ble periodic solution (blue closed loop), respectively.

3. DYNAMIC BASINS OF ATTRACTION

Focusing on the bistable region of the bifurcation diagram,
we investigate whether a time variation of γ can affect
the (trivial) basins of attraction. In particular, we aim at
investigating if, starting from given initial conditions p̃(0)
and w̃(0), the musician can access a different regime than
predicted by the static basin of attraction by modifying
only the attack transient on γ.

We consider saturating linear ramps of the dimension-
less blowing pressure γ as a prototypical profile of γ dur-
ing an attack transient:

γ(t̃) = γ0 + st̃ for t̃ < t̃s,

γ(t̃) = γt for t̃ ≥ t̃s,
(5)



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

where γ0 and γt are the initial and target values of γ, s is
the slope, and t̃s =

γt−γ0

s is the time at which γ saturates.
Throughout this article, the saturating (target) value

γt is fixed and is chosen in the range of bistability high-
lighted above. The influence of both γ0 and s on the
regime observed in the long term is investigated numeri-
cally with time-domain simulations of (4). Figure 2 (right)
shows two examples of saturating linear ramps of γ, for
γ0 = 0, γt = 1.05 and two different values of s.

For a target value γt = 1.05 and a slope s = 0.006,
Figure 3 shows the so-called dynamic basin of attraction.
This shows, in the space of initial conditions p̃(0), w̃(0)
and initial value γ0, which regime is obtained once γt has
been reached and after any transient dynamics has died
out. Blue and green zones correspond to the sets of initial
conditions for which the equilibrium and periodic regime
are obtained, respectively. The red closed curve indicate
the boundary between the static basins of attraction for
γ = 1.05, as shown in Figure 2.

Figure 3. Dynamic basin of attraction, in the space
of initial conditions on γ, p̃ and w̃, for a target value
γt = 1.05 and a slope s = 0.006. The regime to-
wards which the system converges is indicated by
the color code (blue for the equilibrium, green for
the periodic regime). The red circle is the boundary
between the corresponding static basin for γ = γt.

These results demonstrate that the dynamics of γ
(and, as such, the attack transient produced by the mu-
sician), can significantly affect the basins of attraction

and, as such, the produced sound. In particular, the dy-
namic basin of attraction significantly differs from the
static basin obtained for γt = 1.05. As figure 3 shows,
it becomes impossible in practice to access the periodic
regime for γ0 = 0, as any initial condition on p̃ and w̃
lead to the non-oscillating regime. On the other hand, for
all the other values of γ0 considered in Figure 3, the basin
of the equilibrium solution is significantly smaller than in
the static case. This means that for γ(0) ∈ [0.1; 0.4], it
is easier to access the periodic regime (i.e to produce a
sound) in the dynamic case than in the static case.

3.1 A more systematic approach using a Support
Vector Machine classifier

A systematic investigation of the geometry of the dynamic
basins of attraction in the 3D space of initial conditions
p̃(0) and w̃(0) and initial value of γ, for different tar-
get values γt and slope s, would be particularly time-
consuming. Indeed, determining the dynamical basins for
one set of fixed values of γt and s implies to perform a
simulation for each set of initial conditions in the 3D space
shown in Figure 3.

Figure 4. Boundary between the dynamic basin of
attraction (green) computed with a SVM classifier
for the same parameters as in Figure 3. The orange
surface shows the boundary between the correspond-
ing static basins for a fixed value γ = γt.

An alternative approach is to determine the bound-
aries between the basins of attraction associated to each
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possible regime, in the 3D space of initial conditions on
p̃ and w̃ and initial value of γ. This can be done using
an Explicit Design Space Decomposition (EDSD) tech-
nique [10, 11], based on support vector machine classi-
fiers (SVMs) [12, 13]. SVM is a machine learning tech-
nique which has been widely used for classification tasks.
In musical acoustics, this has been used to determine the
parameters leading to quasiperiodic oscillations (corre-
sponding to multiphonic sounds) in a minimal model of
single reed instruments [7]. This allows for a more sys-
tematic investigation of the dynamic basins of attraction,
and of the influence of the features of the attack transient
on γ, including different shapes of its time evolution.

Figure 4 shows the boundary between basins of at-
traction for the same parameters as in Figure 3. This
demonstrates the feasibility of the method. Additionally,
the computation time is considerably reduced compared to
the case of a regular mesh of the 3D space. These results
pave the way towards a more systematic investigation of
dynamic basins of attraction with respect to the control
parameters of the musician.

4. CONCLUSION

We demonstrate, in a toy model of single reed instru-
ment, that the dynamics of the blowing pressure can sig-
nificantly affect the basins of attraction, that is to say the
set of initial conditions leading to a given regime when
several coexist. Because this directly relates to the attack
transient performed by the musician and to the playability
of the different regimes, this is of particular interest. Our
results show that for some profiles of γ, a periodic regime
(corresponding to a musical note) can become more easily
accessible than when a fixed, constant value of the blow-
ing pressure is considered. The use of a Support Vector
Machine classifier - a machine learning technique - will
allow, in future work, a more systematic investigation of
the so-called dynamic basins of attraction.
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