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Abstract: Systems with a multistable energy landscape are widespread in physics, biophysics,
technology, and materials science. They are strongly influenced by thermal fluctuations and external
mechanical actions that can be applied at different rates, moving the system from equilibrium to
non-equilibrium regimes. In this paper, we focus on a simple system involving a single breaking
phenomenon to describe the various theoretical approaches used to study these problems. To begin
with, we propose the exact solution at thermodynamic equilibrium based on the calculation of the
partition function without approximations. We then introduce the technique of spin variables, which
is able to simplify the treatment even for systems with a large number of coordinates. We then analyze
the energy balance of the system to better understand its underlying physics. Finally, we introduce
a technique based on transition state theory useful for studying the non-equilibrium dynamical
regimes of these systems. This method is appropriate for the evaluation of rate effects and hysteresis
loops. These approaches are developed for both the Helmholtz ensemble (prescribed extension)
and the Gibbs ensemble (applied force) of statistical mechanics. The symmetry and duality of these
two ensembles is discussed in depth. While these techniques are used here for a simple system
with theoretical purposes, they can be applied to complex systems of interest for several physical,
biophysical, and technological applications.

Keywords: statistical mechanics; multistable energy; Gibbs ensemble; Helmholtz ensemble; spin
variables; rate equations; thermal fluctuations; transition state theory

1. Introduction

Systems with multistable energy landscapes or micro-instabilities play a very impor-
tant role in several artificial and biological investigations. In these systems, we can observe
transitions between different well defined states, induced by mechanical actions or thermal
fluctuations. These transitions generate a great complexity in the system response, charac-
terized by thermomechanical coupling and strongly nonlinear behaviors. From the point
of view of artificial systems, we can mention the following phenomena characterized by
multistable behaviors: the peeling of a film from a substrate [1–4], the waves propagation
in bistable lattices [5,6], the energy harvesting through multistable chains [7,8], the plas-
ticity and hysteresis in phase transitions and martensitic transformations of solids [9–13],
the cracks and dislocations nucleation and propagation in materials and alloys [14–17],
and the friction at the nanoscale [18,19]. On the other hand, from the point of view of
the micro-mechanical biological phenomena, we can mention the conformational tran-
sitions in polymeric and biopolymeric chains [20–30], the attached and detached states
of fibrils in cell adhesion [31–34], the unzipping of macromolecular hairpins [35–38], the
sarcomeres behavior in skeletal muscles [39–44], the denaturation or degradation of nucleic
acids, polypeptide chains or other polymers [45–54], and the macromolecular or soft matter
friction [55–58].
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All these physical situations are characterized by a multibasin energy landscape
and the state of the system can shift from one energy well to another due to thermal
fluctuations and externally applied forces. The energy wells correspond to stable or meta-
stable configurations, depending on the value of the energy minima. Typically, these
systems are constituted by a large number of units and each unit can be in one among
the admissible states. The transitions between these states for each unit correspond to
the exploration of the energy landscape for the overall system. This dynamics governs
the macroscopic behavior of the system and, in particular, its thermomechanical response.
From the point of view of modeling these systems and their physical behavior, there are
different mathematical techniques that can be implemented, as briefly discussed below.

First of all, we have to distinguish between the models belonging to the equilibrium
statistical mechanics and those pertaining to the out-of-equilibrium statistical mechanics [59–61].
Concerning the equilibrium statistical mechanics, a first possibility is the exact calculation
of the partition function of the system. This can be done only for quite basic and elementary
systems, where the total energy assumes a simple mathematical expression, allowing the
integral calculation of the partition functions in closed form. We remark that even the
exact mathematical analysis of a double-basin energy potential (without approximations)
is rather complicated from the integral calculation point of view.

Therefore, the spin variables approach has been introduced to describe the system
in a simpler way. In this case, we introduce additional variables (included within the
phase space of the system), which are discrete and behave similar to spin variables in
quantum mechanics. These quantities (defined for each unit of the system) assume a
discrete finite number of values and allow the identification of the energy basin explored
by each element. Consequently, each energy well can be described by a simple spring-like
(quadratic) potential, strongly facilitating the mathematical analysis of the problem. From
a historical point of view, the first analysis based on a spin variable was performed to
model skeletal muscles in biomechanics [39,40]. This method has been used recently to
study many phenomena with multistability, including macromolecular conformational
transitions [62–71], phase transformations in materials science [72,73], friction on solid and
soft substrates [74,75], adhesion processes [76,77], sacrificial bonds biomechanics [78], and
fracture mechanics [79]. These results generalize many previous theories dealing with poly-
mer physics, and in particular the stretching of different types of linear chains [60,80–83].
As far as macromolecules are concerned, the theoretical results obtained through the spin
approach were largely compared with experimental data obtained by the single molecule
force spectroscopy method [84–93], obtaining the important experimental confirmation of
the statistical mechanics of small systems. A particularly interesting case is the denaturation
of nucleic acids for which theoretical models describe the unzipping of DNA and RNA
very well [94–97].

However, the spin variables approach is not adapted to study the dynamic regime,
where the time behavior of the actions applied to the system is important for the system
evolution. As a matter of fact, when we study the out-of-equilibrium dynamics, the
representation based on the sequence of basins and spin discrete variables is not sufficient
since the relaxation times of the system depend on the energy barriers between the potential
wells [61,98]. This is consistent, e.g., with the Kramers rate formula, originally formulated
to deal with chemical reaction rates [99–103]. The consideration of the possible rate effects
is particularly important when the stretching of the macromolecular chains, or other
nanosystems, is performed with a large traction velocity [104,105]. Therefore, in order
to take into consideration the out-of-equilibrium dynamics of the system, we have to
introduce the probability to be in each admissible state and we must determine all the rate
constants describing the number of transitions between two given states per unit time.
These constants depend on the temperature and on the energy barrier between the involved
states. These ingredients can be inserted into a system of differential equations, the so-
called rate equations, governing the dynamics of the state probabilities [70,71]. Typically,
this system can be numerically solved and the solution allows the determination of the
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system evolution (force-extension response and other macroscopic quantities). Although
the transition state theories are approximate, they allow a fairly easy and correct study of
the combination of rate and temperature effects.

These methodologies can be applied within two different ensembles of the statistical
mechanics [62]. Experiments performed at constant applied force (realized by means of
extremely soft devices) correspond to the Gibbs statistical ensemble, and experiments
performed at prescribed extension (realized with extremely hard devices) are realizations of
the Helmholtz statistical ensemble [62]. These two statistical sets are perfectly symmetrical
and their properties are in strict duality (think for example of the Legendre transform
between their free energies) [60]. In reality, depending on the equivalent stiffness of the
device, the stretching experiments correspond to a situation placed in between the Gibbs
and Helmholtz ensembles of the statistical mechanics [63,64]. In the thermodynamic limit,
when the number of the units of the system is very large, the Helmholtz and Gibbs ensem-
bles may or may not be equivalent depending on whether the force-extension relationship
is the same or not. This is a problem largely studied in existing literature [106–113].

These issues are clarified in this work by means of a rather simple system consisting
of three different elastic springs, one of which can break, generating bistability phenomena
in the model (see Figure 1, where the duality between Gibbs and Helmholtz ensembles
can be appreciated). Despite the simplicity of the scheme considered, it allows all aspects
to be analyzed in great detail and is, therefore, of particular theoretical and pedagogical
importance. For both Gibbs and Helmholtz ensembles (corresponding to isotensional
and isometric conditions), we perform the exact analysis of the system by calculating the
partition functions and the corresponding free energies in closed form without approxi-
mations. This allows us to understand the transition of the system in correspondence to
the spring breaking. A simpler approach is to introduce a binary spin variable to describe
this transition and the calculations are much simpler, although some approximation is
introduced, especially for temperatures that are too high. A better understanding of the
underlying physics is obtained by performing an energy balance. This procedure makes it
possible to perfectly understand the force and extension thresholds at which the rupture,
i.e., the transition, occurs. To conclude, we generalize these equilibrium approaches in
order to take into account the real dynamics of the system. We identify the energy barrier
between the two states of the model and we apply a transition state theory to predict the
rate effects induced by the time evolution of the mechanical actions applied to the system.
This allows the study of the combined effects of thermal fluctuations and a pulling speed
applied to the system.

Y

0

y

l

hk

Y

0

y

l

hk

f

a) Helmholtz b) GibbsY fixed f fixed

y1 y1

Figure 1. Scheme of the rupture models in the isometric Helmholtz ensemble (left panel)and in the
isotensional Gibbs one (right panel). In both ensembles, the model consists of three springs linking
together a bottom fixed layer located at y = 0 to an upper layer located at y = Y. In the Helmholtz
case, the upper substrate is fixed at Y while in the Gibbs case, it is pulled with a fixed force f . While
the springs with elastic constants l and k are linear and unbreakable, the spring with elastic constant
h can be intact or broken depending on the applied extension.
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2. Problem Statement

We introduce here a single-unit discrete model in order to highlight the fundamental
differences between the Gibbs and the Helmholtz ensembles studied through the principles
of statistical mechanics at equilibrium and out-of-equilibrium. Firstly, we propose the exact
solution of the problem by calculating the pertinent partition function without approxi-
mations. Moreover, the intrinsic simplicity of the model represents the perfect starting
ground in which we can apply the spin approximation and understand its true meaning
and feasibility limits. To generalize the spin methodology to the out-of-equilibrium regime,
we introduce a transition state theory approach leading to specific rate equations. These
developments are separately performed for both Helmholtz and Gibbs ensembles.

The structure of the model studied (shown in Figure 1) is the same both while consid-
ering the isometric Helmholtz ensemble (left panel in the figure) and while considering
the isotensional Gibbs ensemble (right panel) and it consists of three springs of different
elastic constants k, l, and h arranged in order to link two separate substrates. Springs k and
h (in the figure in blue and green, respectively) are connected in parallel and link together
the bottom substrate, fixed at y = 0, to the lower end of spring l (in yellow), located at
y = y1, with which they are connected in series. Spring l, in turn, connects the latter
parallel springs to an upper layer located at y = Y. Since y1 will be the only variable of
the system, from now on, we refer to it simply by y. The important aspect of this model is
that, while springs l and k behave like normal linear springs, spring h is a breakable one,
meaning that there exists a threshold elongation YM after which the h spring “breaks” or,
more precisely, its potential energy Eb is constant resulting in a null force for elongation
∣

∣y
∣

∣ > YM. The behavior of this breakable spring h is better described through its potential
energy landscape in the left panel of Figure 2. Here, we observe that the breakable spring
behavior is described by a standard parabolic potential when its elongation

∣

∣y
∣

∣ < YM

does not exceed the threshold (blue curve), meaning that in this region the spring behaves
like a standard one, and by a constant potential 1

2 hY2
M when its elongation overcome the

threshold
∣

∣y
∣

∣ > YM (red curves), meaning that the resulting force, in this case, is null (see
right panel of Figure 2).

Figure 2. Potential energy of a breakable spring of elastic constant h (left panel) and resulting force-
extension relation (right panel). The quantity YM is the elongation after which the spring breaks,
resulting in an exerted force equal to zero.

The main difference between the two statistical ensembles is that in the Helmholtz
ensemble, the system is studied with the position of the upper layer is fixed at Y instead, in
the Gibbs ensemble, this upper layer is free to move and a fixed force f is applied. In the
following sections, we will analyze this system in both ensembles adopting four different
approaches: firstly, we study the model considering the exact Hamiltonian of the system,
secondly, we approximate the total energy by introducing the spin variable approach,
thirdly, we perform an analysis based on the energy balances of the system, and lastly, we
generalize previous approaches with the rate effects.
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3. Exact Solution within the Helmholtz Ensemble

In this section, we adopt the equilibrium statistical mechanics framework and we
study the system embedded in a thermal bath at temperature T. The objective of this inves-
tigation is to examine the thermomechanical response at the thermodynamic equilibrium
considering the model in the Helmholtz ensemble corresponding to the application of the
isometric conditions. Based on the previous premises, we can write the total energy of the
system as:

ΦH(y) =
1
2

l(Y − y)2 +
1
2

ky2 + Eb(y), (1)

where the first and second addends are the potential energy contributions related to the
l and k springs, respectively, while Eb(y) is the exact potential energy contribution of the
breakable spring h, defined as:

Eb(y) =







1
2 hy2 if

∣

∣y
∣

∣ < YM,
1
2 hY2

M if
∣

∣y
∣

∣ ≥ YM.
(2)

We notice that, introducing the following characteristic function:

χA(y) =







1 if y ∈ A,

0 if y /∈ A,
(3)

where A = (−YM, YM), it is possible to write the previous Hamiltonian as:

ΦH(y) =
1
2

l(Y − y)2 +
1
2

ky2 +
1
2

hy2χA(y) +
1
2

hY2
M(1 − χA(y)). (4)

We observe that, by considering the particular value that the characteristic function
χA(y) assumes, we are able to establish if the system is in the intact configuration, when
χA(y ∈ A) = 1 (meaning that the breakable spring h is still intact), or in the broken
configuration, when χA(y /∈ A) = 0 (meaning that the breakable spring h has overcome
its maximum threshold YM). This is an important feature for the characteristic function
because it can be used as a helpful tool in the evaluation of some interesting quantities,
such as the average number of intact breakable springs, as we will see in the following
discussion. Thanks to the total energy, we can evaluate the partition function of the system
defined as:

ZH(Y) =
∫

R

e
− ΦH (y)

KBT dy. (5)

Writing explicitly the definition of χA(y) for the energy ΦH(y) in the previous integral,
we can separate the partition function into three different domains of integration, namely:

ZH(Y) =
∫ −YM

−∞
e
− l

2KBT (Y−y)2− k
2KBT y2− h

2KBT Y2
M dy

+
∫ YM

−YM

e
− l

2KBT (Y−y)2− k
2KBT y2− h

2KBT y2
dy

+
∫ +∞

YM

e
− l

2KBT (Y−y)2− k
2KBT y2− h

2KBT Y2
M dy.

(6)

The last three integrals can be easily evaluated thanks to the following generalized
Gaussian integral valid for a generic domain of integration (a, b) ∈ R:

∫ b

a
e−αx2+βxdx =

√
πe

β2

4α

2
√

α







φ

[

√
α

(

b − β

2α

)

]

− φ

[

√
α

(

a − β

2α

)

]







, (7)
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where φ(x) is the error function defined as:

φ(x) =
2√
π

∫ x

0
e−t2

dt, (8)

and, in particular, φ(±∞) = ±1 and φ(−x) = −φ(x). After some long but straightforward
calculations, we can write the partition function as:

ZH(Y) = e
− hY2

M
2KBT − lkY2

2KBT(l+k)

√

π

α(l + k)

[

Γ(l + k) + 2
2

]

− e
− l(k+h)Y2

2KBT(l+k+h)

√

π

α(l + k + h)

[

Γ(l + k + h)

2

]

,

(9)

where, for the sake of readability, we introduced the two following functions:

α(p) =
p

2KBT
, (10)

Γ(p) = φ





√

α(p)

(

−YM − lY

p

)



− φ





√

α(p)

(

YM − lY

p

)



. (11)

Thanks to the partition function, we are now able to evaluate the average value of
some interesting quantities. The first quantity we are interested in is the average force
applied to the upper substrate, namely ⟨ f ⟩, that is given by:

⟨ f ⟩ = 1
ZH

∫

R

f e
− ΦH (y)

KBT dy. (12)

Now, if we observe that the force can be derived from the potential energy as f =
dΦH/dY, it is easy to prove the validity of the following alternative compact version for
Equation (12):

⟨ f ⟩ = −KBT
∂ log ZH

∂Y
=

∂F
∂Y

, (13)

where F = −KBT log ZH is the Helmholtz free energy. Another interesting quantity is
the average number of intact breakable springs that, thanks to the particular relation
between the characteristic function χA(y) and the state of the breakable spring h, can be
calculated as:

⟨χA(y)⟩ =
1

ZH

∫

R

χA(y)e
− ΦH (y)

KBT dy. (14)

By deriving the logarithm of the partition function, log ZH , with respect to YM, more-
over, we obtain:

−KBT

hYM

∂ log ZH

∂YM
=

1
ZH

∫

R

(

1 − χA(y)
)

e
− ΦH (y)

KBT dy = ⟨1 − χA(y)⟩, (15)

which can be used to rewrite Equation (14) in the following compact version:

⟨χA(y)⟩ = 1 +
KBT

hYM

∂ log ZH

∂YM
. (16)

In Figure 3, we show the average force ⟨ f ⟩ (left panel) and the average number of
intact breakable springs ⟨χA(y)⟩ (right panel) versus the dimensionless elongation Y/YM

for a system composed of springs of elastic constants identically equal to 1 (l = k = h = 1)
while also varying the thermal to elastic energy ratio KBT/(hY2

M). In the figure, we can
observe the main effects of the presence of a breakable spring h in the system. As one can
notice from the force-extension graph (left panel of Figure 3), in fact, one of the main effects
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of the breakable spring is that of changing the rigidity of the system depending on the
specific elongation parameter Y/YM. In the force-extension graph, we can notice that the
slope of the curves changes from a steeper one to a less steep one in correspondence with
the rupture of the breakable spring h at a specific total elongation that, for now, we will
simply denote as Y∗/YM. Trying to explain the system behaviors observed in the figures,
from a merely mechanical point of view, one could think that the system reaches its rupture
point simply when the breakable spring h elongation reaches its breaking threshold YM.
Keeping this in mind, if we consider the system just before its breaking point, we know that
the force exerted by the spring l has to be equal to the one exerted by the combined actions
of k and h springs, i.e., l(Y − y) = (k + h)y (where Y is the total elongation of the system
and y is the elongation of k and h parallel springs). If we then solve the latter identity for
Y and we set the breakable spring elongation equal to its breaking threshold, y = YM, we
obtain a result, Y/YM = 3 (in the case of l = k = h = 1), apparently in disagreement with
what we observe from the force-extension curves of Figure 3, where the actual breaking
point Y∗/YM seems to anticipate our merely mechanical result Y/YM = 3. This apparent
incongruity will be fully analyzed and explained in the following discussion thanks to the
study of the same problem from an energy-balance point of view rather than relying on the
use of the statistical mechanics principles alone. In the right panel of Figure 3, the average
number of intact breakable springs ⟨χA(y)⟩ versus the adimensional elongation parameter
Y/YM is shown. In this graph, the average number of intact springs h, ⟨χA(y)⟩, drops to
zero in correspondence to the complete failure of the system, i.e., when the elongation
reaches its rupture point Y∗/YM. We remark again here that in the model used to obtain
the results shown in the figure so far, we used three springs of elastic constant equal to one,
l = k = h = 1, and an elongation threshold for the breakable spring h of YM = 1.

Figure 3. Behavior of the two-rigidity model with variable thermal to elastic energy ratio
KBT/(hY2

M) = {0, 0.01, 0.02, 0.03} (purple, blue, yellow, and red curves, respectively). Here, the
purple curves correspond to the pure mechanical case at a zero temperature. The average force ⟨ f ⟩
and the average number of intact breakable springs ⟨χA(y)⟩ are presented versus the dimensionless
elongation Y/YM, where, in both cases, l = k = h = 1 and YM = 1 (in arbitrary units). In both panels,
the dimensionless elongation Y∗/YM is shown, responsible for the rupture phenomenon.

The two different slopes of the two linear branches in the force-extension curves corre-
spond to the effective elastic constants of the system in the intact and broken configuration
and can be evaluated using the following equation:

keff =

(

1
l
+

1
k + h

)−1

=
l(k + h)

l + k + h
. (17)

The effective elastic constant, then, assumes the value keff = 2
3 when (Y/YM) <

(Y∗/YM) and all the three springs are intact (l = k = h = 1) and the smaller value keff =
1
2

when (Y/YM) > (Y∗/YM) in agreement to the fact that, in this second branch, the h spring
has overcome its elongation threshold YM resulting in its breaking. Furthermore, looking
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at both panels of Figure 3, it is interesting to observe that the breaking elongation point
Y∗/YM is independent of the temperature T while the only effect of the temperature on the
system is that of smoothing out the curves. The slope of the curve in the transition region is
indeed strongly influenced by temperature. The independence from the temperature of the
breaking elongation point Y∗/YM, controlling the transition of the system from the intact
to the broken configuration, is the direct result of the fact that this system is composed of
a single unit. It is indeed well known that the temperature does play a crucial role in the
transition of the system when this is composed of many units interacting with each other
(collective phenomena with phase transition).

4. Helmholtz Ensemble with Spin Approximation

In this section, we adopt an alternative statistical mechanics approach to study the
system at equilibrium while introducing the spin variable approximation to deal with
the non-convex potential energy of the breakable spring h. This means that, instead of
considering the exact profile of the potential energy Eb(y) of the breakable spring as defined
in Equation (2), we approximate it by introducing a new discrete variable called spin, S, in
the phase space. This variable can assume only two values depending on the particular
state of the spring h, namely S = 1 when the h spring is intact (

∣

∣y
∣

∣ < YM) or S = 0 when it
is in the broken state (

∣

∣y
∣

∣ > YM). This new discrete variable S is then used to approximate
the potential energy of the spring h with that of a standard intact linear spring of elastic
constant h and elongation y, when S = 1 (blu dashed curve in the left panel of Figure 4), or
with a constant potential energy 1

2 hY2
M that corresponds to a null force, when S = 0 (red

dashed curve in the left panel of Figure 4).

Figure 4. Spin approach on the potential energy of a breakable spring of elastic constant h (left panel)
and resulting force (right panel). The spin assumes value S = 1 when the spring is in the intact
conformation and behaves similar to a standard linear spring (blue dashed curves) and S = 0 when
it is in the broken configuration (red dashed curves). The continuous curves are for reference and
correspond to the exact potential energy profile.

It is important to remark that the evaluation of the partition function based on the spin
variable approach assumes that for both configurations, broken and intact, all the possible
deformations y can be attained by the system. This, in general, could represent a problem in
the calculation of the partition function but, as shown numerically in Ref. [62], with typical
experimental temperatures, the effects of this approximation can be considered statistically
negligible since these artificial configurations (superposition of dashed curves in the left
panel of Figure 4) have energy sensibly higher than real configurations (continuous curves
of Figure 2). The new definition for the breakable spring contribution to the total potential
energy is then described by:

Eb(y) =







1
2 hy2 if S = 1,
1
2 hY2

M if S = 0.
(18)
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We can now use the spin variable S in the same way we previously used the character-
istic function χA(y) in order to write the total potential energy of the system as follows:

ΦH(y, S) =
1
2

l(Y − y)2 +
1
2

ky2 +
1
2

hy2S +
1
2

hY2
M(1 − S), (19)

depending on y and S (both belonging to the phase space). Observing Equation (19),
it is evident the similarity between the spin variable S and the characteristic function
χA(y) defined in Equation (3). The crucial difference between the two is that, now, the
spin variable S belongs to the phase space. The parallelism between S and χA(y) will
become clear once we evaluate the average number of intact breakable spring h for the spin
approximation case. To evaluate the partition function of the system, we have to sum the
spin variable values:

ZH(Y) = ∑
S∈{0,1}

∫

R

e
− ΦH (y,S)

KBT dy. (20)

Writing explicitly the expression for the total energy and summing over the spin
variable values, we obtain:

ZH(Y) =
∫

R

e
− l

2KBT (Y−y)2− k
2KBT y2− h

2KBT Y2
M dy

+
∫

R

e
− l

2KBT (Y−y)2− k
2KBT y2− h

2KBT y2
dy,

(21)

which is easily solved, using the Gaussian integral, eventually obtaining:

ZH(Y) =

√

2πKBT

l + k
e
− lkY2

2KBT(l+k)
− hY2

M
2KBT +

√

2πKBT

l + k + h
e
− l(k+h)Y2

2KBT(l+k+h) . (22)

We note that thanks to the introduction of the spin variable approximation, the inte-
grals that appeared in the calculation of the partition function were now evaluated on the
entire real axis R instead of on limited domains of integration, as seen previously in the
exact potential energy calculations. This represents a huge simplification for the calculation
of the partition function and, consequently, for the evaluation of interesting quantities, such
as the average force ⟨ f ⟩, previously introduced in Equation (13), or the average number
of intact breakable springs that, now, corresponds exactly to ⟨S⟩. As briefly introduced
before, we notice that the spin variable is defined exactly as the characteristic function
χA(y) introduced in Equation (3) and, since the spin variable appears in the definition of
the potential energy ΦH , in the same way that χA(y) did, it is easy to see that ⟨S⟩ is exactly
the average number of intact breakable springs h, namely:

⟨S⟩ = 1 +
KBT

hYM

∂ log ZH

∂YM
. (23)

As shown in Figure 5, both the average force ⟨ f ⟩ and the average number of intact
breakable springs ⟨S⟩ versus the dimensionless elongation Y/YM of the system obtained
with the spin approximation (dashed curves) are in good agreement with the results
obtained with the exact calculations (continuous curves). We notice that the spin approxi-
mation is more precise for low temperatures. Furthermore, we observe that even in this
case the rupture elongation does not correspond to the one someone would expect, but,
instead, is shifted as in the exact case. We remark again that the spin variable approximation
provides a simpler and quicker way to evaluate the partition function of the system, which
is even more useful while evaluating partition functions for a system made of several
units as discussed in several investigations concerning friction, adhesion, and fracture
processes (see Introduction). In the following section, thanks to the energy-balance ap-
proach, we will understand the reason behind the apparent discrepancy between the real
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breaking point of the system Y∗/YM and the one wrongfully predicted adopting a merely
mechanic approach.

Figure 5. Comparison between the spin-approximated quantities (dashed curves) and the corre-
sponding exact results (continuous curves) for ⟨ f ⟩ and ⟨S⟩ versus the adimensional elongation Y/YM.
In both cases, the elastic constants are l = k = h = 1 and YM = 1, while the thermal to elastic energy
ratio assumes the values KBT/(hY2

M) = {0.01, 0.2} (respectively, in blue and in red).

5. Helmholtz Ensemble from an Energetic Perspective

In this section, we study the model in the isometric configuration adopting the princi-
ples of energy minimization, which are valid under the zero temperature assumptions. By
doing so, we can understand why it looks like the system tries to anticipate its breaking
point in the force-extension curves seen before in both the exact and the approximated
calculation cases (see Figures 3 and 5).

In order to understand when the change in rigidity occurs, we need to understand
in which state the system prefers to be from an energetic point of view given a prescribed
elongation Y. The total potential energy of the system is as follows:

ΦH(y) =







1
2 l(Y − y)2 + 1

2 ky2 + 1
2 hy2 if

∣

∣y
∣

∣ < YM,
1
2 l(Y − y)2 + 1

2 ky2 + 1
2 hY2

M if
∣

∣y
∣

∣ > YM.
(24)

Given a prescribed elongation Y, we search for the value of y, ymin, which minimizes
the potential energy. We start considering the

∣

∣y
∣

∣ < YM case, where the potential energy is
defined as:

ΦH(y) =
1
2

l(Y − y)2 +
1
2

ky2 +
1
2

hy2. (25)

Deriving ΦH(y) by y and setting it equal to zero, ∂ΦH(y)
∂y = 0, we obtain the following

minimizing value for y:

ymin =
l

l + k + h
Y, (26)

with the corresponding minimal potential energy:

ΦH(ymin) =
l

2

(

k + h

l + k + h

)

Y2. (27)

If we go through the same process for the second range,
∣

∣y
∣

∣ > YM, where the potential
energy is defined as:

ΦH(y) =
1
2

l(Y − y)2 +
1
2

ky2 +
1
2

hY2
M, (28)

eventually, we obtain the following minimizing value for y:

ymin =
l

l + k
Y, (29)
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with the corresponding minimal potential energy:

ΦH(ymin) =
1
2

lk

l + k
Y2 +

1
2

hY2
M. (30)

Now, by comparing when the first minimal potential energy, valid for the
∣

∣y
∣

∣ < YM

case, is greater than the minimal potential energy valid for
∣

∣y
∣

∣ > YM, we can find the total
elongation Y∗ that defines the threshold in which the system switches from the hard-rigidity
to the soft-rigidity configuration:

l

2

(

k + h

l + k + h

)

Y∗2
>

1
2

lk

l + k
Y∗2 +

1
2

hY2
M, (31)

which, after some simple calculations, eventually gives:

Y∗
>

√

(l + k)(l + k + h)

l2 YM. (32)

This value is in agreement with the results for the average force ⟨ f ⟩ and the average
number of intact breakable springs ⟨χA(y)⟩ (and ⟨S⟩) shown in Figure 3 (and Figure 5),
where we can confirm that, given a system where l = k = h = 1 and YM = 1, the rupture
elongation parameter is equal to Y∗/YM =

√
6. To conclude, this energetic approach

(without thermal effects) is in agreement with both the exact and approximated approaches
and offers a useful tool to be able to evaluate the correct threshold point of the entire system
Y∗. Moreover, this energetic introduction is useful to study the out-of-equilibrium behavior
of the system, as discussed in the next section.

6. Rate Effect on the Rupture Model under Helmholtz Conditions

In practical applications, systems with multistable energies are often used by applying
external time-varying mechanical actions, and thus, often work out of thermodynamic
equilibrium. It is, therefore, important to know how to study the combined rate and temper-
ature effects. To understand the out-of-equilibrium dynamics of our rupture model under
Helmholtz conditions, we observe the shape of the energy profiles defined in Equation (24).
Of course, we can see an energy profile for

∣

∣y
∣

∣ < YM (intact spring) and another one for
∣

∣y
∣

∣ > YM (broken spring). It is interesting to compare these energy landscapes for different
values of Y and y. This can be found in Figure 6, where we can observe how these shapes
change with the variable applied extension Y. In the previous section, we determined the
threshold value Y∗ corresponding to the transition (i.e., the breaking) point. We see in
Figure 6 that for Y ≪ Y∗ and for Y ≫ Y∗, the minimum values of the two energy profiles
(intact and broken system) are significantly different and the two curves do not generate
a potential barrier (the state of the system is well identified); this is true for example for
Y = 1 and Y = 4, shown in the left panel of Figure 6. Otherwise, we see in this same panel
that for Y = Y∗ the two potential minima are equal to each other and a potential barrier is
generated between the two energy profiles. This is exactly the transition point that governs
the dynamics of the system as we shall see in a moment. When the values of the applied
extension Y are close to Y∗, it can be seen that there is always an energy barrier between
the two profiles and that the energy minima may be slightly different, as shown in the right
panel of Figure 6. The values of the energy barrier B is obtained by substituting y = YM in
one of the two profiles in Equation (24) for

∣

∣y
∣

∣ < YM or
∣

∣y
∣

∣ > YM. The result is as follows:

B(Y) = ΦH(YM) =
1
2

l(Y − YM)2 +
1
2

kY2
M +

1
2

hY2
M. (33)
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This is the value assumed by the two energy profiles at their intersection. Therefore, it
represents a true barrier only for values of Y close to Y∗. More precisely, we can see that
there is a barrier only if:

l + k

l
YM < Y <

l + k + h

l
YM. (34)

In addition to the value of the energy barrier, it is interesting to consider the energy of
the two minima, corresponding to the two profiles for

∣

∣y
∣

∣ < YM and for
∣

∣y
∣

∣ > YM. We get
Φ1 from Equation (27):

Φ1(Y) =
l

2

(

k + h

l + k + h

)

Y2, (35)

for
∣

∣y
∣

∣ < YM, and Φ2 from Equation (30):

Φ2(Y) =
1
2

lk

l + k
Y2 +

1
2

hY2
M, (36)

for
∣

∣y
∣

∣ > YM. Given the three parameters B(Y), Φ1(Y), and Φ2(Y), we can define the two
following kinetic coefficients describing the dynamics of the system:

k12 = r0e
− B(Y)−Φ1(Y)

KBT , (37)

k21 = r0e
− B(Y)−Φ2(Y)

KBT , (38)

where r0 is a prefactor measured in s−1, which can be obtained through the original
Kramers formula or one of its generalizations [98,99]. Here, it is considered as an additional
parameter of the system. The two parameters k12 and k21 represent the number of transitions
per unit time induced by thermal fluctuations from state 1 to state 2, and from state 2 to
state 1, respectively.

0 0.5 1 1.5 2

0

2
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8

10

0 0.5 1 1.5 2

1.6

1.8

2

2.2

2.4

2.6

Figure 6. (Left panel) Helmholtz energy profiles with different values of Y and y. Red lines correspond
to the energies ΦH for

∣

∣y
∣

∣ < YM, while blue lines correspond to ΦH for
∣

∣y
∣

∣ > YM. (Right panel)
zoom with three values of Y closer to Y =

√
6, useful to identify the barriers B. In all cases, the elastic

constants are l = k = h = 1, and YM = 1 (arbitrary units).

We can now define the probability p1 to be in the intact state 1 and the probability p2
to be in the broken state 2 of the system. These two probabilities evolve in time by means
of the following system of differential Equations [61]:

dp1(t)

dt
= −k12 p1(t) + k21 p2(t), (39)

dp2(t)

dt
= −k21 p2(t) + k12 p1(t), (40)
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where the trajectory Y(t), characterizing B(Y), Φ1(Y), and Φ2(Y), must be imposed to
obtain the system dynamics. The Helmholtz partition function obtained trough the spin
approach, see Equation (22), can be written as ZH = ZH,1 + ZH,2, where:

ZH,1(Y) =

√

2πKBT

l + k + h
e
− l(k+h)Y2

2KBT(l+k+h) , (41)

ZH,2(Y) =

√

2πKBT

l + k
e
− lkY2

2KBT(l+k)
− hY2

M
2KBT , (42)

from which we obtain the force-extension response pertinent to each state:

⟨ f ⟩1 = −KBT
∂ log ZH,1(Y)

∂Y
=

l(k + h)

l + k + h
Y, (43)

⟨ f ⟩2 = −KBT
∂ log ZH,2(Y)

∂Y
=

lk

l + k
Y. (44)

We can finally determine the overall force-extension response of the system by averag-
ing previous relations with the probabilities p1 and p2:

⟨ f ⟩(t) = p1(t)
l(k + h)

l + k + h
Y(t) + p2(t)

lk

l + k
Y(t). (45)

Finally, by solving the rate equations stated in Equations (39) and (40), we can obtain
the force-extension response of the system. An example of solution for p1 and p2 is shown in
Figure 7, where we considered a traction with constant velocity v, i.e., Y = vt (v is measured
in m/s). We remark that different velocities generate different dynamical regimes for the
system response. This effect on the force-extension behavior can be found in Figure 8.
Importantly, we note that the force for producing a transition (in this case, the breaking of
the spring) is always an increasing function of the traction velocity.

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

Figure 7. (Left panel) Helmholtz probability p1 versus Y. (Right panel) Helmholtz probability p2

versus Y. We used different velocities v = 0.5, 1.2, 2.5, 5, 10 (arbitrary units), defining the trajectory
Y = vt. In all cases, we adopted the parameters l = k = h = 1, r0 = 120, KBT = 0.01, and YM = 1
(arbitrary units).

The dynamical model proposed can also be used to obtain the hysteretic behavior of
the Helmholtz system. An example is shown in Figure 9, where one can find the response
of the system to a sinusoidal applied extension of the type Y(t) = A sin(ωt). We can
observe both the evolution of the probability and of the force-extension curve. In both
cases, we remark a hysteretic behavior generated by the memory effect described by the
rate constants and rate equations. We plotted different curves corresponding to different
values of the extension amplitude. It can be seen that for small amplitudes the transition
is only just started and not finished, while with larger amplitudes, the transition can be
completed. In any case, the forward and reverse paths are always different because of the
memory effect. It is important to remark that these two paths become increasingly similar if
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we reduce the value of ω. Indeed, if ω is quite small, the rate effects are negligible and the
forward and reverse trajectories must asymptotically coincide. Recall also that the effect of
velocity observed in the uniform traction case is to increase the force required to impose
the Helmholtz constraint on the final position of the system. In the case of the periodic
driving, we observe a similar phenomenon and the force is an increasing function of the
applied frequency.

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5
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2 2.5 3 3.5

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Figure 8. (Left panel) Helmholtz force-extension response of the system with different traction veloci-
ties. (Right panel) zoom on the transition region. We used different velocities v = 0.5, 1.2, 2.5, 5, 10
(arbitrary units), defining the trajectory Y = vt. In all cases, we adopted the parameters l = k = h = 1,
r0 = 120, KBT = 0.01, and YM = 1 (arbitrary units).

0 0.5 1 1.5 2 2.5 3 3.5
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Figure 9. Hysteretic behavior of the Helmholtz model. (Left panel) probability p2 versus
the prescribed extension Y (we note that p1 + p2 = 1). (Right panel) average force ⟨ f ⟩ ver-
sus extension Y. We used an applied extension Y(t) = A sin(ωt) with different amplitudes
A = 2.45, 2.5, 2.55, 2.6, 2.7, 3, 3.5 and ω = 2.5 (arbitrary units). In all cases, we adopted the parameters
l = k = h = 1, r0 = 120, KBT = 0.01, and YM = 1 (arbitrary units).

The approach discussed is based on the Kramers formula (or similar expressions),
giving the rates of the transitions between the two states in terms of the parameters of the
system. There are, therefore, several limitations, as discussed below. First of all, the Kramers
formula has been obtained through a steady-state assumption (slow quasi-stationary escape
of particles over the barrier), and therefore, it can be used in our context only for velocities
or frequencies that do not exceed a certain threshold [98,99]. There is, therefore, a first
important limitation to the dynamics of the system. In addition, for obtaining the Kramers
formula, it is important to be able to identify the two states, although embedded into the
thermal fluctuations. It means that the difference between the energy of each state and the
energy barrier (i.e., the energy jump to be overcome in both directions) must be much larger
than the thermal energy KBT. The second limitation, thus, concerns the system temperature,
which must be limited. Another limitation concerns the shape of the potential wells and
the energy barrier, which must be easily approximated by parabolic curves. We also remark
that different approximations exist for the prefactor in front of the Boltzmann exponential
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in the Kramers formula [98]. These different prefactors depend on the friction experienced
by the system motion and one can adopt the overdamped or the underdamped assumption,
or more general intermediate conditions [102]. In our context, it is quite difficult to know
or measure reasonable values for the friction coefficients of the complex systems under
investigation and, therefore, the prefactor is typically used as a fitting parameter adopted to
give an interpretation of experimental data (by doing so, we have no substantial differences
between the Arrhenius formula, transition state theory, and the different formulations of
the Kramers formula). In this theory, all quantum effects are considered negligible. From
the mathematical point of view, the validity of the Kramers law and similar expressions
is discussed in Ref. [100]. Moreover, recent developments in Kramers rate theory can be
found in Ref. [101].

We would also mention that the mechanism of stochastic resonance is closely related to
the Kramers escape rate. This concept is based on the physical synchronization between the
Kramers escape timescale and the periodic time of a weak modulation externally applied
and acting on the system. This means that sometimes the noise-induced hopping between
potential wells may become synchronized with the weak periodic forcing, generating the
so-called stochastic resonance [114–116].

The origin of the modern reaction-rate theory goes back to the empirical Arrhenius law
introduced to give an interpretation of chemical reaction experimental data [98,102]. It is
based on a Boltzmann exponential where the energy term corresponds to the threshold en-
ergy for the chemical activation. This result was placed in the framework of nonequilibrium
statistical mechanics by Kramers, who obtained a similar expression as an approximate
solution of the Smoluchovski Equation [99]. The various approximations of this result are
now part of the so-called transition state theory, which has applications to many natural and
engineered systems, such as chemical reactions, biological processes, combustion processes,
and energy conversion devices [98]. Of course, all models of bi- or multistable systems
are based on these theories, and classic examples include the following. One of the first
models for biopolymer extensibility was based on a two-level system, able to describe both
the polysaccharide dextran and the muscle protein titin behaviors [92]. In these cases, the
rate dependence of the response is perfectly described by a transition state theory imple-
mentation. A more general model has been developed for arbitrary structures having a
multiwell energy landscape [70]. This approach has been applied to study the rate effects in
a chain of bistable elements [71]. This paradigmatic case is useful for understanding several
physical phenomena including nanoindentation, plasticity, and force-extension experi-
ments in macromolecular materials, such as DNA, spider silk, or artificial elastomers [71].
Interesting generalizations will concern adhesion and fracture processes.

7. Exact Solution within the Gibbs Ensemble

We introduce the Gibbs ensemble, characterized by the presence of a prescribed force
f (see right panel of Figure 1), by writing the corresponding total energy:

ΦG(y, Y) = − f Y +
1
2

l(Y − y)2 +
1
2

ky2 + Eb(y), (46)

By observing this function, we can notice that the addition of the potential energy
contribution deriving from the applied prescribed force f to the upper substrate is what
differs from the Helmholtz case along with the fact that, now, Y belongs to the phase space
as y does. The definition of Eb(y) instead is equal to the one introduced in Equation (2),
namely:

Eb(y) =







1
2 hy2 if

∣

∣y
∣

∣ < YM,
1
2 hY2

M if
∣

∣y
∣

∣ ≥ YM.
(47)

In the same spirit, adopting the same characteristic function χA(y), see Equation (3),
introduced for the Helmholtz case, we can write the total energy of the system as:
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ΦG(y, Y) = − f Y +
1
2

l(Y − y)2 +
1
2

ky2 +
1
2

hy2χA(y) +
1
2

hY2
M(1 − χA(y)). (48)

This potential energy can then be used to evaluate the partition function of the system:

ZG( f ) =
∫

R

dy
∫

R

e
− ΦG(y,Y)

KBT dY, (49)

which, now, is a function of the prescribed force f . We briefly observe that it is possible
to swap the two integrals appearing in the definition of the partition function thanks to
Fubini’s theorem. Using the Gaussian integral introduced earlier in Equation (7), we can
perform the integrals present in ZG( f ), eventually obtaining:

ZG( f ) =
πKBT√

lk
e
− hY2

M
2KBT +

f 2
2KBT

l+k
lk

[

Λ(k) + 2
]

− πKBT
√

l(k + h)
e

f 2
2KBT

l+k+h
l(k+h) Λ(k + h),

(50)

where, for the sake of readability, we use the function α(p), previously defined in Equation (10),
and we introduce a new function Λ(p), similar to the function Γ(p) defined in Equation (11), as:

α(p) =
p

2KBT
, (51)

Λ(p) = φ





√

α(p)

(

−YM − f

p

)



− φ





√

α(p)

(

YM − f

p

)



. (52)

Thanks to the partition function, we can now evaluate the average value of the
elongation of the system ⟨Y⟩ and the average number of intact springs ⟨χA(y)⟩, given a
fixed applied force f :

⟨Y⟩ = KBT
∂ log ZG

∂ f
= −∂G

∂ f
, (53)

⟨χA(y)⟩ = 1 +
KBT

hYM

∂ log ZG

∂YM
, (54)

where G = −KBT log ZG is the Gibbs free energy.
In Figure 10, we show the average adimensional elongation parameter ⟨Y⟩/YM (left

panel) and the average number of intact breakable springs ⟨χA(y)⟩ (right panel) versus the
prescribed force f for a system composed of springs of elastic constants l = k = h = 1 and
for different thermal to elastic energy ration KBT/(hY2

M). As we can see from the force-
extension panel of the figure, the mechanical response to the variation of the prescribed
force f , especially for low temperatures, presents a force plateau that corresponds to a
transition for the system’s rigidity. This change in rigidity occurs when the force f reaches
a specific value f = f ∗ (Maxwell force, see Ref. [73]) that does not correspond to the result
one could obtain basing the analysis only on mechanical principles (as seen before for the
Helmholtz case). If we think about the system from a purely mechanical point of view, in
fact, the force necessary to break the breakable spring h should be f = (k+ h)YM that, in the
case shown in Figure 10 where the elastic constants are l = k = h = 1 and the elongation
threshold is YM = 1, is equal to f = 2 that is higher than the correct one shown in the figure
( f = 2 > f ∗). This apparent discrepancy will be fully understood and explained in the
following discussion while adopting an energy-balance approach as previously done for
the Helmholtz case.
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Figure 10. Behavior of the two-rigidity model with variable thermal to elastic energy ratio
KBT/(hY2

M) = {0, 0.01, 0.02, 0.03} (purple, blue, yellow, and red curves, respectively). The pur-
ple curves correspond to the pure mechanical case at zero temperature. The average elongation ⟨Y⟩
and the average number of intact breakable springs ⟨χA(y)⟩ are presented versus the fixed force f ,
where, in both cases, l = k = h = 1 and YM = 1. In both panels, the force responsible for the change
in rigidity, f ∗, is shown.

The difference between the two rigidity regimes emerges from the difference in slope
of the two curve branches before and after the breaking force point and the same con-
siderations done in the Helmholtz case hold in this case as well. The threshold force f ∗,
responsible for the transition between the two rigidity, is even more clear when observing
the right panel of Figure 10 where the number of intact breakable spring h changes from
1 to 0 exactly at f = f ∗. Furthermore, we stress the fact that, even in the Gibbs ensemble,
f ∗ does not depend on the temperature that, instead, is responsible only for smoothing
the curves while increasing. This temperature independence of the threshold force f ∗ is
expected since the model is made of a single unit.

8. Gibbs Ensemble with Spin Approximation

As introduced previously in the Helmholtz case, in this section, we adopt the spin
variable approach to study the system in the Gibbs ensemble. As in previous studies, we
introduce a spin variable S to help us approximate the total potential energy of the system.
The spin variable will then assume the value S = 0 when the breakable spring is in the
broken state, and S = 1 when it is in the intact conformation. By doing so, we are able to
express the total energy as:

ΦG(y, Y, S) = − f Y +
1
2

l(Y − y)2 +
1
2

ky2 +
1
2

hy2S +
1
2

hY2
M(1 − S), (55)

which, now, is a function of y, Y and S. We proceed by evaluating the partition function of
the system that, in the spin variable approximation, assumes the following definition:

ZG( f ) = ∑
S=0,1

∫

R

dy
∫

R

e
− ΦG(y,Y,S)

KBT dY. (56)

By introducing here the expression for the total energy and explicitly expressing the
sum over the spin values, we obtain:

ZG( f ) =
∫

R

dy
∫

R

e
f Y

KBT − l
2KBT (Y−y)2− k

2KBT y2− h
2KBT Y2

M dY

+
∫

R

dy
∫

R

e
f Y

KBT − l
2KBT (Y−y)2− k

2KBT y2− h
2KBT y2

dY,
(57)

which is easily solved using the Gaussian integral, eventually obtaining:
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ZG( f ) =
2πKBT√

lk
e

f 2
2KBT

(

l+k
lk

)

− hY2
M

2KBT +
2πKBT
√

l(k + h)
e

f 2
2KBT

(

l+k+h
l(k+h)

)

. (58)

Thanks to this approximated partition function, we can evaluate the following quantities:

⟨Y⟩ = KBT
∂ log ZG

∂ f
, (59)

⟨S⟩ = 1 +
KBT

hYM

∂ log ZG

∂YM
. (60)

In Figure 11, we can see that the approximations obtained both for ⟨Y⟩/YM and ⟨S⟩
versus the fixed force f are in good agreement with the results obtained with the exact
calculations. As in the Helmholtz spin approximation, once again the spin approximation
is more accurate for low temperatures as we should expect. Furthermore, we observe that
even in this case, the rupture force does not correspond to the one we would expect but,
instead, is shifted as in the exact case. In the following section, we will solve this apparent
dilemma by adopting an energy-balance approach.

Figure 11. Comparison between the spin-approximated quantities (dashed curves) and the corre-
sponding exact results (continuous curves) for ⟨Y⟩/YM and ⟨S⟩ versus the applied force f . In both
cases, the elastic constants are l = k = h = 1 and YM = 1, while the thermal to elastic energy ratio
assumes the values KBT/(hY2

M) = {0.01, 0.2} (respectively, in blue and in red).

9. Gibbs Ensemble from an Energetic Perspective

In this section, we study the model in the isotensional configuration adopting the
principles of energy minimization in order to obtain the exact rupture force f ∗ responsible
for the rigidity change of the system. The total potential energy of the system is given by:

ΦG(y, Y) =







− f Y + 1
2 l(Y − y)2 + 1

2 ky2 + 1
2 hy2 if

∣

∣y
∣

∣ < YM,

− f Y + 1
2 l(Y − y)2 + 1

2 ky2 + 1
2 hY2

M if
∣

∣y
∣

∣ > YM.
(61)

Given a fixed force f , we search for the quantities y and Y that minimize the potential
energy. We start by considering our system in the

∣

∣y
∣

∣ < YM case, where the potential energy
is defined as:

ΦG(y, Y) = − f Y +
1
2

l(Y − y)2 +
1
2

ky2 +
1
2

hy2. (62)

We derive ΦG(y, Y) by y and Y separately, obtaining:

∂ΦG(y, Y)

∂y
= −l(Y − y) + hy + ky = 0, (63)

∂ΦG(y, Y)

∂Y
= − f + l(Y − y) = 0. (64)
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After some straightforward calculations, we obtain the two minimizing values:

ymin =
f

h + k
, (65)

Ymin =
f

h + k
+

f

l
(66)

that we use to evaluate the resulting minimal potential energy, obtaining:

ΦG(ymin, Ymin) = −1
2

f 2

l
− 1

2
f 2

h + k
. (67)

Repeating the same process for the
∣

∣y
∣

∣ > YM case, we obtain the following minimized
potential energy:

ΦG(ymin, Ymin) = −1
2

f 2

k
− 1

2
f 2

l
+

1
2

hY2
M, (68)

and, comparing the two minimized potential energy, we obtain the exact rupture force at
which the system changes its rigidity, namely:

f ∗ =
√

k(h + k)YM (69)

We observe that using the same parameters of Figures 10 and 11, we have f ∗ =
√

2 in
agreement with the results shown in the figures. Therefore, as in the Helmholtz ensemble,
also in the present Gibbs case, the energetic approach (without thermal effects) is in perfect
agreement with the exact calculation based on statistical mechanics and with the spin
approximation. This confirms the value of the rupture threshold given in Equation (69) and
underlines the fact that the correct approach to determining the rupture thresholds is the
one based on energetic assumptions. These consideration are also useful to introduce the
out-of-equilibrium behavior of the system, as discussed in the next section.

10. Rate Effect on the Rupture Model under Gibbs Conditions

We introduce here the theoretical development necessary to describe the rate effects
in the rupture Gibbs model. The energy profiles for this model have been obtained in
Equation (61) for both

∣

∣y
∣

∣ < YM (intact spring) and
∣

∣y
∣

∣ > YM (broken spring). Unlike the
Helmholtz case, in this Gibbs ensemble, we have that the energy profiles depend on two
variables, namely y and Y. To apply transition state theory, i.e., Kramers formula, we must
minimize these energies with respect to the variable Y that does not participate directly in

the transition. We see from Equation (64) that the relation ∂ΦG(y,Y)
∂Y = − f + l(Y − y) = 0 is

valid for both the regions
∣

∣y
∣

∣ < YM (intact spring) and
∣

∣y
∣

∣ > YM (broken spring). Therefore,
we can eliminate the variable Y by means of the relation Y = y+ f /l in both energy profiles.
This allows us to graphically represent the two profiles as shown in Figure 12. In particular,
we can see how these profiles change with a varying applied force f . In the previous
section, we obtained the value of the transition force f ∗, which corresponds to

√
2 for the

parameters adopted in the figures (arbitrary units). It can be seen that for values of the
force far from this threshold, the two potential minima are noticeably different from each
other, and thus, the state of the system is well identified; see the left panel of Figure 12.
When, on the other hand, the force values are close to the transition threshold, an energy
barrier B is identified which must be crossed to effect the transition; see the right panel of
Figure 12. The value of the barrier B is calculated as:

B( f ) = ΦG

(

YM, YM +
f

l

)

= − f

(

YM +
f

l

)

+
1
2

l

(

f

l

)2

+
1
2

kY2
M +

1
2

hY2
M, (70)
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and we see that it is dependent on the applied force f . We also take into consideration the
values of the two energy minima, which have been calculated in Equations (67) and (68).
For

∣

∣y
∣

∣ < YM (intact spring) we have:

Φ1( f ) = −1
2

f 2

l
− 1

2
f 2

h + k
. (71)

and for
∣

∣y
∣

∣ > YM (broken spring), we get:

Φ2(2) = −1
2

f 2

k
− 1

2
f 2

l
+

1
2

hY2
M. (72)

0 0.5 1 1.5 2

-6

-4

-2

0

2

4

0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

Figure 12. (Left panel) Gibbs energy profiles with different values of f and y. Red lines correspond to
the energies ΦG for

∣

∣y
∣

∣ < YM, while blue lines correspond to ΦG for
∣

∣y
∣

∣ > YM. (Right panel) zoom
with three values of Y closer to Y =

√
2, useful to identify the barriers B. In all cases, the elastic

constants are l = k = h = 1, and YM = 1 (arbitrary units).

As before, given the three parameters B( f ), Φ1( f ), and Φ2( f ), we can define the two
following kinetic coefficients describing the dynamics of the Gibbs system:

k12 = r0e
− B(Y)−Φ1(Y)

KBT , (73)

k21 = r0e
− B(Y)−Φ2(Y)

KBT , (74)

where r0 is a prefactor measured in s−1, which can be obtained through the original Kramers
formula or one of its generalizations [98,99]. As already discussed, it is considered as an
additional parameter of the system.

We can now define the probability p1 to be in the intact state and the probability p2 to
be in the broken state of the system. These two probabilities evolve in time by means of the
following system of differential Equations [61]:

dp1(t)

dt
= −k12 p1(t) + k21 p2(t), (75)

dp2(t)

dt
= −k21 p2(t) + k12 p1(t), (76)

where the trajectory f (t), characterizing B( f ), Φ1( f ), and Φ2( f ), must be imposed to obtain
the system dynamics. The Gibbs partition function obtained trough the spin approach, see
Equation (58), can be written as ZG = ZG,1 + ZG,2, where:

ZG,1( f ) =
2πKBT
√

l(k + h)
e

f 2
2KBT

(

l+k+h
l(k+h)

)

, (77)

ZG,2( f ) =
2πKBT√

lk
e

f 2
2KBT

(

l+k
lk

)

− hY2
M

2KBT . (78)
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from which we obtain the force-extension response pertinent to each state:

⟨Y⟩1 = KBT
∂ log ZG,1( f )

∂ f
=

l + k + h

l(k + h)
f , (79)

⟨Y⟩2 = KBT
∂ log ZG,2( f )

∂ f
=

l + k

lk
f . (80)

We can, therefore, determine the average value of the extension ⟨Y⟩ as function of the
applied force f . The resulting force-extension curve is given by:

⟨Y⟩(t) = p1(t)
l + k + h

l(k + h)
f (t) + p2(t)

l + k

lk
f (t), (81)

where the probabilities p1(t) and p2(t) are obtained by solving the system of differential
equation stated in Equations (75) and (76), for a given applied force v(t). An example of
solution for p1 and p2 is shown in Figure 13, where we considered a time evolution for
the applied force given by f = vt, where v is the force rate (with units N/s). As before,
we remark that different force rates generate different dynamical regimes for the system
response. This effect on the force-extension behavior can be found in Figure 14. Importantly,
we note that the force for producing a transition (in this case, the breaking of the spring) is
always an increasing function of the traction velocity.
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Figure 13. (Left panel) Gibbs probability p1 versus Y. (Right panel) Gibbs probability p2 versus
Y. We used different force rates v = 0.03, 0.2, 0.5, 1.2, 2.5, 5 (arbitrary units), defining the trajectory
f = vt. In all cases, we adopted the parameters l = k = h = 1, r0 = 120, KBT = 0.01, and YM = 1
(arbitrary units).
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Figure 14. (Left panel) force-extension response of the system with different traction velocities.
(Right panel) zoom on the transition region. We used different velocities v = 0.5, 1.2, 2.5, 5, 10
(arbitrary units), defining the trajectory Y = vt. In all cases, we adopted the parameters l = k = h = 1,
r0 = 120, KBT = 0.01, and YM = 1 (arbitrary units).

As before, the dynamical model can also be used to obtain the hysteretic behavior of
the Gibbs system. An example is shown in Figure 15, where we can find the response of
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the system to a sinusoidal applied force of the type f (t) = A sin(ωt). We can observe both
the evolution of the probability and of the force-extension curve. In both cases, we remark
a hysteretic behavior generated by the memory effect described by the rate constants and
rate equations. We plotted different curves corresponding to different values of the force
amplitude. As in the Helmholtz case, we see that for small amplitudes the transition is only
just started and not finished, while with larger amplitudes, the transition can be completed.
In any case, the forward and reverse paths are always different because of the memory
effect. The difference, as before, depend on the velocity of variation of the force, which is
controlled by ω.
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Figure 15. Hysteretic behavior of the Gibbs model. (Left panel) probability p1 versus the applied
force f (we note that p1 + p2 = 1). (Right panel) force f versus average extension ⟨Y⟩. We used an
applied force f (t) = A sin(ωt) with different amplitudes A = 1.55, 1.6, 1.65, 1.7, 1.8, 2, 2.4 and ω = 2.5
(arbitrary units). In all cases, we adopted the parameters l = k = h = 1, r0 = 120, KBT = 0.01, and
YM = 1 (arbitrary units).

The limitations in velocity, frequency, and temperature already discussed in Section 6
apply, of course, to both the Gibbs ensemble and the Helmholtz ensemble.

11. Discussion and Conclusions

In this paper, we reviewed the various approaches that can be taken into account to
study the evolution of systems characterized by multistable energy. In particular, these ap-
proaches have been applied to a simple model exhibiting a breaking phenomenon and are
developed for the two symmetric and dual Gibbs and Helmholtz statistical ensembles. The
result of all these approaches consists of the force-extension relation characterizing the sys-
tem response, which is typically depending on the combination between temperature and
pulling speed (or driving frequency). The symmetry between the two statistical ensembles
can be deduced through the physical observables we use to describe this force-extension
response. While in the Helmholtz ensemble we have a deterministic prescribed extension
Y and a stochastic force described by its average value ⟨ f ⟩, in the Gibbs ensemble, we have
a deterministic applied force and a stochastic extension characterized by the average value
⟨Y⟩ (e.g., see Figures 3 and 10, left panels). In both cases, at thermodynamic equilibrium,
the determination of the force-extension relation is based on the calculation of the partition
function and the corresponding free energy (see Equations (9) and (50)). The two partition
functions corresponding to the Helmholtz and Gibbs ensembles are related through a
Laplace transform, which is always an exact relationship valid for any physical system. For
a large system (i.e., large number of elementary units), this property can be used to prove
that the free energies are related through a Legendre transform [106,107]. However, in the
example discussed in this paper, only the Laplace transform can be used, since the system
consists of only one unit and the thermodynamic limit cannot be applied. For arbitrary
systems, when the thermodynamic limit can be defined, the concept of equivalence or
nonequivalence of statistical sets is introduced. Two sets are said to be equivalent when,
in the thermodynamic limit, the two force-extension relations for Helmholtz and Gibbs
are asymptotically coincident. In general, for a given system, it is difficult to say a priori
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whether equivalence is met or not. Nevertheless, there are rather important classes of
systems for which the character of equivalence is known [110]. For example, it is known
that polymer chains with continuous two-body interactions satisfy the equivalence between
the two statistical ensembles considered (without confinement effects) [106–108]. This can
be directly applied to the freely jointed chain model and the worm-like chain model as
well. Other problems exhibit an interesting nonequivalence between the defined statis-
tical ensembles. In particular, a polymer chain compressed between two pistons shows
nonequivalence of the ensembles and a phase transition corresponding to the escape from
the gap between the pistons [109]. The desorption of a single chain from a substrate without
excluded volume interactions and other confined systems also exhibit nonequivalence of
the ensembles and the emergence of a phase transition [111–113]. Adhesion and fracture
processes show nonequivalence as well [76,77,79]. When discussing duality between statis-
tical ensembles, therefore, one must always remember the possibility of having equivalence
or nonequivalence between them, in the thermodynamic limit.

Concerning the equilibrium statistical mechanics, the most accurate method is based
on the evaluation of the partition function in closed form, without approximations. This
can be performed only for a simple system, such as the one considered in this work.
When multistable energies are considered, this technique can be applied analytically only
in some particular cases, but it can be always implemented numerically with different
computational approaches.

If we want to adopt analytical techniques even in the presence of multistable energies,
we must use the method of spin variables, which adds a set of discrete variables to the
phase space but simplifies the calculation of integrals in partition functions. Indeed, in
this case, the partition function is defined by summing over all the spin variable and
integrating over all the continuous coordinates (see Equations (22) and (58)). The integral
are simpler since they are calculated over the whole domain for quadratic energy well
(Gaussian integration). The results are quite accurate if excessive temperatures are not
considered (see Figures 5 and 11 for the force-extension response and the spin variable
behavior in both ensembles).

Often, to better understand the transition strategies of multistable systems, it is advan-
tageous to perform a zero-temperature energy study. This makes it easier to identify the
thresholds of applied forces or extensions responsible for the system’s internal transitions.
This procedure was also applied in the examples studied in this work and enabled us to
better understand the transition thresholds and especially to show that they often do not
take on the values that one might imagine with simple mechanical observations of the
system. This point in the analysis performed is perfectly dual between the two Helmholtz
and Gibbs ensembles.

A last approach concerns the out-of-equilibrium regime for our system. To deal with
this problem, we can mention two alternative approach. The first one, the most rigorous,
consists of determining the Hamiltonian function for the system and the corresponding
equation of motion. To introduce the out-of-equilibrium statistical mechanics, we can add
to this equation suitable noise and viscous friction terms, which are able to mimics the
dynamics of the system by considering temperature and rate effect. The resulting stochastic
differential equation is the so-called Langevin Equation [102]. The probability density
describing the evolution of the system state is associated with the Langevin equation
and it is referred to as the Fokker–Planck Equation [102]. For complicated systems, with
multistable energies, both the Langevin and Fokker–Planck equations can be solved only
through quite costly computational techniques. The second approach, used to simplify the
numerical solution of the problem, consists of implementing the transition state theory [98].
This method is based on the definition of the probability to be in a given state and on
the rate equations describing these probabilities. The rate constants adopted in these
equations are obtained through the Kramers formula based on the energy barrier between
the states [99]. A central point of this analysis is therefore to identify the energy barriers
in the system (see Figures 6 and 12, corresponding two the two statistical ensembles).
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The solution of the rate equations is much simpler than the solution of the Langevin or
Fokker–Planck equation. Indeed, in this second approach, we have to solve an ordinary
system of differential equations which is more advantageous from the computational point
of view. With this method, the combined effects of thermal fluctuations and field velocity
applied to the system can be easily observed (see Figures 8 and 14). Furthermore, the
emergence of hysteresis loops can be investigated (see Figures 9 and 15).

We can also compare the results obtained within the Helmholtz and the Gibbs en-
sembles. Concerning the solution obtained through the equilibrium statistical mechanics,
we note the following important features. On the one hand, we remark that within the
isometric Helmholtz ensemble in the force-extension response, we always see in correspon-
dence to the transition a force peak (see Figures 3 and 5). On the other hand, within the
Gibbs isotensional ensemble, we observe a force plateau in correspondence to the breaking
transition (see Figures 10 and 11). This is a signature characteristic that is also observed in
numerous experiments, where the systems are composed of several units. The Helmholtz
response (sawtooth-like, with many peaks) shows that the units experience the transitions
progressively in reaction to the increasing extension (non-cooperative process), as observed,
e.g., in protein unfolding [62–64]. The Gibbs response (plateau-like) is interpreted by
supposing that the transitions occur simultaneously for all the units at a given threshold
force (cooperative process), as observed, e.g., in DNA overstretching [62–64]. The duality
between peak force and plateau force is explained by the fact that the isometric condition is
more constraining, and therefore, the system reacts with a larger force while the isotensional
condition permits more freedom to the system, which can, hence, accommodate the force
more easily. This trend is also confirmed by the results of out-of-equilibrium statistical
mechanics, which also shows important rate effects: the force at the transition (peak or
plateau depending on the ensemble considered) is significantly increasing with the speed
of the applied mechanical action. This is also a result that corresponds to various force spec-
troscopy experiments, conducted with via high-speed atomic force microscope [104,105].
The models based on rate equations are also able to describe the hysteretic effect of sev-
eral multistable system, as discussed for our paradigmatic example. We emphasize that
the simple model proposed is useful in showing all aspects of symmetry between the
Helmholtz and Gibbs dual statistical ensembles and allows us to explore in detail all
possible approaches to study the statistical mechanics of multistable energy systems.

These methods, of course, are important when applied to more complex systems than
those analyzed in this paper. In general, we deal with a system composed of an arbitrary
number of units or elements, and each of them can be bistable or multistable. This is true for
problems of adhesion, fracture, and friction, but also for the unzipping of DNA and RNA or
the folding/unfolding of macromolecules, such as proteins [62,76,77,79]. In all these cases,
the first step is to write an explicit form of the Hamiltonian function of the system in terms
of the generalized coordinates and of the spin variables associated with the units of the
system. For complex systems, it is almost always impossible to make an exact study of the
partition function in any statistical ensemble considered. For this reason, when we assume
the thermodynamic equilibrium, we use the spin-variable approach. In this scheme, all the
generalized coordinates and the spin variables belong to the phase space and are integrated
and summed in the partition function. Interestingly, the evolution of the spin variables
is automatically obtained in terms of the externally applied fields to the structure. When
interested in the out-of-equilibrium behavior of the system, the approach discussed for one
bistable element can be easily generalized to an arbitrary number of spin variables. Firstly,
we have to define the states of the system and we must associate a probability to each of
these states. Then, we have to identify, thanks to the Hamiltonian function of the system,
the energy barriers among each couple of states. These two points allow the writing of the
system of differential equations for all the state probabilities controlled by rate coefficients
obtained by the Kramers formula. The (numerical) solution of this system allows the study
of the dynamics of the system for an arbitrary loading condition.
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For the examples presented in this work, the main result is represented by the force-
extension relationship obtained both at thermodynamic equilibrium and in the out-of-
equilibrium regime. However, when we apply these methodologies to real-world systems,
for instance to study adhesion and fracture phenomena, a very important result concerns
the emergence of phase transitions characterized by a typical critical temperature [76,77,79].
In fact, for these phenomena, a particular value of the temperature exists for which the
system is completely detached (or broken) without the application of external loads (as in
the thermal denaturation of nucleic acids). In the simple systems studied in this work, the
independence from the temperature on the behavior of the transition from the intact to the
broken configuration is the direct consequence of the fact that this system is composed of
a single unit. Differently, the temperature does play a crucial role in the transition of the
system when this is composed of many units interacting with each other through collective
phenomena, at the origin of the critical behavior. Two important generalizations will be
studied in the near future. Firstly, it could be interesting to perform the continuum limit of
the discrete systems describing adhesion and fracture, in order to study the emergence of
critical behaviors in continuum systems, which is an important topic in statistical mechan-
ics. Secondly, it is important to generalize the out-of-equilibrium statistical mechanics to
adhesion and fracture phenomena in order to see the possible dynamic phase transitions in
these situations. Although the rate equations are approximated, this approach can yield
new insights into this crucial issue.

The authors hope that the detailed description of all methods applicable to systems
with multibasin energy is useful to foster a better understanding and wider dissemination
within the scientific community. Utilizing these methods in relatively simple systems
is intended to have a pedagogical nature, thereby facilitating their application to more
complex systems.
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