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Abstract—Forecasting the location of electrical activity at a
very short time range remains one of the most challenging
predictions to make, primarily attributable to the chaotic nature
of thunderstorms. Additionally, the punctual nature of lightning
further complicates the establishment of reliable forecasts. This
article introduces StrikeNet, a specialized Convolutional Neural
Network (CNN) model designed for very short-term forecasts
of electrical activity locations, utilizing sequences of temporal
images as input and only two data types. Employing soft Non-
Maximum Suppression (NMS) techniques, incorporating mor-
phological features within residual blocks, and implementing
dropout regularization, StrikeNet is specifically designed for
detecting and predicting pixel-sized objects in images. This design
seamlessly aligns with the task of forecasting imminent electrical
activity giving great scores of 0.42 for precision, 0.78 for detection,
and an F1-Score about 0.54.

Index Terms—Deep learning, convolutional neural networks,
thunderstorm risk, very short-term forecasting

I. INTRODUCTION

Atmospheric events such as violent winds, rain, hail, and
lightning can significantly impact aviation. These dangerous
phenomena can be produced by cumulonimbus clouds, the
Earth’s main lightning generators. These clouds need special
atmospheric conditions to emerge with the presence of humid-
ity, instability, and a mechanism allowing the development of
convection as the convergence of cold and hot air masses.
The lightning produced by these systems poses a high risk
to aviation, striking aircraft once per year on average. Such
incidents can lead to flight safety issues and necessitate
mandatory maintenance operations. Therefore, the need for
increasingly precise forecasts becomes crucial as thunderstorm
systems continue to affect aviation safety.

The forecasting methods currently in use for short and long-
term time range predictions are Numerical Weather Predic-
tion (NWP) models, which involve resolving meteorological
equations to forecast the state of the atmosphere. In addi-
tion, short-range lightning forecast is possible using belief
functions or weighting functions as in [1]. To forecast at a
very short time horizon (<1 h), a combination of observation-
based approaches and algorithmic methods can be employed
like in [9]. In recent years, studies have shown that the use
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of Deep Learning could lead to better forecasting results for
many atmospheric parameters such as precipitation rate as
shown in [2] and thunderstorms in [12]. It has also shown
improvement in lightning location forecasting by using CNN
as in [14] and [7] yet also incorporating radar data in ad-
dition to satellite ones. We aim to implement a very short-
term forecasting approach utilizing neural networks and only
two kinds of satellite data, seeking to improve the overall
prediction accuracy for pixel-sized phenomena, specifically
lightning flashes within thunderstorm systems.

From a machine learning point of view, this article focuses
on the precise prediction of small objects in images through
the application of CNN. To our current knowledge, accurately
forecasting such specific phenomena remains poorly under-
stood and challenging, prompting our investigation to address
this gap in understanding within the confines of this article.

In Section II, we will outline the data we used, followed
by an explanation of the developed model in Section III, and
ultimately, we will present the obtained results for the forecast
of lightning at a very short time range in Section IV before
concluding and giving some perspectives in Section V.

II. DATA

A. Data overview

The data employed in this study are collected from two sen-
sors embedded on the Geostationary Operational Environmen-
tal Satellite (GOES-R/GOES-16), operated by the National
Oceanic and Atmospheric Administration (NOAA) covering
the Pacific Ocean, the Americas, and the Atlantic Ocean. The
focus is on data captured by the Advanced Baseline Imager
(ABI) and the Geostationary Lightning Mapper (GLM) sen-
sors. These two sensors provide complementary information:
the first one can identify cloudy areas, while the second can
provide information about electrical activity.

B. Sensor’s data

The ABI sensor is a radiometer that offers a resolution of
0.5 km in the visible spectrum and 2 km in the infrared [11]. It
has the capability to capture data across 16 wavelength bands.
However, for this study, we specifically utilize the 13th band
at 10.3 µm due to its heightened sensitivity for cloud classi-
fication. The ABI produces images every 5 minutes, offering



brightness temperature data that is particularly effective for
detecting low temperatures on top of clouds. This capability
enables us to determine if the top of a cloud is high, indicating
the likelihood of it being a cumulonimbus and therefore the
presence of lightning.

In contrast, the GLM sensor functions as a camera with
a nadir spatial resolution of 8 km. Primarily designed for
lightning detection, it boasts a detection rate between 70-90 %.
Operational day and night, the sensor exhibits superior per-
formance during nighttime owing to improved contrast. It
captures images every 20 seconds. We have selected flash
information from the GLM L2 products, which are the closest
to conventional lightning flashes. These flash positions are
derived from optical pulse locations within a 330 ms timeframe
and a 16.5 km area and are provided at a 1.1 km resolution.
Among the various observable areas, data from these two
sensors are retrieved over the CONUS (Continental United
States) area, which covers North America to the Caribbean.

C. Dataset creation

We collect a dataset consisting of two distinct types of
images, to represent near-future lightning strikes at a very short
time range. Firstly, radiance images originating from band 13
of the ABI sensor are transformed into brightness temperature
images as shown in Fig. 1. Secondly, the flashes captured by
the GLM sensor are represented by white pixels set against a
black background, as it can be seen in Fig. 2. In contrast to the
CONUS images, which measure 1168 × 835, all the images
have been resized to 512×512 over the Gulf of Mexico. Spatial
transformations such as down-sampling were employed for
consistency in both data types. The lowest temporal resolution
is selected, retaining brightness temperature every 5 minutes,
and aggregating flashes for GLM sensor data in 5 minutes time
steps. Furthermore, the final spatial resolution of the images
is 4.5 km, which is a fine balance between a great resolution
and an acceptable image size. The dataset encompasses data
retrieved from 00:00 to 05:00 UTC, selected for specific days
in January, February, and December, spanning the years 2020
to 2023. The overall database comprises 170 retrieved days,
resulting in 10, 200 pairs of ABI/GLM images and a total of
20, 400 images. We choose to separate the dataset with 70 %
for the training phase, and 30 % for the testing phase, separated
by days. It means that each different date cannot be at the same
time in both phases dataset.

III. METHOD

A. Model’s sequence input

To train the model, a temporal sequence is used. Each
brightness temperature image is paired with a corresponding
flashes position image, constituting one input-label pair. To
maintain temporal dependencies between images while en-
suring efficient computational resource utilization, StrikeNet’s
input is designed as a sequence comprising 9 such pairs of
images. In essence, it processes a 45 minutes sequence of
images as input to forecast flashes occurring 5 minutes later
as shown in Fig. 3. By learning to predict a future instance,

Figure 1. One sample of brightness temperature map acquired on 2023/13/1
at 02:01 UTC by the ABI sensor. Darker pixels have lower brightness
temperatures and belong to higher top clouds. The colorbar is the brightness
temperature in Kelvin.

Figure 2. Flashes location map acquired by the GLM sensor at the same
date than in Fig. 1. White pixels identify the presence of flashes, and the
background is represented with black pixels.

the algorithm must consider multiple moments from the past
to preserve this temporal connection.

B. Model description

StrikeNet is a CNN designed for predicting the spatial
distribution of future electrical activity. It draws inspiration
from the encoder-decoder structure of U-Net [10], a neural
network predominantly utilized for semantic segmentation,
where each pixel in an output mask is associated with a
specific label or class. The architecture of the StrikeNet model
is illustrated in Fig. 4.

Figure 3. Sequential functioning of StrikeNet.



Figure 4. Architecture of StrikeNet.

On the one hand, the input sequence of images passes
through an encoder. This consists of a sequence of two
3 × 3 convolutional layers, batch normalization layer, ReLU
activation function, and then a 0.2 dropout. All of these define
the DoubleConv (DC) block used in Fig. 4 and are followed
by a max-pooling 3× 3 layer. The process iterates six times,
halving the image’s spatial resolution and doubling the number
of channels with each step. Through it, images in the input
sequence are reduced to a size up to 8 × 8 pixels thanks to
the maxpooling layers, and the number of different channels
grows up to 1024 features maximum in order to catch spatial
and temporal dependencies over the input sequence.

Before going through the decoder, five residual blocks
inspired by the Super Resolution Network using Multi-scale
Spatial and Morphological features (SRNMSM) [5] are in-
corporated into the architecture. Compared to the original
version, our block utilizes all its layers sequentially instead
of in parallel to force morphological operations to be used
rather than just offering them. The five blocks, placed between
the encoder and decoder, enhance the network’s capacity to
capture even finer image resolutions. By considering both
morphological and spatial dependencies in the images, these
blocks contribute significantly to the model’s ability to detect
and predict lightning flashes, often represented by several
single pixels in the image.

On the other hand, the decoder is composed of DC blocks
followed by an upconvolution layer and soft NMS layer which
is detailed in Subsection III-C. This is also repeated six times,
and at the end, a 1×1 convolution layer is applied to produce
the final mask representing the flashes’ location 5 minutes
later. This mask consists entirely of black pixels, representing
the background, while the white pixels delineate areas where
lightning is predicted. These areas correspond to the two
classes extracted in the final convolution.

C. Soft non-maximum suppression layers

These layers are placed in the decoder part and are inspired
by the NMS technique explained in [6] and are used to
obtain isolated pixels representing a lightning flash. The NMS
layers retain local maxima by applying Eq. (1) in StrikeNet
architecture:

xi,j = 10xi,j − 9 max
di,dj∈{−1,0,1}

xi+di,j+dj (1)

with xi,j representing the pixel we focus on, and xi+di,j+dj

its 8 nearest neighbors. This allows us to keep the pixel value
as the maximum value between him and its neighborhood.
Using this type of layer enables the network to predict only
the lightning when the probability is the highest in a 3 × 3
pixel area, thereby reducing the false alarms.

D. Model training

The training phase is launched using the Adam optimizer
with a 10−4 learning rate. The standard Cross-Entropy loss
function is chosen, but we also added a DiceLoss function with
a coefficient of 0.1 to it in order to give greater importance
to finding lightning than background. The algorithm adjusts
the weights of the model to minimize the loss function by
backpropagation of the loss gradient in order to find the most
accurate class for each pixel on the output image to create an
accurate prediction map of the flash positions.

IV. RESULTS

A. Evaluation metrics

StrikeNet has been tested on the flashes dataset, using
different evaluation metrics. The first one is the confusion
matrix which includes true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). Using these quan-
tities allows us to calculate the following metrics: Precision,
Probability Of Detection (POD), F1-Score, False Alarm Rate
(FAR), and Bias which are explained in Table I. The primary
goal of this study is to make accurate predictions. Minimizing



missed lightning occurrences is critical, and keeping the FAR
low is imperative to prevent unnecessary alerts.

In the testing phase, we establish an area of 9 × 9 pixels
around each real lightning flash. For each predicted pixel, if
the forecast is included in these areas, it is not counted as a
false alarm. This means that the metrics are calculated within
about 20 km tolerance around actual flashes for all models
which is something acceptable seeing the FAA standard rec-
ommendation to avoid thunderstorm areas by 37km [13].

B. Comparison with other methods

In Table II, we compared StrikeNet with various models,
highlighting its significant outperformance over other models.
All metrics were computed across all the test dataset. Each
model underwent five training sessions, and assessments were
conducted on these distinct trained models. The results were
then averaged for tabulation.

Here, U-Net+dropout is the second-best model and it
achieved an F1-Score of only 0.23, compared to 0.54 for
StrikeNet. In addition, ED-DRAP [3], an encoder-decoder
model that takes a sequence as input and uses spatial and
temporal attention, also shows great performances with an
F1-Score of 0.21. Furthermore, the remaining tested CNNs
showed even lower scores between 0.10 and 0.17.

These results stem from the challenge of segmenting point-
wise objects, where CNNs tend to produce blobs around strikes
correlated with the corresponding cloud, deviating from the
goal of segmenting the strike itself. For reference, the simple
persistence model achieved an F1-Score of 0.43, surpassing
all CNNs except for StrikeNet. While having the lowest POD,
this model’s correct prediction of the punctual structure led
to the lowest FAR, likely attributed to the relatively stable
positions of flashes within 5-minute intervals.

Efficient prediction requires both improved POD and a low
FAR, a feat challenging for deep networks, as demonstrated in
Table II but effectively achieved by StrikeNet. Further discus-
sions on the underlying mechanisms of StrikeNet’s success are
provided in Subsection IV-D following graphical illustrations.

C. Graphical results

For better visualization of the results, we overlaid coasts,
brightness temperature images, truth yellow dots, and red area
predictions on a map. In Fig. 5 and Fig. 6, we compared
graphical results obtained at the same moment and day, using
a simple U-Net model and StrikeNet.

Fig. 5 illustrates that forecasted areas are significantly larger
than the actual locations of lightning flashes when using
classical U-Net. While this leads to a high POD, it also results
in an excessively large FAR.

Fig. 6 shows graphical outcomes using StrikeNet. Lightning
forecast areas are smaller and align more closely with actual
flash locations. This results in a 1.5 times reduction in FAR
and a threefold increase in the F1-Score. While this aligns
with expectations, it is important to note that the POD has
decreased as forecasted areas became less extensive.

D. Discussion

Our focus was on disentangling the components of
StrikeNet, and our findings from Table II indicate that the
model’s remarkable efficiency stems from the combination of
morphological blocks, dropout, and soft NMS layers rather
than from these elements taken individually.

Remarkably, within the limited dataset size, all deep net-
works (except DeepLab [4], a model using dilated convolu-
tions and atrous spatial pyramid pooling) accurately predict
isolated strikes on training data. However, this delicate bal-
ance, prone to limited generalization as documented in [8], is
fortified by introducing dropout and morphological operations.
For DeepLab, the challenge deepens due to low-resolution
map architectures, making them almost incapable of predicting
isolated strikes after rescaling.

Figure 5. Graphical results of the forecast (red areas) compared to the truth
(yellow pixels) with U-Net model for the 2023/13/1 at 02:06 UTC.

Figure 6. Graphical results of the forecast (red) compared to the truth (yellow)
with StrikeNet model at the same date as Fig. 5.



Table I
DETAILED EVALUATION METRICS

Metrics Equation Explanations
Precision Precision = TP

TP+FP
Ratio of the well-predicted flashes to the number of predicted flashes. Higher as possible.

POD POD = TP
TP+FN

Ratio of well-predicted flashes to the real number of flashes. Higher as possible.

F1-Score F1− Score = 2 POD∗precision
POD+precision

Harmonic mean between precision and POD. Higher as possible.

FAR FAR = FP
FP+TP

Ratio between the number of false flashes to the number of predicted flashes. Lower as possible.
Bias Bias = TP+FP

TP+FN
Ratio to determine the under or overestimation of the flashes by the network. Nearer to 1 as possible. If
bias < 1, underestimates, if bias > 1, overestimates.

Table II
PERFORMANCES COMPARISON BETWEEN DIFFERENT MODELS

Evaluation metrics
Models Precision POD F1-Score FAR Bias
Persistence 0.83 0.29 0.43 0.17 0.36
DeepLab [4] 0.06 0.82 0.11 0.94 12.55
U-Net [10] 0.095 0.95 0.17 0.91 16.65
U-
Net+dropout

0.13 0.90 0.23 0.87 7.02

U-Net+soft
NMS

0.053 0.96 0.10 0.95 23.65

U-Net+
SRNMSM

0.05 0.96 0.10 0.95 24.60

U-Net+ 5xS-
RNMSM

0.09 0.94 0.16 0.91 14.11

EDDRAP [3] 0.12 0.94 0.21 0.88 10.02
StrikeNet 0.42 0.78 0.54 0.58 1.96

V. CONCLUSION

This paper presents the StrikeNet neural network model,
specifically designed for generating maps predicting the short-
term location of electrical activity. The model incorporates two
types of data, namely brightness temperature maps and flash
position maps captured simultaneously, and takes these data
in a temporal sequence as input.

The study showcases the adaptability of neural networks
for predicting punctual objects in images, leveraging NMS
techniques, residual blocks utilizing morphological features of
the images, and their integration with dropout layers. StrikeNet
yielded compelling outcomes, achieving a lower FAR of
approximately 58 %, a POD of 78 %, and a precision close
to 40 %, resulting in an F1-Score of 54 %. These findings,
in comparison to the utilization of more traditional semantic
segmentation models, mark a significant advancement for this
category of meteorological data.

Future objectives encompass the production of extended
forecasts, spanning up to an hour rather than the next 5 min-
utes. Additionally, we plan to generate forecasts incorporating
risk percentage zones to enhance precision.
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Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.
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