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Abstract

When deriving contextualized word repre-
sentations from language models, a decision
needs to be made on how to obtain one for
out-of-vocabulary (OOV) words that are seg-
mented into subwords. What is the best way
to represent these words with a single vector,
and are these representations of worse quality
than those of in-vocabulary words? We carry
out an intrinsic evaluation of embeddings from
different models on semantic similarity tasks
involving OOV words. Our analysis reveals,
among other interesting findings, that the qual-
ity of representations of words that are split is
often, but not always, worse than that of the
embeddings of known words. Their similar-
ity values, however, must be interpreted with
caution.

1 Introduction

With the appearance of pre-trained language mod-
els (PLMs) such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), there has been an in-
terest in extracting, analyzing, and using contex-
tualized word representations derived from these
models, for example, to understand how well they
represent the meaning of words (Garı́ Soler et al.,
2019) or to predict diachronic semantic change
(Giulianelli et al., 2020).

Most modern PLMs, however, operate at the
subword level—they rely on a subword tokeniza-
tion algorithm to represent their input, like Word-
Piece (Schuster and Nakajima, 2012; Wu et al.,
2016) or Byte Pair Encoding (BPE) (Sennrich
et al., 2016). This way of representing words has
advantages: With a fixed, reasonably-sized vo-
cabulary (OOV), models can account for out-of-
vocabulary words by splitting them into smaller
units. When it comes to obtaining representations
for words, a subword vocabulary implies that not
all words are created equally. Words that have to

be split (‘‘split-words’’) need a special treatment,
different from words that have a dedicated em-
bedding (‘‘full-words’’).

There are reasons to believe that the semantics
of split-words is more poorly represented than
that of full-words. First, it is generally assumed
that longer tokens tend to contain more semantic
information about a word (Church, 2020) because
they are more discriminative. The subword rep-
resentations making up split-words must be able
to encode the semantics of all words they can
be part of. It has also been noted that tokeniza-
tion algorithms tend to split words in a way that
disregards language morphology (Hofmann et al.,
2021), and some of them favor splittings with more
subword units than would be necessary (Church,
2020). In fact, a more morphology-aware seg-
mentation seems to correlate with better results
on downstream NLP tasks (Bostrom and Durrett,
2020).

In this study, we investigate the impact that
word splitting (and how we decide to deal with it)
has on the quality of contextualized word repre-
sentations. We rely on the task of lexical semantic
similarity estimation, which has traditionally been
used as a way of intrinsically evaluating differ-
ent types of word representations (Landauer and
Dumais, 1997; Hill et al., 2015). We set out to an-
swer two main questions:

• What is the best strategy to combine con-
textualized subword representations into a
contextualized word-level representation?

• (Given a good strategy), how does the qual-
ity of split-word representations compare to
that of full-word representations?

We design experiments that allow us to an-
swer these and related questions for BERT and
other English models. Contrary to previous work
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Figure 1: Example of one of our settings where we
calculate the cosine similarity between the represen-
tations of an OOV word and a known word. We
test different ways of creating one embedding for an
OOV word (§4), such as AVG and LNG, on two simi-
larity tasks (§3).

where the quality of the lexicosemantic knowl-
edge encoded in word representations is analyzed
regardless of the words’ tokenization (Wiedemann
et al., 2019; Bommasani et al., 2020; Vulić et al.,
2020), we analyze the quality of the similarity es-
timations for split- and full-words separately, and
do so in an inter-word and a within-word1 sim-
ilarity setting. See Figure 1 for an example of
an experimental setting we consider. We uncover
several interesting, and sometimes unexpected,
tendencies: for example, that when it comes to
polysemous nouns, OOV words are better repre-
sented than in-vocabulary ones, and that similar-
ity values between two split-words are generally
higher than between two full-words. We addi-
tionally contribute a new WordNet-based word
similarity dataset with a large representation of
split-words.2

2 Background

Subword tokenization algorithms were first pro-
posed by Schuster and Nakajima (2012) and be-
came widespread after the adaptation of BPE to
word segmentation (Gage, 1994; Sennrich et al.,
2016). Given a specified vocabulary size, these
algorithms create a vocabulary such that the most
frequent character sequences in a given corpus
can be represented with a single token. Unambig-
uous detokenization (i.e., recovering the original
sequence) can be ensured in different ways. For
example, when BERT’s tokenizer splits an un-
known word into multiple subwords, all but the
first are marked with ‘‘##’’—we will refer to these

1Following Liu et al. (2020)’s terminology.
2https://github.com/ainagari/splitsim.

as ‘‘sub-tokens’’ (as opposed to ‘‘full-tokens’’
which do not start with ‘‘##’’).

Subword tokenization presented itself as a
good compromise between character-level and
word-level models, balancing the trade-off be-
tween vocabulary size and sequence length.
Character-based representations are generally bet-
ter than subword-based models at morphology,
part-of-speech (PoS) tagging, and at handling
noisy input and out-of-domain words; but the lat-
ter are generally better at handling semantics and
syntax (Keren et al., 2022; Durrani et al., 2019;
Li et al., 2021a). Because of these advantages,
most modern PLMs rely on subword tokenization:
BERT uses Wordpiece; RoBERTa, XLM (Conneau
and Lample, 2019), GPT-2 (Radford et al., 2019)
and GPT-3 (Brown et al., 2020) use BPE or some
variant; T5 (Raffel et al., 2020) relies on Sentence-
Piece (Kudo and Richardson, 2018).

Several studies have pointed out that split-
ting words may be detrimental for certain tasks,
especially if segmentation is not done in a linguis-
tically correct way. Bostrom and Durrett (2020)
compare two subword tokenization algorithms,
BPE and unigramLM (Kudo, 2018), and find
that the latter, which aligns better with mor-
phology, also yields better results on question
answering, textual entailment, and named en-
tity recognition. Work on machine translation has
shown benefits from using linguistically informed
tokenization (Huck et al., 2017; Mager et al.,
2022) as well as algorithms that favor segmen-
tation into fewer tokens (Gallé, 2019). In fact,
Rust et al. (2021) note that multilingual BERT’s
(mBERT) tokenizer segments much more in some
languages than others, and they demonstrate that
a dedicated monolingual tokenizer plays a cru-
cial role in mBERT’s performance on numerous
NLP tasks. Similarly, Mutuvi et al. (2022) show
that increased fertility (i.e., the average number
of tokens generated for every word) and number
of split-words correlate negatively with mBERT’s
performance on epidemiologic watch through mul-
tilingual event extraction. However, the effect
that (over)splitting words—or doing so disregard-
ing their morphology—has on similarity remains
unclear.

Nayak et al. (2020) explore a similar question
to ours using the BERT model, but compare the
similarity between a word representation and their
sub-token counterpart (e.g., night with ##night).
We argue, however, that even if they represent
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the same string, sub-tokens and full-tokens have
different distributions and the similarity between
them is not necessarily expected to be high.3 Their
experiments additionally involve a modification
of the tokenizer. We instead compare representa-
tions of whole words using the models’ default
tokenization, and we work with representations of
words extracted from sentential contexts and not
in isolation.

Multiple approaches have been proposed to im-
prove on the weak aspects of vanilla subword
tokenization, such as the representation of rare,
out-of-domain, or misspelled words (Schick and
Schütze, 2020b; Hong et al., 2021; Benamar et al.,
2022), and its concurrence with morphological
structure (Hofmann et al., 2021). Hofmann et al.
(2022) devise FLOTA, a simple segmentation
method that can be used with pre-trained models
without the need for re-training a new model or
tokenizer. It consists in segmenting words prior-
itizing the longest substrings available, omitting
part of the word in some cases. FLOTA was
shown to match the actual morphological seg-
mentation of words more closely than the default
BERT, GPT-2, and XLNet tokenizers, and yielded
an improved performance on a topic-based text
classification task. El Boukkouri et al. (2020) pro-
pose CharacterBERT, a modified BERT model
with a character-level CNN intended for building
representations for complex tokens. The model
improves BERT’s performance on several tasks on
the medical domain. We test the FLOTA method
and the CharacterBERT model in our experiments
to investigate their advantages when it comes to
lexical semantic similarity.

The split-words in our study are existing
words—we do not include misspelled terms—
with a generally low frequency. There has been
extensive work in NLP focused on improving
representations of rare words, which are often in-
volved in lower-quality predictions than those
of more frequent words (Luong et al., 2013;
Bojanowski et al., 2017; Herbelot and Baroni,
2017; Prokhorov et al., 2019), also in BERT
(Schick and Schütze, 2020b). Our goal is not to
study the quality of rare word representations per
se, but rather the effect of the splitting procedure
on the quality of similarity estimates. Given the

3For example, in hitchhiking (tokenized {hitch, ##hi,
##king}, ##king is not semantically related to the word king.

strong link between splitting and frequency, we
also include an analysis controlling for this factor.

3 Similarity Tasks and Data

We evaluate the representations’ lexical seman-
tic content on two similarity tasks. In this section
we describe the creation of an inter-word simi-
larity dataset (§3.1) as well as the dataset used in
our within-word similarity experiments (§3.2).

3.1 Inter-word: The SPLIT-SIM Dataset

We want a dataset annotated with inter-word sim-
ilarities which allows us to compare similarity
estimation quality in three different scenarios:
when no word in a pair is split (0-SPLIT), when
only one word in a pair is split (1-SPLIT), and when
the two words are split (2-SPLIT). We refer to these
situations, defined according to a given token-
izer, as ‘‘split-types’’.

Factors Affecting Similarity It is well known
that, even in out-of-context (OOC) settings (i.e.,
when comparing word types and not word in-
stances), BERT similarity predictions are more
reliable when obtained from a context instead
of in isolation (Vulić et al., 2020). However, as
shown in Garı́ Soler and Apidianaki (2021), rep-
resentations reflect the sense distribution found
in the contexts used as well as the words’ de-
gree of polysemy. Additionally, it is desirable
to take PoS into account, because the quality
of similarities obtained with BERT varies across
PoS (Garı́ Soler et al., 2022). To control for all
these factors affecting similarity estimates, we
conduct separate analyses for words of different
nature: monosemous nouns (M-N), monosemous
verbs (M-V), polysemous nouns (P-N), and polyse-
mous verbs (P-V). The number of senses of a word
with a specific PoS is determined with WordNet
(Fellbaum, 1998).

Limitations of Existing Datasets Existing
context-dependent (i.e., not OOC) inter-word sim-
ilarity datasets, like CoSimLex (Armendariz et al.,
2020) and Stanford Contextual Word Similar-
ity (SCWS) (Huang et al., 2012) do not have a
large enough representation of split-words: With
BERT’s default tokenization, 97% and 85% of
inter-word pairs, respectively, are of type 0-SPLIT.
OOC word similarity datasets do not meet our cri-
teria either. In Simlex-999 (Hill et al., 2015) and
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WS353 (Agirre et al., 2009), 96% and 95% pairs
are 0-SPLIT. CARD-660 (Pilehvar et al., 2018),
which specifically targets rare words, has a better
distribution of split-types, but it contains a large
number of multi-word expressions (MWEs) and
lacks PoS information. The Rare Word (RW)
dataset (Luong et al., 2013) is also specialized on
rare words and has a larger coverage of 1- and
2-SPLIT pairs, but we do not use it because of its
low inter-annotator agreement and problems with
annotation consistency described in Pilehvar et al.
(2018).

Therefore, and since it is more convenient to
obtain similarity annotations out-of- rather than
in-context, we create a dataset of OOC word sim-
ilarity, SPLIT-SIM. It consists of four separate sub-
sets, one for each type of word. Each subset has
a balanced representation of split-types.

Word Selection and Sentence Extraction We
use WordNet to create SPLIT-SIM. We first iden-
tify all words in WordNet which are not MWEs,
numbers or proper nouns, and which are at least
two characters long. After this filtering, we find
28,563 monosemous nouns, 12,903 polysemous
nouns, 3,888 monosemous verbs, and 4,518 poly-
semous verbs.

We search for sentences containing these words
in the c4 corpus (Raffel et al., 2020), from which
we will derive contextualized word represen-
tations. We postag sentences using nltk (Bird
et al., 2009).4 Importantly, we only select sen-
tences that contain the lemma form of a word with
the correct PoS. This ensures that a word will
be tokenized in the same way (and belong to the
same split-type) in all its contexts, and avoids
BERT’s word form bias (Laicher et al., 2021). We
only keep words for which we could find at least
ten sentences that are between 5 and 50 words
long. If we found more, we randomly select 10
sentences among the first 100 occurrences found.

Pair Creation We rely on WUP (Wu and Palmer,
1994), a Wordnet-based similarity measure, as our
reference similarity value. WUP similarity takes
into account the depth (the path length to the root
node) of the two senses to be compared (s1 and

4nltk offers a good speed/accuracy trade-off compared
with SpaCy, Flair (Akbik et al., 2019), stanza (Qi et al., 2020)
and the RDRPOSTagger (Nguyen et al., 2014). The agree-
ment between the nltk and SpaCy tags for the target words
in our final set of selected sentences is of 89.8%.

Dataset PoS ρ # pairs

Simlex-999
n 0.55 666
v 0.39 162

WS353
n 0.64 201
v 0.10 29

CARD-660
n 0.64 170
v 0.50 20

RW
n 0.24 910
v 0.25 681

Table 1: Spearman’s ρ between WUP similarity
and human judgments from existing word simi-
larity datasets.

s2), as well as of their ‘‘least common subsumer’’
(LCS). In general, the deeper LCS is, the higher
the similarity between s1 and s2.5

WUP similarities are only available for nouns
and verbs. It is important to note that similarities
for the two PoS follow slightly different distribu-
tions, which is another reason for keeping them
separate. We choose WUP over other WordNet-
based similarity measures like LCH (Leacock et al.,
1998) and path similarity because it conveniently
ranges from 0 to 1 and its distribution aligns with
the intuition that most randomly obtained pairs
would have a low semantic similarity.6 WUP is
not as good as human judgments, but it correlates
reasonably well with them (Yang et al., 2019a).
Table 1 shows the measure’s correlation with
manual similarity judgments by PoS. We con-
sider it to be a good enough approximation for
our purposes of comparing performance across
split-types and representation strategies. For an
alternative non-Wordnet-based similarity metric
to compare to WUP, we also use the similarity of
FastText embeddings (Bojanowski et al., 2017) as
a control.

We exhaustively pair all words in each subset
and calculate their WUP similarity. We select a
portion of all pairs ensuring that the full spec-
trum of similarity values is represented: For each
split-type, we randomly sample the same number
of word pairs in each 0.2-sized similarity score

5Since WUP is a sense similarity measure, we define the
similarity of two polysemous words to be the highest simi-
larity found between all possible pairings of their senses.

6We observed the distribution of similarity values of the
three measures on a random sample of 2,000 lemmas. Simi-
larities are calculated using nltk.
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M-N M-V P-N P-V
fu

ll
B

E
R

T 0-SPLIT 22,500 850 5,000 5,000
1-SPLIT 22,500 850 5,000 5,000
2-SPLIT 22,500 850 5,000 5,000

X
L

N
et 0-SPLIT 12,166 644 3,642 5,610

1-SPLIT 25,490 1,033 6,009 6,006
2-SPLIT 29,844 873 5,349 3,384
Total 67,500 2,550 15,000 15,000

ba
la

nc
ed B

E
R

T 0-SPLIT 7,387 122 572 240
1-SPLIT 3,873 119 973 687
2-SPLIT 1,915 146 1,553 1,776

X
L

N
et 0-SPLIT 2,491 74 317 563

1-SPLIT 5,992 165 1,149 1,270
2-SPLIT 4,692 148 1,632 870
Total 13,175 387 3,098 2,703

Table 2: Composition of the SPLIT-SIM dataset (full
and balanced versions) according to two different
tokenizers.

Word pairs Split-type WUP

{accordion} {guitar} 0-SPLIT 0.80

{tom, ##fo, {loaf, ##ing} 2-SPLIT 0.63
##ole, ##ry}
{ethanol} {fuel} 0-SPLIT 0.46

{ash, ##tray} {weather} 1-SPLIT 0.24

Table 3: Example word pairs from SPLIT-SIM (M-N

subset) with their BERT tokenization.

interval. Due to data availability this number is
different for each subset. For the creation of the
dataset, the split-type is determined using BERT’s
default tokenization. Table 2 contains statistics on
the full dataset composition. Example pairs from
the dataset can be found in Table 3.

Controlling for Frequency In our experiments
we also want to control for frequency, since split-
words tend to be more rare than full-words. We
calculate the frequencies of words in SPLIT-SIM

with the wordfreq Python package (Speer,
2022) and report them in Table 4. Frequencies
are low overall, especially those of monosemous
split-words. To mitigate the potential effect of
frequency differences, we find the narrowest pos-
sible frequency range that is still represented with
enough word pairs in every split-type. We deter-

M-N M-V P-N P-V

fu
ll

0-SPLIT 3.75 3.99 4.09 4.30
1-SPLIT 2.66 2.93 3.15 3.27
2-SPLIT 1.54 1.81 2.18 2.25

ba
la

nc
ed 0-SPLIT 3.35 3.38 3.43 3.51

1-SPLIT 3.04 3.09 3.14 3.19
2-SPLIT 2.72 2.81 2.84 2.90

Table 4: Average frequencies in each SPLIT-SIM sub-
set (BERT tokenization). Values are the base-10
logarithm of the number of times a word appears
per billion words. For reference, the frequencies
of can, dog, oatmeal and myxomatosis are 6.46,
5.10, 3.37, and 1.61.

mine this range to be [2.25, 3.75). We create a
smaller version of SPLIT-SIM, which we call ‘‘bal-
anced’’, with pairs that include only words within
this frequency interval. Another aspect to take into
account is that of the difference in frequencies of
words in a pair, what we call Δf . Δf is highest
in 1-SPLIT pairs (up to 2.19 in M-V compared to
0.67 in the corresponding 0-SPLIT), but it is much
lower overall in the balanced dataset because of
the narrower frequency range.

3.2 Within-word

Similarly to the inter-word setting, for within-
word similarity we want to distinguish between
0-, 1- and 2-SPLIT pairs. An important factor that
can influence within-word similarity estimations
is whether pairs compare the same word form
(SAME) or different morphological forms of the
word (DIFF). 1-SPLIT pairs are all necessarily of
type DIFF,7 but 0- and 2-SPLIT pairs can be of either
type (e.g., {carry} vs {carries}; {multi, ##ply} vs
{multi, ##ply, ##ing}).

We choose the Word-in-Context (WiC) dataset
(Pilehvar and Camacho-Collados, 2019) for its
convenient representation of all split-types. WiC
contains pairs of word instances that have the same
(T) or a different (F) meaning. We use the train-
ing and development sets, whose labels (which
are taken as a reference) are publicly available.
They consist of a total of 6,066 pairs that we
rearrange for our purposes. We use as training
data all 0-SPLIT pairs found in the original train-
ing set. For evaluation we use the 0-SPLIT pairs

7Except for XLNet, which is a cased model.
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Training Evaluation

0-SPLIT 0-SPLIT 1-SPLIT 2-SPLIT
B

E
R

T

All 5,104 479 117 366
SAME 3,388 312 0 274
DIFF 1,716 167 117 92
T 2,464 228 72 269
F 2,640 251 45 97
Lemmas 1,043 445 102 288

X
L

N
et

All 4,648 415 502 501
SAME 3,144 292 142 396
DIFF 1,504 123 360 105
T 2,272 203 222 336
F 2,376 212 280 165
Lemmas 944 387 291 351

Table 5: WiC statistics: Number of word pairs
of different types and number of unique lemmas
with different tokenizers.

in the original development set, and all 1-SPLIT

and 2-SPLIT pairs found in both sets. Table 5 con-
tains details about the composition of the dataset,
such as the proportion of T and F labels. Note that,
again, numbers differ depending on the tokenizer
used (BERT’s or XLNet’s).

WiC is smaller than SPLIT-SIM and offers a less
controlled, but more realistic, environment. For
example, 2-SPLIT pairs involve words with low
frequency and few senses, which results in an
overrepresentation of T pairs in this class. We
did not use other within-word similarity datasets
such as Usim (Erk et al., 2009, 2013) or DWUG
(Schlechtweg et al., 2021), because they contain a
small number of 1- and 2-SPLIT pairs (91 and 4 in
Usim), or these involve very few distinct lemmas
(14 and 12 in DWUG).

4 Experimental Setup

4.1 Models

We run all our experiments with representations
extracted from the BERT (base, uncased) model in
the transformers library (Wolf et al., 2020)
and the general CharacterBERT model
(hereafter CBERT).8 The two are trained on a com-
parable amount of tokens (3.3B and 3.4B, respec-
tively) which include English Wikipedia. BERT

8https://github.com/helboukkouri/character
-bert.

is also trained on BookCorpus (Zhu et al., 2015),
and CBERT on OpenWebText (Gokaslan and
Cohen, 2019). For comparison, we also include
ELECTRA base (Clark et al., 2020) and XLNet
(base, cased)9 (Yang et al., 2019b) in our analysis.
ELECTRA is trained on the same data as BERT
and uses exactly the same architecture, tokenizer,
and vocabulary (30,522 tokens), but is trained
with a more efficient discriminative pre-training
approach. XLNet relies on the SentencePiece
implementation of UnigramLM and has a 32,000
token vocabulary. It is a Transformer-based
model pre-trained on 32.89B tokens with the
task of Permutation Language Modeling. We
choose these models because they are newer and
better than BERT (e.g., on GLUE (Wang et al.,
2018) among other benchmarks) and because of
their wide use. XLNet allows us to investigate
the effect of word splitting in models relying
on different tokenizers. We experiment with all
layers of the models. In inter-word experiments, a
word representation is obtained by averaging the
contextualized word representations from each of
the 10 sentences.

4.2 Input Treatment

Here we describe the different ways in which
input data is processed before feeding it to the
models.

Tokenization We use the model’s default tok-
enizations. We additionally experiment with the
FLOTA tokenizer (Hofmann et al., 2022) used
in combination with BERT. FLOTA has a hy-
perparameter controlling the number of iterations,
k ∈ N. With lower k, portions of words are more
likely to be omitted. We set k to 3 as it obtained
the best results on text classification (Hofmann
et al., 2022).

Lemmatization In the WiC dataset, the word
instances to be compared may have different sur-
face forms. One way of restricting the influence
of word form on BERT representations is through
lemmatization (Laicher et al., 2021). We replace
the target word instance with its lemma before
extracting its representation. We refer to this set-
ting as LM. This procedure is not relevant for

9The cased and uncased versions of a word may be
split differently. To avoid inconsistencies in the definition of
split-types in SPLIT-SIM, target words are presented in lower
case exclusively.
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BERT BERT-FLOTA CBERT ELECTRA XLNet
AVG WAVG LNG AVG WAVG LNG – AVG WAVG LNG AVG WAVG LNG

M-N 386 386 318 355 356 308 4010 395 405 355 4110 424 424
M-V 3311 3311 3112 2712 2812 2512 313 345 353 285 364 374 374
P-N 3310 3410 2912 2810 2810 2612 2910 348 356 327 3510 3610 375
P-V 3010 3012 2812 2412 2412 2112 2510 278 288 267 297 316 334

Table 6: Spearman’s ρ (× 100) obtained on SPLIT-SIM with different representation types and strate-
gies. Subscripts denote the best layer. The best result on each subset is boldfaced.

SPLIT-SIM, where all instances are already in lemma
form.

4.3 Split-words Representation Strategy
We compare different strategies for pooling a
single word embedding from the representations
of a split-word’s multiple subwords.

Average (AVG) The embeddings of every sub-
word forming a word are averaged to obtain
a word representation. This is the most com-
monly used strategy when representing split-
words (Wiedemann et al., 2019; Garı́ Soler et al.,
2019; Liu et al., 2020; Montariol and Allauzen,
2021, inter alia). Bommasani et al. (2020) tested
max, min, and mean pooling as well as using
the representation of the last token. We only use
mean pooling (AVG) from their work because they
found it to work best for OOC word similarity.

Weighted Average (WAVG) A word is repre-
sented with a weighted average of all its subword
representations. Weights are assigned according
to word length. For example, a subword that
makes up 70% of a word’s characters is weighted
with 0.7.

Longest (LNG) Only the representation of the
longest subword is used. This approach, as WAVG,
accounts for the intuition that longer pieces carry
more information about the meaning of a word.

4.4 Prediction and Evaluation
The similarity between two words or word in-
stances is calculated as the cosine similarity be-
tween their representations. For experiments on
SPLIT-SIM, the evaluation metric is Spearman’s
ρ. For within-word experiments, we train a lo-
gistic regression classifier that uses the cosine
between two word instance representations as its
only feature. We evaluate the classifier based on
its accuracy.

5 Results and Analysis

In this section we analyze the results obtained
on the SPLIT-SIM (§5.1) and WiC (§5.2) datasets.

5.1 Inter-word

We start with a look at the results of each method
on each SPLIT-SIM subset as a whole. The rest of
this section is organized around the main ques-
tions we aim to answer.

Table 6 presents the correlations obtained by
different representation types and strategies on
the full dataset. We report the highest correlation
found across all layers. The best model on all
subsets is clearly XLNet with the LNG or WAVG
strategies. ELECTRA (with WAVG) is the second
best one on most subsets. Correlations obtained
against FastText cosine similarities reflect, with
few exceptions, the same tendencies observed in
this section (results are presented in Appendix A).

5.1.1 What Is the Best Strategy to Represent
Split-words?

Table 7 shows the Spearman’s correlations ob-
tained by different pooling methods on the three
split-types. The best layer is selected separately
for each split-type, model, and strategy. We can
see that the best strategy for each model tends
to be stable across datasets. AVG is the preferred
strategy overall, followed by WAVG, which, in
ELECTRA and XLNet, performs almost on par
with AVG. Using the longest subword (LNG) re-
sults in a considerably lower performance across
models and data subsets, presumably because
some important information is excluded from the
representation. CBERT obtains good results (com-
parable or better than BERT) on monosemous
nouns (M-N), but on other kinds of words it gen-
erally lags behind.
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BERT BERT-FLOTA CBERT ELECTRA XLNet
AVG WAVG LNG AVG WAVG LNG – AVG WAVG LNG AVG WAVG LNG

M-N

0-S 49 49 48 48 51
1-S 41* 38* 28* 35* 33* 26* 41* 42* 40* 35* 46* 46* 44*
2-S 43* 40* 26* 34* 32* 23* 47 45* 43* 31* 46* 45* 39*

M-V
0-S 43 43 39 42 50
1-S 33* 33* 26* 23* 23* 19* 28* 36 36 26* 34* 34* 32*
2-S 41 40 32* 25* 25* 23* 35 36 38 28* 39* 37* 35*

P-N

0-S 38 38 31 32 38
1-S 38 35 28* 32* 30* 24* 31 38* 37* 34 39 38 37
2-S 41* 37 25* 29* 27* 20* 43* 45* 44* 36* 45* 43* 39

P-V
0-S 37 37 31 34 37
1-S 34* 33* 25* 26* 23* 18* 25* 30* 30* 27* 35 33* 32*
2-S 33* 31* 24* 16* 15* 14* 31 31* 32 26* 34 33* 31*

Table 7: Spearman’s ρ (× 100) on SPLIT-SIM (full). The best result by subset, split-type, and model is
boldfaced. The best overall result in every subset and split-type is underlined. * indicates that a 1- or
2-SPLIT correlation coefficient is significantly different (α < 0.05) from the corresponding 0-SPLIT result
(Sheskin, 2003).

AVG WAVG LNG
COM INCM COM INCM COM INCM

M-N
1-S 36 30 33 30 26 30
2-S 31 41 29 40 20 28

M-V
1-S 22 25 23 22 20 03
2-S 23 32 24 31 22 27

P-N
1-S 33 22 30 29 24 21
2-S 30 24 28 24 21 17

P-V
1-S 26 16 24 09 19 −02
2-S 17 09 17 07 15 07

Table 8: Results obtained with FLOTA tokeniza-
tion on pairs where words were fully preserved
(COM) and where at least one word had a portion
omitted (INCM).

FLOTA Performance The use of the FLOTA
tokenizer systematically decreases BERT’s per-
formance. We believe there are two main reasons
behind this outcome: First, that similarly to LNG,
FLOTA sometimes10 omits parts of words. We
investigate this by comparing its performance on
pairs where both words were left complete (COM)
to that on pairs where some word is incomplete
(INCM). We present results in Table 8. We observe
that, indeed, in most cases, performance is worse
when parts of words are omitted. However, this is

10With FLOTA, 9.8% to 20.8% of 1- and 2-SPLIT pairs (de-
pending on the dataset) have at least one incomplete word.

not the only factor at play, since the performance
on COM is still lower than when using BERT’s
default tokenizer. The second reason, we believe,
is that FLOTA tokenization differs from the to-
kenization used for BERT’s pretraining. FLOTA
was originally evaluated on a supervised text clas-
sification task (Hofmann et al., 2022), while we do
not fine-tune the model for similarity estimation
with the new tokenization. Additionally, classi-
fication was done relying on a sequence-level
token representation (e.g., [CLS] in BERT). It
is possible that FLOTA tokenization provides
an advantage when considering full sequences
which does not translate to an improvement in the
similarity between individual word token repre-
sentations. Given its poor results compared with
BERT, in what follows, we omit FLOTA from our
discussion.

5.1.2 Is Performance on Pairs Involving
Split-words Worse Than on 0-SPLIT?

In Table 7 we can see that, as expected, in most
subsets (M-N, M-V, and P-V), performance is worse
in pairs involving split-words. This is, however,
not true of polysemous nouns (P-N), where simi-
larities obtained with all models are of better or
comparable quality on 1- and 2-SPLIT pairs. With
CBERT, performance on 2-SPLIT pairs is never
significantly lower than on 0-SPLIT pairs.

Lower Correlation of Polysemous Words
Correlations obtained on polysemous words are
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overall lower than on monosemous words, partic-
ularly so in the 0-SPLIT case. Worse performance on
polysemous words can be expected for two main
reasons. First, WUP between polysemous words is
determined as the maximum similarity attested
for all their sense pairings, while cosine similarity
takes into account all the contexts provided as well
as the accumulated lexical knowledge about the
word contained in the representation. Second, the
specific sense distribution found in the randomly
selected contexts may also have an impact on the
final results (particularly if, e.g., the relevant sense
for the comparison is missing).

1-SPLIT vs 2-SPLIT Another interesting observa-
tion is that, in most cases, performance on 1-SPLIT

pairs is lower than on 2-SPLIT pairs. We identify
two main factors that explain this result. One is
the fact that in 1-SPLIT, the words in a pair are
represented using different strategies (the plain
representation vs {AVG|WAVG|LNG}). In fact,
exceptions to this observation concern almost ex-
clusively the LNG pooling strategy. LNG does not
involve any arithmetic operation, which makes
the representations of the split- and full-word in a
1-SPLIT pair more comparable to each other. An-
other explanation is the difference in frequency
between words (Δf ), which tends to be larger in
1-SPLIT than in 0- and 2-SPLIT pairs. We explore
this possibility in our frequency analysis below.

In the remaining inter-word experiments, we
focus our observations on the better (and simpler)
AVG strategy.

5.1.3 Frequency-related Analysis

As explained in Section 3.1, frequency and word-
splitting are strongly related. The experiments
presented in this section help us understand how
the tendencies observed so far are linked to or
affected by word frequency.

Controlling for Frequency The lower correla-
tions obtained in 1- and 2-SPLIT pairs in most sub-
sets could simply be due to the lower frequency
of split-words, and not necessarily to the fact that
they are split. To verify this, we evaluate the mod-
els’ predictions on word pairs found in the bal-
anced SPLIT-SIM. Results are presented in Table 9.
When comparing 0-SPLIT pairs to pairs involving

BERT CBERT ELECTRA XLNet

M-N

0-S 52 52 53 57
1-S 47* 49* 49* 53*
2-S 44* 47* 48* 49*

M-V
0-S 53 54 60 71
1-S 39 32* 31* 46*
2-S 42 32* 40* 36*

P-N

0-S 39 41 44 47
1-S 45 46 46 48
2-S 41 40 44 42

P-V
0-S 46 46 46 48
1-S 39 37 44 46
2-S 39 35* 40 40*

Table 9: Spearman’s ρ (× 100) on SPLIT-SIM (bal-
anced), AVG strategy. The best result by subset
and model is boldfaced. * indicates that a 1-
or 2-SPLIT correlation coefficient is significantly
different from the corresponding 0-SPLIT result
(Sheskin, 2003).

split-words, we observe the same tendencies as
in the full version of SPLIT-SIM: For monosemous
words and polysemous verbs, word splitting has
a negative effect on word representations. There
are, however, some differences in the significance
of results, particularly in P-V, due in part to the
much smaller sample size of this dataset.

It is important to note that split-types are
strongly defined and determined by word fre-
quency. In natural conditions (i.e., without
controlling for frequency), we expect to encounter
the patterns found in Table 7.

The Effect of Δf In Table 9, we can see that, in
a dataset with lower and better balanced Δf val-
ues, 1-SPLIT pairs are no longer at a disadvantage
and obtain results that are most of the time supe-
rior to those of 2-SPLIT pairs. We run an additional
analysis to study the effect of different Δf . We
divide the pairs in each subset and split-type ac-
cording to whether their Δf is below or above
a threshold t = 0.25, ensuring that all sets com-
pared have at least 100 pairs. Results, omitted for
brevity, show that pairs with lower Δf obtain al-
most systematically better results than those with
higher Δf . This confirms that a disparity in the
frequency levels of the words compared also has
a negative effect on similarity estimation.
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BERT CBERT ELECTRA XLNet
L H L H L H L H

M-N

0-S 52 52 51 51 52 51 59 53
1-S 44 49 45 51 47 51 54 47
2-S 47 42 54 45 49 46 52 47

P-N

0-S 36 43 38 40 39 40 40 42
1-S 45 45 47 44 45 48 51 37
2-S 43 42 52 40 50 45 48 43

P-V
0-S 40 39 39 38 41 39 48 38
1-S 47 39 39 42 48 44 44 38
2-S 36 40 41 38 36 41 41 39

Without context

M-N

0-S 37 43 44 46 45 49 58 51
1-S 24 29 39 42 30 32 31 32
2-S 29 28 36 36 32 27 32 29

P-N

0-S 14 29 32 36 19 36 33 34
1-S 25 27 40 35 25 32 28 23
2-S 22 28 35 34 26 25 23 21

P-V
0-S 29 34 29 32 36 41 44 38
1-S 34 18 41 33 29 21 23 25
2-S 19 27 31 34 15 31 22 25

Table 10: Results on pairs with low (L) and high
(H) frequency using 10 (top) and no (bottom)
contexts.

The Effect of Frequency on Similarity Esti-
mation To investigate how estimation quality
varies with frequency, we divide the data in
every subset and split-type into two sets, L (low)
and H (high), based on individually determined
frequency thresholds. Using different thresholds
does not allow us to fairly compare across data
subsets and split-types but ensures that both
classes (L and H) are always well-represented and
balanced. The frequency of a word pair is calcu-
lated as the average frequency of the two words
in it. To prevent L and H from containing pairs
of similar frequency, their thresholds are apart by
0.25. We only include pairs with a Δf of at most
1. M-V is excluded from this analysis because of
its small size.

Table 10 (top section) shows results of this anal-
ysis. Very often, correlations are higher on the sets
of pairs with lower average frequency (L). This is
surprising, because, as explained in Section 2, rare
words are typically problematic in NLP. Works

investigating the representation of rare words in
BERT, however, either test it through prompt-
ing (Schick and Schütze, 2020b), on ‘‘rarified’’
downstream tasks (Schick and Schütze, 2020a), or
on word similarity but without providing contexts
(Li et al., 2021b). We believe the observed result
is due to a combination of multiple factors, both
contextual and lexical. First, the contexts used to
extract representations provide information about
the word’s meaning. If we compare results to a
setting where words are presented without context
(lower part of Table 10), the tendency is indeed
softened, but not completely reversed, meaning
that context alone does not fully explain this re-
sult. Lower frequency words are also more often
morphologically complex than higher frequency
ones. This is the case in our dataset.11 In the case of
split-words, morphological complexity may be an
advantage that helps the model understand word
meaning through word splitting. Another factor
contributing to this result may be the degree of
polysemy. We have seen in Table 7 that simi-
larity estimation tends to be of better quality on
monosemous words than on polysemous words.
However, a definite explanation of the observed
results would require additional analyses which
are beyond the scope of this study.

5.1.4 Further Analysis

How Do Results Change Across Layers for
Every Split-type? Figure 2 shows the BERT
AVG performance on each split-type of every sub-
set across model layers. In M-N, M-V, and P-V we
observe that at earlier layers the quality of the sim-
ilarity estimations involving split-words is lower
than that of 0-SPLIT pairs. However, as informa-
tion advances through the network and the context
is processed, their quality improves at a higher
rate than that of 0-SPLIT, which remains more sta-
ble. This suggests that split-words benefit from
the contextualization process taking place in the
Transformer layers more than full-words. This
makes sense, since sub-tokens are highly ambigu-
ous (i.e., they can be part of multiple words), so
more context processing is needed for the model
to represent their meaning well. In a similar vein,
the initial advantage of 0-SPLIT pairs is more pro-
nounced in monosemous words, which is expected

11We verify this with the MorphoLEX (Sánchez-Gutiérrez
et al., 2018) and LADEC (Gagné et al., 2019) databases.
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Figure 2: BERT AVG results by layer and split-type
on every SPLIT-SIM subset.

as context is less crucial for understanding their
meaning. In P-N, the situation is different: 0-SPLIT

pairs behave in a similar way as 1- and 2-SPLIT

pairs from the very first layers. We verify whether
this could be due to non-split polysemous nouns in
P-N being particularly ambiguous. We obtain their
number of senses and we also check how many
split-words in WordNet they are part of following
BERT’s tokenization (e.g., the word ‘‘station’’
is part of {station, ##ery}). These figures, how-
ever, are higher in P-V, so this hypothesis is not
confirmed.

We also note that performance for the different
split-types usually peaks at different layers. This
highlights the need to carefully select the layer to
use depending on the word’s tokenization.

The same tendencies are observed with ELEC-
TRA and XLNet. In CBERT, results are much
more stable across layers.

Is a Correct Morphological Segmentation Im-
portant for the Representations’ Semantic
Content? As explained in Section 2, the mor-
phological awareness of a tokenizer has a positive
effect on results in NLP tasks. Here we verify
whether it is also beneficial for word similarity
prediction. We use MorphoLex, a database con-
taining morphological information (e.g., segmen-
tation into roots and affixes) on 70,000 English
words. We consider that a split-word in SPLIT-SIM

is incorrectly segmented if one or more of the
roots of the word have been split (e.g., saltshaker:

M-N P-N P-V
1-S 2-S 1-S 2-S 1-S 2-S

BERT
COR 47 35 39 52 34 48
INC 44 40 36 38 35 32

CBERT
COR 41 38 27 36 28 54
INC 43 43 31 41 26 30

ELECTRA
COR 46 51 41 57 28 50
INC 44 43 37 41 31 30

XLNET
COR 52 58 40 51 42 44
INC 47 43 38 42 35 33

Table 11: Spearman’s ρ (× 100) on pairs with an
incorrectly segmented word (INC) and pairs where
the root(s) of both words are preserved (COR).

{salts, ##hak, ##er}).12 We compare the perfor-
mance on word pairs involving an incorrectly
segmented word (INC) to that of pairs where the
root(s) are fully preserved in both words (COR),
regardless of whether the tokens containing the
root contain other affixes (e.g., {marina, ##te}).
Note that MorphoLex does not fully cover the
vocabulary in SPLIT-SIM.13 We exclude M-V from
this analysis because of the insufficient amount of
known COR pairs (4 in 2-SPLIT following BERT’s
tokenization). All other comparisons involve at
least 149 pairs. Results are presented in Table 11.
They confirm that, in subword-based models,
when tokenization aligns with morphology, rep-
resentations are almost always of better quality
than when it does not. The results obtained with
CBERT, evaluated according to BERT’s tokeni-
zation, highlight that the same set of INC pairs is
not necessarily harder to represent than COR for a
model that does not rely on subword tokenization.

Do Similarity Predictions Vary Across Split-
types? In Figure 3 we show the histogram of
similarities calculated with BERT AVG using the
best overall layer (cf. Table 6). We observe that
similarity values are found in different, though
overlapping, ranges depending on the split-type.

12We do not base the definition of an incorrectly seg-
mented word on the preservation of affixes because the seg-
mentation in MorphoLex contains versions of affixes that
do not always match the form realized in the word (e.g.,
sporadically = sporadic + ly).

13Its coverage ranges between 38% and 76% of words
depending on the subset.
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Figure 3: Distribution of predicted similarity values by
BERT (AVG) across split-types in SPLIT-SIM.

2-SPLIT pairs exhibit a clearly higher average sim-
ilarity than 0- and 1-SPLIT pairs. Similarities in
1-SPLIT tend to be the lowest, but the difference
is smaller. This does not correspond to the dis-
tribution of gold WUP similarities, which, due to
our data collection process, does not differ across
split-types. A possible partial explanation is that
sub-token (##) representations are generally closer
together because they share distributional prop-
erties.14 The same phenomenon is found in all
models tested (ELECTRA, XLNet, and CBERT),
but is less pronounced in nouns in XLNET.

This observation has important implications for
similarity interpretation, and it discourages the
comparison across split-types even when consid-
ering words of the same degree of polysemy and
PoS. A similarity score that may be considered
high for one split-type may be just average for
another.

Does the Number of Subwords Have an Impact
on the Representations’ Semantic Content?
We saw in Section 2 that oversplitting words has
negative consequences on certain NLP tasks. We
investigate the effect that the number of subwords
has on similarity predictions. We depart from the
hypothesis that the more subwords a word is split
into, the worse the performance will be. This is
based on the intuition that shorter subwords are

14We indeed find that, in BERT’s embedding layer, sim-
ilarity between random sub-tokens is slightly higher (0.46)
than between full-tokens or in mixed pairs (0.44 in both
cases).

BERT ELECTRA XLNet
− + − + − +

M-N
1-S 41 42 42 42 48 45
2-S 37 49 44 48 46 49

M-V
1-S 33 36 37 36 37 32
2-S 35 51 31 44 35 42

P-N
1-S 38 37 40 34 38 39
2-S 42 42 46 44 49 44

P-V
1-S 32 36 28 31 35 35
2-S 34 31 32 30 35 36

Table 12: Spearman’s ρ (× 100) obtained on
SPLIT-SIM pairs tokenized into few (−) or many (+)
subwords.

not able to encode as much lexical semantic infor-
mation as longer ones. We count the total number
of subwords in each word pair and re-calculate
correlations separately on sets of word pairs with
few (−) or many (+) subwords. In 1-SPLIT, ‘‘−’’
is defined as 3 subwords and in 2-SPLIT, as 5 or
less. We make sure that every set contains at least
1,000 pairs. Results are presented in Table 12.
Our expectations are only met in about half of the
cases, particularly in P-N. Surprisingly, similarity
estimations from BERT tend to be more accurate
when words are split into a larger number of to-
kens, even though the tokenization in + is more
often morphologically incorrect than in −. Results
from other models are mixed.

Since only the first subword in a split-word
is a full-token (i.e., does not begin with ## in
BERT), one difference between words split into
few or many pieces is the ratio of full-tokens to
sub-tokens. When using theAVG strategy, on ‘‘−’’
split-words, the first subword (a sub-token) has a
large impact on the final representation, which is
reduced as the number of subwords increases. We
investigate whether this difference has something
to do with the results obtained with BERT. To do
so, we test two more word representation strate-
gies: o1, where we omit the first subword (the
full-token) and oL, where we omit the last sub-
word (a sub-token). If mixing the two kinds of
subwords (sub-tokens and full-tokens) is detri-
mental for the final representation, we expect o1
to obtain better results than oL. Results by these
two strategies could be affected by the morpho-
logical structure of words in SPLIT-SIM (e.g., o1
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M-N P-N P-V
1-S 2-S -S 2-S 1-S 2-S

− o1 51 42 33 32 30 36
oL 42 37 30 33 28 38

+
o1 47 37 42 26 39 41
oL 43 29 40 45 39 37

Table 13: Results obtained with BERT AVG omit-
ting the first (o1) or last (oL) token on simplex
SPLIT-SIM pairs tokenized into different amounts of
subwords.

could perform better than oL on words with a
prefix). To control for this, we only run this anal-
ysis on word pairs consisting of two simplexes
(according to MorphoLex). We exclude M-V be-
cause of the insufficient (< 100) number of pairs
available in each class.

Results of this analysis are shown in Table 13.
In most cases, particularly in M-N, the o1 strat-
egy, which excludes the only full-token in the
word, obtains a better performance than oL. This
suggests that, in the BERT model, the first to-
ken is less useful when building a representation.
This is surprising, because English tends to place
disambiguatory cues at the beginning of words
(Pimentel et al., 2021), and because the first sub-
word is often the longest one.15 The intuition that
representations of longer tokens contain more se-
mantic information is, thus, not confirmed.

5.2 Within-word

In this section we present the results on the WiC
dataset. In Table 14, we report the best accuracy
obtained by every model on different split-types.
We observe that the best performance is achieved
on the full set of 2-SPLIT pairs (ALL). This can
be explained by the label distribution in 2-SPLIT,
where most pairs are of type T (cf. Table 5). We
have seen in Section 5.1 that AVG representations
for these pairs have higher similarity values, and
we confirm this is the case, too, in the within-word
setting (see Figure 4). In fact, in the case of BERT
AVG, only 18 out of 97 F 2-SPLIT word pairs were
correctly guessed. To have a fairer comparison
with 0-SPLIT pairs, where labels are more bal-
anced, we recalculate accuracy on 1- and 2-SPLIT

15This is the case in 56% to 60% of split-words in SPLIT-SIM,
depending on the subset.

0-S 1-S 2-S

ALL ALL BAL ALL BAL

BERT
AVG

70
66 67 75 57

WAVG 65 63 75 58
LNG 65 62 74 60

FLOTA
AVG

69
60 62 74 60

WAVG 60 58 75 59
LNG 60 57 73 60

CBERT – 67 57 67 66 66

ELECTRA
AVG

71
62 62 76 58

WAVG 62 59 76 61
LNG 57 59 75 65

XLNET
AVG

62
61 61 68 58

WAVG 62 62 69 58
LNG 62 62 68 57

Table 14: Accuracy obtained on WiC on the full
subsets (ALL) and balancing T/F labels in 1- and
2-SPLIT (BAL). The best result per model and split-
type in BAL subsets is boldfaced.

Figure 4: Average similarity values obtained on WiC
(BAL) with the AVG strategy.

pairs randomly subsampling as many T pairs as
the number of available F pairs (BAL). These re-
sults are shown in the same Table. From them, we
conclude that accuracy on 1- and 2-SPLIT pairs is
actually lower than that on 0-SPLIT. This is not
true of CBERT, however, which performs equally
well across split-types and is the best option for
2-SPLIT pairs. As we can see in Figure 4, the sim-
ilarities it assigns to 2-SPLIT are in a similar range
to 0-SPLIT in this within-word setting.

When it comes to the pooling strategy for rep-
resenting split-words, AVG is still often the best,
but LNG also obtains good results. When com-
paring instances of the same word, contextual
information is more important than word identity,
so omitting part of a word does not have such a
negative impact as in the inter-word setting.
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BERT CBERT ELECTRA XLNet
AVG LM AVG LM AVG LM AVG LM

0-S
SAME 70 73 67 68 71 71 64 64
DIFF 69 65 68 67 77 70 60 62

1-S
SAME – – – – – – 58 59
DIFF 66 70 57 65 62 64 63 65

2-S
SAME 79 80 73 69 80 80 68 67
DIFF 65 62 58 60 64 63 73 73

Table 15: Accuracy on WiC pairs with the SAME

vs DIFF surface form.

In Table 15, we look at the results of AVG on
the original data and when replacing target words
with their lemmas (LM) separately on SAME vs DIFF

pairs. There is a large gap in accuracy between
SAME and DIFF 2-SPLIT pairs, with DIFF pairs obtain-
ing worse results with all models tested16 except
XLNet. 0-SPLIT pairs, on the contrary, are gener-
ally less affected by this parameter. While using
the lemma is clearly helpful for 1-SPLIT pairs, it
does not show a consistent pattern of improvement
in the other split-types. We also observe that the
average similarities for SAME pairs are higher than
for DIFF pairs (e.g., BERT in 0-SPLIT: 0.62 (SAME),
0.54 (DIFF)).

6 Discussion

We have seen that when examined separately,
word pairs involving split-words often obtain
worse quality similarity estimations than those
consisting of full-words; but this depends on the
type of word: Split polysemous nouns are bet-
ter represented than non-split ones. This holds
across the models and tokenizers tested, and also
when evaluating on words in a narrower frequency
range. This shows that word splitting has a nega-
tive effect on the representation of many words.
We have also seen that in normal conditions, per-
formance on 1-SPLIT is generally the worst one,
due mainly to a larger disparity in frequencies of
the words in a pair. Our analysis has also con-
firmed the hypothesis that words that are split in
a way that preserves their morphology obtain bet-

16A partial explanation is that SAME pairs have a slightly
stronger tendency of being T (77% of SAME 2-SPLIT pairs are
T, vs 66% of DIFF 2-SPLIT pairs).

ter quality similarity estimates than words where
segmentation splits the word’s root(s).

We have noted that similarities for the differ-
ent split-types are found in different ranges; no-
tably, similarities between two split-words tend to
be higher than similarities in 0- and 1-SPLIT pairs.
Naturally, this has an effect on the correlation
calculated on the full dataset, which is lower than
when considering each split-type separately. It
would be interesting to develop a similarity mea-
sure that allows comparison across split-types,
which could rely on information from the rest of
the sentence, like BERTScore (Zhang et al., 2020).
Another simple way to make similarities compa-
rable would be to bring 2-SPLIT similarities to the
0-SPLIT similarity range by subtracting the aver-
age similarity value obtained in 0-SPLIT. The best
value to use, however, may vary depending on the
application.

One surprising finding relates to the impact of
the number of subwords: Similarity estimations
are not always more reliable on words involving
fewer tokens. This was especially the case for
BERT, where we saw that the first token is gen-
erally the least useful in building a representation.
Given the tendency for the first token to be the
longest, this has put the other strategies tested
(WAVG and LNG) at a disadvantage.

From our within-word experiments we confirm
that word form is reflected in the representations
and has a strong impact on similarity, but this does
not necessarily mean that comparing words with
distinct morphological properties (e.g., singular
vs plural) would be detrimental in the inter-word
setting. In the within-word setting, SAME pairs
compare two equal word forms, whose represen-
tation at the initial (static) embedding layer is
identical. DIFF pairs, instead, start off with differ-
ent static embeddings, which results in an overall
lower similarity. In SPLIT-SIM, all comparisons are
made, by definition, between different words. The
fact that two words have different morphologi-
cal properties may thus have a smaller impact on
results.

Most of our findings are consistent between the
two kinds of task (inter- and within-word) and
across models. One exception is CBERT, which
does not assign higher similarities to 2-SPLIT pairs
when comparing instances of the same word; and
the LNG strategy, which is more useful within-
word than inter-word. AVG is, however, the best
strategy overall. One direction for future work
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would be to find a pooling method that closes the
gap in performance between split-types.

Our experiments only involve one language
(English), Spearman’s correlation, and cosine
similarity, although our methodology is not re-
stricted to a single similarity or evaluation metric.
Extending this work to more languages is also
possible, but less straightforward, due to the need
for suitable datasets.

7 Conclusion

We have compared the contextualized represen-
tations of words that are segmented into sub-
words to those of words that have a dedicated
embedding in BERT and other models. We have
done so through an intrinsic evaluation relying
on similarity estimation. Our findings are relevant
for any NLP practitioner working with contextu-
alized word representations, and particularly for
applications relying on word similarity: (i) Out
of the tested strategies for split-word representa-
tion, averaging subword embeddings is the best
one, with few exceptions; (ii) the quality of split-
word representations is often worse than that of
full-words, although this depends on the kind of
words considered; (iii) similarity values obtained
for split-word pairs are generally higher than sim-
ilarity estimations involving full-words; (iv) the
best layers to use differ across split-types; (v) a
higher number of tokens does not necessarily, as
intuitively thought, decrease representation qual-
ity; (vi) in the within-word setting, word form has
a negative impact on results when words are split.

Our results also point to specific aspects to
which future research and efforts of improvement
should be directed. We make our SPLIT-SIM data-
set available to facilitate research on split-word
representation.
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A Results with FastText

We choose FastText as a control because of its
good results on word similarity, and because it
can generate embeddings for all words; 91.8%
of all pairs in SPLIT-SIM have both words present
in the FastText vocabulary.17 Table 16 contains
the results. The main tendencies observed in
Sections 5.1.1 and 5.1.2 are found in these results
too: AVG is the best overall strategy and predic-
tions on 1- and 2-SPLIT pairs are almost consistently
of lower quality than on 0-SPLIT pairs. We also ob-
serve a couple of discrepancies with respect to
WUP: Correlations are higher overall, which makes
sense as FastText is also a model that learns rep-
resentations from text and all models (including
FastText) have been trained on Wikipedia data.
Another important difference is the relative per-
formance of 0-SPLIT and 2-SPLIT in P-N. While with
WUP P-N is the only dataset where splitting words
is not detrimental to similarity estimation, this is
not the case with FastText. However, we note that
the difference in performance between 0-SPLIT and
2-SPLIT is much smaller in PN than in the other
subsets. This shows that, also in this setting, split
polysemous nouns have an advantage with respect
to split-words of other types.

17The class that is least well represented is 2-SPLIT M-N,
but it still has a large majority of in-vocabulary words, with
79% of pairs being completely covered.
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BERT BERT-FLOTA CBERT ELECTRA XLNet
AVG WAVG LNG AVG WAVG LNG – AVG WAVG LNG AVG WAVG LNG

M-N

0-S 65 65 68 68 74
1-S 45* 43* 32* 39* 37* 31* 55* 50* 49* 42* 59* 58* 56*
2-S 46* 40* 29* 36* 27* 25* 50* 47* 46* 32* 50* 49* 43*

M-V
0-S 66 66 65 70 74
1-S 45* 44* 36* 33* 33* 29* 52* 51* 50* 43* 55* 54* 54*
2-S 53* 50* 38* 37* 34* 26* 55* 53* 51* 39* 51* 50* 48*

P-N

0-S 52 52 56 54 60
1-S 40* 39* 30* 33* 31* 25* 50* 47* 48* 41* 52 52 50
2-S 49* 48* 32* 36* 36* 27* 57 52 53 38* 52 52 46

P-V
0-S 63 63 56 64 66
1-S 46* 45* 37* 37* 36* 29* 54 47* 47* 40* 55* 55* 53*
2-S 52* 51* 38* 30* 31* 25* 52* 51* 52* 38* 50* 52* 47*

Table 16: Spearman’s ρ (× 100) on SPLIT-SIM (full) using cosine similarities from FastText as a reference.
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