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Summary

� Automated pollen analysis is not yet efficient on environmental samples containing many

pollen taxa and debris, which are typical in most pollen-based studies. Contrary to classifica-

tion, detection remains overlooked although it is the first step from which errors can propa-

gate. Here, we investigated a simple but efficient method to automate pollen detection for

environmental samples, optimizing workload and performance.
� We applied the YOLOv5 algorithm on samples containing debris and c. 40 Mediterranean

plant taxa, designed and tested several strategies for annotation, and analyzed variation in

detection errors.
� About 5% of pollen grains were left undetected, while 5% of debris were falsely detected

as pollen. Undetected pollen was mainly in poor-quality images, or of rare and irregular mor-

phology. Pollen detection remained effective when applied to samples never seen by the algo-

rithm, and was not improved by spending time to provide taxonomic details. Pollen detection

of a single model taxon reduced annotation workload, but was only efficient for morphologi-

cally differentiated taxa.
� We offer guidelines to plant scientists to analyze automatically any pollen sample, providing

sound criteria to apply for detection while using common and user-friendly tools. Our method

contributes to enhance the efficiency and replicability of pollen-based studies.

Introduction

Pollen is a major tool for ecological, paleo-environmental, and
evolutionary studies, used to monitor plant responses to environ-
mental changes (van der Knaap et al., 2010), inform on plant–
pollinator interactions (Morente-L�opez et al., 2018), reconstruct
past vegetation and climate (Peyron et al., 2017), anticipate aller-
gology (Anderegg et al., 2021), infer honey origin (Corvucci
et al., 2015), or predict harvests (Oteros et al., 2014). Counting
and identifying pollen is traditionally performed manually by
experts, using a slide under light microscopy. These tasks are time
consuming, and limit the size and replicability of pollen studies.
Automation of pollen analysis, a long-standing objective in paly-
nology, can help open new research avenues by extending spatial

and temporal resolution of pollen studies, and help obtain stan-
dardized data comparable among years, sites, and research teams
(Stillman & Flenley, 1996; Holt & Bennett, 2014).

The rapid development of convolutional neural networks
(CNNs) for image analysis now makes routine automated pollen
analysis achievable, as demonstrated in recent studies (e.g. Khanz-
hina et al., 2022; Punyasena et al., 2022; Barnes et al., 2023).
When applied on slides scanned under light microscopy, automa-
tion of pollen analyses relies on (1) the detection of pollen grains,
that is finding their position in an image and (2) the classification
of the detected objects into predefined classes, for example pollen
taxon (Diwan et al., 2022). Classification is usually performed
separately from detection, on images containing a single pollen
grain (Olsson et al., 2021; Punyasena et al., 2022; Viertel & Koe-
nig, 2022). In contrast to classification, interest, and progress for
automated pollen detection remains limited, yet detection is a*These authors contributed equally to this work.
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crucial first step and a challenging task, especially when applied
to images containing many pollen and nonpollen objects of many
kinds, as in environmental samples. The CNNs-based
object-detection algorithms, notably Fast-RCNN (Ren et al.,
2015), RetinaNet (Lin et al., 2017), or YOLO (Redmon et al.,
2016), and one of its latest versions YOLOv5 (Jocher, 2020), can
now perform detection jointly with classification at high speed
and accuracy, on almost any object, for example molds in fruits
(Jubayer et al., 2021), arctic benthic fauna (Marini et al., 2022),
Plasmodium falciparum (Zedda et al., 2022), and even on com-
plex images with dense and heterogeneous backgrounds (Diwan
et al., 2022; Jiang et al., 2022). In palynology, the implementa-
tion of these algorithms is recent (Gallardo-Caballero et al.,
2019), and remains mainly limited to allergology, on images con-
taining few pollen taxa and a uniform background, or on air-
borne samples that contain fresh and well-preserved pollen with
few debris (Gallardo-Caballero et al., 2019; Khanzhina et al.,
2022; Kubera et al., 2022). Under such conditions, studies report
excellent results, for example (1) for 11 pollen types, the combi-
nation of Faster R-CNN and RetinaNet correctly detected
98.54% of the annotated pollen grains, and wrongly detected as
little as 0.25% of nonpollen objects (Gallardo-Caballero et al.,
2019); (2) for 13 allergenic pollen species, a modified RetinaNet
(‘BayesianRetinaNet network’) correctly detected 96.32% of pol-
len grains, and also correctly classified 97.66% of them (classifica-
tion F1-score; Khanzhina et al., 2022), and (3) for three
Betulaceae pollen taxa, YOLOv5 correctly detected and classified
89.7–98.9% of the pollen grains, and 91.7–97.8% of the predic-
tions were correct (Kubera et al., 2022).

These results however do not apply for pollen-based research
typically relying on environmental samples from the ‘real-world’,
such as gravimetric pollen traps, moss pollsters, and sediment
records, which can contain many debris and damaged pollen
grains, with an uncontrolled and potentially high diversity of pol-
len taxa. For these environmental samples, the methods for the
automation of pollen analyses are still in development. The first
two attempts to automate pollen analysis on such samples
recently achieved promising results: (1) for gravimetric traps
placed in a tropical forest, 83.7% of the pollen grains were cor-
rectly detected, and 89.5% of detected grains were correctly clas-
sified into 25 selected pollen taxa (Punyasena et al., 2022); (2) for
pollen samples from lake sediments, from 87.2% to 99.1% of
pollen grains were correctly detected, 84% were correctly classi-
fied into 11 selected pollen taxa, and 7% were incorrect classifica-
tions (Theuerkauf et al., 2023). These results pave the way for
new investigations, especially to understand the impact of detec-
tion errors on the accuracy of automated pollen analysis, because
any error at this step will inevitably propagate, for example to the
classification step.

In this study, we aim to (1) improve the process of pollen
detection in environmental samples containing large amounts of
debris and pollen taxa, by analyzing the variation in detection
errors, (2) find general implementation guidelines applicable to
any pollen study, and (3) evaluate the joint detection and classifi-
cation errors in a full automated analysis. We do so using gravi-
metric pollen trap samples collected annually in the

Mediterranean area. As we aim to make automated pollen detec-
tion accessible to nonexperts of pollen or deep learning, we rely
on simple and common tools: mounted slides scanned under
light microscopy, and the open-source and user-friendly algo-
rithm YOLOv5. We search for the best annotating strategies that
balance workload and performance for studies of a single taxon
or an assemblage of taxa, and for studies further extended in time
or space, for example as in long-term plant monitoring. We also
study in detail the causes of the detection errors, using the infor-
mation on pollen morphology and the image quality. We finally
assess automated and joint detection and classification on five
pollen taxa common in our dataset, and also compare automated
results to the ones made by an expert palynologist.

Materials and Methods

Pollen samples and image acquisition

We used pollen samples from gravimetric traps collected in
2019, 2020, and 2021 for a project monitoring vegetation in six
locations in a Mediterranean massif. The pollen traps consisted
of containers with a 5 cm width opening, and a 5 mm mesh con-
taining glycerin and thyme essential oil to retain and preserve
pollen grains, and avoid fungus growth. Traps were placed on the
ground or attached to a tree in early January, and collected 1 yr
later. To calibrate pollen counts, tablets of Lycopodium marker
spores (Lycopodium clavatum L.) were added to the pollen sam-
ples (Stockmarr, 1971). The samples were then chemically trea-
ted to remove calcium carbonates and silicates, and were
acetolyzed for 6–8 min. For image acquisition, one fixed slide
per sample was mounted with glycerin jelly, under 16 mm 9

16 mm cover slides. Two samples were discarded due to an insuf-
ficient amount of pollen. We therefore worked with 16 slides
mounted from 16 samples.

Microscopic images of each slide were acquired with an auto-
mated bright light microscope Leica DM6 B TL BF (Wetzlar,
Germany) (963 magnification under oil immersion). The ima-
ging was done by a Hamamatsu ORCA FLASH camera (Hama-
matsu Photonics K.K., Hamamatsu, Japan) with a 2048 9

2048 pixel camera sensor. We used the image acquisition pipe-
line developed by Tetard et al. (2020), including a LabVIEW
interface. We scanned only 17% of each slide to decrease the
acquisition time of images, but covered the entire and potentially
heterogeneous distributions of pollen within each slide by acquir-
ing images in 16 squared areas, arranged in a 4 9 4 grid; each
scanned area consisted of 64 (8 9 8) fields of views (FOV) of
214 9 214 lm with an overlap of 10 lm (smaller than the
smallest pollen taxon here). For each FOV, 11 images were taken
along the z-axis, spaced 8 lm apart, to produce a stack capturing
the vertical details of the pollen grains (Fig. 1 step 1). The depth
resolution was a compromise between acquisition time and the
need for details of pollen grains, the sizes of which range from
c. 12 to c. 150 lm. For each of the 16 slides, piles of images were
automatically taken for 1024 FOV in c. 2h 30 min. Each pile of
images was then stacked using Helicon Focus 7 (Tetard et al.,
2020), which selects the sharpest areas and discards the unfocused
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areas to create a single final composite 2D image, hereafter called
FOV (Fig. 1 step 1). The FOVs from four out of the 16 scanned
areas, from the top-left/bottom-right diagonal of each slide, were
selected to train and evaluate the YOLOv5 algorithm, totaling
4098 FOVs for the full dataset (16 slides 9 4 scanned
areas 9 64 FOVs, with two exceptions). The FOVs from the
other 12 scanned areas were never used during training, but used
to generate the automated pollen counts compared with those
obtained by an expert palynologist, on distinct slides mounted
from the same samples.

Optimization of the object-detection algorithm for
detecting pollen

We selected the light version of the algorithm YOLOv5 among
its several releases (Jocher, 2020) as it performs as well as the
heavy version on pollen (Kubera et al., 2022). More details on
YOLOv5 are available in the Supporting Information Methods
S1. The algorithm YOLOv5 performs detection and classifica-
tion in a single step, by (1) predicting bounding boxes (defined
by their width, length, and location within an image) around
the detected objects, and jointly (2) predicting a label, among
predefined classes, for the objects within the bounding boxes.
Confidence scores are also provided for all predictions. The
image dataset used to train the algorithm had thus to be manu-
ally annotated by (1) tagging the targeted pollen and Lycopo-
dium grains, that is placing bounding boxes that frame them,
and (2) labeling these grains, for example as a pollen taxon. We
used the LABELIMG software (Lin, 2015), and annotated a total
of 12 531 pollen and Lycopodium grains in the 4098 FOVs of
the dataset (Fig. 1 step 2). We split this annotated dataset into
60% for training, 20% for validation, and 20% for testing,
unless otherwise mentioned, with an equal contribution of all
16 slides in each subset. We performed a fivefold cross-
validation, by interchanging the FOVs from the training, valida-
tion, and test datasets for each analysis (Fig. 1 step 3). Models
were trained for 150 epochs, that is training iterations, and on
images resized to 640 pixels, which took < 3 h per training
using Jean-Zay Nvidia V100 GPU (IDRIS, CNRS). The num-
ber of epochs was chosen empirically to enhance model perfor-
mance without inducing overfitting. To evaluate the
performance, we applied the model saved after the last training
epoch on the test datasets made of annotated FOVs never seen
before. We eliminated the predicted bounding boxes that over-
lapped using an Intersection over Union (IoU) threshold of 0.7
(Methods S2), and that had a confidence score below 0.45
(Methods S3). To evaluate the performance of the sole detec-
tion, we then compared the manually annotated and the pre-
dicted bounding boxes, without taking into account the labels
predicted by the algorithm through its joint classification
(Methods S4). We used an IoU of 0.5 between annotated and
predicted bounding boxes to determine (1) a true positive (TP)
for a bounding box both predicted and manually annotated, for
example a pollen grain correctly detected, regardless of its classi-
fication (2) a false negative (FN) for a bounding box manually
annotated but not predicted, for example a pollen grain not

detected, and (3) a false positive (FP) for a bounding box pre-
dicted but not manually annotated, for example a debris falsely
detected as pollen. Combinations of these statistics produced (1)
the recall, percentage of correctly detected grains among all true
grains, (2) the precision, percentage of correctly detected grains
among all detected objects, (3) F1-score, the harmonic mean of
recall and precision, and (4) the receiver operating characteristics
(ROC) curves, which all inform on the power of the models to
discriminate pollen grains from the background; see details in
Methods S5.

To evaluate the adequacy of the size of our dataset (4098
FOVs including 12 531 annotations), we trained the models on
an increasing number of FOVs. We split each annotated dataset
into 80% for training, and 20% for validation, with five cross-
validations, but we systematically tested the trained models on
the same annotated dataset (Fig. 1 step 3b). For these tests, we
used the models from both the last training epoch, and from the
epoch providing the best performance on validation. F1-scores
showed that the best and last epoch models provided similar per-
formances; we therefore chose to use only the last epoch models
for all below analyses (Fig. S1c; Notes S1).

Optimization of the annotation strategies tailored for
distinct pollen studies

We evaluated the performance of the three following annotation
strategies, a priori common in any pollen-based studies, to pro-
vide useful and efficient guidelines on how to balance perfor-
mance and workload (Fig. 1 step 2; Methods S6):
� all-0taxon considered the simplest annotation strategy consist-
ing of only three labels associated with the tagged bounding
boxes, with no information on pollen taxon: Lycopodium, pollen
of any taxon, and grains of either pollen or Lycopodium cut on
the FOVs edge with less than a quarter of their surface visible
(Fig. 1 step 2a);
� all-5taxa used the same above dataset but divided the afore-
mentioned pollen category into six labels: Pinaceae (Pinaceae
sp.), Buxus (Buxus sempervirens L.), Poaceae (Poaceae sp.), Quer-
cus (Quercus sp.), Oleaceae (Oleaceae sp.), and the label pollen
for other taxa, could they be determined or not. We kept the
labels Lycopodium and grains cut on the FOVs edge, thus increas-
ing the number of labels from 3 to 8 to test for the effect of
including information on taxonomy. These five taxa selected
were the most frequent ones in the samples, together representing
43% of the tagged grains (Fig. 1 step 2b);
� 1taxon-1taxon restricted pollen detection and thus annotation
to a single model taxon, thus labeling bounding boxes only for
Lycopodium and alternatively one of the five taxa mentioned
above (Fig. 1 step 2c).

Lycopodium, used for calibration of pollen counts, was system-
atically tagged and labeled in all annotation strategies, while deb-
ris were never annotated. We compared the detection
performance and analyzed the detection errors for each of the
tagged pollen taxon under the three annotation strategies. At
most 12 531 grains were tagged in the 4098 FOVs, among which
919 were labeled as Lycopodium, 5349 as one of the five taxa,
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4615 as pollen with no associated taxon, and 1648 as pollen
cut on the FOVs edge. Pollen grains were labeled with a taxon
only when they could be confidently determined; otherwise, they
were categorized as pollen, meaning that pollen from the five
previously mentioned taxa could have been left in this pollen
category.

Finally, we assessed the performance of the trained models
when applied to new samples never seen by the algorithm. We
trained the algorithm on FOVs from all but one sample year

(split randomly with a ratio 80 : 20 for training and validation)
and evaluated its performance on 820 random FOVs from the
sampling year left apart. We used the simplest all-0taxa annotation
strategy, and cross-validated results five times for each year (5 9 3
in total), by interchanging the training and validation datasets, and
while keeping the test sets unchanged for each of the three sample
years (Fig. 1 step 3c). The sizes of the training datasets (2186 � 99
FOVs) were larger than the dataset size at which detection
performance plateaus (c. 1770 FOVs; Fig. S1).

Fig. 1 Experimental design. (1) A pile of 11 images at distinct focal depths is acquired for each field of view (FOV) and then stacked into a single 2D
composite image. (2) One-fourth of all images (1024 FOVs 9 16 samples 9 ¼ = 4096) are annotated following three distinct annotation strategies (2a–
2c). The annotation strategies are illustrated on a composite image: (a, all-0taxon) tagging 12 bounding boxes with three labels (Lycopodium, pollen, and
grain cut on edge); (b, all-5taxa) tagging 12 bounding boxes with the same three previous labels and five extra labels (Pinaceae, Buxus, Poaceae,Quercus,
and Oleaceae); (c, 1taxon-1taxon, e.g.Quercus) tagging six bounding boxes with two labels (Lycopodium and a model taxon); see details in Supporting
Information Methods S6. (3) The annotated datasets are split into subsets to train, validate, and test the models with a fivefold cross-validation, following
distinct designs (3a–3c) tailored to distinct questions. (4) The performances are evaluated on the testing subsets by comparing manual annotations with
predictions obtained with the respective trained models. (5) The models trained with the most detailed annotation strategy 2b (five models from five cross-
validations) are applied on nonannotated images (1024 FOVs 9 16 samples 9 ¾ = 12288), and predictions are compared with manual counts made by a
palynologist on distinct slides mounted from the same samples.
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Analyses of the detection errors

We analyzed the variation in the percentage of pollen grains left
undetected (FN), using the five following categorical variables,
which were included during the annotation process but never
used for training: (1) identification, with the two levels deter-
mined or not for c. 35 taxa, (2) taxon, with the five levels Buxus,
Pinaceae, Poaceae, Oleaceae, or Quercus (the five most common
taxa), (3) visible section, with the two levels fully visible within
the FOVs or not, (4) image quality, with the two levels good,
or poor for grains that are unfocused, covered by a debris
or damaged in the image, and (5) deterioration type for
poor-quality images only, with the three levels covered, unfo-
cused, or mixed deterioration (Methods S7, S8). False positives
predicted as pollen grains were not studied as they all corre-
sponded to debris.

Analyses of the joint detection and classification errors in a
full automated analysis

We evaluated the performance of the joint detection and classifi-
cation produced with the all-5taxa annotation strategy (Fig. 1
step 2b; Methods S6), and compared it to the sole detection error
to evaluate whether they can or not compensate. First, we evalu-
ated the performance of the full automation on the same anno-
tated test sets as before (Fig. 1 step 4). We used the confusion
matrix (Methods S4a) to compare for each of the five taxa, the
counts from automated predictions and from manual annota-
tions, obtained before and after calibration with Lycopodium
counts. Second, we applied the five cross-validated trained mod-
els to the FOVs from the 12 scanned areas of the slides that were
not annotated or used before, totaling 768 FOVs per slide. We
used an IoU threshold of 0.7 to remove overlapping bounding
boxes generated by applying successively the five cross-validated
models on the same FOVs. The automated counts were cali-
brated with their respective Lycopodium counts, and finally com-
pared with those obtained manually from nine common
gravimetric traps but from different slides (Fig. 1 step 5). Cali-
brated counts corresponded to the number of pollen grains for
100 Lycopodium spores.

Results

Detection performances tended to plateau at c. 60% of the full
dataset, that is c. 1770 training FOVs (Fig. S1; Notes S2), sug-
gesting that the detection performances presented below and
obtained with 2452 � 6 training FOVs are not constrained by
the size of the dataset.

Detection of pollen grains regardless of their taxon

We tested whether the models could accurately and precisely
detect pollen in the simplest configuration, that is with no dis-
tinction of their taxon (all-0taxon; Methods S4). Based on
2506 � 26 (mean � 2SE) manually annotated bounding boxes,
the average performance achieved was good (Table S1). The

percentage of grains detected (recall) was 94.8 � 0.33%, the per-
centage of correct predictions (precision) was 94.7 � 0.38%,
leaving 5.2 � 0.33% of tagged Lycopodium or pollen grains left
undetected (FN), and falsely detecting 5.3 � 0.38% of debris.
Lycopodium and pollen grains were left undetected with the same
frequency (5.0 � 0.25% and 4.4 � 0.42%, respectively) while
grains cut on the FOVs edge were missed twice as frequently
(10.2 � 0.98%; Table S1). The bounding boxes correctly pre-
dicted were well positioned, as they overlapped by 94 � 3%
(IoU) with manually tagged ones.

We analyzed the variation in FN, using descriptive variables
for the annotated grains. Image quality contributed greatly to the
detection performance. Pollen and Lycopodium grains in images
of good quality were left undetected 10 times less frequently than
grains with poor visual quality (1.1 � 0.37% vs 10.9 � 1.09%),
especially in unfocused images (15.6 � 2.85%) or when covered
by a debris (12.1 � 2.21%; Fig. 2a). Similarly, pollen grains for
which their taxon could not be determined because of the poor
image quality, which represent 72% of the impossible identifica-
tions, were also left undetected about four times more
often (9.4 � 0.50%) than grains that could be identified
(2.4 � 0.20%; Fig. 2b). Missed detections were also higher for
pollen and Lycopodium grains not fully visible within the FOVs
(8.3 � 0.91%) compared with those fully visible within the
FOVs (4.1 � 0.26%; Fig. 2c). Disentangling the effects of tax-
onomy from the image quality or the visible section of grains was
constrained by the uneven distributions of these variables in the
dataset. For example, Pinaceae could be identified during annota-
tion, granted to its typical morphology, in any image of bad or
good quality, and even for grains not fully visible within the
FOVs. By contrast, a good-quality image with a full view of
the grain was required to identify Quercus, because of its morpho-
logical similarity with other taxa (only 5.4 � 0.48% of all grains
identified as Quercus presented nonoptimal conditions compared
with 67.9 � 3.7% for Pinaceae; Fig. S2). To try to get the inde-
pendent effect of taxonomy on detection errors, we analyzed only
optimal images, that is focused, with grains not covered by debris
or deteriorated, and with grains fully visible within the FOVs,
totaling 1183 � 13 annotated grains. Under these conditions,
we found grains of Buxus, Quercus, Poaceae, and Oleaceae were
rarely missed (FN below 0.2 � 0.37%) compared with Lycopo-
dium (1.3 � 0.54%) and Pinaceae (3.0 � 3.56%; Fig. 2d).
These differences in detection errors among taxa were not related
to the abundance of a given taxon. Similar detection was achieved
for Buxus, Quercus, Poaceae, and Oleaceae despite representing
on average 5.3 � 0.6% to 27.7 � 1.4% of the grains in those
optimal images (Fig. 2d). These pollen grains share a common
morphology, a circular-shaped monad, which thus is frequent in
the dataset. By contrast, Pinaceae, a saccate monad, and Lycopo-
dium, a triangular-shaped spore, have specific morphologies,
which are thus less abundant in the dataset, accounting, respec-
tively, for 3.5 � 0.5% and 10.6 � 0.6% grains of optimal
images (Fig. 2d). Their shapes are also more irregular, making
them more likely to be mistaken for debris. From these results,
we conclude that the abundance of a given morphology, not of a
given taxon, and its resemblance with debris explained the
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performance of detection. Using grains in optimal conditions
only also reduced the percentage of grains left undetected by a
factor of 10.

Effects of the annotation strategy

Application to new pollen samples Detection was good when
models were applied to the sampling years 2019 and 2021, not

included in model training. F1-scores remained above 93.5 �
0.45%, corresponding to 1% decrease compared with that of the
reference models (Fig. 3; Table S2; ROC curves in Fig. S3), and
the average percentage of FN (6.5 � 0.45%) and FP
(6.5 � 0.13%) increased at most by 1.2% compared with the
reference models (Fig. 3b). Surprisingly, detection performance
evaluated on the 2020 sampling year achieved a higher F1-score
of 98.1 � 0.12%. Detection errors decreased by at least 3.4%

Fig. 2 Analysis of detection errors. Number of pollen grains correctly detected (true positives (TP), gray, and colored bars) or left undetected (false
negatives (FN), black bars, and numbers above bars) according to: (a) image quality, (b) identification, discarding the grains not fully visible within the
fields of views (FOVs, a and b), (c) visible section, (d) taxon for five taxa and accounting for all grains (darker bars, left) and for grains in optimal conditions
(lighter bars, right), that is with good visual quality and fully visible within the FOVs. Values represent means over the five cross-validation tests, and bars’
height corresponds to the number of annotated bounding boxes.
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for both FN (1.81 � 0.10%) and FP (1.92 � 0.16%). This pat-
tern could result from the greater quality of the pollen images for
that year. There were 1865 annotated bounding boxes in the test
set in 2020 compared with 2787 in 2019 and 3050 in 2021, and
58.6% of the grains were in images of good quality in 2020,
compared with 46.3% in 2019 and 55.1% in 2021 (Fig. S4).

Increasing the label details Including taxonomic details when
manually annotating the dataset, with labels for the five most fre-
quent Mediterranean pollen taxa in the dataset, had no effect on
the percentage of FP, while the percentage of FN increased
on average by 1.5% (Table 1; Fig. 4; ROC curves in Fig. S5a).
This slight increase was mostly due to grains cut on the FOVs
edge being more frequently missed (67 � 10 compared with
34 � 4 not detected, out of 330 � 19 grains; Fig. 4b).

Selective annotation of a single model taxon As expected, tag-
ging and labeling a single model taxon decreased annotation time
compared with tagging and labeling all pollen (1385–2778
bounding boxes depending on the taxon instead of 12 531). This
strategy increased the percentage of FP, and to different extents
depending on taxon (Table 1; Figs S5, S6). This increase was
mainly caused by the wrong detection of grains cut on the FOVs
edge and not determined, and grains from other taxa than the tar-
geted one, but not of debris falsely detected as pollen (Fig. 4a).

For example, when detecting Buxus, among the 88 � 9 falsely
detected bounding boxes, only 12 � 4 were debris while 26 � 4
were Oleaceae pollen, which has a similar reticulated exine, and
23 � 4 were pollen cut on the FOVs edge. The amount of unde-
tected grains (FN) for Pinaceae and Lycopodium grains was not
affected by the annotation strategy (Fig. 4b; Table S3). By con-
trast, pollen with common morphologies, that is Quercus, Poa-
ceae, Buxus, and Oleaceae, were left undetected more frequently
when tagged solely with Lycopodium compared to when tagged
along with the other pollen grains (Fig. 4b; Table S3).

Combination of detection and classification errors in a full
automated pollen analysis

Here, we analyzed errors combining both detection and classifica-
tion to evaluate how the method predicts pollen counts, assessing
the drivers of potential biases.

Compensation between undetected grains and falsely detected
debris In this study, we chose a confidence score threshold to
balance on average the percentage of undetected grains and of fal-
sely detected debris (Methods S3). We found that FN were
unevenly distributed among taxa; Lycopodium and Pinaceae
grains were left undetected more frequently than others because
of their specific morphologies. Using the classification

(a) (b)

Fig. 3 Performance of the detection method
measured with (a) recall and precision, (b) the
percentages of false positives and false negatives,
when trained on all (blue), or all but one
sampling years: 2019 (lighter gray), 2020
(intermediate gray), or 2021 (darker gray). Points
and bars represent means and 95% confidence
intervals over the five cross-validation tests.

Table 1 Performance metrics of the detection for all annotation strategies (mean � 2SE for the five cross-validated test datasets).

Annotation
strategy

No. of annotated bounding
boxes

Percentage of false
negative

Percentage of false
positive Precision Recall F1-score

all-0taxon 2506 � 26 5.20 � 0.33 5.26 � 0.38 94.74 � 0.38 94.80 � 0.33 94.77 � 0.08
all-5taxa 2506 � 26 6.70 � 0.40 5.16 � 0.25 94.84 � 0.25 93.31 � 0.39 94.07 � 0.11
1taxon-Pinaceae 300 � 9 10.32 � 1.09 15.64 � 0.85 84.36 � 0.85 89.68 � 1.09 86.93 � 0.43
1taxon-Buxus 326 � 12 9.41 � 0.68 22.96 � 2.12 77.04 � 2.12 90.59 � 0.68 83.24 � 1.15
1taxon-Poaceae 277 � 10 10.38 � 0.58 24.32 � 2.05 75.68 � 2.05 89.62 � 0.58 82.04 � 1.10
1taxon-Oleaceae 556 � 19 9.38 � 0.59 15.86 � 0.78 84.14 � 0.78 90.62 � 0.59 87.26 � 0.45
1taxon-Quercus 530 � 13 12.63 � 1.74 30.26 � 2.15 69.74 � 2.15 87.37 � 1.73 77.54 � 1.72
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information for falsely detected debris, we found that their distri-
bution was also uneven among taxa, and followed the same above
pattern for detection: Pinaceae and Lycopodium grains were also
associated with a higher percentage of falsely detected debris
(4.2% and 7.6%) compared with the other four taxa defined by
common and regular morphologies (below 2.3%; black in
Fig. 5b; Table S4a). Therefore, errors during detection from both
undetected grains and detected debris partially compensated with
each other.

Accuracy of combined detection and classification Once
detected, the five target taxa were almost never misclassified
within the five categories, with the exception of c. 2% of grains
tagged as Oleaceae but misclassified to Buxus, and 0.7% of grains
tagged as Buxus but misclassified to Oleaceae, which both have a
reticulated exine (light blue; Fig. 5; Table S4b). Most classifica-
tion errors for the target taxa, with the exception of Lycopodium
and Pinaceae with specific morphologies, were made to the class
of pollen from other taxa simply labeled as pollen (dark blue; Fig.
5), and pollen cut on the FOVs edge (gray, Fig. 5). The large
amount of grains from the pollen category and misclassified to
target taxa was partly compensated by the amount of grains from
the target taxa misclassified to the pollen category, thus limiting
the overestimation of the predicted counts (dark blue; Fig. 5). A
post hoc visual examination of the images showed that some mis-
classifications to other pollen taxa corresponded to pollen with
similar morphologies, for example few Viburnum and Brassica-
ceae pollen grains were misclassified as Oleaceae, all of which
have a reticulated exine, while most misclassifications were to

pollen that could not be determined during annotation. We
cannot exclude that some of these latter misclassifications could
actually correspond to the correct pollen taxon, that is a true
annotation error or a lack of confidence to label a grain. Simi-
larly, grains labeled as cut on the FOVs edge and misclassified to
a pollen taxon could correspond to a correct identification. Post
hoc visual inspections confirmed this hypothesis for Pinaceae.
Once detected, the classification of Lycopodium was very efficient
(Fig. 5). Less than 0.9% were misclassified, and all grains cut on
the FOVs edge and classified to Lycopodium were actually correct.
This last result confirms that automated detection of pollen using
Lycopodium for calibration should provide accurate counts.

Finally, predicted counts for all labeled categories were system-
atically overestimated compared with manual annotations, except
for the category of pollen cut on the FOVs edge, which were
directly classified to pollen taxa (Fig. 6a). As Lycopodium counts
were also overestimated, the inferred pollen counts after calibra-
tion, matched very well the calibrated pollen counts from the
manual annotations (Fig. 6b).

Application of the automated method to routine conditions and
comparison with a palynologist Once the method was estab-
lished and the images were acquired, predictions for each slide
produced up to 5700 detected and classified pollen grains in one
step and only a few minutes, compared with c. 2–3 h for the
standard microscopy analysis by the palynologist expert. Cali-
brated counts for the five most common taxa predicted by the
models and obtained by the palynologist, for the same gravi-
metric traps but not the same slides, were close to each other,

Fig. 4 Effect of annotation strategy on detection errors. Number (bars height) and percentage (values above bars) of (a) false positives, that is detected but
not annotated debris and pollen grains, and (b) false negatives, that is annotated but not detected pollen grains, obtained with each annotation strategy,
and averaged over the five cross-validation tests.
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except for Buxus, rare taxa in these samples for which sampling
variance is expected to be large (Fig. 7). Predicted counts for
Quercus were systematically underestimated compared with man-
ual counts, potentially because we labeled Quercus simply as pol-
len when we could not confidently identify it, and which was
replicated by the model, while the expert could identify Quercus
in many more conditions. Predicted counts for Pinaceae tended
to be overestimated compared with manual counts, potentially
because Pinaceae grains were manually annotated as ½ when torn
but counted as a full pollen grain by the model.

Discussion

Environmental pollen samples are no longer a barrier to
automated detection

Despite challenges inherent to environmental samples, with images
not manipulated before the analyses, and thus containing many
debris and pollen taxa, the performance of pollen detection here is
consistent with two similar and recent studies. From European lake
sediment samples, 87.2–99.1% of pollen was retrieved for a Faster

Fig. 6 Comparison of automated predictions and manual annotations. (a) Counts for the five taxa and Lycopodium, and (b) counts calibrated with
Lycopodium; both for the manual annotations and from the model predictions in each of the five cross-validation tests (some points overlap), and obtained
with the annotation strategy all-5taxa; the dotted line is the 1 : 1 line.

Fig. 5 Performance of the joint detection and classification. Grains correctly or incorrectly detected and/or classified (a) as the confusion matrix, (b) plotted
for each label separately. Results are summed over the five cross-validation tests from the all-5taxa strategy, and show correct detection and classification
(green), detection errors (black), and classification errors from confusion with: Lycopodium (white), the five target taxa (light blue), the category pollen
(dark blue), or grains cut on the edge of the fields of views (FOVs, gray). In (b), gridded bars represent errors under-estimating the class (grains undetected
or classified into another class), and dotted bars represent errors overestimating the class (detected debris or grains not belonging but classified into the
class); values above bars are the number of bounding boxes annotated for each label.

� 2024 The Authors

New Phytologist� 2024 New Phytologist Foundation

New Phytologist (2024)
www.newphytologist.com

New
Phytologist Methods Research 9

 14698137, 0, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.19857 by C

ochrane France, W
iley O

nline L
ibrary on [31/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



R-CNN detector on c. 1450 annotations (Theuerkauf et al.,
2023), and from pollen trap samples collected in a tropical forest,
83.7% of pollen was retrieved for a modified ResNet34 architec-
ture on 14 764 annotations (Punyasena et al., 2022), while our
method retrieved 95.6% of pollen and 95.0% of Lycopodium using
as many as 12 531 annotations. Only 5.3% of the total detected
objects were debris misidentified as pollen (Table S1), and the pre-
dicted bounding boxes were very well positioned (IoU of 0.94),
possibly making subsequent classification efficient. Missed detec-
tions were mainly caused by grains covered by debris, unfocused
grains, or grains not fully visible within the FOVs (Fig. 2). These
cases are likely to occur regardless of pollen taxon, and thus not
likely to bias the pollen counts in the detected assemblage. These
grains with poor visual quality also lack discernible identification
criteria, making them irrelevant for classification, be it by an algo-
rithm or an expert palynologist. Excluding these grains with visual
poor quality increased pollen detection to 99.4% recall, a perfor-
mance consistent with that obtained on reference pollen images
taken under optimal conditions, that is with one or very few taxa
from flower anthers with no debris (Gallardo-Caballero et al.,
2019; Khanzhina et al., 2022; Kubera et al., 2022).

How to efficiently increase detection performance

Debris generated FN by masking pollen grains, and also FP, since
debris could be misidentified to pollen grains. Thus any strategy
that can eliminate debris will undoubtedly increase detection per-
formance, for example through chemical treatment or sieving, or

by diluting the material in the slides. The imaging process, fully
automated here, also contributed to detection errors by generat-
ing images of unfocused pollen grains, which were left undetected
more frequently than pollen in focused images (Fig. 2a). There-
fore, improving the focus of pollen grains shall decrease the per-
centage of undetected pollen, for example by increasing
the number of focal planes during image acquisition, or reducing
the thickness of the slide preparation.

Our results also show that increasing the taxonomic details,
and thus number of labels, required tedious identification effort
but did not improve the performance of pollen detection.
Slightly more grains were left undetected for similar numbers of
debris falsely detected (Fig. 4). If the goal is to detect pollen
regardless of taxon, we thus recommend to not spend time
identifying and labeling taxa, but instead use a few general cate-
gories as done here (Lycopodium, pollen and cut on edge). Apart
from the high performance this strategy can achieve, it has the
advantage that it can be done by nonpalynologists. We also
found that the annotation, and thus detection, of a single
model taxon was effective only for morphologically distinct taxa
such as Pinaceae or Lycopodium spores (Fig. 4). This strategy
can be used, as it saves time, only if the model taxon has a dis-
tinct shape and can be identified with a good confidence in all
images. Lastly, although often overlooked, the trade-off between
FP and FN can be adjusted to the study objectives, by modify-
ing the confidence score threshold to filter the predicted bound-
ing boxes, for instance by increasing it to reduce the detection
of debris (Methods S3).

Using a model pretrained on pollen images, even if outside the
data to be analyzed, can help limit the number of pollen images
to annotate and increase pollen detection. Therefore, we make
our best-trained model here on the anemophilous flora of the
Mediterranean region available to all, calling also for a large share
among research teams of models and data to increase the perfor-
mance of all future automated pollen analyses.

Robustness of the automated detection method to
extrapolation

Our models achieved the same detection performance whether
they were applied to samples used or not to train the model (Fig.
3). This result has important consequences for many
pollen-based studies, based on long-term monitoring (van der
Knaap et al., 2010), or long fossil sequences (Donders et al.,
2021) or at large spatial scales. For a given study, good detection
performance can be achieved by training the algorithm only once
on annotated images from a few samples, and without the need
to reiterate the training process on new sampling years and/or
new locations. Of course, the inherent variation in data between
studies, such as the chemical treatment of samples, microscope
settings, or the sample content itself, will affect the detection per-
formances. It should however be noted that using models pre-
trained on images from any pollen study can help increase
detection performances, and limit the annotation workload
required to build a new training dataset.

Fig. 7 Comparison of automated predictions and count from palynologist.
Manual (expert palynologist) vs automated pollen counts from five key
taxa; the models used for automated counts were trained with the
strategy all-5taxa and applied to images not used before (704 fields of
views for each of nine slides). Results are log-transformed, the dotted line
is the 1 : 1 line.

New Phytologist (2024)
www.newphytologist.com

� 2024 The Authors

New Phytologist� 2024 New Phytologist Foundation

Research Methods
New
Phytologist10

 14698137, 0, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.19857 by C

ochrane France, W
iley O

nline L
ibrary on [31/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Comprehensive evaluation of the joint detection and
classification to achieve full automated pollen counts

The proposed method detected and classified Lycopodium spores
and five pollen taxa, which is a small fraction of pollen diversity
present in the samples. Our goal was to provide guidelines for
other pollen studies while focusing on detection errors and on
how they propagated to classification, and not to make a full ana-
lysis of the samples. The chosen taxa accounted for 43% of all
pollen grains in the samples, and also corresponded to a diversity
of morphologies, which thus allowed to address our goals. Detec-
tion errors were affected by the abundance of the grain morphol-
ogies and resemblance with debris, rather than by the taxon
abundance. We found fewer FN for taxa that share a standard
and thus abundant pollen morph (Oleaceae, Poaceae, Buxus, and
Quercus) compared with taxa that have rare and irregular
morphologies (Pinaceae and Lycopodium spores, Fig. 2d), which
were thus more underestimated in the detected pollen assem-
blage. Nonetheless, when detection was performed jointly with
classification, grains with rarer and irregular morphologies were
also assigned a higher number of falsely detected debris, thus par-
tially compensating errors. When classification is conducted
separately from detection, debris falsely detected are often pro-
cessed with dedicated classes or processes (Crouzy et al., 2022;
Zhao et al., 2022), and pollen grains left undetected are usually
not considered in the final assessment, which may generate
biases. The proposed method, based on an algorithm jointly con-
ducting detection and classification, thus integrates detection
errors through both stages, which effectively mitigates both types
of detection errors.

The detected grains of Lycopodium and of the five target taxa
were classified with very little confusion between themselves
(Figs 5a, S6). Classification errors of the target taxa mainly
occurred for grains of other morphologically similar taxa, and
for grains that could not be identified with confidence, which
we both labeled here as simply pollen (Fig. 5a). The proposed
method requires to annotate, and thus identify, pollen grains
directly in 2D images containing many different taxa and debris,
sometimes unfocused, and in which pollen may be not well
oriented or sufficiently visible to use the appropriate discrimi-
nant criteria for identification. Such conditions make identifica-
tion, when annotating the images, challenging and sometimes
not possible, which will generate ambiguity when training the
models, and contribute to increase detection errors. The pre-
sence of grains not identified and annotated in the test
dataset also prevents the accurate evaluation of errors, as some
predictions are likely to be correct, for example a pollen grain is
indeed a Quercus one but we did not label it as such. Nonethe-
less, misclassifications from the target taxa to the category of
other grains simply labeled as pollen, and from the category pol-
len to target taxa partly compensated each other. The distinction
of grains cut on the FOVs edge also generated many misclassifi-
cations, although some were correct; we thus recommend avoid-
ing this label, and instead, to directly label cut pollen grains
with their taxa or as simply pollen. Despite these challenges and
potential biases, automated counts matched those manually

done, but also counts obtained by a palynologist expert with
standard microscopy analysis.

If the goal is to get pollen counts per taxon for many taxa,
improving the confidence of manual identifications will for sure
improve classification performances. Identifications used for
training could be improved by enhancing the visibility of pollen
structures in the images, for example by decreasing pollen den-
sity, using colored images, or using images of reference pollen
collected in flowers’ anthers. This latter suggestion though may
be less effective for detecting pollen in environmental samples
afterwards, as the model also trains on the background of the
images, clear of debris in reference samples. Conducting a sepa-
rate classification, after the detection and segmentation of pollen
of any taxon from their original sample images, would bypass
the challenging and error-prone step of manual pollen identifi-
cation and annotation on images taken from environmental
samples. In that case, we recommend that classification will be
performed on images of pollen from known species and plant
individuals. This approach should especially improve classifica-
tion performance for taxa of common morphologies that are
difficult to identify. It would also allow the identification of rare
taxa that de facto have too few images in the samples to train
the models (e.g. only one pollen grain of Juglans was found in
our dataset). Conducting a separate classification may finally
benefit from the extensive work carried out by many these last
few years on pollen. Large image classification datasets such as
POLLEN23E (Sevillano & Aznarte, 2018), POLLEN73S
(Astolfi et al., 2020), or POLLEN13K (Battiato et al., 2020)
were made open source. Diverse new CNN-based image classifi-
cation methods have recently been developed to improve the
performances of pollen classification. One approach relies on
both taxonomical and morphological labels to train the classifi-
cation models (Barnes et al., 2023), others use multi-CNN
architectures with a decision tree (Bourel et al., 2020), or add a
preliminary image deblurring process before classification, com-
bined to a multi-scale architecture to also include image sizes in
the training (Chen & Ju, 2022).

Our study is based on purpose on simple tools and thus on
images from slides scanned under light microscopy. Other types
of pollen data have been tested for the automation of pollen ana-
lysis, and gave good classification performances, by-passing some
limitations encountered in our study: pollen images acquired
with flux cytometry (Dunker et al., 2021; Barnes et al., 2023),
with scanning electric microscopy (Li et al., 2023), or with confo-
cal microscopy then classified with a 3D-classification algorithm
(Wang et al., 2021).

Concluding remarks

Our work represents a comprehensive attempt to assess joint
detection and classification of pollen using artificial intelligence,
and shows that pollen detection is a critical step for getting accu-
rate pollen counts in pollen assemblage. Overall, our method,
which relies on standard equipments, simple tools, and rules,
provides excellent performance on environmental samples from
the ‘real-world’ containing many debris and pollen taxa. The
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method can generate for a slide, once the images are acquired and
labeled, and the models are trained, up to 5700 detected
and labeled pollen grains in only a few minutes, compared with
c. 500 grains in 2–3 h for a palynologist, with no subjectivity or
fatigue, and can be confidently extrapolated to new samples not
seen by the models.
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