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Abstract
Smart home automation systems aim to improve
the comfort and convenience of users in their liv-
ing environment. However, adapting automation
to user needs remains a challenge. Indeed, many
systems still rely on hand-crafted routines for each
smart object.
This paper presents an original smart home archi-
tecture leveraging Large Language Models (LLMs)
and user preferences to push the boundaries of per-
sonalisation and intuitiveness in the home environ-
ment. This article explores a human-centred ap-
proach that uses the general knowledge provided
by LLMs to learn and facilitate interactions with
the environment.
The advantages of the proposed model are demon-
strated on a set of scenarios, as well as a compar-
ative analysis with various LLM implementations.
Some metrics are assessed to determine the sys-
tem’s ability to maintain comfort, safety, and user
preferences. The paper details the approach to real-
world implementation and evaluation.
The proposed approach of using preferences shows
up to 52.3% increase in average grade, and with
an average processing time reduced by 35.6% on
Starling 7B Alpha LLM. In addition, performance
is 26.4% better than the results of the larger models
without preferences, with processing time almost
20 times faster.

1 Introduction
Networks of devices are deployed to assist human beings in
their daily activities, using notions of context and knowl-
edge to decide on the best actions to take [Weiser, 1991]
[Dey, 2001]. Indeed, many houses are covered by wireless
and wired networks and equipped with electronic devices al-
lowing the occupants to control their environment for com-
fort, entertainment, security, energy management, and elderly
care.

However, Smart Home Automation Systems are still miss-
ing the aim of autonomously taking the best action in every
situation. Aligning automation routines to meet every need

for every home configuration, every set of devices, available
or not, functional or not, remains a challenge. In fact, most
systems today are configured for simple routines that occur
frequently. For instance, setting the home for wake-up or de-
parture time by playing music, ringing a bell, acting on lights,
shutters, heating, ventilation, and air conditioning. More pre-
cise needs in less frequent situations are not covered. Further-
more, if some devices are missing from a routine, no decision
is made to use alternative devices. While artificial intelli-
gence can play a role in learning about situations and the asso-
ciated actions taken by users [Rashidi and Cook, 2009], it still
requires time to understand users’ habits, and is never able to
cover the wide range of situations encountered at home.

One of the main technical challenges of pervasive comput-
ing is the ability to set up a system knowing the wide variety
of users’ potential needs, and how it can adapt to the wide
range of functions of existing devices, with devices and lo-
cations whose configuration can be very different. As their
execution environment is particularly dynamic, applications
need to be aware of their context and act appropriately.

Large language models [Radford et al., 2019] have the po-
tential to give this general knowledge at once to applications
such as smart home. In essence, these models have acquired
a vast amount of knowledge. They are trained on a diverse
range of textual sources, enabling them to cover a variety of
topics, facts, and concepts, here the expected actions of home
devices to meet user needs in a wide range of situations.

Retrieval-Augmented Generation [Lewis et al., 2020] is
a technique that improves the accuracy of LLMs by giving
them access to more targeted and precise information. This
is achieved by using a retrieval component that searches a
specific database and introduces it into the model, along with
users’ query.

This paper proposes a software architecture integrating the
general LLM knowledge available today into a smart home
automation system. The LLM is placed at the center of the
home’s decision-making system and participates in the re-
action to every event to deduce the next best actions. This
paper investigates the inclusion of preferences with a LLM
for smart home automation, The contribution also includes
a user-centred representation of smart home states and ac-
tions in natural language. Finally, experiments are carried
out using several LLMs with different prompting styles for
decision-making in the smart home.



The next section presents related work in the literature.
Then, the proposed software architecture is detailed, in partic-
ular the integration of LLMs for decision-making combined
with RAG for user context retrieval. Afterwards, the experi-
mentation section describes a dedicated benchmark of LLMs
and prompting styles with a set of home scenarios, leading to
the results in the next section. These results are discussed and
a final section is devoted to the conclusion and future work.

2 Related works
This topic is recent and few papers have been published on
LLMs for smart homes. The following papers are selected
for their approaches using the knowledge of user preferences
on decision-making in smart home automation systems. This
section cannot be exhaustive in this larger domain.

[Oliveira et al., 2022] proposes a multi-agent environment
with a Belief-Desire-Intention cognitive model, to support
adaptivity and preferences transparently in a smart home en-
vironment. Any possible interaction could be modeled in
such a way as to allow alternative proposals, but this requires
considerable work in semantic representation to be fully com-
plete.

Another paper takes advantage of general knowledge in-
formation to improve system adaptivity to preferences. [Ruiz
et al., 2021] proposes an approach using three Knowledge-
Based systems, one with general knowledge, one with skill
knowledge, and one with contextual information such as de-
vice location, and generating rule models for a middleware
platform based on all this information.

This approach requires really strict semantic modeling to
handle most scenarios, and cannot take advantage of some
information that is implicitly given in context.

[Shuvo, 2022] proposes an actor-to-critic (A2C)-based al-
gorithm adapted to decision-making in smart homes for en-
ergy consumption. In this work, at each step, an A2C algo-
rithm is applied to each device to select the best action, using
as inputs the activity and price of electricity at that time.

A key element is that the set of actions for each appliance
depends on the category associated with the appliance, adding
initial knowledge to the model to ensure action based on the
importance of the appliance. This system requires learning,
and any change in device availability leading to different op-
timal decisions will require a large number of steps before
adapting.

In addition, the larger the context, the more difficult it will
be to converge for each scenario to learn the best-suited de-
vice state. The paper HESIDR, [Zhang et al., 2023] also pro-
poses a system for energy consumption in smart homes, it
combines a set of control rules and reinforcement learning to
reduce the adaptation time.

The study proposed by [Peng et al., 2020] describes an ap-
proach for decision-making in home automation using deep
reinforcement learning. It showed the ability to learn when to
turn on a light but with a really limited context supported, so
the application is limited to learning when to turn on a light
with schedules of 15 minutes, which is a quite large period
for this application.

[King et al., 2023a; King et al., 2023b] proposes the first

approach to smart home automation, using a JSON data rep-
resentation from a smart home middleware platform and ex-
perimenting with an LLM to select an action based on a user
request.

This approach is a first step towards the use of the gen-
eral knowledge provided by these models. However, it does
not support user preferences, and the idea is to select actions
based on an initial user request, rather than proactively. These
works have proposed ways of managing decision-making, but
are limited by the contextual data supported. Works using
symbolic AI methods can show great adaptability, but at the
cost of extensive semantic modeling and with requirements to
make them adaptable to future changes in preferences. A new
method is proposed to support contextual data while adding
preferences.

3 Proposed architecture
This study proposes a new architecture for decision-making
in smart home automation systems. The system uses Large
Language Models and proposes methods to add user prefer-
ences, in order to select an action according to context and
users. It aims to be a proactive system. At every event oc-
curring in the home, the system proposes actions on devices
to align the home state with user needs and preferences. The
system supports different types of data thanks to LLMs abil-
ity to process data while generating a textual representation
of the home based on device states and the action list.

The proposed system aims to be able to adapt to changes in
user preferences over time. Indeed, LLMs avoid the need for
retraining and handle appliance configuration changes, basic
unavailability, or appliance failure.

This reason leads directly to the use of RAG or directly
injecting the knowledge into the prompts for retrieving up-
dated preferences at every execution time of the AI, instead
of fine-tuning. Indeed, fine-tuning over preferences would be
impractical, as it would require a new iteration each time user
preferences change, which would be costly and computation-
ally expensive.

A home simulator is implemented, it takes information on
the configurations of sensors and then generates a textual rep-
resentation, it is also used to generate the list of actions from
its data.

This section details the main components designed for the
proposed system architecture. Figure 1 shows this architec-
ture, including the simulator.

Figure 1: The implemented architecture

The system generates a user-centred text description of the



home and a list of actions, with control over connected de-
vices. It filters the number of relevant actions that can be
taken in every situation. For example, it limits some actions
that may be prohibited to guarantee user safety. This list of
actions is used by the model to select the optimal action.

Concerning contextual data representation editing:

• User positions are listed with their current activity and
the history of previous activities.

• The history of previous actions performed in the house
is supported.

• All rooms, sensors, and actuators are presented using
their names, which the user optionally gives.

• Some sensors and actuators give more global data and
control, e.g., internal and external temperature sensors,
gas sensors, humidity sensors, HVAC systems, etc.

The implementation supports some device categories with
a dedicated natural representation, to generate more natural
sentences adapted to some types of data: lights, CO2 sen-
sors, smart curtains, etc. It could also support any additional
data sensors with a generic representation template, using the
device name in the smart home environment and data status.
Using meaningful naming added by the users helps the sys-
tem to understand the usage of the device.

The action proposal algorithm 1 considerably reduces the
set of possible actions. It assumes that only devices that are in
the room or global can be switched on, but that all switched-
on devices can be switched off. As far as the list of possible
actions is concerned, the idea is to filter the actions supported
according to some conditions and device types. This ap-
proach is made possible by LLM’s native support for a change
in the output action space, without requiring training.

Algorithm 1 Dynamic Devices: Action builder Algorithm

Require: userid, devices list
1: for all device name, device kind, device location,

device state in devices list do
2: if device kind = ”actuator” then
3: if user location[userid] = device location or

device state = 1 then
4: devices.append(device name is device state)
5: action vector.append(1)
6: end if
7: end if
8: end for
9: devices.append(”Interact with user”)

10: action vector.append(2)
11: devices.append(”No action required”)
12: action vector.append(0)
13: return (action vector, devices)

Any type of device can be easily supported: it simply has
to be added to the representation and the LLM will ingest
the data thanks to its internal knowledge. This knowledge al-
lows the LLM to get a natural human description of the home
including biased contextual data unlike many conventional
home automation systems. The latter do not take advantages

of information such as the names of lights or rooms. This data
is transmitted to the LLM using one of the prompting styles,
prompting being the way to call the LLM with contextual ar-
guments. The different styles of prompts will be described in
the following section.

A common aim for all the prompting styles is to take ad-
vantage of the knowledge of the overall world provided by
this Large Language model, to handle changes or even new
types of sensors added to the representation.

The user preferences and rules block represents a database
containing information about the system’s basic rules, gener-
alities about human preferences and specific user preferences.

A benchmark is established with predefined scenarios for
evaluation purposes.

Regarding LLMs, some off-the-shelf models are selected,
with a local inference engine backend.

4 Experimentation
Different objectives are defined for the experimentations.

• Evaluate the improvements provided by adding user
preferences, with various techniques of doing so.

• Evaluate the improvements of natural language repre-
sentation of a smart home automation state over a JSON
representation, as LLMs are trained on natural language
corpus. Even if they contain other kinds of data like
code.

In alignment with the objectives of experimentations, dif-
ferent metrics are used for these evaluations:

• Grades: The grade obtained for each model, the prompt-
ing styles for each scenario, by execution. , based on the
grade values defined in table 1

• Processing time: Total runtime, including the construc-
tion of the context data and action list representation, the
inferences with the prompting styles, the use of RAG if
the prompting style uses it, and the processing of the for-
matted LLM response.

Eleven evaluation scenarios are defined as starting points,
with predefined accepted actions and their specific grade. Ta-
ble 1 presents the eleven scenarios by name and the associated
reward values. A category is associated with each scenario,
the goal being to regroup the scenario with the name of the
main evaluated ability.

Figure 2 shows an example on scenario 1 of the generated
contextual representation (textual) transmitted to the LLM.

The database of preferences and rules is defined in a single
file for all scenarios. These data are naturally written sen-
tences, and at the end of each one, information about the
style is recorded: Rules, Preferences, Generality. The idea is
to transmit to the LLM the importance of each data through
keywords. Generality is considered the least important, Pref-
erences the second most important, and Rules the most im-
portant. The database includes some preferences, generality
and some rules. It is designed to handle some scenarios, help
in some others but does not provide a solution for all scenar-
ios. The data are fed into a vector database so that RAG may
be used instead of prompts to convey them to the LLM.



Scenario
Name

Grade Associated Answer Category

Out of bed
at night

2 Turn on auxiliary light or main light with
reduced luminosity level

Safety

1 Turn on main light
0 Everything else

Watching
TV: late
evening

2 Turn on auxiliary light or main light with
reduced luminosity level

Comfort

1 Turn on main light, open curtains, discuss
0 Everything else

Out from
bed issue
with CO2

2 Inform user of risk Safety
1 Do an action and inform the user of risk
0 Everything else

Going back
to bed at
night

2 Turn on auxiliary light or main light with
reduced luminosity level

Safety

1 Turn on main light
0 Everything else

Evening
sleeping:
TV ON

2 Turn off TV Preference
1 Turn off anything on
0 Everything else

At dinner
watching
TV

2 Turn on auxiliary light or main light with
reduced luminosity level, open curtains

Preference

1 Turn off the main light, do nothing
0 Everything else

Forgot to
turn off TV:
user out

2 Turn off TV, turn off HVAC Comfort
1 Turn off all lights
0 Everything else

Too low
temperature

2 Turn on HVAC Preference
1 Open Curtains
0 Everything else

Low
luminosity
day

2 Open curtains Preference
1 Turn on any light in the room
0 Everything else

Failed
curtains

2 Turn on any light of the room Comfort
1 Open curtains
0 Everything else

Forgot to
turn off
lights

2 Turn off any lights, all lights, or HVAC Preference
1
0 Everything else

Table 1: Scenario responses with grades, associated answers, and
evaluation categories.

Four different prompting styles are compared on all the
scenarios:

• direct: A system prompt and a prompt to request direct
answers in the specified format.

• directPref: A system prompt with the preferences, rules
and generality from the database and a prompt to request
answers in the specified format.

• OpenQuestion: Two-steps chain: A system prompt, and
a prompt to request: ”a list of 3 main problems”. For
each of the 3 problems uses RAG to get the 3 closest
preferences. A prompt to request answers in the speci-
fied format

• ThreeQuestion: Three-steps chain: A system prompt,a
prompt to request: ”a list of 3 main problems”. For each
of the 3 problems uses RAG to get the 3 closest pref-
erences. A prompt to prompt to request answers in the
specified format requests (2 times). A final prompt to
request an answer in the specified format (based on the
previous ones).

The database and prompting styles are available in the sup-
plementary material.

A common point between all the prompting styles is the
action expected in the output: as mentioned above, most sup-
ported devices, such as lights or HVAC systems, are consid-
ered as switches in the action list; therefore, in the output of

all prompting styles in addition to a ”reasoning” and an ”ac-
tion” key, three optional keys are available: temperature, lu-
minosity and explanation. It enables the model to respectively
modify the temperature of an HVAC system when executing
a related action, modify the luminosity by dimming a light or
give an explanation to transmit a sentence to the user.

Two ways of representing the state of the house data are
implemented, both using the same input data:

• JSON: A JSON representation
• Textual: A fully natural textual representation
The implementation of the system is evaluated using vari-

ous open-sources LLMs, including:
• Starling Alpha 7B [Zhu et al., 2023]- 8bpw
• Qwen 1.5 14B [Bai et al., 2023] - 5bpw
• Qwen 1.5 72B [Bai et al., 2023] - 3.5bpw

The three models are selected for their performance and for
covering the three main open-source model sizes. They are
used to evaluate the impact of proposed prompting methods
and data representation.

Qwen 1.5 72B, with around 72 billion parameters, is
currently one of the best models available open-source.
Starling 7B Alpha, with around 7 billion parameters, is
an excellent smaller model, and is based on Mistral 7B an
efficient model for its size on various benchmarks. Qwen 1.5
14B model, a smaller version of Qwen 1.5 72B, is selected to
add an intermediary model.

All these models are used with versions that are quan-
tized1, a technique used to reduce inference time and memory
footprint, the quantization chosen for each model is given in
bits per weight (bpw). With their quantization, they require
around 8GB, 12GB, and 44GB of memory respectively.

Every model is evaluated on local instances, served locally
with an engine-based API backend, using TabbyAPI2 based
on ExLLamaV21 multiple GPUs and without automatic split-
ting, using a workstation equipped with a Ryzen 9 7950x,
96GB of DDR5 memory running at 5600mhz and 2 Nvidia
RTX 4090, each with 24 GB dedicated memory, running
Ubuntu 23.10.

Experiments are carried out beforehand on various uncon-
trolled scenarios to define LLM parameters. With the sole
aim of reducing non-determinism from one cycle to the next,
the final parameters modified from the default engine param-
eters are as follows:

• max tokens, maximum number of tokens in output: 300
• min p, minimum percentage value that a token must

reach to be considered (Value is scaled based maximum
token probability): 0.05

• temperature, parameter that regulates the randomness:
0.2

The RAG is implemented using Langchain[Topsakal and
Akinci, 2023] with an inference engine from HuggingFace3,

1 https://github.com/turboderp/exllamav2
2https://github.com/theroyallab/tabbyAPI
3https://github.com/huggingface/text-embeddings-inference

https://github.com/turboderp/exllamav2
https://github.com/theroyallab/tabbyAPI
https://github.com/huggingface/text-embeddings-inference


to locally execute an embedding model: BAAI/bge-large-en-
v1.5[Xiao et al., 2023], and an Elasticsearch4 local instance
is used as vector database, both instances running on CPU
and associated memory.

To evaluate system performance, each scenario is executed
10 times with each prompting style, and a grade is given to
each response. Results then count the total number of points
for each prompting category in general, and also for each
defined metric associated with each question. The system’s
complete processing time is also measured, in order to esti-
mate the average latency of the different prompting styles.

The theoretical random action grade for each scenario is
calculated as a baseline, using the following formula 1.

grades =
number of actions rated 1s + 2 × number of actions rated 2s

number of actionss
(1)

Figure 2 shows an example of a scenario data representation
using proposed natural language textual representation.

C u r r e n t S t a t e o f t h e House :
User 1 i s i n t h e Liv ingroom .
User i s w a t c h i n g TV .
P r e v i o u s l y : User was c u r r e n t l y l o o k i n g a t TV

Livingroom : C u r t a i n s a r e Closed .
L i g h t s : main , f l o o r lamp a r e r e s p e c t i v e l y Off , Off .
There i s a TV i n t h e room and i t s s t a t e i s on .
CO2 l e v e l i n room i s 513ppm .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K i t c h e n : C u r t a i n s a r e Closed .
L i g h t s : main a r e Off .
CO2 l e v e l i n room i s 473ppm .

House was c l e a n e d t o d a y .
Expec ted c l e a n i n g one t ime a week .
C e n t r a l i z e d HVAC sys tem i s on wi th o b j e c t i v e t o 20◦C .
E n t r a n c e s m a r t Door i s l o c k e d .
Time : 10 :21 PM
Gl ob a l house t e m p e r a t u r e i s 20◦C ,
o u t s i d e t e m p e r a t u r e i s 5◦C .

Figure 2: Extract of natural data representation on the scenario ”Out
of bed at night”

As previously mentioned, several data types have been
included in the representations: numerical values, boolean
values, and character strings. Using an LLM to process
context allows the system to support all these data types.

Regarding the action list building algorithm, in one of the
scenarios for example, it reduces the set of actions from more
than 18 to 6 actions, which represents a 3-fold reduced set
in this case. This reduced set takes into account the fact that
lighting appliances are basic switches and cannot be set with
different luminosity levels.

This limited set of actions makes it interesting to use a
model randomly selecting one action from the set as a base-
line. With a reduced action space, a random answer may not
be so bad.

4https://github.com/elastic/elasticsearch

5 Results
5.1 Data representation
The first analysis of the results focuses on the advantage of
using a natural representation versus a JSON representation.

Model JSON Natural
Qwen 1.5 72B 1.25 1.18
Qwen 1.5 14B 0.63 0.99

Starling Alpha 7B 1.03 1.18

Table 2: Comparing the two contextual representations: average
grade of models per execution per scenario

Table 2 shows an average difference between results us-
ing JSON representation, or the more natural representation.
It shows that the larger models are almost stable indepen-
dently of the contextual representations, and on average even
slightly better using JSON representation, by around 5.9%.
However, on smaller models, the natural language representa-
tion greatly improves performances, with a 14.6% increase in
average performance using Starling 7B, and a 57.1% increase
using Qwen 1.5 14B. In terms of processing time, results are
quite similar on average for models with both representations.
On average, accross all models, it leads to an increase in per-
formance of 21.9%, despite the results on the larger Qwen
model, making the natural representation more efficient.

5.2 User preferences
Figure 3 depicts the average grades obtained by the 3 chosen
models on their responses to scenarios with the 4 different
prompting styles and the 2 distinct representation types.

It first shows that Qwen 72B model is much more sta-
ble than the other two and that the prompting style does not
have as much impact on response quality. Regarding the two
smaller models, larger inconsistency in results can be noted
as varying with the chosen prompting styles, particularly with
Qwen 14B model.

The results of LLMs are compared with a baseline cor-
responding to the random choice of an action. The results
remain on average behind any model without preferences
(37.1% below the worst result with the ”direct” prompting
style). However, thanks to the algorithm reducing the set of
actions and the fact that multiple responses are acceptable on
each scenario, the random baseline obtains grades that are
sometimes better than the ones of some experiments with
LLMs.

The sequence of multiple questions requires the model to
be consistent and to respect the expected instruction format.
Furthermore, given that only prompt engineering is used to
ensure the format, some prompting styles with multiple ques-
tions may lead to invalid responses, forcing the model to take
a default action in the proposed setting. This default action is
set to do nothing and to inform the user that it has failed to
act. This reduces the performance of some models with some
prompting styles. in figure 3 failure ratio measures the ratio
of invalid responses. Qwen 14B results are especially below
this baseline because they failed to answer in a large number
of scenarios

https://github.com/elastic/elasticsearch


Figure 3: Average grades by model, data representation and prompting styles

On average, ”directPref” prompt models achieved a gain
of 11.3% over basic prompt with natural representation, and
even 20.0% with JSON representation.

The best results are achieved with JSON representation for
”OpenQuestion” and ”ThreeQuestion”, leading to a 28.6%
improvement over the ”direct” prompting style.

With the natural representation, Qwen 14B model gives al-
most stable results with all prompting styles except ”Open-
Question”, and the main difference with ”OpenQuestion”
seems to be linked to a high failure rate, as shown in fig-
ure 3. With JSON representation, failures are so high with all
advanced prompting styles that the best results are obtained
with the most basic prompt. In this case, ”direct” prompting
style is 30.7% more efficient than the ”directPref” prompting
style.

On Starling 7B, with both representations, the best results
are obtained with ”directPref”, on the Starling representation,
its results are 52.3% better than the direct representation and
respectively 8.1% and 6.3% better than ”OpenQuestion” and
”ThreeQuestion” prompting styles.

In addition, the average processing time is reduced by
35.6% on Starling 7B Alpha using the ”directPref” prompting
style instead of ”direct”.

With JSON representation, the averaged grade results
follow the same trend, but with lower overall values.

Table 3 shows that RAG-based prompting models can
lead to better results than a single prompt containing all
the data, as it is visible Qwen 72B. However, to date, LLM
inference is still slow, and the use of complex prompts leads
to a loss of accuracy in the test scenarios with smaller models.

Adding inference time to the balance with table 3 high-
lights Starling 7B Alpha results with ”directPref”. It outper-
forms almost all others except Qwen 72B with JSON repre-

Model Prompting Style Average grade Proces. time (s)

Qwen 72

direct 1,06 9,04
directPref 1,22 7,01
OpenQuestion 1,18 24,43
ThreeQuestion 1,26 42,13

Qwen 72 JSON

direct 1,05 9,02
directPref 1,26 6,71
OpenQuestion 1,35 25,20
ThreeQuestion 1,35 41,47

Qwen 14

direct 1,09 1,22
directPref 1,09 1,16
OpenQuestion 0,65 8,83
ThreeQuestion 1,11 15,54

Qwen 14 JSON

direct 0,98 1,28
directPref 0,75 1,21
OpenQuestion 0,47 9,39
ThreeQuestion 0,32 16,62

Starling

direct 0,88 0,73
directPref 1,34 0,47
OpenQuestion 1,24 3,98
ThreeQuestion 1,26 6,23

Starling JSON

direct 0,85 0,48
directPref 1,15 0,48
OpenQuestion 1,08 3,77
ThreeQuestion 1,02 6,20

Table 3: Comparison of average grades for each prompting style and
models with inference time

sentation and prompt chaining, but is 53.6 times faster, with
a lower grade of just 0.7%.

With Qwen 72B, the use of more complex models (Open-
Question, ThreeQuestion) can lead to better results, as seen
previously in particular with JSON representation, but this
comes with a trade-off: inference time. Qwen 72B model is
already much slower due to its number of parameters, and
due to the number of operations required to produce a sin-
gle token. For instance, an inference with ”directPref” takes
6.86 seconds on average (JSON and textual representation),
whereas using ”OpenQuestion” (which is around 60% faster
than ”ThreeQuestion”) is 3.6 times slower.

In the current state of this type of hardware, it is impossible



to consider them as a viable alternative for managing a smart
home automation system, with such reaction times.

6 Discussion
This section mainly discusses the results of the LLMs and
prompting techniques chosen in order to make choices
for real experiments. The advantages of this study are
highlighted as well as the new challenges that are raised.

As seen previously, using larger LLM such as Qwen 72B
allows greater stability in preference-free scenarios. Indeed,
Qwen 72 is 19.9% better than Starling 7B in this case. How-
ever there are drawbacks, the first being the inference time as
mentioned, and the second being the hardware infrastructure
required. The quantized version of Qwen 1.5 72B requires
44GB of memory compared with around 8GB for Starling
7B Alpha with lower quantization.

Compared with Qwen 72B model using JSON represen-
tation, Starling 7B Alpha with ”directPref” takes advantage
of natural representation and achieves almost similar perfor-
mances with much more complex prompting techniques. This
makes the approach of using Starling 7B Alpha with this
prompting style a good choice for future work. It gives simi-
lar performances concerning grades, and has a relatively low
inference time (Average: 0.47s).

In addition, compared to Qwen 1.5 72B with natural
representation and no preferences, Starling 7B Alpha’s
performance is 26.4% better using ”directPref”, with a
processing time almost 20 times faster.

The results show the advantage of adhering to preferences.
Drawbacks appear, however, with the additional average
computation time for ”OpenQuestion” and ”ThreeQuestion”
prompting styles, which use RAG. Using RAG brings no ad-
vantage in most cases. This is certainly due to the relatively
small database. If the system required a larger database of
preferences and rules, the results might have been different as
it would not have been possible to give them directly through
”directPref” prompting style. Based on current results, the
best choice for a use case with a larger database would remain
Starling 7B Alpha, with ”OpenQuestion” prompting style and
natural representation, as it provides results that are aligned
with users preferences, with only 8.1% less average grade
than Qwen 1.5 72B, while keeping an acceptable average in-
ference time (3.98 seconds vs 25.20 seconds).

The use of smaller models poses the challenge of enforcing
the output format. New methods have recently been proposed
such as Outlines5, to strengthen the output grammar. They
should be tested soon in order to analyze the cost in inference
time and the improvement of the results of this paper.

Another approach is fine-tuning. The limits of using
fine-tuning for user preferences were mentioned previously.
However, fine-tuning on smart home domain data could
allow the system to ensure the output format while improving
the analysis of contextual data.

5https://github.com/outlines-dev/outlines

Although the proposed system is not comparable to other
works due to its completely new approach, it has the advan-
tages of its nature, as well as drawbacks. Firstly, it is not
deterministic. Each configuration has been run 10 times, but
some results are different each time, which means that the re-
sults of the system cannot be certified and a safety layer must
be developed to secure some actions. Secondly, LLM queries
are slow and require significant computating and memory re-
sources: adaptability without training comes at a cost.

7 Conclusion
This paper presents a new architecture for a smart home au-
tomation system, using LLMs with user preferences to en-
hance personalised user experiences. This approach leverages
the general knowledge provided by LLMs and combines it
with naturally written rules and preferences to make contex-
tually relevant decisions in line with user preferences. This
architecture is proactive, able to adapt to any change in the
environment thanks to the robustness provided by LLMs.

The user-centred action list builder takes advantage of this
ability to reduce the set of actions at each step, as the repre-
sentation of the environment also takes advantage of the name
given to devices by the user to better support them.

The experimental results demonstrate the potential of this
architecture to improve alignment with user preferences
compared with an implementation without user preferences,
showing up to 52.2% performance increase.

The study showed that, particularly with small models, us-
ing a natural representation instead of a JSON representation
leads to an increase in performance, with an average 21.9%
increase.

Although the system shows promising results on a set of
defined scenarios, it also presents challenges due to stochastic
behaviour and a slower inference time compared to traditional
machine learning methods. These drawbacks are offset by the
system’s ability to adapt dynamically - without retraining - to
changes in preferences, appliances and home configuration.

Future work will focus on implementing the system
in a real-world smart home middleware system such as
OpenHAB[Portalés et al., 2019] to evaluate its performance
with real users. Mechanisms will be proposed to allow users
to naturally add and remove preferences, as well as to explore
the automatic evolution of these rules and preferences.

https://github.com/outlines-dev/outlines
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