
HAL Id: hal-04593238
https://hal.science/hal-04593238

Submitted on 29 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The physical properties of the Hall current
F. Faisant, M. Creff, J.-E. Wegrowe

To cite this version:
F. Faisant, M. Creff, J.-E. Wegrowe. The physical properties of the Hall current. Journal of Applied
Physics, 2021, 129, pp.144501. �10.1063/5.0044912�. �hal-04593238�

https://hal.science/hal-04593238
https://hal.archives-ouvertes.fr


J. Appl. Phys. 129, 144501 (2021); https://doi.org/10.1063/5.0044912 129, 144501

© 2021 Author(s).

The physical properties of the Hall current
Cite as: J. Appl. Phys. 129, 144501 (2021); https://doi.org/10.1063/5.0044912
Submitted: 20 January 2021 . Accepted: 22 March 2021 . Published Online: 09 April 2021

F. Faisant, M. Creff, and  J.-E. Wegrowe

https://images.scitation.org/redirect.spark?MID=176720&plid=1344537&setID=379065&channelID=0&CID=471725&banID=520303574&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=8836991cf3da2cb5c3bf54314b1d6d3fcc010355&location=
https://doi.org/10.1063/5.0044912
https://doi.org/10.1063/5.0044912
https://aip.scitation.org/author/Faisant%2C+F
https://aip.scitation.org/author/Creff%2C+M
http://orcid.org/0000-0001-7138-5620
https://aip.scitation.org/author/Wegrowe%2C+J-E
https://doi.org/10.1063/5.0044912
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0044912
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0044912&domain=aip.scitation.org&date_stamp=2021-04-09


The physical properties of the Hall current

Cite as: J. Appl. Phys. 129, 144501 (2021); doi: 10.1063/5.0044912

View Online Export Citation CrossMark
Submitted: 20 January 2021 · Accepted: 22 March 2021 ·
Published Online: 9 April 2021

F. Faisant, M. Creff, and J.-E. Wegrowea)

AFFILIATIONS

LSI, École Polytechnique, CEA/DRF/IRAMIS, CNRS, Institut Polytechnique de Paris, 91120 Palaiseau, France

a)Author to whom correspondence should be addressed: jean-eric.wegrowe@polytechnique.edu

ABSTRACT

We study the stationary state of Hall devices composed of a load circuit connected to the lateral edges of a Hall bar. We follow the approach
developed in a previous work [Creff et al., J. Appl. Phys. 128, 054501 (2020)] in which the stationary state of an ideal Hall bar is defined by
the minimum power dissipation principle. The presence of both the lateral circuit and the magnetic field induces the injection of a current:
the so-called Hall current. Analytical expressions for the longitudinal and transverse currents are derived. It is shown that the efficiency of
the power injection into the lateral circuit is quadratic in the Hall angle and obeys to the maximum transfer theorem. For usual values of
the Hall angle, the main contribution of this power injection provides from the longitudinal current flowing along the edges instead of the
transverse current crossing the Hall bar.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0044912

I. INTRODUCTION

The classical Hall effect1,2 is usually described by the local
transport equations for the charge carriers that take into account
the effect of the Laplace–Lorentz force generated by a static mag-
netic field. Typically, in a planar Hall device, an electric generator
imposes a constant electric current J0x along the x direction (see
Fig. 1), and the Hall voltage is then measured transversally along
the y direction at a stationary regime as a function of the magnetic
field. The physical mechanisms behind this effect and the corre-
sponding transport equations are well-known and are described in
all reference textbooks. At a stationary state under a perpendicular
magnetic field, the Hall voltage can be measured, which is due to
the accumulation of electric charges between the two edges of the
Hall bar. This state corresponds to a vanishing transverse current—
or Hall current—Jy ¼ 0 along the y axis.3–5 Indeed, the accumula-
tion of electric charges at the edges produces a transverse electric
field Ey that balances the Lorentz force so that the system reaches
an “equilibrium” along the y axis.

However, due to the contact with the power generator, the
system is not at equilibrium (heat is dissipated), and the presence of
the magnetic field is likely to couple the two directions x and y of
the device (assumed to be planar), as shown by the transport equa-
tions. The reason—or under what conditions—the system imposes a
vanishing Hall current Jy ¼ 0 at a stationary regime is given by a
variational principle: the current distributes itself so as to minimize
the Joule heating. A stationary state with Jy = 0 occurs in some

specific situations that are, for instance, (i) the Corbino disk under a
magnetic field,2 (ii) the spin-Hall effect, in which the effective mag-
netic field is defined by the spin–orbit scattering (the presence of a
pure spin-current), or (iii) the case of an electric contact that links
the two opposite edges to a load resistance. This last situation is
present while measuring the Hall voltage, since the internal resist-
ance of a real voltmeter is finite.

The investigation of the condition Jy ¼ 0 in an ideal Hall bar
was the object of previous publications,6–8 in which the variational
method used in the present work was developed. Beyond, the case
(i) of the Corbino disk is well-known: in the presence of the static
magnetic field, an orthoradial current is indeed flowing perpendicu-
lar to the radial electric field. The power dissipated in the stationary
state is higher than for the equivalent Hall bar.6,9 The case (ii) is still
controversial10,11 and will not be discussed here. The question (iii)
seems to be disregarded in the literature, but it could be related to
the so-called current mode in Hall devices.12 However, the measured
“Hall current” is usually an effect of the non-uniform current lines
due, e.g., to misalignment of the metallic electrodes.13,14 In contrast,
the goal of this report is to study the physical properties for the con-
figuration that corresponds to the highest symmetry of the device
compatible with the constraints applied to it.

II. JOULE DISSIPATION

The system under interest is studied in the context of non-
equilibrium thermodynamics.15–20 It is a thin homogeneous
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conducting layer of length L and width ‘ contacted to an electric
generator and submitted to a constant magnetic field ~H oriented
along the z axis (see Fig. 1). We assume that the conducting layer
is planar, invariant by translation along the x axis ‘ � L (this
excludes the region in contact with the power generator), and the
two lateral edges are symmetric.

Let us define the distribution of electric charge carriers by
n(y) ¼ n0 þ δn(y), where δn(y) is the charge accumulation and
n0 the homogeneous density in the electrically neutral system
(e.g., density of carriers without the magnetic field). The charge
accumulation is governed by Poisson’s equation ∇2V ¼ � q

ε δn,
where V is the electrostatic potential, q is the electric charge, and
ε is the electric permittivity. The local electrochemical potential
μ(x, y)—that takes into account not only the electrostatic poten-
tial V but also the energy (or the entropy) responsible for the dif-
fusion—is given by the expression19,20 (local equilibrium is
assumed everywhere),

μ ¼ kT
q
ln

n
n0

� �
þ V , (1)

where k is the Boltzmann constant and the temperature T is the
temperature of the heat bath in the case of a non-degenerate
semiconductor or the Fermi temperature TF in the case of a fully
degenerate conductor.21 Poisson’s equation now reads

∇2μ� λ2D
q
ε
n0∇2 ln

n
n0

� �
þ q
ε
δn ¼ 0, (2)

where λD ¼
ffiffiffiffiffiffiffi
kTε
q2n0

q
is the Debye–Fermi length. On the other hand,

the transport equation under a magnetic field is given by Ohm’s law,

~J ¼ �σ̂~∇μ ¼ �qnη̂~∇μ, (3)

where the transport coefficients are the conductivity tensor σ̂ or the
mobility tensor η̂. In two dimensions and for the isotropic material,
the mobility tensor is defined by Onsager relations,15

η̂ ¼ η ηH
�ηH η

� �
¼ η

1 θH
�θH 1

� �
,

with

θH ¼ ηH
η
,

where η is the ohmic mobility, ηH the Hall mobility (usually propor-
tional to the magnetic field ~H ¼ H~ez), and θH the Hall angle. The
electric current then reads

~J ¼ �qnη ~∇μ� θH ~ez � ~∇μ
� �

(where� denotes the cross
product) or

�qnη(1þ θ2H)@xμ ¼ Jx � θHJy , (4)

�qnη(1þ θ2H)@yμ ¼ Jy þ θHJx , (5)

k~Jk2 ; J2x þ J2y ¼ (qnη)2 (1þ θ2H) k~∇μk2: (6)

FIG. 1. Schematic representation of a Hall bar with the electrostatic charge accumulation +δn at the edges, the electric field lines (red), and the current lines (black).
The static magnetic field H is applied along the z direction. Note that the scales along x and y are not respected since we need ‘ � L in order to assume translational
invariance along x. (a) Planar Hall bar without dissipative leakage. (b) Same Hall bar including lateral circuit with transverse resistance RH and representation of the load
resistance Rl (preserving the translational invariance along x). The chemical potential difference Δμ is also represented.
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The expression of the Joule power dissipated by the
system reads

PJ ¼ Slat

ð‘
�‘

qnηk~∇μk2dy ¼ L

qn0η(1þ θ2H)

ð‘
�‘

n0
n
k~Jk2dy,

where Slat is the lateral surface of the Hall bar (product of the
length L by the thickness) and 2‘ is the width.

III. THE IDEAL HALL BAR

The stationary state is defined by the least dissipation principle,
which states that the current distributes itself so as to minimize
Joule heating PJ compatible with the constraints.16–18

Due to the symmetry of the device and the global charge con-

servation, we have
Ðþ‘

�‘ δndy ¼ 0, and the total charge carrier
density is constant ntot ¼ 1

2‘

Ð
ndy. For the sake of simplicity, we

assume a global charge neutrality so that ntot ¼ n0. On the other
hand, the global current flowing in the x direction throughout the
device is also constant along x by definition of the galvanostatic
condition. The two global constraints read

ð‘
�‘

n(y)dy ¼ 2‘n0 and
ð‘
�‘

Jx(y)dy ¼ 2‘J0x : (7)

We define for convenience the reduced power ~PJ ¼ qη(1þθ2H )
Slat

PJ ¼
Ð ‘
�‘

J2xþJ2y
n dy. Let us introduce the two Lagrange multiplayers λJ

and λn corresponding to the two constraints [Eq. (7)]. The func-
tional to be minimized then reads

~PJ [Jx , Jy , n] ¼
ð‘
�‘

J2x þ J2y
n

� λJ Jx � λn n

 !
dy: (8)

The minimum corresponds to

δ ~PJ

δJx
¼ 0 () 2Jx ¼ nλJ , (9)

δ ~PJ

δJy
¼ 0 () Jy ¼ 0, (10)

δ~PJ

δ(n)
¼ 0 () J2x þ J2y ¼ �λnn

2: (11)

Using Eqs. (7) and (9) leads to λJ ¼ 2J0x
n0

so that Jx ¼ n
n0
J0x [and from

Eq. (11), we have, furthermore, λn ¼ �(J0x=n0)
2]. Hence, the

minimum is reached for

Jx(y) ¼ J0x
n(y)
n0

and Jy ¼ 0: (12)

The usual stationarity condition ~∇ �~J ¼ 0 is verified. Inserting the
solution (12) into the transport equations (4) and (5), we deduce

@xμ ¼ �J0x
qn0η(1þθ2H )

and @yμ ¼ θHJ0x
qn0η(1þθ2H )

. These two terms are constant

so that the electrochemical potential of the stationary state is har-
monic: ∇2μ ¼ 0. Since the profile of the lateral current Jy(y) is
defined by the charge density n(y), Poisson’s equation [Eq. (2)] for
∇2μ ¼ 0 gives the solution

λ2D@
2
y ln 1þ δn

n0

� �
¼ δn

n0
: (13)

Once again, the boundary conditions for the density n are not defined
locally but globally by Eq. (7) and by the integration of Gauss’s law
~∇ �~E ¼ @yEy ¼ q

ε δn, at a point y0 (see Appendix C in Ref. 7),

Ey(y0) ¼ �@yV(y0) ¼ � q
2ε

ð‘
�‘

δn(y)sgn(y � y0)dy þ ΔE1, (14)

where the constant ΔE1 ¼ E(þ1)þ E(�1) accounts for the elec-
tromagnetic environment of the Hall device (ΔE1 ¼ 0 in vacuum),
and the Sign function sgn(y � y0) ; (y � y0)=jy � y0j accounts for
the opposite sign of the charge accumulation at both edges. Inserting
the stationary solution (12) and the relation (5) for @yμ gives the con-
dition

2θHJ0xC0

1þ θ2H
þ 2λ2D@y ln

n
n0

� �
(y0)þ 2CE þ

ð‘
�‘

δn(y)sgn(y � y0)dy ¼ 0,

(15)

where C0 ¼ ε
q2n0η

and CE ¼ εΔE1
qn0

. Using this condition and fixing n0
gives a unique solution for n(y), and the stationary current [Eq. (12)]
is fully determined.

This derivation was the object of the report published in Ref. 7,
and the result was confirmed by an independent stochastic
approach.8 For small Debye length λD=‘ � 1, the charge accumula-

tion +δn at the edges gives rise to the voltage V0
H ¼ θH2‘J0x

qn0η
. For low

magnetic field H, we have θH � ηH, and the usual expression of

the Hall voltage is recovered: V0
H ¼ H2‘J0x

qn0
.

IV. EFFECT OF A LATERAL PASSIVE CIRCUIT

The solution found in Sec. III is valid as long as the dissipa-
tion due to charge leakage at the edges is negligible with respect to
the dissipation inside the device. However, if it is no longer the
case, the stationary regime should be reconsidered by introducing
the dissipation due to the resistance of a lateral passive circuit that
connects the edges of the Hall bar. In order to take into account
this supplementary dissipation, we introduce the load conductivity
g (Ω�1 �m�2) of the lateral circuit [see Fig. 1(b)]. The power dissi-
pated in the lateral circuit is by definition of g,

Plat ¼ Slat g Δμ
2,

where Δμ ¼ μ(þ‘)� μ(�‘) is the difference of the chemical poten-
tial between both edges [see Fig. 1(b)]. We assume that the load
conductivity g does not depend on the magnetic field. From a
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topological point of view, despite the presence of electric charge
accumulation at the edges δn = 0, the fact that the system is
doubly connected—instead of simply connected—suggests that the
corresponding device is closer to a Corbino disk than a Hall bar.6

Note that due to our hypothesis of the invariance along x, we
do not treat the case of a unique wire that joints the two edges of the
Hall bar, which would form two “punctual” contacts on both edges
[see Fig. 1(b)]. Indeed, such a contact would break the translation
invariance symmetry along x and would distort the current lines in a
specific manner that depends on the details of the contact geometry
and resistivity. Such a contact-specific effect is not related to the
generic problem studied here. Incidentally, it is well-known that the
main advantage of the Corbino disk with respect to the Hall-bar
device is precisely that it is much easier to design two quasi-perfect
concentric equipotentials (circular symmetry) instead of two quasi-
perfect longitudinal equipotentials (translational symmetry).

Using Eq. (5), the difference of chemical potential can be
expressed as a function of the current,

Δμ ¼
ðþ‘

�‘

dy @yμ ¼
ðþ‘

�‘

dy
Jy þ θHJx

qnη(1þ θ2H)
(16)

so that

Plat ¼ Slat g

(qη)2(1þ θ2H)
2

ðþ‘

�‘

dy
Jy þ θHJx

n

� �2

: (17)

As in Sec. III, we define the reduced power ~P ¼ qη(1þθ2H )
Slat

P. The total
power dissipated is then

~P ¼ ~PJ þ ~Plat

¼
ðþ‘

�‘

dy
J2x þ J2y

n
þ α

n0
2‘

ðþ‘

�‘

dy
Jy þ θHJx

n

� �2

, (18)

where we have introduced the dimensionless control parameter α,

α ¼ 2‘ g

qηn0(1þ θ2H)
: (19)

Note that the control parameter α is the ratio α ¼ RH
Rl

of the “Hall

resistance” per surface unit RH ; VH
J0x

¼ 2‘
qn0η(1þθ2H )

over the resistivity

Rl ¼ 1
g of the load.

Accordingly, the minimization of the corresponding func-
tional ~P now reads

δ ~P
δJx

¼ 0 () 2αA θH þ 2Jx ¼ nλJ , (20)

where we have defined for convenience the constant

A ; n0
2‘

Ð ‘
�‘

JyþθHJx
n dy. Furthermore,

δ~P
δJy

¼ 0 () αAþ Jy ¼ 0 (21)

and

δ~P
δ(n)

¼ 0 () 2αAþ J2x þ J2y ¼ �λn n
2: (22)

Equations (20) and (22) define the Lagrange multipliers λJ and
λn and will not be used in the following. From Eq. (21), we can
immediately deduce that

• Jy does not depend on y.
• In the absence of a magnetic field, θH ¼ 0; we have

n0
2‘ α Jy

Ð dy
n þ Jy ¼ 0, and Jy ¼ 0 is the unique solution (since α

and n are positive).
• If the load resistance goes to infinity Rl ! 1 (or g ! 0), the
power dissipated by the current leakage is negligible, and we are
back to the case discussed in Sec. III: the stationary state is

defined by Jx(y) ¼ J0x
n(y)
n0

and Jy ¼ 0.
• In the case of a short-circuit by the edges (i.e., the case of a

Corbino disk), Rl ! 0 (or g ! 1), we have A ;
Ð JyþθHJx

n dy ! 0,
which leads to the solution, at the limit: Jy ¼ �θHJx . This is
indeed the well-known stationary state for the Corbino disk, which
corresponds to the maximum current Jy .

6

V. BETWEEN THE CORBINO DISK AND THE HALL BAR

Introducing the constant current inside the integral of Eq. (21)

with Jy ;
Ðþ‘

�‘

Jydy
2‘ and dividing by Jy

2‘ (for Jy = 0), we obtain

ðþ‘

�‘

dy 1þ α
n0
n

1þ θH
Jy

Jx

� �� �
¼ 0: (23)

As pointed out above, the two limiting cases are the solution of
Eq. (23). At the limit of the perfect Hall bar (defined by an infinite
load resistance and α ¼ 0), a vanishing transverse current Jy ! 0 is
recovered, while at the limit of the perfect Corbino disk (defined by
Rl ¼ 0 or α ¼ 1), the Corbino current Jy ¼ �θHJx is recovered.
Without loss of generality, the solution Jy(α) can be expressed with
introducing an arbitrary function f (α) such that Jy ¼ �f (α) θHJ0x .
The function f (α) can be determined by using the sufficient condition

1þ α
n0
n

1þ θH
Jx
Jy

� �
¼ 0: (24)

We then obtain Jx(y) ¼ J0x f (α) 1þ 1
α
n(y)
n0

� �
. Applying the two

global constraints [Eq. (7)] leads to the expression f (α) ¼ α
αþ1 [

[0, 1] and thus to

Jy ¼ � α

α þ 1
θHJ

0
x , (25)

which interpolates the two limiting regimes for arbitrary ratio
α ¼ RH=R‘. From Eq. (24), we deduce

Jx(y) ¼ J0x
α þ 1

α þ n(y)
n0

� �
: (26)
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The lateral current Jy is homogeneous (it does not depend on y),
while the corresponding longitudinal current Jx(y) is non-
uniform and follows the profile of the charge accumulation n(y).
The relation ~∇ �~J ¼ 0 is still verified, but the chemical potential

is no longer harmonic. The derivative @yμ ¼ � J0x
αþ1

θH
qηn0(1þθ2H )

is

still constant [decreased by a factor 1=(α þ 1)], while @xμ(y) now
depends on y. The typical profiles of the longitudinal and trans-
verse currents [Eqs. (25) and (26)] are plotted in Fig. 2 in unit of
the injected current J0x .

The Hall voltage with lateral load resistance can be derived
easily. Inserting the solution [Eqs. (25) and (26)] instead of
Eq. (12) into Eq. (15), only the expression of the parameter C0 is
modified by the factor 1=(1þ α),

C0(α) ¼ ϵ

q2n0η
1

1þ α
: (27)

Assuming CE ¼ 0, the charges accumulation δn=n0 at the edges is
reduced by the same factor

δn(α)
n0

¼ C
1þ α

, (28)

where C ¼ δn
n0
(α ¼ 0) is the charge accumulation without lateral

circuit, as calculated in Ref. 7.

C ; θHJ0x C0

n0(1þθ2H )
1
λD

sh(y=λD)
ch(y=(2λD))

. For a vanishing screening length

λD ! 0, the charge accumulation reduces to Dirac distributions at
the edges of the Hall bar,7

q δn(y) ¼ σS (δ y � ‘ð Þ � δ y þ ‘ð Þ), (29)

where σS is the surface charge,

σS(α) ¼ J0x
θH

1þ θ2H

ε

qn0η
1

1þ α
, (30)

which does not depend on Jy . Assuming the usual low magnetic
field limit, we have θH � ηH, and the Hall voltage is deduced,

VH(α) ¼ σSL
ε

¼ J0xHL
qn0

1
1þ α

: (31)

The voltage [Eq. (31)] divided by the Hall voltage V0
H of the ideal

Hall bar is simply given by VH
V0
H
¼ 1

1þRH
Rl

, where we have replaced the

parameter α by its value α ¼ RH=Rl .
Note that the ratio of the transverse current over longitudinal

current,

Jy
Jx
(α) ¼ θH α

α þ 1þ C
1þα

, (32)

is small for usual values of the angle θH . This ratio divided by θH
is plotted in Fig. 3 at the edge y ¼ ‘ as a function of α ¼ RH=Rl .
The quantitative study of the result [Eq. (32)] shows that the power
injected into the lateral circuit is mainly carried by the longitudinal
current Jx(y) instead of the transverse current Jy . Indeed, as shown
by Eqs. (29) and (30), the system can be interpreted as a capacitor

FIG. 2. Typical profiles for the longitudinal current Jx (y) (plain lines) and the
homogeneous transversal current Jy (dotted horizontal lines) across the Hall bar
for various values of the parameter α ¼ {0:1, 1, 10} and in units of the injected
current J0x . The Debye length λD is indicated by the vertical lines.

FIG. 3. The ratio of the transverse current over longitudinal current divided by
θH : Jy (α)= θH Jx (α)ð Þ at the edge (y ¼ ‘) is plotted as a function of the param-
eter α ¼ RH=Rl for different values of the initial charge accumulation
C ¼ δn=n0(α ¼ 0) (varying from 0 to 1 with step 0:1).
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that is recharged permanently by the longitudinal current Jx only,
in order to keep the charge accumulation δn at the stationary state.
In other terms, the electric charges that are injected into the exter-
nal circuit are mainly due to the discharge of the lateral edges,
resupplied permanently by the longitudinal current Jx . This rather
counter-intuitive picture invalidates that of a Hall current Jy com-
posed of charge carriers flowing transversally from one edge to the
other through the Hall bar.

However, if the parameter α is large enough, the contribu-
tion of the transverse current Jy to the total current becomes
sizable for small values of the load resistance Rl � RH in nearly
intrinsic semiconductors. Typically, the value of θH � 0:14 is
obtained in a field of 1 T in silicon with an impurity density of
about 1015 cm�3. The transverse current Jy injected into the
lateral circuit can then reach the amplitude of the longitudinal
current Jx for a magnetic field of the order of 1 T if the coefficient
α is of the order of 100. The load circuit is then close to a short-
circuit between the two edges of the Hall bar, and the corre-
sponding device is like a Corbino disk, i.e., a device in which the
charge accumulation is not allowed.

VI. POWER INJECTED

The total power ~P ¼ ~PJ þ ~Plat—given in Eq. (18)—is the sum
of the Joule heating ~PJ dissipated inside the Hall device and the
power ~Plat dissipated into the lateral passive circuit. Inserting the
stationary state [Eqs. (25) and (26)] and using the first global con-
dition in Eq. (7), we obtain

~P(α) ¼ J0x
� �2

(α þ 1)2
α2(1þ θ2H)

ðþ‘

�‘

dy
n
þ (2α þ 1)

2‘
n0

þ 2‘α
n0

θ2H

� �
: (33)

Assuming that δn � n0, we have
Ðþ‘

�‘
dy
n(y) ≃ 2‘=n0, and the total

dissipated power reads

Ptot(α) ≃ 2‘ J0x
� �2
qηn0

α2(1þ θ2H)þ α(2þ θ2H)þ 1

(α þ 1)2

¼ P(0) 1þ θ2H
α

α þ 1

� �
, (34)

where P(0) is the power dissipated by the ideal Hall bar without
lateral contact.

On the other hand, the power injected into the lateral circuit is

Plat(α) ¼ P(0) θ2H
α

(α þ 1)2

� �
: (35)

The total power dissipated in the lateral circuit [Eq. (34)] normalized
by P(0) is plotted in Fig. 4(a), and the power injected into the lateral
circuit [Eq. (35)] normalized by P(0) is plotted in Fig. 4(b) as a func-
tion of α ¼ RH=Rl . The different profiles correspond to different
values of θH from 0 to 0:1. Due to the small values of the Hall angle
θH , the power injected into the lateral circuit is a small fraction of
the total power dissipated by the device. The ratio Plat=Ptot—i.e., the
efficiency of the injection—is indeed proportional to θ2H .

FIG. 4. Amplification of the power as a function of α ¼ RH=Rl for different values of the Hall angle θH (i.e., of the static magnetic field H) from 0 to 0:1. (a) Total power
Ptot dissipated in the device normalized by the power without lateral circuit P(0). (b) Power Plat injected in the lateral circuit normalized by the power without lateral circuit
P(0). The maximum coincides with the resistance matching R‘ ¼ RH .
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Note that in Fig. 4(b), the power injected into the lateral
circuit reaches a maximum at α ¼ 1, i.e., for R‘ ¼ RH , indepen-
dently of the magnetic field. Indeed, the situation is analogous to
a voltage source with internal resistance RH , loaded with R‘. The
expression Plat(R‘) is then an illustration of the so-called maximum
power transfer theorem, where the maximal injected power is
achieved at the impedance matching condition R‘ ¼ RH . This obser-
vation gives an intuitive meaning of the Hall resistance RH as the
internal resistance of a voltage source when the Hall bar is used as
the power supply for a lateral circuit.

VII. CONCLUSION

We have performed a quantitative analysis of the stationary state
of a Hall bar connected to a load circuit at the lateral edges. This con-
figuration corresponds to the so-called current mode of Hall devices.
This analysis is based on a variational approach developed in previous
works. The model assumes a planar device, a perfect symmetry of the
two lateral edges, and a translational invariance along the longitudinal
direction x (the deformation of the current lines due to the contacts
is not taken into account). The expression of the non-uniform longi-
tudinal current Jx(y) is calculated. This current allows the charge
accumulation to be maintained at a stationary state. When a lateral
circuit is connected to the lateral edges of the Hall bar, it is shown
that the current Jx(y) is amplified and a Hall current is generated:
Jy = 0. The power injected from the Hall bar to the lateral circuit
can be controlled by the magnetic field and by the load resistance R‘.
It is shown that the physical significance of the Hall resistance RH is
that of the usual internal resistance of a voltage source when the Hall
bar is used as the power supply for the lateral circuit.

Beyond, the surprising result of this study is that, for usual
values of the Hall angle, the main contribution of the power injected
into the lateral circuit is due to the longitudinal current Jx instead of
the transverse current Jy . This means that the device can be inter-
preted as a capacitor that is recharged permanently by the longitudi-
nal current Jx only in order to keep the charge accumulation δn at a
stationary state. In other terms, the electric charges that are injected
into the external circuit are mainly due to the discharge of the lateral
edges, resupplied permanently by the longitudinal current Jx . This
rather counter-intuitive picture invalidates that of a Hall current Jy
composed of charge carriers flowing transversally from one edge to
the other through the Hall bar. However, this more intuitive
Hall-current regime with sizable Jy is able to take place for nearly
intrinsic semiconductors (for which θH � 0:15 or above) for small
enough load resistance Rell , (RH=100): the device is then close to a
Corbino disk. The two different regimes are then able to take place
in the same device depending on the values of the load resistance R‘.
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