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Abstract

In real-world settings, decision-makers often have access to multiple fore-
casts for the same unknown quantity. Combining different forecasts has
long been known to improve forecast quality, as measured by scoring rules
in the case of probabilistic forecasting. However, improved forecast quality
does not always translate into better decisions in a downstream problem
that utilizes the resultant combined forecast as input. To this end, this
work proposes a novel probabilistic forecast combination approach that ac-
counts for the downstream stochastic optimization problem by which the
decisions will be made. Specifically, we propose a linear pool of probabilis-
tic forecasts where the respective weights are learned by minimizing the
expected decision cost of the induced combination, which we formulate as
a nested optimization problem. Two methods are proposed for its solution:
a gradient-based method that utilizes differential optimization layers and
a performance-based weighting method. For experimental validation, we
examine two integral problems associated with renewable energy integra-
tion in modern power systems and compare them against well-established
combination methods based on linear pooling. Namely, we examine an elec-
tricity market trading problem under stochastic solar production and a grid
scheduling problem under stochastic wind production. The results illustrate
that the proposed decision-focused combination approach leads to lower ex-
pected downstream costs while optimizing for forecast quality when esti-
mating linear pool weights does not always translate into better decisions.
Notably, optimizing for a combination of downstream cost and a standard
scoring rule consistently leads to better decisions while maintaining high
forecast quality.
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1. Introduction

1.1. Context and Motivation

Real-world optimization problems typically involve uncertain parame-
ters, corresponding to quantities such as product demand or market prices
which are unknown at the solution time. Classical stochastic optimization
(Birge and Louveaux, 2011) assumes that these uncertain parameters fol-
low a known distribution. In reality, as only observational data are avail-
able, uncertainty distributions are implicitly estimated through short-term
probabilistic forecasting, which becomes a critical input in decision-making
pipelines.

In many real-world settings, decision-makers often have multiple fore-
casts for the same uncertain parameter, provided by different vendors or
experts. This setting is common, for instance, in power and energy systems
with a high penetration of variable renewable energy sources. To ensure a
reliable and cost-effective operation, grid operators further employ domain
experts, such as meteorologists and power system engineers, who, given
additional available information such as current weather conditions, select
or combine individual forecasts (Motley, 2023). The resultant combined
forecasts are subsequently inputted within operational workflows, such as
market clearing algorithms and production cost models.

Ultimately, the decision-maker wants to combine forecasts to minimize
her expected decision cost in a downstream problem. Recently, several works
have illustrated that increased forecast quality (either in a point or proba-
bilistic sense) does not always translate into better decisions (Mandi et al.,
2023). This effect becomes even more pronounced in risk-critical infrastruc-
tures, such as power systems, where forecast errors can induce highly asym-
metrical costs (Morales et al., 2023). Hence, it is critical to go beyond fore-
cast quality and explicitly consider forecast value within a decision-making
pipeline when implementing forecast combinations.

1.2. Literature Review

Probabilistic Forecasting. Gneiting et al. (2007) posit that probabilistic fore-
casting aims to maximize sharpness subject to calibration. Forecast quality
is evaluated based on so-called proper scoring rules (Gneiting and Raftery,

2



2007), which compare probabilistic forecasts against realizations of a ran-
dom target variable, jointly assessing sharpness and calibration and eliciting
an honest uncertainty estimation by the expert forecaster. As the decision-
maker might not be uniformly interested in forecast quality across the whole
distribution, weighted scoring rules can be utilized to evaluate probabilistic
forecasts with emphasis on specific regions of interest (Gneiting and Ranjan,
2011).

Contextual Stochastic Optimization. Closely related to probabilistic fore-
casting is the area of contextual stochastic optimization, i.e., stochastic op-
timization where the uncertain parameters are associated with some contex-
tual information (or features). For instance, renewable energy production
is associated with the weather, market-clearing prices depend on demand,
etc. The goal is to minimize an expected decision cost given a realiza-
tion of feature data (Bertsimas and Kallus, 2020). The standard two-step
approach involves forecasting uncertain parameters (or their distributions)
conditioned on available features and then solving an optimization problem.
Recently, there has been a growing interest in decision-focused probabilistic
forecasting (Donti et al., 2017; Stratigakos et al., 2022; Grigas et al., 2021;
Kallus and Mao, 2022) which embeds the downstream problem within the
training process. Note that a perfect probabilistic forecast, i.e., one that
coincides with the true probability distribution, would always be preferred
by decision-makers, regardless of their downstream objective (Diebold et al.,
1998). However, a degree of model misspecification and, subsequently, fore-
cast error is unavoidable, which motivates a decision-focused approach that
aligns the estimation of the probabilistic model with the downstream ob-
jective, implicitly accounting for different regions of interest (Gneiting and
Ranjan, 2011). Such an approach regularly outperforms the standard “fore-
cast, then optimize” approach in several problems across multiple industries,
such as power and energy systems (Chen et al., 2022).

Combining Probabilistic Forecasts. Forecast combination has long been known
to improve forecast quality over component forecasts (Wang et al., 2023),
both in point and probabilistic cases. The prevalent method for combining
forecast distributions is the linear pool, which dates back at least to Stone
(1961); Winkler (1968), where each expert is assigned a weight that signifies
her forecast skill. An equally weighted linear pool, termed ordinary linear
pool, has been proven fairly robust and is generally hard to beat in empirical
evaluations. Linear pooling is typically used to combine, or average, prob-
abilities in the form of cumulative density functions. Raftery et al. (2005)
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linearly pool weather ensembles using Bayesian model averaging to generate
probabilistic forecasts. Lichtendahl Jr et al. (2013) examine conditions un-
der which it is favorable to average quantiles rather than probabilities, i.e.,
linear pooling of quantile functions. Papayiannis and Yannacopoulos (2018)
show that quantile averaging is a special case of the Wasserstein barycenter
and further propose learning optimal combination weights by minimizing the
Wasserstein distance of the combined forecast and observed data. Gneiting
and Ranjan (2013) highlight some shortcomings of linear pooling, namely, a
linear pool of calibrated forecasts may be uncalibrated and underdispersed,
and further propose nonlinear pooling based on the Beta transformation.

Learning weights of linear pools. Despite the shortcomings highlighted by
Gneiting and Ranjan (2013), linear pooling performs very well in practice
and is the most popular combination method. This can be attributed to the
fact that individual probabilistic forecasts are usually underdispersed hence
the linear pooling combination improves overall forecast quality. Given the
robustness of simple approaches, Wang et al. (2023) posit that forecast com-
binations should aim to be “sophisticatedly simple.” The question thus
arises: How to properly tune the weights of a linear pool? Recent works
focus on minimizing a proper scoring rule, such as the continuous ranked
probability score (CRPS). Thorey et al. (2017) minimize a bias-corrected
CRPS for ensemble forecasting and Thorey et al. (2018) further extend
this work to probabilistic solar production forecasting. van der Meer et al.
(2024) develop an online algorithm to adaptively minimize the CRPS of a
beta-transformed linear pool of renewable production forecasts. Berrisch
and Ziel (2023) observe differences in forecast quality across various dis-
tribution regions and propose a pointwise quantile combination minimizing
the aggregate CRPS. Krannichfeldt et al. (2022) average quantiles by min-
imizing the quantile score, which approximates CRPS, and updating the
combination weights only when the loss exceeds a predetermined threshold.

1.3. Aim and Contribution

In this work, we develop a decision-focused approach to estimate linear
pool weights for probabilistic forecasting. Given a data-driven, contextual
stochastic optimization problem, we learn combination weights by minimiz-
ing the expected incurred decision cost. We propose two solution meth-
ods for the resultant problem, namely, a differentiable optimization-based
method (Agrawal et al., 2019a) and weighting component forecasts based on
their in-sample decision quality, which adapts the classic approach of Bates
and Granger (1969) in a contextual optimization framework. Further, we
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extend our approach to a conditional combination setting, wherein the com-
bination weights depend on additional features that become available before
making decisions, which is of great practical interest. Importantly, we make
two key contributions: (i) we connect the weight estimation process with the
downstream decision-making process while retaining a simple combination
scheme, and (ii) account for additional information that might be available
to the decision-maker. We validate the proposed combination approach in
critical applications related to variable renewable energy sources integration
in power systems (Morales et al., 2013). We examine an electricity market
trading problem under stochastic solar production and a grid scheduling
problem under stochastic wind production. The numerical results show
that embedding the downstream problem by co-optimizing decision costs
and forecasting quality consistently improves decision outcomes. Notably,
optimizing for a combination of downstream cost and CRPS consistently
leads to better decisions while maintaining high forecast quality.

The rest of the paper is organized as follows. Section 2 presents prelim-
inaries, formulates the proposed combination approach, and develops the
solution methods. Section 3 presents the results of the numerical experi-
ments. Section 4 summarizes and discusses future work.

2. Methodology

This section introduces our notation and develops the proposed method-
ology. Section 2.1 introduces contextual stochastic optimization, probabilis-
tic forecast evaluation, and forecast combination. Section 2.2 formulates the
proposed decision-focused forecast combination approach, which is our main
contribution. Finally, Section 2.3 develops two solution methodologies for
the decision-focused forecast combination.

Notation. Uppercase letters denote random variables, lowercase letters de-
note realizations, and ·̂ denotes forecasts. Bold font denotes vectors and
normal font denotes scalar quantities. Sets are denoted with calligraphic
font, e.g., S, and |S| denotes the cardinality (number of elements) of a set
S. The notation [n] is used as a shorthand for 1, ..., n. Further, let

Σn = {a ∈ Rn
+ |a⊤1n = 1}

be the standard (n − 1)-dimensional probability simplex, where 1n is an
n-sized vector of ones. Finally, let I(·) be the indicator function.
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2.1. Methodology Preliminaries

2.1.1. Contextual Stochastic Optimization

We consider a contextual stochastic optimization problem given by

min
z∈Z

E[c(z;Y )|X = x0], (1)

where Y ∈ Y denotes the uncertain problem parameters (e.g., uncertain
demand), X ∈ X denotes some associated contextual features (e.g., weather
or market conditions), x0 denotes a realization of X, z denotes the decision
variables, Z denotes the convex set of feasible solutions, c denotes a convex
cost function, and the expectation is taken with respect to (w.r.t.) the
conditional distribution of Y given X = x0. The set of feasible decisions Z
may also depend on the uncertainty Y , e.g., a demand balancing constraint
in a network flow problem, but the dependency is suppressed to keep the
notation simple.

We further assume that the uncertain parameter Y is a discrete random

variable with finite support Y def
= {ξ1, . . . , ξK}, where K is the number of

support locations. For any instance x0 ∈ X , the true conditional distribution
of Y is given by a discrete probability vector (or histogram) p(Y |x0) ∈
ΣK , where ΣK is the (K − 1)-dimensional probability simplex. The k-th
component of p(Y |x0) is defined as pk = P(Y = ξk|x0), i.e., the conditional
probability of Y = ξk. Problem (1) can be equivalently written as

min
z∈Z

E[c(z;Y )|x0] = min
z∈Z

∑
k∈[K]

pkc(z; ξk). (2)

In real-world applications, instead of the true probability vector p(Y |x0),
we have access to some training data, which are used to approximate (2)
by estimating the conditional distribution of Y through probabilistic fore-
casting. Let us further assume that S experts provide the decision-maker
with a set of probabilistic forecasts {p̂s}s∈[S] that model the conditional
distribution of Y and that the decision-maker has collected a data set of
N historical observations of D = {(yi, p̂1

i , . . . , p̂
S
i )}i∈[N ] of the uncertain pa-

rameter and the respective probabilistic forecasts of each expert. Typically,
all probability vectors are conditioned on some contextual information, with
each expert potentially using a different set of features to model uncertainty;
this dependency is suppressed here to simplify the notation.

2.1.2. Probabilistic Forecast Evaluation

Forecast Quality. The merit of each expert is typically assessed based on
the quality of her forecasts. Gneiting et al. (2007) posit that probabilistic
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forecasting aims to maximize the sharpness of the predictive distributions
subject to calibration. Calibration refers to the statistical consistency be-
tween the induced probabilistic forecasts and the realizations of uncertainty,
while sharpness refers to the concentration of the predictive distribution.
Both calibration and sharpness can be assessed jointly through so-called
proper scoring rules.

Any probability vector, e.g., q, induces a estimation for the binary event
{Y ≤ u} via its associated cumulative distribution function (CDF)

F (u) =

∫ u

−∞
q(y)dy =

∑
yk≤u

qk (3)

and an associated quantile estimation via its associated inverse CDF F−1(τ)
at the level τ ∈ [0, 1].

The continuous ranked probability score (CRPS) (Gneiting and Raftery,
2007) is a strictly proper scoring rule that evaluates a predictive CDF with
a realization of a random variable, i.e., a scoring rule that incentivizes the
forecaster to provide truthful predictions about the probability distribution
and is considered the state-of-the-art evaluation metric in probabilistic fore-
casting. Given a probability vector q and a realization y of Y , the CRPS is
given

CRPS(q, y) =

∫ +∞

−∞
(F (u)− I(y ≤ u))2du (4)

=2

∫ 1

0
(α− I{y ≤ F−1(α)})(y − F−1(α))dα. (5)

The so-called quantile decomposition of CRPS (5) (Gneiting and Ranjan,
2013), shows that the CRPS has the same unit as the observation y. Even
though closed-form solutions to (4) and (5) may not be available, the esti-
mation of a discrete approximation is always feasible.

Decision Quality. In decision-focused learning, we are primarily interested
in the quality of decisions induced by a (probabilistic) forecast, as measured
by the expected value of (2). A salient notion is the so-called regret, i.e.,
the excess cost incurred compared to the perfect foresight solution. Given
any q ∈ ΣK , let z(q) = argminz∈Z

∑
k∈[K] qkc(z; ξk) be the corresponding

induced decision. For a realization y0 of uncertainty, the decision regret,
w.r.t. the cost function c and the feasible set Z, is estimated by

Regret = c(z(q); y0)− c(z∗; y0), (6)

where z∗ = argminz∈Z c(z; y0). Evidently, regret is always non-negative.
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2.1.3. Forecast Combination

Ultimately, the decision-maker wants to utilize the S available forecasts
to minimize her downstream costs, defined by (2), or equivalently the de-
cision regret (6). Formally, this translates into learning a function h :
ΣK ×· · ·×ΣK → ΣK that takes as input S probability vectors {p̂s}Ss=1 and
combines them in a decision-focused manner. Note that the decision-maker
may also have access to additional contextual information, such as updated
weather conditions, which can be used to improve the forecast combination.
This gives rise to an augmented data set D′ = {(yi, p̂1

i , . . . , p̂
S
i ,xi)}i∈[N ],

where xi are realizations of additional contextual information available to
the decision-maker. The goal here would be to learn a forecast combination
model h : X ×ΣK × · · · ×ΣK → ΣK that also accounts for these additional
features. We refer to this case as an conditional combination, since it allows
adapting to new contextual information and the case without additional
feature data as a static combination.

2.2. Decision-focused Linear Pooling

In this section, we develop the proposed decision-focused forecast combi-
nation approach. We focus on linear pools of probabilistic forecasts, that is,
we restrict the combination model h to be a linear function with non-negative
coefficients that sum to one. While this might seem overly restrictive, plenty
of empirical evidence suggests that the linear pool is robust and performs
very well; extensions to non-linear pooling methods are straightforward to
envision. Further, we allow the linear pool weights to be a function of addi-
tional contextual information, such as current weather conditions.

The proposed decision-focused forecast combination is given by

min
f∈F

∑
i∈[N ]

c(zcombi ; yi)− c(z∗i ; yi)︸ ︷︷ ︸
Regret

+γ · CRPS(pcomb
i , yi), (7a)

s.t. zcombi = argmin
z∈Z

∑
k∈[K]

p̂combi,k c(z; ξk), i ∈ [N ], (7b)

p̂comb
i =

∑
s∈[S]

λi,sp̂
s
i , i ∈ [N ]. (7c)

λi ∈ ΣS , i ∈ [N ], (7d)

λi = f(xi), i ∈ [N ]. (7e)

Constraint (7b) finds the best decision given the combined forecast esti-
mated from the linear pool (7c), for the i-th observation. Constraint (7d)
ensures a convex combination of probabilistic forecasts and constraint (7e)
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is the mapping from contextual information to combination weights. The
objective function (7a) minimizes a combination of regret, i.e., incurred de-
cision costs against the perfect foresight solution, and CRPS, controlled by
hyperparameter γ. As γ → ∞, we learn combination weights that minimize
a discrete approximation of the CRPS for the induced forecast— see, e.g.,
(van der Meer et al., 2024).

The function f belongs in model class F : X → ΣS . The function
classes considered in this work are linear models and feedforward neural
networks. Note that the output of f needs to satisfy a set of constraints; a
straightforward way to ensure this is using a softmax operator soft : RS →
RS defined by softs(v) =

exp(vs)∑
j∈[S] exp(vj)

. For instance, the linear model would

be f(x) = soft(Wx + b), where W are the linear coefficients and b is the
bias. Evidently, if the decision-maker does not have access to additional
features, then x = 1 and problem (7) simplifies to one that estimates static
combination weights λ (λi remains constant for all i in [N ]).

Problem (7) is general enough to cover several applications of practical
interest.

Deterministic Forecast Combination. Further, consider the case when the
downstream optimization problem (2) is modeled as an expected-value prob-
lem. Then, the decision-focused combination problem (7) simplifies consid-
erably to learning a decision-focused linear pool of point forecasts. For linear
programming problems with unknown coefficients, the regret minimization
term recovers the SPO loss (Elmachtoub and Grigas, 2022) and the CRPS
term simplifies to the mean absolute error (Gneiting and Raftery, 2007)
when considering point forecasts. Alternatively, one may want to use the
mean-squared error as a regularization term; in that case, as γ grows, we
converge to the method of Granger and Ramanathan (1984).

Multivariate Uncertainty. So far, we assumed that Y is a scalar variable.
For the case of multivariate uncertainty, the Energy Score (Gneiting and
Raftery, 2007), which is a proper scoring rule for multivariate probabilistic
forecasts, can be used instead of the CRPS in (7a) (CRPS is a special case
of the Energy Score).

2.3. Solution Methodology

Problem (7) is a non-convex, nested optimization problem. This section
develops two solution methods, based on differential optimization layers and
in-sample performance weighting.
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2.3.1. Differential Optimization

We leverage the fact that the solution map of convex optimization prob-
lems (Agrawal et al., 2019a) is differentiable and propose a first-order, gradient-
based method to approximate (7), akin to the method proposed by Agrawal
et al. (2021).

Specifically, we use stochastic gradient descent to either tune problem pa-
rameters λ or, in the case of a conditional combination, learn the parameters
of f . The learning process is described with the following pseudo-algorithm:

1. Initialization: Initialize model parameters f (for a conditional com-
bination) or combination weights λ (for a static combination).

2. Forward pass: Sample D, estimate linear pool of forecasts, and solve
the inner maximization problems (7b).

3. Regret and CRPS estimation: Estimate the incurred decision cost
(7a) and corresponding CRPS.

4. Gradient estimation: Estimate the gradient of the objective of (7a)
w.r.t. model parameters, averaged over the batch size. Namely, we
estimate:

• The gradient of cost w.r.t. the decisions z induced by the forecast
combination.

• The gradient of decisions z w.r.t. the combination weights λ.

• The gradient of λ w.r.t. the parameters of the learning model f
(this step applies only to the case of conditional combinations).

5. Update parameters: Update combination weights λ (for static com-
binations) or the parameters of f (for conditional combinations).

6. Iterate: Repeat steps 2-5 until convergence.

The main difficulty is evaluating the gradient of the decisions w.r.t. com-
bination weights λ, which requires differentiating through the argmin op-
erator of (7b). This is implemented through implicit differentiation of the
Karush Kuhn Tucker (K.K.T.) equations (Amos and Kolter, 2017), which
comes at a low computational cost. Note that the use of the softmax oper-
ator in the last layer of f ensures that λ ∈ ΣS , hence we do not require a
projection step.

2.3.2. Performance-based Inverse Weighting

The main computational bottleneck of the gradient-based approach is
that it requires solving multiple stochastic optimization problems at each
forward pass. For the case of static combinations, we further consider weigh-
ing individual forecasts based on historical performance, which comes at a
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lower overall cost, adapting the well-known weighting scheme of Bates and
Granger (1969) in a decision-focused framework.

The process is described as follows. First, for each expert s and each
observation i, we solve the contextual stochastic optimization problem (2).
Next, for each expert s, we estimate the average in-sample decision regret,
denoted by v̂s. Finally, the static combination weights are given by

λs =
1
v̂s∑

s∈[S]
1
v̂s

, (8)

i.e., by inversely weighing the in-sample performance of each expert.

3. Numerical Experiments

This section presents the numerical experiments. Section 3.1 describes
the experimental setup. Section 3.2 provides an illustrative example with
synthetic data. Section 3.3 presents the results of the trading case study.
Section 3.4 presents the results of the grid scheduling case study. The code
to recreate the experiments is made available on GitHub.1

3.1. Experimental Setup

3.1.1. Component Forecasts

For individual component forecasts, we utilize non-parametric machine
learning models, which learn a function that assigns weights ω(x) ∈ ΣN

to training observations yi based on a realization of contextual information
x0. Then, the original contextual stochastic optimization problem (2) can be
approximated by solving a weighted sample average approximation problem,
given by

min
z∈Z

∑
i∈[N ]

ωi(x0)c(z; yi). (9)

As Y has finite support, we can count the number of times ξk appears in D
and aggregate the respective weights ωi(x0) to equivalently write (9) with a
probability vector that weighs each support location. That is, the estimated
probability of Y = ξk conditioned on x0 is given by

∑
i∈[N ] I (yi = ξk)ωi(x0).

The following models are used as experts:

1https://github.com/akylasstrat/df-forecast-comb
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1. Nearest Neighbors: We consider weights learned with a k Nearest
Neighbors (kNN) model (Hastie et al., 2001, Chap. 13), given by

ωi(x0) =
1

k
I (xi is a neighbor of x0),

where hyperparameter k indicates the number of data points closest
to x0.

2. Decision Trees: We consider weights learned with decision tree mod-
els, using the CART algorithm Breiman et al. (1984). Let τ : X →
{1, . . . , L} be a map that corresponds to a disjoint partition of X into
L tree leaves and τ(x0) is the identity of the leaf that x0 falls into.
The respective weights are given by

ωi(x0) =
I (τ(xi) = τ(x0))∑N
i=1 I (τ(xi) = τ(x0))

.

3. Tree-based Ensembles: We consider weights learned with an en-
semble of decision trees, grown with the Random Forest (RF) algo-
rithm (Breiman, 2001). Consider an ensemble of T decision trees
{τ1, . . . , τT }, where τj : X → {1, . . . , Lj} is a map that corresponds
to a disjoint partition of X into Lj tree leaves and τj(x0) is the leaf
identity. The respective weights are given by

ωi(x0) =
1

T

T∑
j=1

I (τj(xi) = τj(x0))∑N
i′=1 I (τj(xi′) = τj(x0))

.

3.1.2. Combination Methods

The following methods of estimating the weights of a linear pool are
compared:

1. Ordinary Linear Pool (OLP): We assign uniform weights to all the
experts (Stone, 1961), a robust approach that performs well in prac-
tice.

2. CRPS learning (CRPSL): We learn combination weights by minimiz-
ing the CRPS of the combined forecast, similarly to van der Meer et al.
(2024); Berrisch and Ziel (2023).

3. Decision-focused learning (DFL−γ): We learn combination weights
by solving the decision-focused combination problem (7) using the
gradient-based approach outlined in Section 2.3.1 for different values
of design parameter γ.
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4. Performance-based inverse weighting (invW): Each expert is weighted
inversely to their historical performance in terms of decision regret, as
proposed in (8).

In the case of the conditional forecast combination using additional fea-
tures, we consider two classes of models F for the function f that adapts
the combination weights, namely linear regression (LR) and neural network-
based (NN) models (LR is a special case of NN with a single layer). Conditional
forecast combination is only tested for the case of CRPSL and DFL−γ. For
clarity, DFL-LR−γ is learned by solving the decision-focused combination
problem (7) where f is a linear model, and so forth.

All variants of DFL−γ and CRPSL are optimized with a stochastic gradient-
based approach, using the Adam algorithm (Kingma and Ba, 2014) with a
batch size of 500, a learning rate of 0.001. Modeling is implemented in
PyTorch (Paszke et al., 2019) and the differentiable optimization layers are
implemented with the cvxpylayers (Agrawal et al., 2019b) package. For
the static combination methods (CRPSL, DFL−γ) we iterate till convergence.
For the conditional combination methods (CRPSL-LR, CRPSL-NN, DFL-LR−γ,
DFL-NN−γ) we evaluate performance using a subset of the training set as a
validation set. We set the total number of epochs high and train using early
stopping, i.e., we stop training if the validation performance fails to improve
for 25 epochs. For the NN-based conditional combinations, we consider a
feedforward network with 3 hidden layers and 20 nodes per layer.

3.1.3. Performance Evaluation

We evaluate the efficacy of the different combination methods w.r.t. de-
cision and forecast quality, using a test set of N test observations. Decision
quality is assessed by estimating the average out-of-sample regret

1

N test

∑
i∈[Ntest]

c(zcombi ; yi)− c(z∗i ; yi),

where zcombi is the decision obtained by each forecast combination method
and z∗i is the perfect foresight decision. Forecast quality is measured by
approximating the average CRPS over the test set using its quantile decom-
position (5) for a grid of {0.01, 0.02, . . . , 0.99} of quantiles.

3.2. Synthetic Data Example

Problem Description. We first showcase the efficacy of the proposed combi-
nation methods in an illustrative example with synthetic data. We consider
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an uncertain variable Y associated with features X0, X1, X2, X3, which all
follow a standard normal distribution, through

Y = X0 + α1X1 + α2X2 + α3X3 · I(X3 ≤ β) + ϵ, (10)

where ϵ denotes an error term and α1 = α2 = 1.2, α3 = 4.5, and β = −1.3
are known parameters. Two experts use the available features to generate
probabilistic forecasts. Features X1 and X2 denote information measured
only by expert 1, X3 denotes information measured only by expert 2, while
X0 denotes publicly available information. The two experts issue the fol-
lowing conditional normal distributions:

p1 = N (X0 + α1X1 + α2X2, 0.5),

p2 = N (X0 + α3X3 · I(X3 ≤ β), 0.5).

The decision-maker, using these two forecasts as inputs, aims to minimize
the newsvendor loss (Ban and Rudin, 2019)

c(z;Y ) = max
( τ

1− τ
(Y − z), (z − Y )

)
,

where τ is the optimal quantile.
Assume that the optimal quantile is set at τ = 0.20, which targets the

left tail of the distribution. By design, expert 1 does a better job, on average,
modeling the conditional distribution of Y , while expert 2 does a relatively
better job at modeling the left tail of the distribution (i.e., lower quantiles).
Hence, we expect that assigning a higher weight to expert 2 in the linear pool
will lead to lower expected decision costs. We validate this assumption by
sampling 10 000 observations with 50/50 training/test split and evaluating
the different combination methods.

Results. Table 1 presents the experiment results, alongside the combination
weights λ learned by each method. Concerning the component forecasts,
expert 1 leads to higher forecast quality (lower CRPS), and expert 2 leads
to higher decision quality (lower cost), as expected. All combination meth-
ods significantly improve upon the component forecasts in both evaluation
metrics, with CRPSL ranking first in terms of forecast quality and DFL−0
ranking first in terms of decision quality, with OLP being second best in both
evaluation metrics.

Interestingly, CRPSL is the worst-performing combination method in terms
of decision quality, while DFL−0 is the worst-performing one in terms of
forecast quality, which is attributed to the learned combination weights. As
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Table 1: Results for synthetic data example. Bold font indicates the best-performing
combination method.

λ1 λ2 Regret CRPS

Expert 1 1 0 66.468 7.905
Expert 2 0 1 60.300 11.401
OLP 0.500 0.500 22.839 5.954
CRPSL 0.636 0.364 23.504 5.752
DFL−0 0.445 0.555 22.549 6.191
invW 0.492 0.508 22.841 5.983

shown from the quantile decomposition in (5), CRPS can be approximated
by the quantile score, hence, CRPSL weighs experts’ performance equally
across the whole distribution. As expert 1 does a good job modeling a larger
part of the distribution, CRPSL assigns her a larger weight, with λ1 = 0.636.
Conversely, DFL−0 only considers the quantile loss at the 20-th quantile, i.e.,
the newsvendor loss for τ = 0.20; as expert 2 does a better job modeling
the left tail of the uncertainty distribution, DFL−0 assigns her higher weight,
with λ2 = 0.555.

3.3. Solar Production Forecasting and Trading in Electricity Markets

Problem Description. We consider a renewable producer participating in a
competitive electricity market as a price-taker, a problem that has gathered a
lot of attention in recent years (Morales et al., 2013). Before market closure,
the producer submits an energy offer for each clearing period of the day-
ahead market. During real-time operation, the system operator activates
balancing reserves to maintain the demand-supply equilibrium and stabilize
the system frequency. Based on real-time production, the producer buys
back (sells) the amount of energy shortage (surplus) to balance her position.

We consider the producer’s cost function is given by

c(z;Y ) = (1− ρ)max
( τ

1− τ
(Y − z), (z − Y )

)
+ ρ(Y − z)2, (12)

i.e., a combination of the newsvendor and mean squared error loss, where ρ is
a design parameter that controls for the degree of risk aversion (Stratigakos
et al., 2022). Further, Y is normalized by the nominal plant capacity and
the feasible decision set is Z = {0 ≤ z ≤ 1}.

Data and Component Forecasts. We use approximately 2.5 years of hourly
production data for 3 solar plants located in Australia, provided by the
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Figure 1: Solar production forecasting: Quantile score evaluated at an evenly spaced
grid of quantiles {0.01, 0.02, . . . , 0.99}.

Global Energy Forecasting Competition 2014 (GEFCom2014) (Hong et al.,
2016). The contextual information comprises weather forecasts from a Nu-
merical Weather Prediction (NWP) model obtained in a day-ahead horizon,
including precipitation, solar radiation, and temperature — see Hong et al.
(2016) for details. We use one year of data to train individual forecast
experts, one year of data to estimate the combination weights, and seven
months as a test set. The NWP forecasts are issued at 6:00 of the day d− 1
and cover every hour of the day d, i.e., a forecast horizon of 18-42 hours
ahead, which is a standard setting when participating in day-ahead electric-
ity markets. We generate component forecasts using the kNN, CART, and
RF models described in Section 3.1.1, using a different subset of features
for each expert. We perform a grid search with 5-fold cross-validation for
hyperparameter tuning and re-train using the whole training data set once
the hyperparameters are selected. We further consider an additional set of 4
features that model diurnal patterns, using Fourier terms that model daily
and hourly seasonality patterns. We assume these are available only to the
decision-maker, and use it to evaluate conditional forecast combinations.

Results. Fig. 1 shows the probabilistic forecast performance of each expert.
Although RF is the best-performing component forecast overall, as confirmed
by its CRPS in Table 2, Fig. 1 shows that performance varies across the
distribution regions. Namely, CART performs better for the middle part of
the distribution, while kNN performs well for its lower tail and considerably
worse for its right tail.

We evaluate decision performance for ρ = 0.2, τ = {0.1, 0.2, . . . , 0.9},
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Table 2: Learned combination weights λ, average hourly decision regret, and CRPS for
a single solar plant (τ = 0.2, ρ = 0.2). Bold font indicates the best-performing method
for static and conditional combinations, respectively. Underlined bold font indicates the
best-performing method overall.

λ1 λ2 λ3 Regret CRPS

Static combinations kNN 1 0 0 2.663 5.412
CART 0 1 0 2.653 5.075
RF 0 0 1 2.578 5.049
OLP 0.333 0.333 0.333 2.282 4.596
invW 0.322 0.338 0.341 2.279 4.590
CRPSL 0.033 0.534 0.433 2.263 4.524
DFL-0 0.170 0.409 0.421 2.247 4.534
DFL-0.1 0.169 0.414 0.417 2.246 4.532
DFL-1 0.157 0.419 0.424 2.244 4.530

Conditional combinations CRPSL-LR - - - 2.256 4.426
CRPSL-NN - - - 2.249 4.436
DFL-LR-0 - - - 2.240 4.530
DFL-NN-0 - - - 2.253 4.568
DFL-LR-0.1 - - - 2.239 4.522
DFL-NN-0.1 - - - 2.236 4.502
DFL-LR-1 - - - 2.235 4.448
DFL-NN-1 - - - 2.234 4.439

and each solar plant in the data set. Table 2 shows the average decision
cost and CRPS for all combination methods for a single solar farm and
ρ = 0.2, τ = 0.2, alongside learned combination weights λ (for static combi-
nations). Results for the different values of τ and the rest of the solar farms
are similar and provided as supplementary material.

We first examine static forecast combinations (indicated with white back-
ground color in Table 2). Overall, all combination methods significantly im-
prove upon component forecasts both in terms of decision and forecast qual-
ity. RF is the best-performing component forecast in both metrics. CRPSL

leads to the highest forecast quality (lowest CRPS), which is approximately
10.3% better than RF, while DFL−1 leads to the highest decision quality (low-
est cost), which is approximately 5.2% better than RF. Indeed, the results of
Table 2 highlight that higher forecast quality does not always translate into
better decisions, as all DFL−γ variants lead to lower cost and higher CRPS
compared to CRPSL. Moreover, invW is worse than both DFL−γ and CRPSL

in both metrics, followed by OLP which is the worst-performing combination
method. These results are attributed to the variability of learned combi-
nation weights λ across the static combination methods. We observe that
CRPSL assigns a very small weight to kNN (λ1 = 0.033), while the respective
weight for CART is much larger (λ2 = 0.534). Conversely, the weights of
DFL−γ appear to be more evenly distributed, with the respective weight of
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Figure 2: Cost improvement versus CRPS improvement against OLP, average value over
the 3 solar plants and τ = {0.1, 0.2, . . . , .9}. The circle marker indicates static combina-
tions. The square and diamond markers indicate conditional combinations using linear
and neural network models, respectively. Values toward up and right are better.

kNN being closer to 0.20 and CART, RF having a weights closer to 0.40. Fur-
ther, as γ increases, the respective weights of the DFL method move closer
to the weights learned by CRPSL, as expected.

Next, we examine performance for conditional forecast combinations,
highlighted with gray color in Table 2. Overall, conditional forecast com-
binations improve upon static combinations, both in terms of decision and
forecast quality, which is somewhat expected as the former utilizes addi-
tional feature data. The average improvement, however, is rather small
(less than 1% in all cases). This is primarily attributed to the experiment
design and the nature of the feature data, as the NWP variables already
capture the diurnal effect through solar radiation forecasts. The differences
across learning models are also small, with NN leading to slightly better per-
formance in most cases. CRSPL-LR ranks first in terms of forecast quality,
while DFL-NN−1 ranks first in terms of decision quality. Again, the key
differentiating factor is the objective of the forecast combination method,
i.e., whether the forecast combination minimizes CRPS or expected decision
cost.

Finally, Fig. 2 presents the average improvement of CRPL, DFL − γ, and
their conditional variations, over OLP across all the experiments, namely the
three solar plants and the different values of optimal quantile τ . A key take-
away is that optimizing the weights of the linear pool consistently improves
over OLP. Each variation of CRPSL always leads to the largest improvement
in terms of CRPS, with a maximum of 2.61% while variations of DFL−γ
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always lead to the largest improvement in decision regret reduction, with a
maximum of 3.34%. Notably, optimizing for a combination between decision
regret and CRPS in the decision-focused combination (7) consistently leads
to great performance in both metrics, as DFL−1 is always on the efficient
frontier for each variation. This result corroborates other works (Bertsimas
and Skali Lami, 2023) which posit that optimizing a combination of decision
cost and forecast accuracy leads to the best trade-off.

3.4. Wind Production Forecasting and Grid Scheduling

Problem Description. We further consider a realistic grid scheduling prob-
lem under net demand uncertainty. A grid operator wants to schedule the
production level of a set of G generators to meet an uncertain net demand
Y (base electricity demand minus renewable production), which depends on
the stochastic renewable production, in a look-ahead horizon, typically 18-42
hours ahead, while anticipating potential costs due to a real-time mismatch
between demand and supply. This setting is common in power systems dom-
inated by stochastic renewable energy sources (Morales et al., 2013). The
grid scheduling problem is formulated as a two-stage stochastic optimization
problem with fixed recourse given by

min
z,zuk ,z

d
k

c⊤z+
∑
k∈[K]

pk(c
u⊤zuk − cd⊤zdk), (13a)

s.t. 1⊤(z+ zuk − zdk) = ξk, k ∈ [K], (13b)

0 ≤ z ≤ z, (13c)

0 ≤ zuk ≤ min(zu, z− z), k ∈ [K], (13d)

0 ≤ rdk ≤ min(zd, z), k ∈ [K]. (13e)

where z is the vector of look-ahead (first-stage) dispatch decisions, {zuk , zdk}
is the set of recourse (second-stage) actions defined per each scenario k,
(·) indicates upper limits on decision variables, and cd ≤ c ≤ cu (inequal-
ity is applied elementwise) are non-negative cost vectors. The objective
function (13a) minimizes the expected dispatch cost under net demand un-
certainty considering real-time recourse actions, (13b) ensures the demand-
supply balance under all possible realizations of uncertainty (modeled as
discrete scenarios), and constraints (13c)-(13e) are the technical constraints
of the generators, where the min operator is applied elementwise.

Data and Component Forecasts. We consider a scheduling problem where a
constant base demand is coupled with a wind farm and two thermal gen-
erators are used to meet the resultant stochastic net demand. Thermal
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Figure 3: Wind production forecasting: Quantile score evaluated at an evenly spaced
grid of quantiles {0.01, 0.02, . . . , 0.99}.

generator data are obtained from the IEEE 14-bus system (Babaeinejad-
sarookolaee et al., 2019), with upward regulation costs cu sampled from a
range [1.1 · c, 6 · c] and downward regulation costs cd sampled from a range
[0.05 · c, 0.2 · c]. We assume a constant demand of 100MW, a wind farm of
equal nominal capacity, and appropriately scale generator capacity data to
the same aggregate capacity value. We use two years of hourly wind produc-
tion data provided by GEFCom2014 (Hong et al., 2016) and use one year
of data to train expert models, six months to estimate combination weights,
and six months for out-of-sample testing. As in the previous case study, the
contextual information comprises weather forecasts from an NWP model
obtained in a day-ahead horizon, namely, wind speed and wind direction
forecasts (both at 10m and 100m hub height). We generate component fore-
casts using the kNN, CART, and RF models as experts— see Section 3.1.1,
and the wind production data from zone 1 as the target. All experts uti-
lize the same weather variables as input features. To create variability in
their outputs, each expert utilizes NWP features from different locations
of the GEFCom2014 data set. As before, we perform a grid search with 5-
fold cross-validation for hyperparameter tuning and re-train using the whole
training data set once the hyperparameters are selected.

Results. Fig. 3 plots the forecast quality of component forecasts, with CART

consistently outperforming kNN, RF across the distribution. This is at-
tributed to the NWP features utilized by CART being more relevant to the
target wind farm location. This presents a different setting compared to the
previous case study in Section 3.3 where experts’ performance varied across
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Table 3: Learned combination weights λ, average hourly dispatch regret, and CRPS for
a grid scheduling problem with 100MW wind plant and 2 thermal generators. Bold font
indicates the best-performing combination method.

λ1 λ2 λ3 Regret CRPS

kNN 1 0 0 570.498 7.878
CART 0 1 0 507.336 7.004
RF 0 0 1 575.322 7.646
OLP 0.333 0.333 0.333 468.453 6.768
invW 0.331 0.340 0.329 467.890 6.759
CRPSL 0.276 0.463 0.261 458.047 6.638
DFL-0.001 0.258 0.498 0.243 455.490 6.617
DFL-0.01 0.272 0.507 0.221 455.543 6.620

the distribution.
Table 3 presents the average out-of-sample decision regret and CRPS

over the test set, alongside the learned combination weights λ for static
combination methods. To estimate the decision regret for the i-th test ob-
servation, which marks an hour of operation, we first solve the stochastic
scheduling problem (13) to find the look-ahead dispatch actions. Once un-
certainty yi is realized, we fix the look-ahead decision variables and solve
the scheduling problem (13) again to find the least-cost recourse actions
that maintain the demand-supply balance during real-time operation. The
final cost of the i-th observation is then estimated as the sum of the look-
ahead and regulation costs, minus the perfect foresight cost (clearly, perfect
foresight requires no real-time regulation).

Table 3 shows that all combination methods improve upon the compo-
nent forecasts w.r.t. both forecast and decision quality. Note that to im-
prove the convergence of the gradient-based algorithm, we included a small
regularization parameter γ in all DFL variants. OLP and invW perform sim-
ilarly and significantly improve upon the component forecasts, while CRPL

and DFL−γ further improve upon OLP. Specifically, DFL−0.001 is the best-
performing combination method in both metrics, leading to approximately
2.8% lower regret and 2.2% lower CRPS compared to OLP. Interestingly,
both DFL−0.001 and DFL−0.01 lead to lower CRPS compared to CRPL which
means that, for this experiment, higher forecast quality coincides with better
decisions. From Table 3, we observe that CRPL and DFL−γ lead to similar
combination weights λ, with DFL−γ assigning higher weight to CART and
lower weight to RF. This can be contrasted to the trading case study— see
Table 2, where variations in the learned weights λ are more pronounced.

21



4. Conclusions

This work proposed a novel approach for combining probabilistic fore-
casts that accounts for downstream decision costs. We developed decision-
focused linear pooling, where combination weights are optimized to minimize
an expected cost function of a stochastic optimization problem. We also ex-
tended the proposed method to the case where the combination weights
adapt to the realization of additional features available to the decision-
maker. A comprehensive evaluation was conducted considering synthetic
and real-world test cases, examining integral problems associated with vari-
able renewable energy sources integration in power and energy systems.
The results highlighted the efficacy of the proposed decision-focused com-
bination approach which improved upon ordinary linear pooling, with uni-
form weights, in decision and forecast quality. In particular, the average
reduction in decision regret compared to ordinary linear pooling was ap-
proximately 2% in a trading problem with stochastic solar production and
2.8% in a grid scheduling problem with stochastic wind production. Impor-
tantly, minimizing a combination of decision regret and CRPS consistently
led to a better trade-off between decision and forecast quality. Overall, this
work highlighted the benefits of embedding the downstream objective when
combining forecasts, which allowed us to maintain a simple setting (linear
pooling), while significantly improving decision performance. Future work
can focus on decision-focused quantile averaging and extending the proposed
approach to nonlinear pooling.
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