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Input redundancy of switched linear systems via polynomial

parameter-dependent systems

Valessa V. Viana, Jérémie Kreiss, and Marc Jungers. ∗

Abstract

In this paper, we introduce a definition of input redundancy
for switched systems, particularly focusing on the continu-
ous input. We establish a criterion for assessing whether a
switched linear system is input redundant with respect to the
continuous input. Our approach initially involves transform-
ing the switched linear system into a linear system depending
polynomially on a univariate parameter through Lagrange
polynomial interpolation. This allows us to leverage recent
results in geometric control theory and input redundancy
for parameter-dependent systems, and adapt them to the
context of switched systems in order to obtain the desired
conditions. To illustrate the application of the proposed
strategy, we provide two numerical examples.

1 Introduction

Input redundancy is a property enjoyed by a system where
a desired output trajectory does not uniquely determine
the input one [1]. It is usually the case for over-actuated
systems for which more actuators than strictly necessary are
involved, for example, to improve the performances, to get
away from physical constraints, or to be more resilient to
failure. Input redundant (IR) systems benefit from degrees
of freedom in the way the control input is chosen, leading
to an interesting and original control design, referred to as
control allocation methods [2], in order to meet secondary
objectives that improve the closed-loop behavior.
The characterization of input redundancy is the corner-

stone of the development of control allocation methods. Yet,
even for linear time-invariant (LTI) systems, this notion was
puzzled out only recently. In 2009, [3] pointed out a new cat-
egory of input redundant LTI systems, and the property was
revised and fully characterized (see [1, 4]) by using the tools
from the geometric control theory [5], such as the controlled
invariant and output invisible subspaces, bringing up to date
this old-fashioned theory. These recent results lead the way
to promising research by considering IR to extended classes
of dynamical systems, as evidenced by the extension for
linear systems depending polynomially on a parameter [6, 7]
and also by the preprint [8]. It is noteworthy to mention that
for parameter-dependent systems, the property of input re-
dundancy may depend on whether the parameter is unknown
(robust case) or known (adaptive case). If the early result [6]
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only deals with the robust case, in the preprint [8], both
cases are handled. These two distinct paradigms rely on the
fundamental concept of generalized controlled invariance and
output invisibility, which can be adaptive if the control input
making a subspace invariant may depend on the parameter.
In this work, we aim to dive the property of IR into

the class of switched systems, motivated by the fact that
many power electronic devices exhibit both switching and
IR properties [9,10]. As far as the authors are concerned, no
results are available in the literature about IR of switched
systems and many directions are open, even in the way to
define the IR property. Indeed, it could be viewed concerning
either the continuous input, the switched sequence, or both
of these signals. As a first step, we decided here to focus
on the case where IR refers to the continuous input, which
is already relevant and challenging. To tackle this open
question, our strategy is to imitate the well-known result
of [11] which highlights the link between a switched linear
system and a linear parameter-varying (LPV) one. In [11],
the relation is made between the number of modes of a
switched linear system and the number of parameters of the
associated LPV system. For us, since the results about IR of
parameter-dependent systems [8] are only valid for a unique
parameter, we use a slightly different link: the number of
modes is related to the degree of the polynomial dependence
on a single parameter of the system. This relation, based
on the Lagrange interpolating polynomials, is also used in
[12] in the context of stability analysis of switched non-linear
systems. Here, it allows us to provide insights about IR for
switched linear systems.
Once this relation is stated, we use the results of [7] to

determine the largest generalized adaptively controlled invari-
ant and output invisible subspace. Note that this extension
allows us to retrieve a concept of controlled invariance and
output invisibility for switched systems which goes even
further than the simultaneous controlled invariant and out-
put invisible subspace of the literature [13]. Finally, we can
obtain constructive elements about the IR property of the
parameter-dependent system by using [8] and derive it for
the initial switched system.
Therefore, in this paper, after presenting the system de-

scription and problem formulation where the property of
input redundancy for a switched linear system is established
in Section 2, we show the relation between the initial switched
linear system and a parameter-dependent linear system in
Section 3. On the latter system, we explain in Section 4
how to use the results of [7, 8] in order to obtain the weakly
unobservable subspace when looking at IR, and finally de-
termine if the parameter-dependent system is IR or not. In

1



Section 5, we exhibit how to conclude about the redundancy
of the initial switched linear system. Numerical illustrations
are widespread in the paper and simulations are provided in
Section 6 before the conclusion.
Notation. Let R, R+, Z, N, and N∗ be, respectively, the
set of (i) real numbers, (ii) real positive numbers including
zero, (iii) relative numbers, (iv) natural numbers including
zero, and (v) natural numbers without zero. For any a, b ∈ Z
satisfying a ≤ b, the set Ja, bK refers to [a, b]∩Z. For a matrix
M , M⊤ means its transpose. 0n×m stands for the zero matrix
of n rows and m columns, 0n := 0n×n, and In stands for
the identity matrix of dimension n. The notation diagNi=0Mi

denotes the block diagonal matrix where Mi is the i-th block.
Im{V } is the vector space spanned by the columns of matrix
V . The inverse map of set V by an application B is given
by B−1V := {u ∈ Rm; Bu ∈ V}, where B is not necessarily
invertible. For time functions, the notation ua ≠ ub means
that

∫
||ua(τ, θ(τ))− ub(τ, θ(τ))||dτ > 0.

2 System description and problem
formulation

Consider a switched linear system:

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t),

y(t) = Cσ(t)x(t) +Dσ(t)u(t),
(1)

where, for all t ∈ R+, x(t) ∈ Rn is the state with initial
condition x(0) :=x0 ∈Rn, u(t)∈Rm is the input, y(t) ∈ Rp

is the output of the system. For i ∈ J1, NK, matrices Ai, Bi,
Ci, Di of appropriate dimension describe an LTI subsystem
which is also called a mode of the switched system. The
notation σ denotes a signal responsible for the switching
between the subsystems, i.e., the modes of system (1). We
consider that σ ∈ S, where S is the set of piecewise constant
right-continuous functions from the time domain R+ to the
set of modes J1, NK with a finite number of discontinuities
in a finite length interval1. The time-dependence of σ(t)
may be omitted, in the sequel, to lighten the notation. Note
that in this paper we suppose that σ is an external signal
on which we cannot act. In order to improve the readability
of the paper, let us define ∀i ∈ J1, NK

R(n+p)×(n+m) ∋ Mi :=

[
Ai Bi

Ci Di

]
(2)

as the collection of system matrices of the i-th mode.
In the context of LTI systems, input redundancy is well-

defined and characterized in the literature [1]. Nevertheless,
the existing results do not readily apply for switched linear
systems. Therefore, in this paper, we aim to investigate
the input redundancy of switched linear systems. First, we
propose the following definition for input redundancy of
switched linear systems.

Definition 1. A switched linear system (1) is said input
redundant w.r.t. u if, for all σ ∈ S, there exists an output y

1For an input u, considering a switching rule σ in S allows the well-
posedness and unicity of the state trajectory, without Zeno phenomenon.

that can be produced by (at least) two different input functions
for some x0 ∈ Rn, i.e, ∀σ ∈ S, ∃x0 ∈ Rn, ua ≠ ub such that2

yua
(t, σ, x0) = yub

(t, σ, x0), ∀t ≥ 0.

Our goal is to provide a tractable characterization of input
redundancy for switched systems.

Remark 1. Note that in the definition above, we do not
specify the switching signal dependence of the different inputs
ua and ub and we will consider here that they possibly depend
on σ, even if the case where they are not allowed to depend
on it can be dealt by suitable choices in the development of
the paper.

3 From switched linear systems to
polynomial parameter-dependent
systems

The main objective of this section is to provide a system-
atic process to transform a switched linear system into a
univariate polynomial parameter-dependent system.

3.1 Lagrange interpolating polynomial

Let us define a parameter θ ∈ [1, N ]. The proposed trans-
formation is based on the Lagrange interpolating polyno-
mial [14]. We are going to construct the unique polynomial
of degree at most N − 1 over θ, interpolating the N nodes
(i,Mi), i ∈ J1, NK. To this end, let us consider the following
N polynomials Pi : [1, N ] → R, i ∈ J1, NK such that

Pi : θ 7→ Pi(θ) =

N∏
j=1,j ̸=i

(θ − j)

(i− j)
. (3)

We can easily see that Pi is of degree N − 1 and is such that
∀j ∈ J1, NK \ {i}, Pi(j) = 0 and Pi(i) = 1. We have just
constructed Pi as the Lagrange interpolating polynomial of
the nodes {(1, 0), . . . , (i− 1, 0), (i, 1), (i+ 1, 0), . . . , (N, 0)}.

Lemma 1. Let us define

M :


[1, N ] → R(n+p)×(n+m)

θ 7→ M(θ) =

N∑
j=1

Pj(θ)Mj .
(4)

M is the unique polynomial of degree at most N − 1 such
that ∀i ∈ J1, NK, M(i) = Mi where Mi is given by (2).

Proof. By definition, Pj , j ∈ J1, NK is a polynomial of degree
N − 1. Therefore, the degree of M is at most N − 1. Similar
to [12, Theorem 1], using the mentioned properties of Pj , we

get that ∀i ∈ J1, NK, M(i) =
∑N

j=1 Pj(i)Mj = Pi(i)Mi =
Mi. We just shown that M is a polynomial of degree at
most N − 1 interpolating the N following nodes (i,Mi), i ∈
J1, NK. As a consequence, M is the Lagrange interpolating
polynomial and is unique [14, Sec. 2.5.].

2The term yu(t, σ, x0) means standardly the value of the output
at time t generated by the dynamics (1) for a given initial input x0,
switched rule σ and input u.
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It is of foremost importance to mention that (i) we built
a unique transformation of the N modes Mi of the switched
linear system to the polynomial M and (ii) this transforma-
tion can be reversed to obtain the N modes Mi from the
polynomial M . Thus, the representation (1) is equivalent to[

ẋ(t)
y(t)

]
= M(σ(t))

[
x(t)
u(t)

]
, (5)

where σ ∈ S.

3.2 Convexification of J1, NK into [1, N ]

It is also important to note that even if the two representa-
tions (1) and (5) are equivalent, we will consider in the follow-
ing the polynomial M(θ) where θ is not specifically linked to
σ but can be freely selected in the continuous interval [1, N ].
Therefore, a convexification of the discontinuous interval
for σ is made to obtain the continuous one for θ and conse-
quently, the equivalence does not hold anymore. However,
all the following developments on the polynomial represen-
tation apply to the switched representation (1). Hence, the
switched linear system (1) is included in the representation
of a univariate polynomial parameter-dependent system:

ẋ(t) = A(θ(t))x(t) +B(θ(t))u(t),

y(t) = C(θ(t))x(t) +D(θ(t))u(t),
(6)

with θ(t) ∈ [1, N ],∀t ≥ 0, where

[
A(θ) B(θ)
C(θ) D(θ)

]
:= M(θ)

of appropriate dimension.
The following numerical example illustrates this trans-

formation of a switched linear system to a polynomial
parameter-dependent one.

Example 1. Let us consider a switched linear system of
three modes defined by the following matrices:

A1=

[
−1 0
1 −1

]
, A2=

[
−1 0
4 −1

]
, A3=

[
−1 0
9 −1

]
,

B1=

[
1 0
1 1

]
, B2=

[
1 0
2 1

]
, B3=

[
1 0
3 1

]
,

C1 = C2 = C3 =
[
0 1

]
, D1 = D2 = D3 =

[
0 0

]
.

(7)

with N = 3. To obtain the corresponding parameter-
dependent matrices, we have to compute Pi(θ), given in (3),
for i ∈ J1, 3K:

P1(θ) =
1

2
(θ − 2)(θ − 3), P2(θ) = −(θ − 1)(θ − 3),

P3(θ) =
1

2
(θ − 1)(θ − 2),

such that M(θ) =
∑3

i=1 Pi(θ)Mi. By develop-

ing this expression, we find M(θ) = M̃0 + θM̃1 +
θ2M̃2 where M̃0 = (3M1 − 3M2 +M3) , M̃1 =
(−2.5M1 + 4M2 − 1.5M3) , M̃2 =

(
0.5M1 −M2 +

1
2M3

)
.

Therefore, the switched system can be represented by a
polynomial parameter-dependent system:

ẋ(t) =

[
−1 0

θ2(t) −1

]
x(t) +

[
1 0

θ(t) 1

]
u(t),

y(t) =
[
0 1

]
x(t),

(8)

with θ(t) ∈ [1, 3], ∀t ≥ 0.

Remark 1. Throughout the paper, θ can represent a function
t 7→ θ(t), the value of this function at time t, or the indeter-
minate of a polynomial with θ ∈ [1, N ]. In section 3.1 and 4,
θ is mostly considered as the indeterminate of a polynomial.

So far, we lack the means to characterize the input re-
dundancy of the switched system (1). However, there exist
techniques to verify the input redundancy of polynomial
parameter-dependent systems, that were developed in [8]. In
the next section, let us recapitulate the previous literature
results.

4 Geometric control theory and in-
put redundancy for parameter-
dependent systems

4.1 A Geometric control tool: the weakly
unobservable subspace V⋆

Geometric control theory has been extensively used, in the
literature, for characterization of the concept of input redun-
dancy [1, 4, 6, 8] which is strongly related to the controlled
invariant and output invisible subspaces [5]. In the context of
parameter-dependent systems as (6), a subspace V ⊆ Rn is
called generalized adaptively controlled invariant and output
invisible if there exists a matrix F : [1, N ] → Rm×n such
that, for all θ ∈ [1, N ],

(A(θ) +B(θ)F (θ))V ⊆ V,
(C(θ) +D(θ)F (θ))V = 0.

(9)

Matrix F (θ) is called a friend of V . Moreover, the set of these
subspaces admits a maximal element, called the generalized
adaptively weakly unobservable subspace and denoted V⋆.

Computation of the generalized adaptively weakly
unobservable subspace V⋆ Recently, [7] proposed an
algorithm to compute generalized adaptively weakly unob-
servable subspaces for parameter-dependent systems. The
algorithm aims to find, after a finite number of steps, the
largest subspace with the assumption that there is a polyno-
mial friend of a given degree making the subspace invariant.
To apply this algorithm, [7] assumes that θ lies in a poly-
topic set, which is the case for (6), and then transforms the
polynomial parameter-dependent system into an equivalent
homogeneous polynomial parameter-dependent system de-
pending on a parameter that lies in a unit simplex set. The
inputs required for this algorithm are the degree of depen-
dence of a polynomial friend F (θ) and constant matrices
derived from the weighting matrices of the homogeneous poly-
nomial system. The steps of this algorithm are presented in
detail in [7, Algorithm 1]. Additionally, a numerical example
is provided to demonstrate the transformation into a homo-
geneous polynomial system [7, Example 1], and to detail the
application of the algorithm [7, Example 1 (continued)].
To sum up, with this latter paper, we obtain V⋆, the

largest subspace V satisfying (9) under a polynomial friend
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F (θ) of a given degree, for system (6) for all θ ∈ [1, N ].
Since J1, NK ⊂ [1, N ], V⋆ also satisfies (9) for system (5) and
therefore for (1). Even if we can force F to be independent
of σ, by setting the friend constant in the design of [7],
and then recover the simultaneous controlled invariant and
output invisible subspaces [13], allowing F to depend on
θ leads to a subspace V⋆ that encompass this notion, as
illustrated by the following example.

Example 1 continued. On the switched system defined
by (7), we can show that the simultaneous controlled invariant
and output invisible subspaces [13] is V⋆ = {0}. However,
looking at (8) and applying the methodology of [7] (detailed
in Example 1 of [7]) with a friend that can depend linearly

on θ leads to V⋆ = Im
{[

1 0
]⊤}

, where F (θ) =

[
−θ 0
0 0

]
is a friend of V⋆.

Obviously, in the context of switched systems, the friend
of V⋆ can be represented by a matrix Fσ(t), where

Fi := F (θ = i), ∀i ∈ J1, NK. (10)

4.2 Characterization of adaptive input re-
dundancy

Now that we have done with the generalized adaptively
weakly unobservable subspace, we can use [8] to verify if
the parameter-dependent (6) is adaptive input redundant.
The definition of adaptive input redundancy of a parameter-
dependent system is recalled from the paper [8] hereafter.

Definition 2. The parameter-dependent system (6) is called
adaptive input redundant if there exists an output y that can
be produced by, at least, two distinct parameter-dependent
inputs, for some function θ and some initial condition, i.e.,
there exist θ : t 7→ θ(t), x0 ∈ Rn, and two distinct input
functions ua ≠ ub, where ua : (t, θ) 7→ ua(t, θ) and ub :
(t, θ) 7→ ub(t, θ), such that yua

(t, θ, x0) = yub
(t, θ, x0) for all

t ≥ 0.

It has been shown, in [8], that if the subspace

B−1(θ)V⋆ ∩ ker {D(θ)} , (11)

with B−1(θ)V⋆ := {u ∈ Rm;B(θ)u ∈ V⋆}, is not trivial, then
the system (6) is adaptive input redundant. Actually, the
subspace (11) contains input directions that, if V⋆ is made
invariant, are invisible from the output. We understand
that if these directions are non-zero, we can construct two
different inputs leading to the same output and recover
the input redundancy property of the parameter-dependent
system. A procedure to systematically compute (11) was
proposed in [8], using the definition that ker {W (θ)} :=
B−1(θ)V⋆ ∩ ker {D(θ)}, where W (θ) depends polynomially
on θ, and the Smith normal form of W (θ) (see [15]). The
Smith normal form is an approach tailored for univariate
polynomial matrices. Henceforth, we will be interested in
employing the transformation outlined in Section 3, which
converts a switched system into a univariate polynomial
parameter-dependent system.

The subspace (11) exhibits three different kinds of de-
pendencies with respect to θ: (i) some directions are in-
dependent of θ, leading to the minimum dimension (with
respect to θ) of (11) being greater than or equal to one,
(ii) other directions may depend on θ in such a way that
these directions can vanish for some isolated value of θ and
(iii) the last directions appear only for specific isolated val-
ues of θ. All of these cases are taken into account in the
parameter-dependent matrix L(θ) provided by [8] which is
such that Im {L(θ)}= ker {W (θ)} =B−1(θ)V⋆∩ ker{D(θ)},
and reads L(θ) =

[
∆δ1L̂1(θ) · · · ∆δr L̂r(θ) L̃(θ)

]
,

with ∆δj =

{
1, if θ = δj

0, otherwise,
for j ∈ J1, rK, where r is the

normal rank of W (θ) in the Smith normal form (The normal
rank of W (θ) is the maximum rank of W (θ) for almost all
values of θ). The parameters δj , j ∈ J1, rK, that may be
complex, correspond to the isolated values of θ for which
a direction may appear in ker {W (θ)}. Since we have that
θ ∈ [1, N ], the values of δj for which ∆δj is not always zero

must be real and inside the interval [1, N ]. Matrices L̂j(θ),

for j ∈ J1, rK, and L̃(θ) depend polynomially on θ, and may
be empty. Note that all of the components of L(θ) are given
by the methodology provided by [8].

Example 1 continued. Let us take again the parameter-
dependent system (8). [8] allows us to conclude that
dim(B−1(θ)V⋆ ∩ ker{D(θ)}) = 1 > 0 such that the system
is adaptive input redundant. Furthermore, we can compute

L(θ) =
[
1 −θ

]⊤
. As a result, ∀x0 ∈ V⋆ and ∀t ≥ 0, the

input u(t) = F (θ(t))x(t) + L(θ(t))w(t), for some function w
that can be freely chosen, leads to y(t) = 0, ∀t ≥ 0.

5 Input redundancy for switched lin-
ear systems

We are finally ready to propose a sufficient condition for the
input redundancy property for switched systems given in
Definition 1.
Consider the switched linear system (1) and its polyno-

mial representation (6) with θ(t) ∈ [1, N ], ∀t ≥ 0. Let
V⋆ ⊆ Rn be the generalized adaptively weakly unobservable
subspace of system (6), and B−1(θ)V⋆∩ker{D(θ)} ⊆ Rm be
the parameter-dependent subspace of invisible inputs. The
following theorem holds.

Theorem 1. The switched linear system (1) is input redun-
dant w.r.t. u if for all θ ∈ J1, NK,

dim
(
B−1(θ)V⋆ ∩ ker {D(θ)}

)
> 0. (12)

Proof. Consider the parameter-dependent system (6) with
θ ∈ [1, N ]. We know from [8, Lemma 3] that for x0 ∈ V⋆ the
input u(t) = F (θ(t))x(t)+L(θ(t))w(t) where F (θ) is a friend
of V⋆, L(θ) is such that Im {L(θ)} = B−1(θ)V⋆∩ker {D(θ)},
for some function w, leads to y(t) = 0, ∀t ≥ 0.

Consider now two state trajectories of system (6), xa and
xb, associated to two input trajectories ua and ub, respec-
tively. Suppose that xa and xb start from the same initial

4



condition xa(0) = xb(0) = x0 and that, ∀t ≥ 0,

ua(t)− ub(t) = F (θ(t))(xa(t)− xb(t)) + L(θ(t))w(t),

for some w(t). Therefore, since xa(0) − xb(0) = 0 ∈ V⋆, it
comes from previous discussion that ya(t) = yb(t), ∀t ≥ 0.
Clearly, when (12) is valid, L(θ) is non-empty and since
we can freely select the function w, we can easily obtain
ua ̸= ub. Note that in the theorem, we only consider (12),
∀θ ∈ J1, NK, and not ∀θ ∈ [1, N ]. Therefore, it is ensured
that, ∀θ ∈ J1, NK, rk(L(θ)) > 0.
As a result, ∀i ∈ J1, NK, we have that ni := rk(L(i)) > 0.

Then, there exists a function w of appropriate dimension,
such that

ua(t)− ub(t) = F (σ(t))(xa(t)− xb(t)) + L(σ(t))w(t) ̸= 0.
(13)

Consequently, ∀σ ∈ S, applying these two different inputs
ua and ub on system (1) leads to the same output. This
proves that system (1) is input redundant with respect to
u.

Remark 2. Computation of matrices Li: From the
knowledge of L(θ), the matrices L(i) may present zero
columns or linearly dependent ones. In these cases, we
can determine matrices Li avoiding these columns such that
Li ∈ Rm×ni , of smallest dimension, verifying Im {Li} =
Im {L(i)}, for i ∈ J1, NK. This approach differs from the
case of Fσ(t) defined in (10). Consequently, we can choose
N signals wi(t) ∈ Rni such that relation (13) reads:

ua(t)− ub(t) = Fσ(t)(xa(t)− xb(t)) + Lσ(t)wσ(t)(t) ̸= 0.

Observe that by Theorem 1, we need that all of the modes
are input redundant to obtain an IR switched system ∀σ ∈ S.
Indeed, suppose that one of the modes, let us say the mode
i ∈ J1, NK, is not IR, i.e. dim(B−1

i V⋆
i ∩ ker{Di}) = 0 where

V⋆
i is the weakly unobservable subspace of mode i. Picking

the particular switching sequence σ(t) = i, ∀t ≥ 0 brings us
back to an LTI system of matrices (Ai, Bi, Ci, Di) which is
not input redundant. Thus, we have a switched system that
is not IR with respect to this particular switching sequence
σ. Since we consider that σ is an external signal on which
we cannot act, it seems appropriate to consider IR property
independent from σ. The converse case, i.e. when IR depends
on σ becomes relevant when it is a control input. This case
is left for future work.

It is also important to emphasize that the proposed result
takes into account IR even if the origin of the redundancy
is different for each mode, i.e. for some of the modes, the
different inputs leading to the same output produce different
state trajectories whereas for other modes, the state trajec-
tories are identical. The following example illustrates this
point.

Example 2. Let us consider the two-mode switched linear
system given by matrices

A1 = A2 =

[
−1 1
0 −1

]
, B1 =

[
0 0
1 1

]
, B2 =

[
1 0
2 1

]
,

C1 = C2 =
[
0 1

]
and D1 = D2 = 01×2 which can be

represented by the following parameter-dependent system

ẋ(t) =

[
−1 1
0 −1

]
x(t) +

[
θ(t)− 1 0
θ(t) 1

]
u(t),

y(t) =
[
0 1

]
x(t),

with θ(t) ∈ [1, 2], ∀t ≥ 0. Using [7, 8], we obtain V⋆ =

Im

{[
1
0

]}
with F = 02 as a friend, and L(θ) =

[
1
−θ

]
. We

finally get L1 = L(1) =

[
1
−1

]
and L2 = L(2) =

[
1
−2

]
and

we can see that for the first mode, L1 is such that Im {L1} =
ker{B1} whereas for mode 2, we have that Im {B2L2} = V⋆,
showing that the kind of redundancy is different for the two
modes.

Finally, let us also highlight that it is possible to re-
cover an IR property independent of σ, that does not re-
quire the knowledge of σ with our techniques. To this
end, we need to specify a constant friend F of V⋆, i.e.,
F (θ = i) = F,∀i ∈ J1, NK, for its computation
in [7]. We will obtain the so-called largest generalized robust
controlled-invariant and output invisible subspace. Then,
by selecting a matrix L such that Im {L} = ∩N

i=1Im {Li}, if
dim(Im {L}) > 0, we are able to construct different inputs
that do not depend on the switching law while leading to the
same output trajectory. This scenario may be useful when
the switching signal is unknown.

Remark 3. It is important to highlight that although Def-
inition 1 is presented for all σ ∈ S and Definition 2 is for
some function θ, this discrepancy is not an obstacle for using
the results of [8] to obtain the outcome of Theorem 1. The
results of [8] cover a wider variety of situations than those
of switched systems.

Remark 4. Following the result of [1, Proposition 2.1],
by linearity, we can say that if a switched linear system,
composed of LTI systems, is input redundant w.r.t. u, then
there is an infinite number of distinct inputs leading to a
variety of output trajectories for all initial conditions.

6 Additional numerical example

Example 1 is divided into four steps to illustrate the different
parts of the procedure to verify if a switched system is input
redundant w.r.t. u. In this section, we present its final part,
where the input redundancy of the original switched system
and simulations are provided.

Example 1 continued. Consider the three-mode switched
linear system given in (7) such that transformation to a
polynomial parameter-dependent system is explained in Sec-
tion 3. We have already seen that (8) is adaptive input re-

dundant with V⋆ = Im

{[
1
0

]}
, F (θ) =

[
−θ 0
0 0

]
and L(θ) =[

1 −θ
]⊤

. From Theorem 1, the switched linear system (7)
is input redundant w.r.t. u since dim(B−1(θ)V⋆∩kerD(θ)) >
0 for all θ ∈ J1, 3K. Then, for each mode of the switched

5



system, the following matrices are obtained Fi =

[
−i 0
0 0

]
and Li =

[
1 −i

]⊤
, i ∈ J1, 3K. In this case, the input redun-

dancy depends on the mode of the system. To verify the input

redundancy with simulations, we defined x0 =
[
0 −1

]⊤
,

and inputs, ∀t ≥ 0, ua(t) = Fσ(t)xa(t) + v, and ub(t) =
Fσ(t)xb(t)+Lσ(t)wσ(t)(t)+ v, where wi(t) = sin(t), i ∈ J1, 3K,
v =

[
−1 0

]⊤
and

σ(t) =

 1, t ∈ [0, 2) ∪ [6, 8)
2, t ∈ [2, 4)
3, t ∈ [4, 6)

such that ua(t) − ub(t) = Fσ(t)(xa(t) − xb(t)) +
Lσ(t)(−wσ(t)(t)). The trajectories of inputs ua and ub are
illustrated in Figure 1. These two inputs follow distinct paths.
Subsequently, the output trajectories resulting from these dis-
tinct inputs are depicted in Figure 2. The system initially
operates in mode one, where both outputs ua and ub follow
the same trajectory. At t = 2s, the system switches to mode
two, followed by another transition to mode three at t = 4s,
and finally returns to mode one at t = 6s. At each transi-
tion, the output dynamics change, yet the equality between
the two outputs persists. Consequently, despite a switching
signal cycling through all modes, the output trajectories ya
and yb remain identical, confirming the input redundancy of
the switch system w.r.t. the continuous input u.

7 Conclusion

In this paper, a definition of input redundancy concerning
the continuous input was proposed for switched linear sys-
tems. We account for the dependence of the system input
on the switching signal and provide a sufficient tractable
condition to determine if the switched system is input re-
dundant w.r.t. u. Our approach builds upon existing results
for input redundancy of parameter-dependent systems. To
leverage these results, we developed a systematic process,
based on the Lagrange interpolation polynomial, to trans-
form a switched linear system into a univariate polynomial
parameter-dependent system. Consequently, we were able to
use the existing results within the context of switched systems.
Future research should extend the investigation of this notion
beyond the confines of parameter-dependent systems in order
to obtain an idea regarding the conservatism linked to the
current strategy and possibly derive less conservative results.
Furthermore, the exploration of other notions of input redun-
dancy for switched systems is also desired, such as an input
redundancy w.r.t u for some σ ∈ S, an input redundancy
w.r.t. switching signal or both the continuous input and the
switching signal.
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