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LONG-TIME BEHAVIOR OF AN ANISOTROPIC RIGID BODY

INTERACTING WITH A POISEUILLE FLOW

IN AN UNBOUNDED 2D CHANNEL

DENIS BONHEURE, MATTHIEU HILLAIRET, CLARA PATRIARCA,
AND GIANMARCO SPERONE

Abstract. We study the long-time behavior of an elliptic rigid body which is allowed to
vertically translate and rotate in a 2D unbounded channel under the action of a Poiseuille
flow at large distances. The motion of the fluid is modelled by the incompressible Navier-
Stokes equations, while the motion of the solid is described through Newton’s laws. In
addition to the solid inertia and the hydrodynamic forces, we assume the dynamics of the
solid is driven by internal elastic restoring forces but without any structural damping.
Through a precise description of the motion of the elliptic body whenever it comes close
to the channel boundaries, we prove global-in-time existence of weak solutions. Our
second main contribution is a proof of return to equilibrium in case the amplitude of the
Poiseuille flow is small. To our knowledge, this represents the first long-time analysis of
fluid-solid interaction problems with a given non-trivial final state.

AMS subject classification: 74F10, 35Q30, 76D03, 35B40.
Keywords: fluid-solid interactions, Navier-Stokes equations, collisions, long-time be-
havior.
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1. Introduction

1.1. Context. Because of its relevance to applications, describing the motion of particles
in a channel is one of the crucial problems in the field of fluid-solid interactions [32,
Section 7-3]. From the analytical standpoint, this is a simple system to state that contains
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a wide variety of intriguing phenomena. Consider for instance the fall of a particle inside
a vertical channel. If the particle is sufficiently small and close to the centerline of the
channel, interactions with the boundaries are neglectable and the equations of motion are
fully integrable (for simple particle shape). This leads for instance to (by now classical)
Jeffery’s orbits [46] in case of elliptical particles. The situation becomes more involved
when the particle moves close to the channel boundaries. One must then take into account
the influence of the walls to compute the hydrodynamic forces exerted on the particle.
When fluid inertia is neglected, several studies provide either exact formulas with suitable
transformations [53, 9, 10, 15] or approximations when the distance between the obstacle
and the wall is small with respect to its dimensions [12]. However, such descriptions lead to
paradoxical results. For instance, assuming the particle is spherical prevents from a lateral
migration of the particle relative to the wall. This is in contradiction with the observed
Segré-Silberberg effect that predicts particles falling in a cylindrical channel have privileged
orbits [59]. One common explanation of this paradox is to reintroduce fluid convection
[44]: relying on matched aysmptotic methods, approximate solutions enable to recover
the privileged orbits of Segré and Silberberg (see the introduction of [50] for a review of
known results). However, to our knowledge, handling the full nonlinear problem is still
an open issue since it makes the mathematical analysis more subtle with no explicit exact
analytical formulas for solutions.

One ambition of our study is to contribute to the mathematical analysis of solid/wall
interactions in this fluid/solid context. We aim in particular to provide a sharp description
of particle trajectories without relying on exact or approximate formulas. To this end, we
start from another standpoint on particle motion in channels. Following some related
models used in the engineering literature [11, 18, 20, 52], we consider a spring-mounted,
undamped, rigid elliptic body which is immersed in an incompressible viscous flow mod-
elled by Navier-Stokes equations and which is free to move in the direction orthogonal to
an incoming Poiseuille flow (see the precise definition (1.2) below). This toy model serves
as a paradigm for many problems in physics and engineering sciences such as the wind
blowing on a bridge or the oscillations of a submarine communication cable (see [64] for
more examples). In this apparatus, the elliptic body is at rest if it lays on the channel
centerline with its axis parallel and orthogonal to the channel axis. In case the body shifts
or rotates from this rest position, the created asymmetry interacts with the Poiseuille
flow and makes the body to move. In the absence of restoring forces, the particle would
leave the channel centerline possibly to reach a Segré-Silberberg orbit. There is then a
competition between the fluid forces and the restoring forces. Numerical evidence [55]
shows that, in this regard, if the intensity of the inflow is sufficiently small, in the long
time the streamlines of the fluid are characterized by an upstream-downstream symmetry.
In particular, it is possible to observe the presence of two symmetrical eddies in a closed
re-circulation zone in the wake of the obstacle and, thus, the flow can be considered steady.
As soon as the inflow’s intensity is above a critical threshold value, the flow pattern makes
a transition from an x2-symmetrical steady configuration to an unsteady periodical one,
where it exhibits a vortex shedding phenomenon [4]. While this issue has been extensively
studied from the numerical and experimental point of view, a mathematical approach is
still lacking. In this paper, we propose a mathematical approach of the first regime of
small inflow in the 2D setting.

1.2. Model. To describe precisely the model, we set

Beq =

{
(x1, x2) ∈ R2

∣∣∣∣∣ x2
1

d2
+
x2

2

δ2
≤ 1

}
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which describes an elliptic rigid body Beq of mass M > 0 and moment of inertia J > 0.
To fix the ideas, we assume that δ < d below so that d is the large axis of Beq. We recall
that, in this 2D setting the body the moment of inertia is a time-independent scalar. We
assume that the body is immersed in a two-dimensional channel A of width 2L. Up to a
good choice of coordinates we fix A

.
= R×(−L,L). The upper and lower boundaries of the

channel are therefore given by Γ = R × {−L} ∪ R × {L}. We restrict to the case L > 2d
so that – with the assumption that the large axis of Beq has length 2d – the body cannot
touch simultaneously the upper and lower part of Γ. We will comment on this restriction
further on. What remains of the channel is filled with a homogeneous incompressible
viscous fluid.

The rigid body is free to rotate and move vertically but it does not translate horizontally
inside the channel. We respectively denote by h and θ the vertical displacement of the
barycenter of the rigid body and its anticlockwise rotation from the central line x2 = 0.
Thus,

B(h, θ) = Q(θ)Beq + h ê2
.
=

[
cos θ − sin θ
sin θ cos θ

]
Beq + h ê2 , ∀ (h, θ) ∈ Ad,δ ,

tracks the position of the body after the vertical translation of height h and the rotation of
angle θ. Here, Ad,δ denotes the set of admissible values for (h, θ) that imposes Beq b A :

Ad,δ
.
=
{

(h, θ) ∈ R2
∣∣∣ |h|+√(d sin θ)2 + (δ cos θ)2 < L

}
.

Figure 1. Summary of the notations.

We consider the displacement of the elliptical particle on a timespan (0, T ). Due to the
motion of the rigid body inside A, the domain occupied by the fluid is variable in time
and is given at time t by Ω(t) = A \B(t), where

B(t) = {(x1, x2) ∈ R2 | Q(θ(t))T (x1, x2 − h(t)) ∈ Beq}.

For simplicity, in the sequel we will sometimes omit emphasizing the dependence on t ∈
(0, T ) and, with an abuse of notation, we will denote through the Cartesian product
Ω(t)× (0, T ) the space-time domain defined by

{(x, t) ∈ R2 × R+ |x ∈ Ω(t), t ∈ (0, T )} .

We will do the same abuse while writing ∂B(t)× (0, T ) instead of ∪t∈(0,T )∂B(t)×{t}. All
notations are summarized in Figure 1.

In the fluid domain Ω(t), we introduce U : Ω(t)×(0, T )→ R2 and P : Ω(t)×(0, T )→ R
that denote respectively the velocity field and the pressure of the fluid. We denote by µ > 0
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and ρ > 0 the viscosity and the density of the fluid. We recall that Newtonian laws state
that the stress tensor of the fluid reads

Σµ(U,P ) = −P I + 2µD(U) with D(U) =
∇U + (∇U)>

2
,

where I is the 2× 2-identity matrix, and that we have the algebraic relation

∇ · Σµ(U,P ) = µ∆U −∇P
for any divergence free vector field U . In the absence of a body in the channel A, the fluid
flow would be driven by a (prescribed) pressure drop per unit length P0 > 0. We would
have then (U,P ) = (vp, πp) where the so-called stationary Poiseuille flow vp associated
with the pressure πp solves

−µ∆vp + ρ(vp · ∇)vp +∇πp = 0 , ∇ · vp = 0 in A , (1.1)

with no-slip boundary conditions, i.e. vp = 0 on Γ. With this boundary condition, the
equation (1.1) has a unique unidirectional solution whose expression is explicit, namelyvp(x1, x2) = v0(x2)ê1 =

P0 L2

2µ

(
1− x2

2

L2

)
ê1 ∀x2 ∈ [−L,L] ,

πp(x1, x2) = −P0x1 .

(1.2)

In particular, the pressure drop per unit length P0 is directly related to the flow rate
2P0L3/(3µ). In the presence of a solid body inside A, the couple velocity-pressure (U,P )
is a solution to the Navier-Stokes equations on Ω(t)× (0, T ) forced by the Poiseuille flow
vp at spatial infinity, the body velocity-field on ∂B(t) and no-slip boundary conditions on
Γ.

As for the elliptical body, its motion follows Newton’s laws of solid dynamics taking into
account the action of the fluid and restoring forces only. Assuming continuity of normal
stress at the fluid/solid interface, the hydrodynamics forces produced by the fluid on the
rigid body B are given by

−
∫
∂B(t)

Σµ(U,P )n̂ dσ,

where the minus sign is due to the fact that we choose n̂ to be the outward normal to
∂Ω(t), thus directed towards the interior of B. The lift force that enters in Newton’s
equation along ê2 reads then

−ê2 ·
∫
∂B(t)

Σµ(U,P )n̂ dσ .

The torque produced by the fluid on the rigid body B is given by

−
∫
∂B(t)

(x− hê2)⊥ · Σµ(U,P )n̂ dσ ,

and contributes to the the angular part of Newton’s equations. We recall that we assume
that B cannot move horizontally (this can be achieved by applying an active drag force
on B). In Newton’s equations for linear and angular momentum we also add respectively
Fh, Fθ : R2 → R that represent smooth elastic restoring forces, the model case being purely
linear forces given by Hooke’s law. These forces are obtained as partial derivatives of a
smooth potential F : R2 → R, namely

Fh(h, θ)
.
=
∂F

∂h
(h, θ) , Fθ(h, θ)

.
=
∂F

∂θ
(h, θ) .

We take F (0, 0) = 0 and we further assume that
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• for any θM > 0, there exist $M , rM > 0 such that

h∂hF (h, θ) + θ∂θF (h, θ) ≥ $MF (h, θ), F (h, θ) ≥ rM
2

(h2 + θ2), (1.3)

for all (h, θ) ∈ Ad,δ with |θ| < θM ;
• there exists an increasing function Θ : R+ → R+ : ` 7→ θ(`) such that

{(h, θ) ∈ Ad,δ : F (h, θ) ≤ `} ⊆ R× (−θ(`), θ(`)) . (1.4)

Such assumptions are in particular satisfied when the restoring force satisfies linear Hooke’s
law. They are also compatible with more realistic nonlinear restoring forces saturating at
some values of h and θ.

In a nutshell, the fluid-solid interaction evolution problem gives rise to the coupled
system

ρ(∂tU + (U · ∇)U) = ∇ · Σµ(U,P ) , ∇ · U = 0 in
⋃

t∈(0,T )

Ω(t)× {t},

lim
|x1|→∞

U(x1, x2, t) = vp(x2) in [−L,L]× (0, T ),

U = 0 on Γ× (0, T ), U = h′ ê2 + θ′(x− hê2)⊥ on
⋃

t∈(0,T )

∂B(t)× {t},

Mh′′ + Fh(h, θ) = −ê2 ·
∫
∂B

Σµ(U,P )n̂ dσ in (0, T ),

J θ′′ + Fθ(h, θ) = −
∫
∂B

(x− hê2)⊥ · Σµ(U,P )n̂ dσ in (0, T ).

(1.5)

We complement the system with initial conditions
(h, h′)(0) = (h0, h

′
0),

(θ, θ′)(0) = (θ0, θ
′
0),

U(x, 0) = U0(x) in Ω(0) = A \B(0),

(1.6)

for some initial position (h0, θ0) ∈ Ad,δ, velocities (h′0, θ
′
0) ∈ R2 and U0 : Ω0 → R2, where,

here and in the sequel, Ω0
.
= Ω(0) = A \ B0 with B0

.
= B(0) = B(h0, θ0). Compatibility

conditions on the initial conditions will be imposed in (1.11).
In order to restrict the number of physical parameters, it is customary to work with a

dimensionless form of the system (1.5). The choice is usually motivated by the physics of
the problem and the phenomena to be highlighted. We emphasize that our choice here
is purely mathematically intended as it serves to normalize concomitantly the Stokes and
Reynolds numbers. We take µ/ρd as our reference speed, ρd2/µ as characteristic time
and d as characteristic length. As a consequence, the physical parameters in the fluid
equation then appear only in the inflow/outflow condition at spatial infinity. In the new
variables, the channel’s width is L = L/d, the axes of the ellipse are respectively of lengths
1 and e = δ/d, whereas the velocity at infinity is now given by the dimensionless Poiseuille
velocity field

ṽp(x̃2) =
p0L

2

2

(
1− x̃2

2

L2

)
ê1 ∀x̃2 ∈ [−L,L] ,

with

p0 =
P0ρd

3

µ2
.
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In the new variables, the dimensionless system reads, with obvious notations,

∂t̃Ũ + (Ũ · ∇̃)Ũ = ∇̃ · Σ1(Ũ , P̃ ) , ∇̃ · Ũ = 0 in
⋃

t̃∈(0,T )

Ω̃(t̃)× {t̃} ,

lim
|x̃1|→∞

Ũ(x̃1, x̃2, t̃) = ṽp(x̃2) in [−L,L]× (0, T ),

Ũ = 0 on Γ̃× (0, T ), Ũ = h̃′ ê2 + θ̃′(x̃− h̃ê2)⊥ on
⋃

t̃∈(0,T )

∂B̃(t̃)× {t̃} ,

M
ρd2

h̃′′ +
ρ

µ2
Gh̃(h̃, θ̃) = −ê2 ·

∫
∂B̃

Σ1(Ũ , P̃ )n̂ dσ̃ in (0, T ) ,

J
ρd4

θ̃′′ +
ρ

µ2
Gθ̃(h̃, θ̃) = −

∫
∂B̃

(x̃− h̃ê2)⊥ · Σ1(Ũ , P̃ )n̂ dσ̃ in (0, T ) ,

(1.7)

where G(·, ·) = F (d ·, ·) and T = (µ/ρd2)T . For the initial conditions, we have

(h̃, h̃′)(0) =
1

d
(h0,

ρd2

µ
h′0)

.
= (h̃0, h̃

′
0),

(θ̃, θ̃′)(0) = (θ0,
ρd2

µ
θ′0)

.
= (θ̃0, θ̃

′
0),

Ũ(x̃, 0) =
ρd

µ
U0(dx̃)

.
= Ũ0 in Ω̃0 = Ã \ B̃0.

(1.8)

In the fluid equation, we remark that both the fictive density and viscosity are now set to
1 as desired while p0 contains all physical dependencies. The quantities that now appear
in the Newton equations have a clear physical meaning: M

ρd2
and J

ρd4
are density ratios

whereas ρ
µ2
G is a dimensionless potential.

To end the introduction of our model, we remark that, in the absence of a Poiseuille
flow (say p0 = 0) we have a formal a priori estimate by multiplying the fluid equation in

(1.7) with Ũ . Integrating by parts, this entails:

1

2

d

dt̃

[
M
ρd2
|h̃′(t̃)|2 +

J
ρd4
|θ̃′(t̃)|2 +

∫
Ω̃(t̃)
|Ũ(t̃, x̃)|2dx̃+

2ρ

µ2
G(h̃(t̃), θ̃(t̃))

]

+

∫
Ω̃(t̃)

2|D(Ũ)(t̃, x̃)|2dx̃dt̃ = 0. (1.9)

The system (1.7) can then be interpreted as a partially dissipative (only fluid viscosity
involves dissipation) system forced by the Poiseuille flow. Observe also that the energy
scales uniformly with the factor ρ

µ2
in the adimensionalization, namely

Eadim(t̃) =
ρ

µ2
Ephys(t), (1.10)

where

Eadim(t̃) =
1

2

(
M
ρd2
|h̃′(t̃)|2 +

J
ρd4
|θ̃′(t̃)|2 +

∫
Ω̃(t̃)
|Ũ(t̃, x̃)|2dx̃+ 2

ρ

µ2
G(h̃(t̃), θ̃(t̃))

)
,

Ephys(t) =
1

2

(
M|h′(t)|2 + J |θ′(t)|2 +

∫
Ω(t)
|U(t, x)|2dx+ 2F (h(t), θ(t))

)
.

All dimensionless variables and rescaled sets have been surmounted by a “tilda” to high-
light the changes in (1.7)-(1.10) but we will return to the original notations in the sequel
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to lighten the presentation. On the contrary, we will keep for clarity the new notations of
the adimensional constants L, e, p0, T . We refer to (2.1) for further simplifications of the
notations. From now on, we also set Σ = Σ1.

1.3. Previous related references. In this paper we aim to construct a global-in-time
solution to (1.7) and analyze its long-time behavior. The Cauchy theory for fluid/solid
problem has been thoroughly studied around the beginning of the 21st century. Mostly
two standpoints are proposed. The first one is a pseudolagrangian formulation in which
characteristics associated with the solid motion are constructed in order to fix the fluid
domain. This enables to transform the Navier-Stokes system into a quasilinear system
that is coupled with the Newton laws. Classical solutions can then be constructed via
a perturbative method. Various results are obtained, with possible restrictions on the
physical parameters depending on the way the linearized problem is handled [8, 13, 14,
25, 30, 62, 63]. The second approach relies on a fully eulerian formulation of the coupled
problem and energy estimate (1.9). This formulation is obtained by remarking that the
fluid/solid system can be seen as a plain fluid with constrained velocity-field on the solid
domain. The constraint can then be mollified to construct approximate solutions that
lead to solutions to the target system via a compactness method. This yields naturally
weak solution to the coupled problem (with an appropriate notion of weak solution as
we shall see below) [16, 17, 31, 42, 43]. Eventually, these methods yield existence and
uniqueness of classical solutions until possible collision between the bodies or between one
body and the container boundaries (under smallness assumption on the initial data in the
3D case) while weak solutions are proven to exist globally regardless collisions [21, 58].
In the 2D case, the picture is complete since weak solutions are known to be unique and
coincide with the classical one before collision [29]. All these results are obtained either in
a bounded domain or in the whole space. Semi-bounded containers containing one solid
body are considered in [38, 54] extending the existence of weak solutions. In all these
previous references, rotations of the body were either neglected or did not influence the
fluid domain.

Collision in fluid/solid problems is a delicate issue. It should be noted here that, in
systems like (1.7) where we assume no-slip of fluid on solid boundaries, collision implies
a crossing of the characteristics associated with the fluid velocity-field. This prevents
from keeping a smooth fluid velocity-field through a collision. Thus, first computations
discuss which norms of classical solutions should blowup in case of collision [61]. These
computations are then complemented in [60] showing that a finite-time collision (under
the action of sufficiently singular forces) would lead to the existence of several (weak)
solutions after collision. Evidence that no collision in finite time is possible (whether with
weak or strong solutions) are provided in [35, 36, 37, 38, 57] except for very peculiar
3D geometries [39]. The result was recently extended to the motion of spheres in R3

[37]. These rigorous results extend previous heuristic computations relying on lubrication
approximation [12, 32]. Explanations for the discrepancy between a no-collision result
and what is observed in real-life experiments are also discussed in following references:
influence of solid geometry or boundary conditions [26, 27, 28, 40], influence of viscosity
[41, 45, 51], influence of incompressibility assumption [47].

The above analysis of Cauchy theory yields that weak solutions exist globally in time
(regardless collision) and that, at least in simple configurations, these solutions have a
reasonable sense since no collision occurs in finite time. There are fewer references re-
garding the large-time behavior of these solutions. This might be due to the fact that, in
case the container is bounded and there are no forcing term, a simple energy/dissipation
estimate yields that the kinetic energy of the system decays exponentially fast so that the
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solution converges to a trivial rest state. Without forcing term, the situation of the all
space is more complex. An algebraic decay of solutions is computed in [2, 19, 56] but
no asymptotic profile of the solution is known to date. The case of a spherical particle
moving in a compressible fluid under the action of gravity is analyzed in [22]. Regarding
fluid/solid systems forced by an inflow, a first issue to analyze the large time behavior is
the existence of stationary states. This issue is discussed in [6]. We point out that for
symmetry reasons, we have trivially a stationary solution to our coupled problem when
the solid is in the position Beq.

1.4. Main contributions. In this paper, our first contribution is to develop a weak
solution framework for (1.7). We start with existence of a solution until the first collision
between B(t) and ∂A when the initial data matches the compatibility conditions, that is

∇ · U0 = 0 in Ω0 ,

lim
|x1|→∞

U0(x1, x2) = vp(x2) ∀x2 ∈ [−L,L] ,

U0 · ê2 = 0 on Γ ,

U0 · n̂ = (h′0 ê2 + θ′0(x− h0)⊥) · n̂ on ∂B0 .

(1.11)

We also obtain that these weak solutions are time-continuous and satisfy a suitable energy
estimate (see Theorem 3.1). We complement then the study of the Cauchy problem
with a careful analysis of the collision issue. For this we obtain non-trivial extensions of
computations from the above-cited references in two directions. First, in comparison to
our model, an important simplification shared by all the references mentioned above is that
the geometry of the gap (understood as the thin contact region between the body and the
walls of the container) depends only on a distance parameter d = d(h). This was possible
since either the motion of the body is confined to a vertical translation or the bodies are
assumed to be spherically symmetric. In the case at consideration, where an elliptic body
is allowed to rotate, the geometry of the gap depends both on h and θ. Hence, we need
to generalize previous computations to non-symmetric configurations in which we must
capture the time-evolution of the gap geometry. Secondly, previous computations only
care for finite time-horizon of solutions. Herein, we obtain a global-in-time bound from
below on the distance between the elliptic body B(t) and Γ. This is a crucial step toward
the analysis of the long-time behavior of the body. Indeed, with our dissipative system of
equations, we expect that after a transition time, during which the excess of kinetic energy
of the full system is dissipated, the body returns to its rest state with the fluid unknowns
converging to the stationary solution outside this domain. However, this is possible only if
the particle does not remain stuck in a viscous layer close to one part of Γ. Such a scenario
is impossible for small Poiseuille flow when fluid inertia is neglected, that is setting ρ = 0
in (1.5). In this regime, hydrodynamic forces applied to the body split into the sum of
a contribution proportional to the body velocities (h′ and θ′) and a contribution of the
Poiseuille flow proportional to p0. When the elliptic body slows down due to fluid viscosity,
it remains to compare the amplitude of Poiseuille flow contribution (whose proportionality
coefficient of p0 turns out to be bounded independent of the position of the body in the
channel) and the restoring forces. If p0 is sufficiently small, the restoring force dominates
and the body goes back to rest state. When one reintroduces fluid inertia, i.e. the full
Navier-Stokes equations are considered, the situation is more involved. We cannot rule out
a priori that fluid convection combines with the Poiseuille flow to retain the body close
to one boundary. Hence, we provide a fine comparison between the effects of convection
combined with Poiseuille flow and restoring forces to yield the following theorem.
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Theorem 1.1. For any initial data ((h0, θ0), U0, (h
′
0, θ
′
0)) ∈ A1,e × {L2(Ω0) + vp} × R2

satisfying (1.11), there exists p
(1)
∗ > 0 such that, if p0 ≤ p(1)

∗ , then

(i) the weak solutions (U, h, θ) to (1.7)-(1.8) are global-in-time ;
(ii) there exists a constant d0

min > 0, such that

dist(B(t), ∂A) ≥ d0
min , ∀t ≥ 0 .

The smallness assumption p0 ≤ p(1)
∗ is required only to deduce the uniform lower bound

in assertion (ii). Without this condition, weak solutions are still global-in-time but we
cannot rule out collisions in infinite time.

Theorem 1.1 naturally allows to address the large-time behavior of solutions to (1.7)
for small p0. To this respect, our second main result shows that any weak solution of (1.7)
converges, as time goes to infinity and provided p0 is small enough, to the equilibrium
configuration (Ueq, Peq, 0, 0), where (Ueq, Peq) is the unique steady state in Ωeq = A \Beq,
i.e. 

−∆Ueq + (Ueq · ∇)Ueq +∇Peq = 0 , ∇ · Ueq = 0 in Ωeq ,

Ueq = 0 on ∂Beq ∪ Γ, lim
|x1|→∞

Ueq(x1, x2) = vp(x2), ∀x2 ∈ [−L,L] .

The configuration (Ueq, Peq, 0, 0) is indeed an equilibrium of (1.7) since, for symmetry
reasons,

ê2 ·
∫
∂Beq

Σ(Ueq, Peq)n̂ dσ =

∫
∂Beq

x⊥ · Σ(Ueq, Peq)n̂ dσ = 0 .

The second main result then reads as follows.

Theorem 1.2. For any initial data ((h0, θ0), U0, (h
′
0, θ
′
0)) ∈ A1,e × {L2(Ω0) + vp} × R2

satisfying (1.11), there exists p
(2)
∗ ∈ (0, p

(1)
∗ ] such that, if p0 ≤ p

(2)
∗ and (U, h, θ) is a weak

solution to (1.7)-(1.8), then (U, h, θ) converges to the equilibrium (Ueq, 0, 0) as t → ∞ in
the following sense:

lim
t→∞
‖U(t)− Ueq‖2L2(A) = lim

t→+∞
(|h(t)|2 + |θ(t)|2) = lim

t→+∞
(|h′(t)|2 + |θ′(t)|2) = 0 .

We point out that in this statement, we compare the fluid velocity fields U(t) and Ueq on
the full channel up to extending them by their solid counterparts on the associated solid

domains. The precise dependence of the threshold values p
(1)
∗ , p

(2)
∗ and of the minimal

distance d0
min on the relevant parameters of the problem (the initial data and the relevant

physical parameters) will be clearly given in Theorem 5.1 and Theorem 6.2. We point out
that Theorem 1.2 is much stronger than a local asymptotic stability result (in particular
Theorem 5.1 would be much easier to prove for small data) because any initial data in
a bounded region of the phase space is covered by the statement, i.e. whatever r > 0,

there exist thresholds p
(1)
∗ (r), p

(2)
∗ (r) that apply to any initial datum whose energy norm

is less than r. Theorem 1.2 also shows that, in the absence of an external forcing, i.e.
when p0 = 0, any possible trajectory of the system (1.7) will go to rest, which proves the
presence of an intrinsic damping mechanism of the fluid.

Theorem 1.1 and Theorem 1.2 are written for the dimensionless Problem (1.7). If we go
back to the system written in the physical variables, i.e. to Problem (1.5), one naturally

wonders the influence of the physical parameters on the thresholds p
(1)
∗ and p

(2)
∗ . It is

in fact interesting to notice that two mechanisms enter the game. The pressure drop P0

needs to be small compared to the ratio µ2/ρ in order to get a control of the energy. But
this is not enough, P0 needs also to be small compared to the stiffness of the elastic force
Fh in order to get a control of the distance to the walls of the channel. This means that
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Theorem 1.2 should be seen as a stability result for small pressure drop rather than for
small Reynolds number or high viscosity (compared to the density). We point out that it
is by no means our intention to study the asymptotic regimes of small or large viscosity
but some comments are given in Remark 5.11 and Remark 6.3.

The proofs of Theorem 1.1 and Theorem 1.2 contain severe difficulties associated with
both fluid and solid parts of system (1.7). Concerning the solid part, we emphasize that,
with the elastic restoring forces that are included here, Newton’s laws can be seen as
dispersive equations with an additional implicit fluid damping. This further dispersive
structure prevents from a simple application of energy/dissipation methods to tackle the
long-time behavior. Using viscosity dissipation combined with trace theorems, one can
(classically) show that the kinetic energies of the solid and the fluid are damped. Ob-
taining damping terms for the potential energy of the solid to control the amplitude of
its oscillations is much more delicate. To this aim, we import an idea that we learned
from [33, 34], originally devised for the wave equation (and by now commonly used for
other dissipative models), to our setting: we introduce a perturbed energy functional that
improves the dissipative estimate for the energy of the system.

As for the fluid part, a critical difficulty is that the fluid problem is set on an unknown
moving domain with non-homogeneous boundary conditions. In particular, to prove the
convergence to the equilibrium configuration, it is natural to compare the solutions of
two partial differential equations that are set on different domains: the (unknown) time-
moving domain and the stationary configuration h = θ = 0. The proof of Theorem 1.2
therefore requires different ingredients to overcome these difficulties.

The main idea behind the proof of Theorem 1.1 lies in the introduction of a potential
energy of contact that we extract by analyzing the asymptotics of the Stokes problem in
thin domains. As already mentioned, our asymptotic analysis is built on previous results,
[26] for instance. The main challenge in our situation consists in dealing with general solid
motions and gap geometries. A tentative in that direction has been done in [49] but the
obtained formulas are not tractable for our purposes. In our analysis, we use a genuine
variational point of view in the spirit of [41]. The new crucial step is then to identify the
influence of an optimized constant (see the quantity c∗ appearing in Section 4.2) that is
vanishing when considering simple motions and symmetric geometries. We then compute
a time-evolution equation for this potential energy of contact by using suitable multipliers
for the Navier-Stokes equations.

Our proof of Theorem 1.2 is made in two steps. We first use improved dissipative
estimate to conclude that the position of the ellipse is close to its expected asymptotic
value for large times. This enables us to proceed with an asymptotic stability analysis
starting from small initial data. To this aim, we define an ad-hoc change of variables
to bring the equilibrium position Beq to the position of the solid at time t. Namely, we
locally transform Beq into B(t) by using the isometry x 7→ h(t)ê2 +Q(θ(t))x in a compact
neighbourhood of Beq that we connect to the identity outside a compact neighbourhood
of B(t). Using this change of variables to rewrite the steady solution Ueq in the time-
depending fluid domain Ω(t), say Veq(t, ·), we then workout a stability estimate on the
equation satisfied by U − Veq. In this argument, the space-regularity of Ueq and the time-
regularity of (h, θ) are the key ingredients to control the difference U − Veq far from the
solid whereas the Galilean invariance of the Navier-Stokes equations are used to deal with
the estimates of the forces and of the fluid velocity close to ∂B(t).

We emphasize that, even if the symmetry simplifies drastically the analysis, Theorem
1.1 and Theorem 1.2 are new also in the case of a disk. Any asymptotic stability result is
a challenge for the Navier-Stokes equations and it becomes even more challenging in the
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context of a fluid-solid interaction models. Nevertheless, one of the originality and novelty
of our work is to deal with a non-spherical body. The choice of an elliptic body is justified
by the aim of breaking the full symmetry of a disk without making computations impossible
(as it would be for a body of arbitrary shape). We believe that our analysis should
apply to any regular strictly convex shape at the cost of some analytical technicalities but
without further conceptual difficulties. Our methodology is however limited to sufficiently
small convex body. Indeed, when the body is large (keeping the elliptical assumption for
simplicity) B(t) can touch simultaneously the top and the bottom of the channel. If Beq
is not strictly convex, the geometry of gaps in close-to-contact configurations can also be
complicated. For these reasons, the collision issue would require another approach when
relaxing this assumption. Another limitation of our approach is that the translation of
Beq is chosen to be vertical only. In this respect, this study can be seen as a first simplified
step towards the understanding of the full complex dynamics. Such extension would be
relevant to other applications, like the motion of red blood cells flowing in the circulatory
system. In that case, there is no spring-type forces applying on each cell but cell-cell and
cell-vessel interactions. We do not expect that the collision issue would be affected by such
a generalization but the existence and stability of rest states could be different. Finally, in
this paper we do not deal with uniqueness of solutions to (1.7): the understanding of this
issue strongly relies on the characterization of the behavior of the semigroup associated
to the fluid-structure system, which is clear for 2D bounded domains [29], but still not
understood in partially bounded domains.

1.5. Organization of the paper and notations. Section 2 provides some preliminary
notions: we describe the functional setting and we construct a solenoidal extension for the
Poiseuille flow, which enables us to introduce an equivalent formulation of (1.7), given by
problem (2.4)-(2.5), where the velocity field vanishes at infinity.

In Section 3, we give a global-in-time (up to collision) existence result of weak solu-
tions to problem (2.4)-(2.5) and we derive bounds for the kinetic energy of the system
independent of the distance between B(t) and ∂A.

Sections 4 and 5 are devoted to the proof of Theorem 5.1, which yields the existence
of a uniform lower bound for the distance between the obstacle and the boundary of the
channel for all times and implies Theorem 1.1. In Section 4, we give a detailed description
of the geometry of the gap between B and ∂A at small distances and we construct some
suitable test functions required to compute the repulsive force exerted by the boundary
∂A on B through the fluid. In Section 5, we proceed to the actual proof of Theorem 5.1,
which consists in providing an upper bound for the potential energy of contact. In order
to focus on the main ideas of the argument, technical details required for the proof of
Theorem 5.1 are contained in Sections A, B and C of the Appendix.

Finally, Section 6 contains Theorem 6.2, where we prove convergence to the equilibrium
state as time goes to infinity when p0 is sufficiently small and therefore deduce Theorem
1.2.

Our problem contains a large list of parameters. In the forthcoming computations, some
are of primary interest, namely the initial energy and the pressure drop, while others are
less critical as for instance L, e,m, J (see (2.1) for the definitions of m and J). In our
computation, we consider the less critical parameters as fixed and we will be cautious with
the dependencies of constants in terms of the one of primary interest. To this aim, we
will reserve two notations for the constants appearing in the estimates: Cdyn will denote
a “dynamical constant” that depends possibly on L, e,m, J and F ; Cgeo will denote a
“geometric constant” that allows dependencies in L and e only.
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Other notations will be used for universal constants and whenever critical, we explicit
the dependencies. All constants denoted with a symbol C may vary from one line to
another.

2. Weak formulation of the fluid-solid system

In this section we give a notion of weak solution to (1.7) following [3, 6, 54]. From now
on, we shorten some notations as follows:

m =
M
ρd2

, J =
J
ρd4

, λ0 =
p0L

2

2
=
P0ρL2

2µ2d
and H(·, ·) =

ρ

µ2
G(·, ·) =

ρ

µ2
F (d·, ·) . (2.1)

We emphasize that H, up to adimensionalization, satisfies both bounds in (1.3) with
%M = (ρ/µ2) min(d2, 1)rM and some $M > 0 depending on θM > 0:

H(h, θ) ≥ %M
2

(h2 + θ2), |θ| < θM . (2.2)

We start by recalling how to treat the non-constant behavior at infinity. We then introduce
the associated function spaces and weak formulation of (1.7).

To explain our construction, we assume in the whole section that T > 0 and that
(U,P, h, θ) is a smooth solution to (1.7) on (0, T ) such that (h(t), θ(t)) ∈ A1,e for all
t ∈ (0, T ). We point out that, since the larger axis of Beq is 1 and L > 2 we have:

dist(B(t), {x2 = L}) > 1

2
when h(t) <

1

2
,

dist(B(t), {x2 = −L}) > 1

2
when h(t) > −1

2
,

min(dist(B(t), {x2 = −L}),dist(B(t), {x2 = L})) ≥ 1

2
when h(t) ∈

{
− 1

2
,
1

2

}
.

(2.3)
Below, we fix ε0 = 1

4 .

2.1. Reformulation of the fluid equation. The fluid equation in Problem (1.7) is set in
a two-dimensional unbounded channel with a prescribed non-zero velocity field at infinity,
namely the Poiseuille flow in (1.2). To construct a finite-energy setting, we begin by
capturing the flow for large values of |x1|. We construct an ad hoc truncation around the
rigid body of the Poiseuille velocity profile by adapting (by now classical) Ladyzhenskaya’s
procedure [48] (see also [1] and [23, Chapter VI]) to our time-dependent problem. For this,
we divide the channel A into three parts, i.e. we set

A =

2⋃
i=0

Ai ,

where

A0
.
= A ∩ ([−3, 3]× R) , A1

.
= A ∩ ((−∞,−3)× R) , A2

.
= A ∩ ((3,∞)× R) ,

and then prove the following lemma.

Lemma 2.1. There exists a smooth divergence-free vector-field s : (0, T ) × A → R2 :
(t, x) 7→ s(t, x) such that{

s(t, ·) = (0, 0) in a neighborhood of B(t) and on ∂A,

s(t, ·) = vp in A1 ∪A2 ,
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Furthermore, there exists Cgeo > 0, depending only on L, such that

(i) ‖s(t, ·)‖W 2,∞(A) ≤ Cgeoλ0, for all t ∈ (0, T ),

(ii) ‖∂ts(t, ·)‖L2(A) ≤ Cgeoλ0|h′(t)|, for all t ∈ (0, T ),

(iii) the mapping h→ f̂ [h] =̇ ∂ts is continuous from W 1,∞(0, T ) into L2((0, T )×A),

(iv) f̂ [h] = h′f̄ [h] where supp(f̄ [h, θ]) ⊂ A0 and the mapping h 7→ f̄(h) is Lipschitz
from W 1,∞(0, T ) into L∞((0, T )×A) with

a)‖f̄ [h]‖L∞(A) ≤ Cgeoλ0, ∀h ∈W 1,∞(0, T ) ,

b)‖f̄ [h]− f̄ [h̃]‖L∞((0,T )×A) ≤ Cgeoλ0‖h− h̃‖L∞(0,T ), ∀ (h, h̃) ∈ [W 1,∞(0, T )]2,

(v) if ĝ(s) =̇− (s · ∇) s−∇πp + ∆s ∈ C∞(Ā), then supp(ĝ) ⊂ A0 and

‖ĝ‖L2(A) ≤ Cgeoλ0 (1 + λ0) .

Proof. Let b : [−L,L] −→ R the function defined by

b(x2) = −λ0L

[
x2

L
− 1

3

x3
2

L3

]
∀x2 ∈ [−L,L] ,

so that b′(x2) = vp(x2) · ê1 for all x2 ∈ (−L,L). We take smooth cutoff functions
ζ1, ζ

+
0 , ζ

−
0 , χ such that{

1[−2,2] ≤ ζ1 ≤ 1[−3,3] , 1[ 1
2
,∞) ≤ χ ≤ 1[ 1

4
,∞) ,

1(−∞,L−ε0] ≤ ζ−0 ≤ 1(−∞,L−ε0/2] , 1[−L+ε0,∞) ≤ ζ+
0 ≤ 1[−L+ε0/2,∞) .

Then for any (x1, x2) ∈ A, we write

Z+(x1, x2) = 1− ζ1(x1) ζ+
0 (x2) , Z−(x1, x2) = 1− ζ1(x1) ζ−0 (x2),

and

Z[h](x1, x2) = χ(h)Z+(x1, x2) + (1− χ(h))Z−(x1, x2).

Finally, we define

s(t, x1, x2)
.
=

(
− ∂

∂x2

(
b(x2)Z[h](x1, x2)

)
,
∂

∂x1

(
b(x2)Z[h](x1, x2)

))
,

for (t, x1, x2) ∈ (0, T )× A. Since ε0 = 1
4 and recalling (2.3), standard computations show

that s verifies all the stated properties. �

We emphasize that the vector field s constructed in Lemma 2.1 depends on time through
the function h but it is only space-dependent on time interval along which the solid is
far away from the centerline of the channel. Indeed, by construction we observe that

s(t, ·) = s−(·) (with obvious notations) is time-independent so that f̂ [h] =̇ ∂ts = 0 when

−1
2 < h(t) < 1

2 . The assertion (iv) is important to treat the term f̂ in the Cauchy theory,
see Section 3.
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We now look for solutions to problem (1.7) in the form U = u + s and P = p + πp.

Then, (u, p, h, θ) solves the following problem with source term ĝ − f̂ [h]

∂tu−∇ · Σ(u, p) + (u · ∇)u+ (u · ∇) s+ (s · ∇)u = ĝ − f̂ [h]

∇ · u = 0

 in Ω(t)× (0, T ) ,

lim
|x1|→∞

u(x1, x2, t) = 0, ∀x2 ∈ [−L,L] , t ∈ (0, T ) ,

u = 0 on Γ× (0, T ), u = h′ ê2 + θ′(x− hê2)⊥ on ∂B(t)× (0, T ),

(2.4)


mh′′ +Hh(h, θ) = −ê2 ·

∫
∂B(t)

Σ(u, p)n̂ dσ in (0, T ) ,

Jθ′′ +Hθ(h, θ) = −
∫
∂B(t)

(x− hê2)⊥ · Σ(u, p)n̂ dσ in (0, T ) ,

(2.5)

with initial conditions 
(h, h′)(0) = (h0, h

′
0),

(θ, θ′)(0) = (θ0, θ
′
0),

u0(x)
.
= U0(x)− s(0, x) in Ω0 .

(2.6)

To write down this set of equations, we used the fact that the Poiseuille flow does not
produce lift and torque on B, i.e.

ê2 ·
∫
∂B(t)

Σ(vp, πp)n̂ =

∫
∂B(t)

(x− hê2)⊥ · Σ(vp, πp)n̂ = 0 .

Assuming (u, p, h, θ) is a smooth solution to Problem (2.4)-(2.5)-(2.6) and taking φ ∈
C∞c ([0, T )×A) such that φ(t, x) = `(t)ê2 +α(t)(x−h(t)ê2)⊥ for some (`, α) ∈ [C∞c ([0, T ))]2

for x ∈ B(t), we multiply (2.4)1 by φ and integrate by parts over space and time. Using
(2.5) to compute boundary terms, we get

−
∫ T

0

∫
Ω(t)

[u · ∂tφ+ (u · ∇)φ · u− 2D(u) : D(φ)] dx dt

+

∫ T

0

∫
Ω(t)

[
(u · ∇) s · φ+ (s · ∇)u · φ+ (f̂ [h]− ĝ) · φ

]
dx dt−

∫
A\B0

u0 · φ(0)

= mh′0 `(0) + Jθ′0 α(0) +

∫ T

0

(
mh′`′ −Hh(h, θ) `+ Jθ′α′ −Hθ(h, θ)α

)
dt .

(2.7)

Furthermore, multiplying (2.4) by u, integrating by parts in space and using (2.5) again,
we formally infer the energy identity

d

dt
[Etot(t)] + 2

∫
Ω(t)
|D(u)|2 dx =

∫
Ω(t)

(ĝ − f̂ [h]− (u · ∇)s) · u , (2.8)

where

Etot(t)
.
=

1

2

(
‖u(t)‖2L2(Ω(t)) +m|h′(t)|2 + J |θ′(t)|2

)
+H(h(t), θ(t))

is the total energy. Since the right-hand side of this identity is bounded for u ∈ L2(Ω(t))
we observe that a weak formulation can be based on the velocity-field only that satisfies
the classical L∞t L

2
x ∩ L2

tH
1
x regularity.
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For any initial data ((h0, θ0), U0 = u0 + s(0, x), (h′0, θ
′
0)) ∈ A1,e × {L2(Ω0) + vp} × R2

satisfying (1.11), we associate the initial total energy E0 defined by

E0
.
= Ekin(0) +H(h0, θ0) =

1

2

(
‖u0‖2L2(Ω(t)) +m|h′0|2 + J |θ′0|2

)
+H(h0, θ0).

We recall that the energy scales like ρ/µ2 in the adimensionalisation, as emphasized in
(1.10), i.e. E0 = Eadim(0) = (ρ/µ2)Ephys(0).

2.2. Definition of weak solutions to (1.7). In order to define the notion of a weak
solution to problem (1.7), we introduce the spaces

H(B) ={(v, `, α) ∈ L2(A)× R× R | ∇ · v = 0 in A, v · n̂ = 0 on ∂A,

v = ` ê2 + α (x1, x2 − h)⊥ in B},

V(B) ={(v, `, α) ∈ H1
0 (A)× R× R | ∇ · v = 0 in A,

v = ` ê2 + α (x1, x2 − h)⊥ in B},

endowed, in view of Poincaré inequality, with the scalar products

〈z1, z2〉H(B) =

∫
Ω
u1 · u2 dx+m`1`2 + Jα1α2,

〈z1, z2〉V(B) =

∫
Ω
∇u1 : ∇u2 dx+ 2|B|α1α2 ,

(2.9)

where zi = (ui, `i, αi), i ∈ {1, 2}. We denote the norms induced by the scalar products in
(2.9) by ‖ · ‖H(B), ‖ · ‖V(B). Observe that the right-hand side in (2.9)2 can be replaced by
an integral on A, i.e.

〈z1, z2〉V(B) =

∫
A
∇u1 : ∇u2 dx

since ∇u1 : ∇u2 = 2α1α2 inside B. Recalling that D(·) denotes the symmetric part of the
gradient, we have Korn identity

2

∫
A
D(u1) : D(u2) dx =

∫
A
∇u1 : ∇u2 dx .

for all (u1, u2) ∈ (H1
0 (A))2 satisfying ∇ · u1 = ∇ · u2 = 0. Such a formula is in particular

valid for all ((u1, `1, α1), (u2, `2, α2)) ∈ V(B)2.
We also recall that the Poincaré inequality on A directly gives a trace inequality on ∂B,

with a constant that does not depend on the position of B. Indeed,∫
A
|v|2 dx ≤ 4L2

π2

∫
A
|∇v|2 dx,

for every v ∈ V(B), so that we infer a trace inequality for functions in V(B):

µ1|`|2 + µ2|α|2 =

∫
B
|v|2 dx ≤

∫
A
|v|2 dx ≤ 4L2

π2

∫
A
|∇v|2 dx, (2.10)

with µ1 = |Beq| = πe and µ2 =
∫
Beq
|x|2 dx = πe

4 (e2 + 1). The important feature of this

trace inequality is that it yields a universal constant that depends only on the geometry
of the solid B and the channel’s height but not on the precise position of B. In particular,
the crucial point that we will use later on is that the inequality can be used when B is
arbitrarily close to one of the boundaries of A.
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Finally, if h, θ : (0, T ) → R are functions of time such that (h(t), θ(t)) ∈ A1,e for every
t ∈ (0, T ), we define the spaces

Lp(0, T ;V(B(t))) =

{
f : (0, T )→ V(B(t))

∣∣∣ ∫ T

0
‖f(τ)‖pV(B(t)) dτ < +∞

}
for 1 ≤ p <∞, and

L∞(0, T ;H(B(t))) =

{
f : (0, T )→ H(B(t))

∣∣∣ ess sup
τ∈(0,T )

‖f(τ)‖H(B(t)) < +∞
}
.

The norms are defined respectively by

‖f‖Lp(0,T ;V(B(t))) =

(∫ T

0
‖f(τ)‖pV(B(t)) dτ

)1/p

for 1 ≤ p <∞ and

‖f‖L∞(0,T ;H(B(t))) = ess sup
τ∈(0,T )

‖f(τ)‖H(B(t)).

We are now ready to give a definition of weak solution to (1.7).

Definition 2.2. Let T > 0. Given (h0, θ0) ∈ A1,e and(u0, h
′
0, θ
′
0) ∈ H(B0) we say that a

triplet (u, h, θ) is a weak solution to problem (2.4)-(2.5)-(2.6) on (0, T ) if

(i) (h, θ) ∈W 1,∞(0, T ;R2) ∩ C([0, T ];A1,e), with h(0) = h0 and θ(0) = θ0

(ii) (u, h′, θ′) ∈ L2(0, T ;V(B(t))) ∩ L∞(0, T ;H(B(t))),
(iii) for every (φ, `, α) ∈ C1([0, T ];V(B(t))) such that φ(·, T ) = `(T ) = α(T ) = 0,

(u, h, θ) satisfies (2.7).

Some comments are in order. We recall that we denote B0 = B(h0, θ0) and Ω0 = A\B0.
The compatibility conditions (1.11) for initial data are encoded in this definition by the
statement (u0, h

′
0, θ
′
0) ∈ H(B0). We point out that our definition of solution depends on

the construction of s and in particular on the choice of ε0 so that the various possible
choices could give rise to a priori different weak solutions to (1.7). We do not intend to
prove uniqueness in the present work. Since (h, θ) ∈W 1,∞(0, T ), we can also extend the
weak formulation to any (φ, `, α) ∈W 1,2((0, T )×A)×H1((0, T )) such that{

φ(t, x) = `(t) + α(t)(x− h(t)ê2)⊥ in B(t),

φ = 0 on ∂A.

We infer in particular for such test functions that for any 0 ≤ t1 < t2 ≤ T ,

2

∫ t2

t1

∫
Ω(t)

D(u) : D(φ) dx dt−
∫ t2

t1

(∫
Ω(t)

[u · ∂tφ+ (u · ∇)φ · u] dx

)
dt

+

∫ t2

t1

∫
Ω(t)

[
(u · ∇) s · φ+ (s · ∇)u · φ+f̂ [h] · φ

]
dx dt+

∫
Ω(t2)

u(t2) · φ(t2)dx

−
∫

Ω(t1)
u(t1) · φ(t1)dx−

∫ t2

t1

(
mh′`′ −Hh(h, θ) `+ Jθ′α′ −Hθ(h, θ)α

)
dt

+m
(
h′(t2)`(t2)− h′(t1)`(t1)

)
+ J

(
θ′(t2)α(t2)− θ′(t1)α(t1)

)
=

∫ t2

t1

∫
Ω(t)

ĝ · φdx dt.

(2.11)
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3. Cauchy theory for weak solutions

The purpose of this section is to analyse weak solutions (up to collision) to the Cauchy
Problem (2.4)-(2.5)-(2.6), in the sense of Definition 2.2. Our first result in this section is
the existence of at least one solution and a control of the growth of the total energy. As
previously said, we do not tackle the uniqueness issue.

Theorem 3.1. There exists λ
(0)
0 > 0, depending on L and e, such that if λ0 ≤ λ

(0)
0 and

(h0, θ0) ∈ A1,e, (u0, h
′
0, θ
′
0) ∈ H(B0), then

(i) there exist T > 0 and at least one weak solution (u, h, θ) to problem (2.4)-(2.5)-(2.6)
on (0, T ).

Furthermore, for any T > 0, there exists a constant Cgeo such that for any weak solution
(u, h, θ) on (0, T ), we have:

(ii) u ∈ C([0, T ];L2(A)) and for all 0 ≤ t1 ≤ t2 ≤ T ,

Etot(t2)− Etot(t1) +
1

4

∫ t2

t1

‖∇u(τ)‖2L2(A) dτ ≤ Cgeoλ
2
0(t2 − t1); (3.1)

Finally, we have the following blow-up alternative:

(iii) either T =∞ or T <∞ and lim
t→T

(h(t), θ(t)) /∈ A1,e.

Proof. Let (h0, θ0) ∈ A1,e and (u0, h
′
0, θ
′
0) ∈ H(B0). Since the implicit term f̂ [h] is Lips-

chitz, the existence of at least one weak solution (u, h, θ) of (2.4)-(2.5)-(2.6), i.e. Assertion
(i), on some timespan (0, T ) – depending decreasingly on the initial total energy E0 and
increasingly on the distance between B0 and ∂A – can be proved following the standard
methods in fluid-solid interaction problems, see e.g. [8, 16, 31, 58]. Concerning Assertion
(ii), the continuity in time of the weak solutions with values in L2(A) and the energy
estimate (3.1) can be proved following [7, Theorem 2.1]. We only provide here a for-
mal computation of the energy estimate to motivate the assumption that λ0 should be
sufficiently small. Indeed the formal identity (2.8) yields that, for all 0 ≤ t1 ≤ t2 ≤ T

1

2
(Etot(t2)− Etot(t1)) +

∫ t2

t1

∫
A
|Du|2dxdτ

=
1

2

∫ t2

t1

∫
Ω(τ)

(
ĝ − (u · ∇)s− f̂ [h]

)
· u dxdτ . (3.2)

This identity, based on multipying (2.4) by u, can be justified by adapting the regular-
ization arguments of [7, Theorem 2.1]. Then, on the left-hand side, we have, by Korn
identity,

2

∫
A
|Du(τ, x)|2dx =

∫
A
|∇u(τ, x)|2dx .

To estimate the right-hand side of (3.2), we use Poincaré inequality, Lemma 2.1 and trace
inequality (2.10) to obtain successively∣∣∣∣∣

∫ t2

t1

∫
Ω(τ)

ĝ · u dxdτ

∣∣∣∣∣ ≤ 1

4

∫ t2

t1

∫
A
|∇u|2dxdτ + Cgeo

∫ t2

t1

∫
A
|ĝ|2dxdτ

≤ 1

4

∫ t2

t1

∫
A
|∇u|2dxdτ + Cgeo λ

2
0 (1 + λ0)2 (t2 − t1) ,
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∫ t2

t1

∫
Ω(τ)

(u · ∇)s · u dxdτ

∣∣∣∣∣ ≤ Cgeo‖s‖W 1,∞(A)

∫ t2

t1

∫
A
|∇u|2dxdτ

≤ Cgeo λ0

∫ t2

t1

∫
A
|∇u|2dxdτ ,∣∣∣∣∣

∫ t2

t1

∫
Ω(τ)

f̂ [h] · u dxdτ

∣∣∣∣∣ ≤ Cgeoλ0

∫ t2

t1

|h′(τ)|
(∫

A
|∇u|2dx

) 1
2

dτ

≤ Cgeoλ0

∫ t2

t1

∫
A
|∇u|2dxdτ .

Using these inequalities and choosing λ0 small enough with respect to Cgeo , we obtain
that the right-hand side of (3.2) is bounded by

3

8

∫ t2

t1

∫
A
|∇u|2dxdτ + Cgeo λ

2
0 (1 + λ0)2 (t2 − t1) ,

yielding the estimate (3.1).
The blow-up alternative is standard and follows from a concatenation method based on

the remark that the L2-norm of (u(t), h′(t), θ′(t)) may not blow-up in finite time. �

Remark 3.2. We remark that, in the above proof, the smallness condition λ0 ≤ λ(0)
0 means

physically that P0ρL2
2µ2d

≤ λ(0)
0 , i.e. the original pressure drop P0 should be small compared

to the ratio µ2/(ρdL2). This smallness condition has for only purpose to ensure source
terms can be bounded by dissipation in the energy estimate to yield (3.2). The method
that we sketched above yields existence until contact for any intensity of the Poiseuille
flow. However, with no restriction on λ0 one must expect that Etot grows exponentially
with time.

From now on, we assume tacitly that λ0 ≤ λ
(0)
0 . We complement our analysis with a

further energy estimate for weak solutions. Indeed, in absence of a potential energy term,
the estimate (3.1) predicts that the kinetic energy of the system, namely

Ekin(t)
.
=

1

2

(
‖u(t)‖2L2(Ω(t)) +m|h′(t)|2 + J |θ′(t)|2

)
,

as well as its dissipation, grow at most linearly in time. However, Poincaré inequality
implies the dissipation is morally larger than the time integral of the kinetic energy. So,
we may expect that as long as the potential energy is under control, the kinetic energy
remains bounded with time while the dissipation grows linearly. This is the motivation of
the next proposition.

Proposition 3.3. Let the assumption of Theorem 3.1 be in force and assume λ0 ≤ λ
(0)
0 .

There exists a constant Cdyn depending on e, L, m, and J such that, for all t ∈ (0, T ),

Ekin(t) ≤ Ekin(0) + Cdyn

(
λ2

0 + max
s∈(0,t)

|∇H(h(s), θ(s))|2
)
. (3.3)

Proof. We start by rewriting the energy inequality (3.1) in the following way:

Ekin(t2)− Ekin(t1) +
1

4

∫ t2

t1

‖∇u(τ)‖2L2(A)dτ

+

∫ t2

t1

(
h′(τ)Hh(h(τ), θ(τ)) +θ′(τ)Hθ(h(τ), θ(τ))

)
dτ ≤ Cgeoλ2

0(t2 − t1) ,
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where 0 ≤ t1 ≤ t2 ≤ T . By inequality (2.10), we deduce that for all 0 ≤ t1 ≤ t2 ≤ T ,

Ekin(t2)− Ekin(t1) +
1

8

∫ t2

t1

‖∇u(τ)‖2L2(A)dτ

≤ Cg
(
λ2

0(t2 − t1) +

∫ t2

t1

|∇H(h(τ), θ(τ))|2dτ
)
.

The inequality (2.10) again together with Poincaré inequality imply that there exists a
constant Cdyn depending on e, L, m and J so that

CdynEkin(t) ≤ ‖∇u(t)‖2L2(A) , ∀ t ∈ (0, T ).

Eventually, we infer, for 0 ≤ t1 ≤ t2 ≤ T , that

Ekin(t2)− Ekin(t1) +
Cdyn
16

∫ t2

t1

Ekin(τ)dτ

≤ Cgeo
(
λ2

0(t2 − t1) +

∫ t2

t1

|∇H(h(τ), θ(τ))|2dτ
)
.

Since, by Theorem 3.1, Ekin ∈ C([0, T ]), we may apply Grönwall lemma to deduce that

Ekin(t) ≤ Ekin(0)e−Cdynt/16 + Cgeo

(
λ2

0 + max
s∈(0,t)

|∇H(h(s), θ(s))|2
)∫ t

0
e−Cdyn(t−s)/16ds,

and the bound (3.3) follows. �

Observe that, as well known, without any force, the kinetic energy remains bounded
along any trajectory. In presence of the elastic restoring forces Hh and Hθ, this remains
true if θ(t) is uniformly bounded in time, but false in general. The restoring force Hh

plays a less critical role in this analysis since h is a priori bounded due to the presence
of the walls of the channel. A closer inspection of the behaviour of Ekin shows that on
intervals (t1, t2) where |θ| increases, Ekin(t2)−Ekin(t1) is a priori bounded but an increase
of kinetic energy is expected on intervals where |θ| decreases.

In order to bound the kinetic energy over time, we will restrict our attention to trajec-
tories up to collision, either with a wall, or with a fictive chosen bound on the angular
displacement. Showing that collisions do not occur will be our main objective from Sec-
tion 4 and Section 5. The choice of the fictitious bound for θ is based on the coercivity
assumption (1.4) on the potential H. This assumption implies that there exists α0 ∈ R+

such that,
H(h, θ) ≤ 3E0 + %M ⇒ |θ| ≤ α0 , (3.4)

whatever (h, θ) ∈ A1,e. We then introduce θM = α0 + 1. This precise choice is motivated
by the forthcoming Theorem 5.10 where we shall prove that when λ0 is small enough,
actually H(h(t), θ(t)) ≤ 3E0 +%M on any time interval (0, T ) where (h(t), θ(t)) ∈ A1,e and
|θ(t)| < θM .

With this chosen θM , since initially H(h0, θ0) ≤ E0, we infer that |θ0| ≤ α0 and we can
define

TM
.
= sup{t ≥ 0 : (h(t), θ(t)) ∈ A1,e and |θ(t)| < θM} ∈ (0,+∞] . (3.5)

It then directly follows from Proposition 3.3 that

max
t∈(0,TM )

Ekin(t) ≤ Ekin(0) + Cdyn
(
λ2

0 + SM
)
, (3.6)

where
SM

.
= max{|∇H(h, θ)|2 : (h, θ) ∈ A1,e and |θ| ≤ θM} .



20 DENIS BONHEURE, MATTHIEU HILLAIRET, CLARA PATRIARCA, AND GIANMARCO SPERONE

The assumption (1.4) implies SM is monotone increasing with respect to E0. In the sequel,
we will often refer to

EMkin
.
= Ekin(0) + Cdyn

(
λ2

0 + SM
)
≤ E0 + Cdyn

(
λ2

0 + SM
)
, (3.7)

that is the maximal possible kinetic energy on (0, TM ). Observe that θM is fixed by now
on and depends only (increasingly) on the initial energy E0. Finally, observe that EMkin
is bounded by an increasing function of the initial total energy and λ0. We will drop the
subscript M when using the constants %M and $M in the sequel.

Remark 3.4. Since the dimensionless potential H, the initial total energy E0 and %M
are all proportional to ρ/µ2, we observe that, if we take initial conditions in the physical
variables of the form given in (1.6), then θM does not depend on ρ and µ2.

4. Distance estimate – Preliminary results

Estimating the distance between B(t) and ∂A requires to compute the repulsion force
exerted by the boundary ∂A on B(t) through the fluid. To this aim, it is by now well
documented, see [36, 38], that one method is to use as a dual problem the stationary
Stokes system in A \B with a suitable boundary condition on ∂B. In this section, we do
the preliminary work, namely we derive fine properties of these stationary Stokes solutions
whatever the orientation of B when it is close to the lower part of ∂A. These are based first
on a precise description of the gap between B and ∂A. We complement this section with
several ingredients that will be required for computing distance estimates in the following
section.

4.1. Description of the gap. Firstly, we recall properties of ∂B that result from the
fact that B is convex with a smooth, strictly convex and compact boundary. We remark
that we can parametrize the boundary of B around any point X ∈ ∂B by a smooth graph
γX on some length 4λ∗. Namely, denoting by (τX , nX) ∈ S1 × S1 the local Frenet basis in
X ∈ ∂B, we can fix a constant r > 0 such that for every point X ∈ ∂B, we have

(x1, x2) ∈ ∂B∩BR2(X, r) ⇔ (x1, x2) = X+tτX+γX(t)nX for some t ∈ (−2λ∗, 2λ∗) .

Since ∂B is compact, we emphasize that we can choose a similar radius r and length λ∗
for all points X ∈ ∂B. Since ∂B is smooth both mappings ∂B 7→ S1 × S1 : X 7→ (τX , nX)
and ∂B 7→ Cm([−2λ∗, 2λ∗]) : X 7→ γX (whatever m ∈ N∗) are smooth.

Figure 2. Representation of the gap Gλ between B and ∂A, when h < 0.
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Let (h, θ) ∈ A1,e. We denote by X[θ] the point on ∂Beq such that hê2 + Q(θ)X[θ]
achieves the (minimal) distance between ∂B and the lower part of ∂A, i.e. the wall
x2 = −L . We note that X[θ] is uniquely defined since B is strictly convex and we denote
(x1[θ], x2[θ])

.
= Q(θ)X[θ]. We set also γ[θ]

.
= γX[θ] and we have the local expansion:

γ[θ](τ) = x2[θ] + κ2[θ]τ2 + κ3[θ]τ3 + κ4[θ]τ4 + ε[θ](τ)|τ |4 ∀ τ ∈ [−2λ∗, 2λ∗] , (4.1)

where θ 7→ (x2[θ], κ2[θ], κ3[θ], κ4[θ]) ∈ R4 is smooth and

|ε[θ](τ)| ≤ ε(τ) , ∀ θ ∈ [0, 2π) where lim
τ→0
|ε(τ)| = 0 .

In particular, we have:

∂θγ[θ](τ) = ∂θx2[θ] + ∂θκ2[θ]τ2 + ∂θκ3[θ]τ3 + ε1[θ](τ)|τ |3 ∀ τ ∈ [−2λ∗, 2λ∗] , (4.2)

with similar considerations for ε1[θ] as for ε[θ]. Furthermore, there exist four constants

(c
(2)
i )1≤i≤4 such that:c

(2)
1 τ2 ≤ γ[θ](τ)− x2[θ] ≤ c(2)

2 τ2 ,

c
(2)
3 τ2 ≤ ∂θγ[θ](τ)− ∂θx2[θ] ≤ c

(2)
4 τ2 ,

∀ τ ∈ [−2λ∗, 2λ∗] . (4.3)

Finally, since B is open and ∂B is strictly convex, we observe that x2[θ], κ2[θ] belong to
a bounded interval of (−∞, 0) and (0,∞) respectively whatever θ. Since ∂B is compact,
there exist 0 < dmin < dmax and 0 < κmin2 ≤ κmax2 so that x2(R) = [−dmax,−dmin]
and κ2(R) = [κmin2 , κmax2 ].We refer to the Appendix A for an explicit description of γ[θ]
exploiting that B is an ellipse and providing explicit values for dmin, dmax, κ

min
2 , κmax2 .

From now on, we drop the θ-dependencies on all these notations for legibility. However,
it is important to keep in mind that these quantities are related to the orientation of B
through the angle θ that changes with time. We introduce also the splitting of the fluid
domain Ω

.
= A \B. For λ ∈ (0, λ∗) we set

Gλ
.
= {(x1, x2) ∈ A | |x1 − x1| < λ , −L < x2 < h+ γ(x1 − x1) } .

This domain represents the gap between B and ∂A below B, see Figure 2. We note that,
when h < 0, there exists a strictly positive distance d0[λ] depending only on λ such that

dist(∂B \ Gλ, ∂A) > d0[λ] .

In particular, we set d∗
.
= d0[λ∗] .

For later purpose, we need to find relations between x2 and κ2 and between (∂θκ2, ∂θx2)
and κ3. We state the required properties in the following lemma. Its proof exploits that
B is an ellipse and is postponed to the Appendix A.2:

Lemma 4.1. The following statements hold true:

(i) there exists a diffeomorphism X2 : [κmin2 , κmax2 ]→ [−dmax,−dmin] with inverse K2

such that:

κ2 = K2(x2) and x2 = X2(κ2) ∀ θ ∈ R . (4.4)

(ii) for all θ ∈ R, we have

κ3 = −κ2x2∂θ

[
κ2

x2

]
. (4.5)

(iii) there exists a C1-mapping K3 : [κmin2 , κmax2 ]→ R such that

κ3[θ] = ∂θK3(κ2[θ]).
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4.2. Construction of test functions. Inspired by the computations in [36, 41], our next
goal is to expand Stokes solutions when the distance between B(t) and ∂A is small. It will
turn out that since the shape of the gap Gλ∗ changes with time (because of the distance
and also of the curvature of ∂B(t)), we will need to have at hand an expansion of the
solution of the Stokes problem for a whole family of boundary conditions. Consequently,
we proceed with computing a profile for solutions to

−∆v +∇q = 0 in Ω ,

∇ · v = 0 in Ω ,

v = 0 on ∂A ,

v = v∗ on ∂B ,

lim
|x1|→∞

v(x1, x2) = 0 ∀x2 ∈ [−L,L] ,

(4.6)

for a specific class of boundary conditions v∗ and in the asymptotic regime dist(B, ∂A)
.
=

d(h, θ) << 1. We observe that when h < 0 the distance is achieved below the ellipse and
d(h, θ) = h + x2 + L, see Figure 2. In the subsequent computations, we will apply our
construction to the following three boundary conditions :

v⊥∗ (x) = ê2 , v
||
∗ (x) = ê1 , v	∗ (x) = (x− (x + hê2))⊥ ∀x ∈ ∂B , (4.7)

mimicking translation, respectively parallel and orthogonal to ∂A, and rotation of B (com-
puted with respect to the point hê2 +x). We remark that, in these three cases, there exists
a stream function ψ∗ ∈ C∞(Ā) such that v∗ = ∇⊥ψ∗ = (−∂2ψ∗, ∂1ψ∗), namely

ψ⊥∗ (x) = x1− x1, ψ
||
∗ (x) = x2 +h−x2, and ψ	∗ (x) =

1

2
(x1− x1)2 +

1

2
(x2− x2−h)2. (4.8)

We have chosen streamfunctions that are zero at the central point of the gap Gλ∗ , that is
where (x1, x2) = (x1, x2 + h). We therefore present the general method under this further
assumption and then its applications to the three specific cases.

Under the assumption that v∗ = ∇⊥ψ∗, we recall first that there is a unique solution
(up to a constant, regarding the pressure) to (4.6) whose velocity field (extended by ∇⊥ψ∗
on B) is the vector field achieving

min
v∈H1

0 (A)

{∫
Ω
|∇v|2

∣∣∣∣ ∇ · v = 0 , v = ∇⊥ψ∗ on B

}
. (4.9)

Let w ∈ H1
0 (A) be a competitor for this minimization problem. Since A is simply con-

nected, we can find ψ ∈ H2(A) such that w = ∇⊥ψ in A. Since w prescribes no flux on
vertical lines in A, we may also normalize ψ by assuming that ψ = 0 on ∂A. Doing so,
solving (4.9) amounts to solving the problem

min
ψ∈H2

0 (A)

{∫
Ω
|∇2ψ|2

∣∣∣∣ ∇ψ = ∇ψ∗ on B

}
.

We propose to compute an approximate minimum by minimizing the vertical derivatives
in the gap with the same boundary conditions:

min
ψ∈H2(Gλ∗ )

{∫
Gλ∗
|∂22ψ|2

∣∣∣∣ ∇ψ = ∇ψ∗ on ∂B , ψ = ∂2ψ = 0 on ∂A

}
. (4.10)

It turns out that the minimum in (4.10) can be explicitly computed. Before giving the
explicit form of the minimizer, we introduce the function τ ∈ (−2λ∗, 2λ∗) 7→ d+γ[θ](τ)−x2,
which measures the vertical distance between ∂A and ∂B as a function of the horizontal
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distance τ from (x1, x2), and the vertical-distance ratio, defined for every x in the gap Gλ∗
by:

r(x1, x2) =
x2 + L

d + γ(x1 − x1)− x2
.

Following [27], we observe that the minimization problem (4.10), under the change of
variables

(x1, x2) 7→ (τ(x1, x2), r(x1, x2)) ∀ (x1, x2) ∈ Gλ∗ , (4.11)

amounts to find, for every τ ∈ (−2λ∗, 2λ∗), the minimizer of the functional∫ 1

0
|ψ′′τ (r)|2 · 1

(d + γ(τ)− x2)3
dr .

This is a one-dimensional minimization problem, whose associated Euler-Lagrange equa-
tion yields ψ′′′′τ = 0.

Applying that ψ = ∂2ψ = 0 on ∂A, the minimizer in (4.10) can then be written as

ψopt(x) = ψ1(x1 − x1)P opt1 (r(x1, x2)) + ψ2(x1 − x1)P opt2 (r(x1, x2)) , ∀x ∈ Gλ∗ , (4.12)

where P opt1 , P opt2 are the polynomia defined for s ∈ [0, 1] by

P opt1 (s) = 3s2 − 2s3 and P opt2 (s) = s2(s− 1),

ψ1, ψ2 are chosen so that ∇ψ = ∇ψ∗ on ∂B, namely:{
ψ1(τ) = ψ∗(x1 + τ, h+ γ[θ](τ))− c∗,
ψ2(τ) = ∂2ψ∗(x1 + τ, h+ γ[θ](τ))(d + γ[θ](τ)− x2) .

With respect to computations restricted to simpler motions and fully symmetric geome-
tries, as for instance in [36], we emphasize the appearance of a “new” constant c∗ ∈ R.
Optimizing (4.10) with respect to this constant c∗ fixes its value through the optimality
condition ∫ x1+λ∗

x1−λ∗
∂222ψopt(x1,−L) dx1 = 0 .

Now, we propose the following construction of an approximate solution ṽ to problem
(4.6). We fix ζ ∈ C∞(R) such that 1[−1,1] ≤ ζ ≤ 1[−2,2], and we set, for all x ∈ A,

ψ̃(x) =



ζ

(
(x1 − x1)

λ∗

)
ψopt(x)

+

(
1− ζ

(
(x1 − x1)

λ∗

))
ζ

(
dist(x,B)

d∗

)
(ψ∗(x)− c∗) ∀x ∈ G2λ∗ ,

ζ

(
dist(x,B)

d∗

)
(ψ∗(x)− c∗) ∀x ∈ Ω \ G2λ∗ ,

ψ∗(x)− c∗ ∀x ∈ B .
(4.13)

Standard computations show that ṽ
.
= ∇⊥ψ̃ is such that

ṽ ∈ H1
0 (A) , ∇ · ṽ = 0 in A , ṽ = ∇⊥ψ∗ on B .

We postpone a sharper description of this construction to Appendix B. For the three
different boundary conditions given in (4.7), we deduce from (4.8) and (4.12) the following
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expressions, for x = (x1, x2) ∈ G2λ∗ , of the stream functions ψ⊥opt, ψ
‖
opt,ψ

	
opt of the respective

optimizer in (4.10):

ψ⊥opt(x1, x2)
.
=
(
x1 − x1 − c⊥∗

)
P opt1 (r(x1, x2)) ,

ψ
‖
opt(x1, x2)

.
= −(γ(x1 − x1)− x2 + c

‖
∗)P

opt
1 (r(x1, x2))

− (d + γ(x1 − x1)− x2) P opt2 (r(x1, x2)) ,

ψ	opt(x1, x2)
.
=

(
1

2
(x1 − x1)2 +

1

2
(γ(x1 − x1)− x2)2 − c	∗

)
P opt1 (r(x1, x2))

− (γ(x1 − x1)− x2)(d + γ(x1 − x1)− x2)P opt2 (r(x1, x2)) .

(4.14)

We refer to Lemma B.2 in Appendix B for an asymptotic expansion of the values c⊥∗ , c
||
∗ ,

c	∗ when d << 1. The streamfunctions ψ̃⊥, ψ̃‖,ψ̃	 are then computed using (4.13) with
the respective expression of ψ∗ as in (4.8). The associated approximate Stokes solutions

will be denoted by ṽ⊥, ṽ‖ and ṽ	.
For further references, we compute, using the change of variables in (4.11) and the above

construction of ψ⊥opt,∫
Gλ∗
|∂22ψ

⊥
opt|2 dx =

∫ λ∗

−λ∗

(τ − c⊥∗ )2

(d(t) + γ[θ](τ)− x2)3
dτ

∫ 1

0
|∂zzP opt1 (z)|2dz

= 12

∫ λ∗

−λ∗

(τ − c⊥∗ )2

(d(t) + γ[θ(t)](τ)− x2[θ(t)])3
dτ, (4.15)

and we observe that the approximations are singular in the limit d << 1 only at the H1

level and that the singularity is concentrated in the gap. Namely, there exists a constant
Cgeo > 0 (therefore depending only on the geometry of B) independent of d and θ such
that {

‖ṽ⊥‖L2(A) + ‖ṽ||‖L2(A) + ‖ṽ	‖L2(A) ≤ Cgeo
‖ṽ⊥‖C2b (Ω\Gλ∗ ) + ‖ṽ||‖C2b (Ω\Gλ∗ ) + ‖ṽ	‖C2b (Ω\Gλ∗ ) ≤ Cgeo ,

(4.16)

where C2
b (Ω \ Gλ∗) denotes the space of all bounded continuous functions on Ω \ Gλ∗ .

4.3. A refined trace inequality when B is close to ∂A. In our computations, we shall
use a suitable test function to prove a minimal distance estimate. A first possible way to
tackle this issue could be to relate the velocities of the ellipse to the fluid dissipation –
i.e. the H1-norm of the velocity of the fluid – and conclude by a Grönwall argument. We
recall here standard trace results for this purpose. They will however be insufficient for
our purpose but we will need them to estimate remainder terms.

To state these results, we fix h < 0 and θ ∈ R such that (h, θ) ∈ A1,e. Given v ∈ V(B),
we recall that v matches a rigid motion in B. In the following lemma, we compute this
rigid motion with respect to x + hê2, namely the point realizing the minimum distance
between B and ∂A (and thus betwen B and x2 = −L since h < 0). We set

v(x1, x2) = `1ê1 + `2ê2 + α(x− (x + hê2))⊥ , ∀(x1, x2) ∈ B . (4.17)

We emphasize that `1 might not vanish since this is the velocity of the point x + hê2 and
not the center of the ellipse. With this convention, we have the following statement

Lemma 4.2. There exists a constant Cgeo > 0, depending only on e and L such that, for

every v ∈ V(B) satisfying (4.17) in B,
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(i) |`2| ≤ Cgeo d(h, θ)3/4‖∇v‖L2(A),

(ii) |`1| ≤ Cgeo d(h, θ)1/4‖∇v‖L2(A),

(iii) |α| ≤ Cgeo d(h, θ)1/4‖∇v‖L2(A).

Proof. We prove our result in case d(h, θ) ≤ λ2
∗ (λ∗ being a minimum length on which we

have a local parametrization of ∂B) otherwise this is a consequence to Poincaré inequality
(2.10).

We start with the second inequality. We simply integrate ∂2v1 in the gap Gλ to get∣∣∣∣∫ x1+λ

x1−λ
v1(x1, h+ γ(x1 − x1)) dx1

∣∣∣∣ =

∣∣∣∣∫
Gλ
∂2v1 dx1 dx2

∣∣∣∣
≤
√
λ(d(h, θ) + c

(2)
2 λ2)‖∇v‖L2(A) ,

for all small λ > 0. However, for λ > 0 small, we have∣∣∣∣∫ x1+λ

x1−λ
v1(x1, h+ γ(x1 − x1)) dx1 − 2λ`1

∣∣∣∣ ≤ Cgeo λ3|α| .

We note at this point that, by (2.10), we have |α| ≤ Cgeo‖∇v‖L2(A). Eventually, we obtain

|`1| ≤ Cgeo

(√
d(h, θ)

λ
+ c

(2)
2 λ+ λ2

)
‖∇v‖L2(A) .

To optimize the asymptotic estimate for d(h, θ) << 1, we now take λ = d(h, θ)
1
2 (that is

a possible choice since d(h, θ) ≤ λ2
∗) to conclude that

|`1| ≤ Cgeo
(
d(h, θ)1/4 + d(h, θ)

)
‖∇v‖L2(A)≤ Cgeo d(h, θ)1/4‖∇v‖L2(A) .

We now turn back to assertion (i). Going inside the proof of [60, Theorem 3.1 - eq.
(12)], one realizes that

|v(x1, x2) · n̂(x1, x2)| ≤ Cgeod(h, θ)3/4‖∇v‖L2(A)

for some Cgeo > 0 that can be controlled once we know the curvature of ∂B is bounded
from above and from below by positive constants. This actually leads to (i). However, to
have a better view on the dependance of Cgeo, we propose a rewriting of the argument
which will be used anyway to prove assertion (iii). We integrate ∂2v2 = −∂1v1 on Gλ to
obtain

2λ`2 =

∫ x1+λ

x1−λ
v2(x1, h+ γ(x1 − x1)) dx1 =

∫
Gλ
∂1v1 dx1 dx2 .

Estimating the right-hand side like in the proof of (ii) is not enough. We compute instead∫
Gλ
∂1v1 dx1 dx2 =

∫ h+γ(−λ)

−L
v1(x1 − λ, x2) dx2 −

∫ h+γ(λ)

−L
v1(x1 + λ, x2) dx2

and we deduce that∣∣∣∣∫
Gλ
∂1v1 dx1 dx2

∣∣∣∣2 ≤ 2(d(h, θ) + c
(2)
2 λ2)

(
‖v1(x1 − λ, ·)‖2L2(dx2) + ‖v1(x1 + λ, ·)‖2L2(dx2)

)
,

for all small λ > 0. Using Hardy inequality, we then infer∣∣∣∣∫
Gλ
∂1v1 dx1 dx2

∣∣∣∣2 ≤ C (d(h, θ) + c
(2)
2 λ2

)3 (
‖∂2v1(x1 − λ, ·)‖2L2(dx2)

+ ‖∂2v1(x1 + λ, ·)‖2L2(dx2)

)
.
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Integrating over (0, λ) gives

4λ3

3
|`2|2 ≤ C

(
d(h, θ) + c

(2)
2 λ2

)3
(∫ x1+λ

x1−λ

∫ h+γ(ξ−x1)

−L
|∂2v1(ξ, x2)|2 dx2dξ

)
and therefore

|`2| ≤ C
(
d(h, θ)

λ
+ c

(2)
2 λ

)3/2

‖∇v‖L2(A),

so that (i) is proved by choosing λ = d(h, θ)
1
2 .

We finally focus on assertion (iii). We integrate again ∂2v2 = −∂1v1 but this time we
select on a non-symmetric subregion, for instance Gλ = {Gλ | λ > 0} \ {Gλ/2 | λ > 0}, of
the gap Gλ to obtain∣∣∣∣λ`22

+
3λ2α

8

∣∣∣∣2 =

∣∣∣∣∣
∫ x1+λ

x1+λ/2
v2(x1, h+ γ(x1 − x1)) dx1

∣∣∣∣∣
2

=

∣∣∣∣∫
Gλ
∂1v1 dx1 dx2

∣∣∣∣2 .
As above, we compute∫

Gλ
∂1v1 dx1 dx2 =

∫ h+γ(λ)

−L
v1(x1 + λ, x2) dx2 −

∫ h+γ(λ/2)

−L
v1(x1 + λ/2, x2) dx2

and we deduce that∣∣∣∣∣
∫
Gλ
∂1v1 dx1 dx2

∣∣∣∣∣
2

≤ 2
(
d(h, θ) + c

(2)
2 λ2

)(
‖v1(x1 + λ, ·)‖2L2(dx2) + ‖v1(x1 + λ/2, ·)‖2L2(dx2)

)
,

for all small λ > 0. Using Hardy inequality, we deduce that∣∣∣∣∣
∫
Gλ
∂1v1 dx1 dx2

∣∣∣∣∣
2

≤
(
d(h, θ) + c

(2)
2 λ2

)3 (
‖∂2v1(x1 + λ, ·)‖2L2(dx2) + ‖∂2v1(x1 + λ/2, ·)‖2L2(dx2)

)
.

It then follows∫ λ

0

∣∣∣∣ξ`22
+

3ξ2α

8

∣∣∣∣2 dξ ≤ 2
(
d(h, θ) + c

(2)
2 λ2

)3
(∫ x1+λ

x1

∫ h+γ(ξ−x1)

−L
|∂2v1(ξ, x2)|2 dx2dξ

+2

∫ x1+λ/2

x1

∫ h+γ(ξ−x1)

−L
|∂2v1(ξ, x2)|2 dx2dξ

)
and therefore, using (i), we get the estimate

|α|2 ≤ Cgeo λ

((
d(h, θ)

λ2
+ c

(2)
2

)3

+
d(h, θ)3/2

λ3

)
‖∇v‖2L2(A),

so that (iii) is proved by choosing λ = d(h, θ)
1
2 . �

Applied to solutions of (2.4)-(2.5)-(2.6), Lemma 4.2 gives a finer control on the velocities
(θ′, h′) close to the walls. The distance estimate (4.18) is already contained in [60, Theorem
3.1]. The velocity bound (4.19) will be crucial in our analysis in Section 5.
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Corollary 4.3. Let λ0 ≤ λ(0)
0 and (u0, h

′
0, θ
′
0) ∈ H(B0). Let (u, h, θ) be a weak solution to

problem (2.4)-(2.5)-(2.6) whose existence follows from Theorem 3.1 on its lifespan (0, T ).
We have

|d′(t)|2 ≤ Cgeo d(t)3/2‖∇u‖2L2(A) (4.18)

and

|h′|2 + |θ′|2 ≤ Cgeo
√

d(t)‖∇u‖2L2(A) , (4.19)

where Cgeo depends on e.

Proof. Since, expressing the rotation with respect to the point of contact x = (x1, x2), we
have

u = h′ ê2 + θ′(x− hê2)⊥ = −θ′x2ê1 + (θ′x1 + h′)ê2 + θ′(x− (x + hê2))⊥ on ∂B(t) ,

we deduce from Lemma 4.2 that

|θ′|2 ≤ Cgeo
√
d(t)‖∇u‖2L2(A), |θ′x1 + h′|2 ≤ Cgeo d(t)3/2‖∇u‖2L2(A) ,

Recalling that d(t) = h(t) + x2[θ(t)] +L, the conclusion follows since ∂θx2[θ] = x1[θ]. This
latter identity can be observed by θ-differentiating (A.4) for instance. �

5. Distance estimate – Identifying a potential energy of contact

In this section we fix an initial configuration and we assume that λ0 ≤ λ
(0)
0 so that

Theorem 3.1 holds true. We focus on a weak solution (u, h, θ) to (2.4)-(2.5)-(2.6) on the
time interval (0, TM ), where we recall that the definition of TM (given in (3.5)) implies
that no contact arises and |θ| < θM on (0, TM ). To fix the ideas, we focus on a distance
estimate with the lower boundary x2 = −L of A. By symmetry, similar arguments would
enable to control the distance to the top boundary of A. We assume that, on some time
interval (T−, T+) ⊂ [0, TM ] we have h(t) < 0 and d(t)

.
= d(h(t), θ(t)) < η0 with η0 > 0

small to be fixed later on. Up to taking η0 smaller in case T− = 0, we may assume
d(T−) = η0 without loss of generality.

For further reference, we recall that (1.3) implies that given η0 ∈ (0, L− 1), there exists
a constant k0 > 0 such that

Hh(h(t), θ(t)) ≤ −k0 = −$̄%̄(L− 1− η0)

2
< 0 as long as d(t) < η0. (5.1)

The section is dedicated to the proof of the following assertions that obviously imply
Theorem 1.1 since p0 = 2λ0/L

2.

Theorem 5.1. There exist a decreasing function ω−0 (E0) of the initial energy, that also
depends on the parameters m,J, e, L,$, %, a constant σ ∈ (0, 1) that depends on $, Cgeo >

0, and a threshold λ
(1)
0 > 0 depending on m,J, e, L,$, such that, if

λ0 ≤ λ(0)
0 , λ0 ≤ λ(1)

0 k0 and Cgeoλ
2
0 ≤ σω−0 %̄, (5.2)

then

(i) there exists a global weak solution (u, h, θ) to (2.4)-(2.5)-(2.6);
(ii) there exists d0

min > 0 for which

dist(B(t), ∂A) ≥ d0
min ∀t ≥ 0 ; (5.3)

(iii) there exists β0 > 0, that depends decreasingly on E0, such that

Etot(t) ≤ 3E0 e
−β0t +

Cgeoλ
2
0

β0
. (5.4)
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The proof, which basically requires to show that TM = +∞, will be done in several
steps. First, we deduce a local-in-time version of Assertion (ii), namely we prove the
existence of a lower bound for the distance on the time interval (0, TM ), see Proposition
5.7. This implies that either TM = +∞ or θ(TM ) = θM . In the second case, in Theorem
5.10, by exploiting a continuation argument, built on a local-in-time version of Assertion
(iii), we show an absurd, so that actually TM = +∞. Assertion (i) is then a consequence
of the alternative in Item (iii) of Thereom 3.1 and the statements (ii)-(iii) eventually hold
for all t ≥ 0.

With the study of the long time behavior in mind, the crucial novelty of this theorem
is that the bound (5.3) is global in time. This generality requires the smallness condition
imposed on the Poiseuille flow and motivates a novel approach. The interested reader
may note that integrating (5.20) below without imposing that the coefficient multiplying
(t−T−) is negative (namely, for an arbitrary Poiseuille flow) yields only a distance estimate
in finite-time. In fact, our approach is flexible enough to extend the no-collision result in
finite time known for a disk to the case of the ellipse, even in the absence of a restoring
force. As already mentioned, when the solid is a disk, the symmetries play a fundamental
role to rule out collisions. Since our analysis includes the case of an ellipse, we will have
to consider a non-symmetric gap and take into account that the curvature varies in time.

Remark 5.2. The explicit forms of d0
min, ω−0 and β0 will be given respectively in Propo-

sition 5.7 and Theorem 5.10. We also comment on the physical meaning of the smallness
assumption (5.2) of Theorem 5.1 in Remark 5.11.

5.1. Further remarks on the energy estimate and weak formulation. Our reason-
ing will be based on two main ingredients: the energy estimates and the weak formulation
of (1.5).

Concerning the energy estimate, we can use a finer version of (3.3) on (T−, T+). Indeed,
taking advantage of the assumption that d(t) < η0 on (T−, T+), we extract that the po-
tential energy of the ellipse is almost constant so that the dissipation essentially decreases
the kinetic energy. More precisely, under this assumption, we may replace (2.10) by its
refined version from Corollary 4.3, that is

|h′|2 + |θ′|2 ≤ Cgeo
√
η0‖∇u‖2L2(A)

where we have bounded d(t) by η0 and Cgeo is a constant that depends only on e and L.
We then obtain the refined bound∣∣h′Hh(h(t), θ(t)) + θ′Hθ(h(t), θ(t))

∣∣ ≤ 1

8

∫
A
|∇u|2 + Cgeo

√
η0 max

s∈(0,t)
|∇H(h(s), θ(s))|2 ,

and arguing as in the proof of Proposition 3.3, we infer that

Ekin(t2)− Ekin(t1)+
1

8

∫ t2

t1

‖∇u(τ)‖2L2(A)dτ ≤ Cgeo
(
λ2

0 +
√
η0SM

)
(t2 − t1),

for all T− ≤ t1 ≤ t2 ≤ T+. Writing this estimate between t1 = T− and t = t2 ≤ T+, we
infer ∫ t

T−

‖∇u(τ)‖2L2(A)dτ ≤ 8EMkin + Cgeo
(
λ2

0 +
√
η0SM

)
(t− T−) , (5.5)

where we recall, from (3.7) and the definition of SM , that

EMkin = Ekin(0) + Cdyn
(
λ2

0 + SM
)
≤ E0 + Cdyn

(
λ2

0 + SM
)
. (5.6)
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In particular, we infer that∫ t

T−

‖∇u(τ)‖2L2(A)dτ ≤ 8E0 + Cdyn(λ2
0 + SM ) + Cgeo

(
λ2

0 +
√
η0SM

)
(t− T−) . (5.7)

As for the weak formulation, we recall that u ∈ C([0, T ];L2(A)) satisfies (2.11) for
arbitrary compatible (φ, `, α) ∈ H1((T−, T+) × A) × [H1((T−, T+))]2. We point out that,
for t ∈ [T−, T+], we have h < 1/2 since we may assume without loss of generality that

η0 < 1/2. Hence, the term f̂ [h] in (2.7) vanishes on [T−, T+] and the weak formulation in
the form of (2.11) reduces to:∫

Ω(t2)
u(t2) · w(t2)dx−

∫
Ω(t1)

u(t1) · w(t1)dx

+m
(
h′(t2)`(t2)− h′(t1)`(t1)

)
+ J

(
θ′(t2)α(t2)− θ′(t1)α(t1)

)
−
∫ t2

t1

(∫
Ω(τ)

(u · ∂tw + (u · ∇)w · u) dx+mh′ `′ −Hh(h, θ) `+ J θ′ α′ −Hθ(h, θ)α

)
dτ

+ 2

∫ t2

t1

∫
Ω(τ)

D(u) : D(w) dxdτ +

∫ t2

t1

∫
Ω(τ)

((u · ∇) s+ (s · ∇)u) · w dxdτ

=

∫ t2

t1

∫
Ω(τ)

ĝ · w dxdτ

for all T− ≤ t1 ≤ t2 ≤ T+. Below, we will use this weak formulation with compatible
triplets (w, `, α) that satisfy further

(w, `, α) ∈W 1,∞((T−, T+)×A)×
(
W 1,∞((T−, T+))

)2
.

The above weak formulation implies then in particular that

Iw
.
= t 7→

∫
Ω(t)

u · w dx+mh′`+ Jθ′α ∈ H1([T−, T+]) , (5.8)

with

I ′w(t) =

∫
Ω(t)

(u · ∂tw + (u · ∇)w · u) dx+mh′ `′ −Hh(h, θ) `+ J θ′ α′ −Hθ(h, θ)α

− 2

∫
A
D(u) : D(w) dx−

∫
Ω(t)

((u · ∇) s+ (s · ∇)u) · w dx+

∫
Ω(t)

ĝ · w dx ,
(5.9)

for a.e. t ∈ [T−, T+].

5.2. Definition of a potential energy of contact. As emphasized in [26] among others,
controlling the distance between B(t) and ∂A should be based on exploiting the term

2

∫
A
D(u) : D(w) dx

that enables to approximate the repulsive force Frep exherted on B(t) by the one induced
by the Stokes problem. In case of a simple vertical translation, equivalent computations
to the ones in [27, Section 3.1] (see in particular formula (3.7)) in the 2D case show that,
this repulsive force is approximated by:

Frep ∼ −d′
∫
Gλ∗
|∂22ψ

⊥
opt|2 dx = −12d′

∫ λ∗

−λ∗

(τ − c⊥∗ )2

(d + γ[θ](τ)− x2[θ])3
dτ.
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If the rotation is frozen, this quantity is related to the time-derivative of

P 0
c (t)

.
= 6

∫ λ∗

−λ∗

(τ − c⊥∗ )2

(d(t) + γ[θ(t)](τ)− x2[θ(t)])2
dτ

and we may expect to control the distance d through P 0
c (remember that it scales like

d−1/2 when d << 1). This will stand for our potential energy of contact. However, when
rotation is allowed we get:

(P 0
c )′(t) =− 12d′(t)

∫ λ∗

−λ∗

(τ − c⊥∗ )2

(d(t) + γ[θ(t)](τ)− x2[θ(t)])3
dτ

+ 12

∫ λ∗

−λ∗

(d′(t)∂dc
⊥
∗ + θ′(t)∂θc

⊥
∗ )(τ − c⊥∗ )

(d(t) + γ[θ(t)](τ)− x2[θ(t)])2
dτ

− 12θ′(t)

∫ λ∗

−λ∗

(τ − c⊥∗ )2(∂θγ[θ(t)](t)− ∂θx2[θ])

(d(t) + γ[θ(t)](τ)− x2[θ(t)])3
dτ ,

where the terms on the second and third lines are comparable to P 0
c when d << 1. In

order to avoid the use of a Grönwall argument that would induce a loss of control on the
distance for large times, we propose here to use a modulation trick. We must also take
into account the effect of fluid inertia. This motivates the following construction.

Let a(t) ∈W 1,∞((T−, T+)) be a strictly positive amplitude function such that a(T−) =
1, and suppose that there are two constants 0 < a ≤ a such that a ≤ a(t) ≤ a. We then
define

Pc(t)
.
= 6a(t)

∫ λ∗

−λ∗

(τ − c⊥∗ )2

(d(t) + γ[θ(t)](τ)− x2[θ(t)])2
dτ

−

(∫
Ω(t)

u(t, x) · a(t)ṽ⊥(t, x) dx+mh′(t)a(t)

)
,

for t ∈ [T−, T+]. The precise definition of the amplitude function a(t) will be given later
on. We first justify the construction of Pc(t) and show that it enables to control the
distance d(t).

Lemma 5.3. We have Pc ∈ W 1,∞((T−, T+)) and there is C
(min)
geo > 0 and C

(max)
geo > 0,

depending only on e, such that

C
(min)
geo√
d(t)

−
√
C+

0 ≤
Pc(t)

a(t)
≤ C

(max)
geo√
d(t)

+
√
C+

0 ,

for all t ∈ [T−, T+], where C+
0 = Cdyn(E0 + λ2

0 + SM ) is an increasing function of E0.

Proof. Time regularity of Pc is a straightforward consequence ot the time regularity of
h, θ and the smoothness of ∂B. To obtain the lower and upper estimates, we bound
independently the two terms in Pc(t). We start observing that∫ λ∗

−λ∗

(τ − c⊥∗ )2

(d(t) + γ[θ(t)](τ)− x2[θ(t)])2
dτ =

∫ λ∗

−λ∗

τ2

(d(t) + γ[θ(t)](τ)− x2[θ(t)])2
dτ

−
∫ λ∗

−λ∗

2τc⊥∗
(d(t) + γ[θ(t)](τ)− x2[θ(t)])2

dτ

+

∫ λ∗

−λ∗

(c⊥∗ )2

(d(t) + γ[θ(t)](τ)− x2[θ(t)])2
dτ .
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A combination of Lemmas B.1-B.2 in Appendix B thus yields that, since d(t) < η0 there
exists a constant Cgeo depending only on e for which∣∣∣∣∫ λ∗

−λ∗

(τ − c⊥∗ )2

(d(t) + γ[θ(t)](τ)− x2[θ(t)])2
dτ − I2,2(κ2[θ])√

d

∣∣∣∣ ≤ Cgeo ,
where the symbol I2,2(κ2) stands for the integral

I2,2(κ2)=̇

∫
R

τ2

(1 + κ2τ2)2
dτ.

We remark that I2,2 is a smooth and bounded function of κ2 ∈ [κmin2 , κmax2 ]. Concerning
the term ∫

Ω(t)
u(t, x) · a(t)ṽ⊥(t, x) dx+mh′(t)a(t),

we use Cauchy–Schwarz inequality together with the energy bound (3.3), (4.16) and (5.6)
for t ∈ [T−, T+]. �

We proceed now with the computation of the time-derivative of Pc. To this purpose we
recall some definitions of the previous section. We set ṽ⊥(t, x) = ∇⊥ψ̃⊥ the approximation,
at time t ∈ [T−, T+], of the Stokes solution v⊥ given in (4.6) with v∗ = v⊥∗ (x) = ê2.
We briefly recall the construction: the geometry of the gap and the distance d(t) are

determined at every time t ∈ [T−, T+] by the values of (h(t), θ(t)), then ψ̃⊥ is defined by
(4.13) with ψ⊥∗ (x) = x1 − x1 and ψ⊥opt defined in (4.14)1. We have similar constructions

for the other solid motions yielding the vector-fields ṽ|| and ṽ	. In particular, we set, for
all t ∈ [T−, T+] and for all x ∈ A:

ṽ(x, t)
.
= d′(t)ṽ⊥(x, t)− θ′(t)x2(t)ṽ||(t) + θ′(t)ṽ	(x, t) . (5.10)

We observe then that ṽ = u on B(t) for all t ∈ [T−, T+]. With these notations at hand,
we have the following lemma which states the proper way to compute the time-derivative
of Pc.

Lemma 5.4. The derivative Pc
′ can be decomposed as

Pc
′(t) = Hh(h(t), θ(t))a(t) + Mod(t) + a(t)Rem1(t) + Rem2(t) , (5.11)

where Rem1(t) = Rem
(a)
1 (t) + Rem

(b)
1 (t) and there is a constant Cgeo (depending only on

e) for which

∣∣∣Rem
(a)
1 (t) −

∫
Ω(t)
∇ṽ⊥ : ∇(u− ṽ) dx

∣∣∣∣∣ ≤ Cgeo
(
|d′(t)|√
d(t)

+ |θ′(t)|
)
, (5.12)

Rem
(b)
1 (t) =− θ′(t)

∫
Ω(t)

[
2∂12ψ̃

⊥
(
∂12ψ̃

	 − x2∂12ψ̃
||
)

+ ∂11ψ̃
⊥
(
∂11ψ̃

	 − x2∂11ψ̃
||
)]

dx, (5.13)
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Mod(t) = 6a′(t)

∫ λ∗

−λ∗

(τ − c⊥∗ )2

(d(t) + γ[θ(t)](τ))2
dτ (5.14)

+ a(t)θ′(t)

(∫
Ω(t)

∂22ψ̃
⊥
(
∂22ψ̃

	 − x2[θ(t)]∂22ψ̃
||
)
dx

− 12

∫ λ∗

−λ∗

(∂θγ[θ](τ)− ∂θx2[θ(t)]) (τ − c⊥∗ )2

(d(t) + γ[θ(t)](τ)− x2)3
dτ

)
,

Rem2(t) =−
∫

Ω(t)
[∂t(a(t)ṽ⊥(t)) + (u(t) · ∇)(a(t)ṽ⊥(t))] · u(t) dx−mh′(t)a′(t)

+

∫
Ω(t)

((u(t) · ∇) s+ (s · ∇)u(t)) · a(t)ṽ⊥(t) dx−
∫

Ω(t)̂
g · a(t)ṽ⊥(t) dx.

Observe that we have organized the terms in (5.11) in such a way that Rem2(t) includes
all the other terms (not included so far) but the viscous ones in the weak formulation
(5.9) with w = a(t)ṽ⊥ (we point out that the rigid velocities associated with w are then
`(t) = a(t) while α(t) = 0), whereas Mod(t) incorporates the terms that will be balanced
with the variations of a(t). As it will be clear from the proof of Lemma 5.5, indeed,
Mod(t) behaves as a factor of 1/

√
d, thus in order to obtain a uniform bound for Pc we

need to “neutralize” its behavior with respect to the distance parameter d by means of
the amplitude function a.

Proof of Lemma 5.4. We first remind the time-derivative of P 0
c :

d

dt

[∫ λ∗

−λ∗

6(τ − c⊥∗ )2

(d + γ[θ](τ)− x2[θ])2
dτ
]

=− 12

∫ λ∗

−λ∗

d′(τ − c⊥∗ )2

(d + γ[θ](τ)− x2[θ])3
dτ

+ 12

∫ λ∗

−λ∗

(d′∂dc
⊥
∗ + θ′∂θc

⊥
∗ )(τ − c⊥∗ )

(d + γ[θ](τ)− x2[θ])2
dτ

− 12

∫ λ∗

−λ∗

θ′ (∂θγ[θ](τ)− ∂θx2[θ]) (τ − c⊥∗ )2

(d + γ[θ](τ)− x2[θ])3
dτ .

We denote the three integrals appearing on the right-hand side by D1(t),D2(t),D3(t),
respectively. The last D3 will be incorporated in the Mod term. Thanks to the Lemmas
B.1- B.2 and estimate (B.4) we can bound

|D2(t)| ≤ Cgeo

(
|d′(t)|√
d(t)

+ |θ′(t)|

)
. (5.15)

We next consider D1(t). We aim to relate it to the second term in the expression of Pc.
To rephrase it, we remark that by (4.15), we have

∫
Gλ∗
|∂22ψ

⊥
opt|2 dx = 12

∫ λ∗

−λ∗

(τ − c⊥∗ )2

(d + γ[θ](τ)− x2[θ])3
dτ.
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Conversely, from the notational conventions above, we infer

D1(t) = − d′(t)

∫
Gλ∗
|∂22ψ

⊥
opt|2 dx

= −d′(t)
∫
Gλ∗
∇ṽ⊥ : ∇ṽ⊥ dx+d′(t)

∫
Gλ∗

(
2|∂12ψ

⊥
opt|2 + |∂11ψ

⊥
opt|2

)
dx

= −d′(t)
∫

Ω(t)
∇ṽ⊥ : ∇ṽ⊥ dx+ d′(t)

∫
Ω(t)\Gλ∗

∇ṽ⊥ : ∇ṽ⊥ dx

+ d′(t)

∫
Gλ∗

(
2|∂12ψ

⊥
opt|2 + |∂11ψ

⊥
opt|2

)
dx

= −
∫

Ω(t)
∇ṽ⊥ : ∇u dx+

∫
Ω(t)
∇ṽ⊥ : ∇(u− d′(t)ṽ⊥) dx+ L1(t)

where

L1(t) = d′(t)

∫
Ω(t)\Gλ∗

∇ṽ⊥ : ∇ṽ⊥ dx+ d′(t)

∫
Gλ∗

(
2|∂12ψ

⊥
opt|2 + |∂11ψ

⊥
opt|2

)
dx.

Using that the singularity of ṽ⊥ is concentrated in Gλ∗ , the estimates in (4.16), where all
but vertical second order derivatives are subcritical, and (B.6), we infer that

|L1(t)| ≤ Cgeo|d′(t)|

(
1√
d(t)

)
. (5.16)

To rewrite the second-term integral in the last expression for D1(t), we recall that u = ṽ
on ∂B(t). Correspondingly, we use (5.10) and we split

u− d′ṽ⊥ = u− ṽ + θ′ x2[θ]ṽ|| − θ′ṽ	 .

We then decompose D1(t) as

D1(t) =−
∫

Ω(t)
∇ṽ⊥ : ∇u dx+

∫
Ω(t)
∇ṽ⊥ : ∇(u− ṽ) dx+ L1(t)

− θ′(t)
∫

Ω(t)
∂22ψ̃

⊥
(
∂22ψ̃

	 − x2[θ]∂22ψ
||
opt

)
dx

− θ′(t)
∫

Ω(t)

[
2∂12ψ̃

⊥
(
∂12ψ̃

	 − x2[θ]∂12ψ̃
||
)

+ ∂11ψ̃
⊥
(
∂11ψ̃

	 − x2[θ]∂11ψ̃
||
)]

dx.

Eventually, we introduce

Rem
(a)
1 (t) =

∫
Ω(t)
∇ṽ⊥ : ∇(u− ṽ) dx+ L1(t) + D2(t)

Rem
(b)
1 (t) =−θ′(t)

∫
Ω(t)

[
2∂12ψ̃

⊥
(
∂12ψ̃

	−x2[θ]∂12ψ̃
||
)

+∂11ψ̃
⊥
(
∂11ψ̃

	−x2[θ]∂11ψ̃
||
)]

dx.

Recalling (5.15) and (5.16), we have the expected estimate for Rem
(a)
1 . Applying a Korn

equality to handle the first term of D1(t) and setting Rem1 = Rem
(a)
1 + Rem

(b)
1 we have
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then:

D1(t) + D2(t) + D3(t) = −2

∫
A
D(ṽ⊥) : D(u) dx+ Rem1(t)

+ θ′(t)

(∫
Ω(t)

∂22ψ̃
⊥
(
∂22ψ̃

	 − x2[θ(t)]∂22ψ̃
||
)
dx

− 12

∫ λ∗

−λ∗

(∂θγ[θ](τ)− ∂θx2[θ]) (τ − c⊥∗ )2

(d(t) + γ[θ(t)](τ)− x2[θ(t)])3
dτ

)
.

Recalling Mod as defined in (5.14), we have by a simple combination:(
aP 0

c

)′
(t) = −2a

∫
A
D(ṽ⊥) : D(u) dx+ aRem1(t) + Mod(t) .

We recognize in the first term on the right-hand side the dissipation involved in the weak-
formulation (5.9) with w = aṽ⊥. Since aṽ⊥ ∈ H1((T−, T+)× A), with aṽ⊥ = aê2 on B(t)
we replace:

− 2a

∫
A
D(ṽ⊥) : D(u) dx =

d

dt

[∫
Ω(·)

u · aṽ⊥ dx+mh′a

]
+Hh(h, θ) a

−

(∫
Ω(t)

(
u · ∂t(aṽ⊥) + (u · ∇) (aṽ⊥) · u

)
dx+mh′ a′

)

+

∫
Ω(t)

(
(u · ∇) s · w + (s · ∇)u · (aṽ⊥)

)
dx−

∫
Ω(t)

ĝ · (aṽ⊥) dx .

Gathering the terms on the second and third lines into the remainder Rem2 and remarking
that

Pc = aP 0
c −

(∫
Ω(t)

u · aṽ⊥ dx+mh′a

)
,

we obtain finally

Pc
′(t) = Hh(h(t), θ(t))a(t) + Mod(t) + a(t)Rem1(t) + Rem2(t) ,

which is the expected identity. �

5.3. Lower bound on the distance. Combining Lemma 5.4 with Lemma 5.3, a lower
bound on

√
d(t) then derives from two more lemmas providing estimates on each of the

pieces in the decomposition of Pc
′.

Lemma 5.5. We can find two constants 0 < a ≤ a, and another constant Cgeo all three
depending only on e such that

(a) a ≤ a(t) ≤ a for all t ∈ [T−, T+],

(b) |a′(t)| ≤ Cgeoa|θ′(t)| for all t ∈ (T−, T+) .

Furthermore, there holds∫ t

T−

|Mod(τ)|dτ ≤ Cgeo
√
t− T−

(∫ t

T−

‖∇u(τ)‖2L2(A)dτ

) 1
2

.
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Lemma 5.6. There exists a constant Cdyn that depends on m,J, L, e such that, for all
t < T+, we have:∫ t

T−

(
a(τ)|Rem1(τ)|+ |Rem2(τ)|

)
dτ

≤ Cdyn

(√
t− T−

(∫ t

T−

‖∇u(τ)‖2L2(A)dτ

) 1
2

+

∫ t

T−

‖∇u(τ)‖2L2(A)dτ + λ2
0(t− T−)

)
.

The proofs of Lemma 5.5 and Lemma 5.6 are rather technical and postponed to the
very end of the section in order to keep the focus on the estimate of

√
d(t). As a first step

towards the proof of the lower bound stated in Assertion (ii) of Theorem 5.1, we establish
a lower bound restricted to the (possibly bounded) time interval (0, TM ).

Proposition 5.7. Assume λ0 ≤ λ
(0)
0 . There exist λ

(1)
0 > 0 depending on m,J, e, L such

that
λ0 ≤ λ(1)

0 k0 ⇒ dist(B(t), ∂A) ≥ dmin(E0, k0) ∀t ∈ (0, TM ) , (5.17)

where dmin is a monotone increasing function of k0 and decreasing in E0.

Proof. Injecting Lemma 5.5 and Lemma 5.6 into the integration of (5.11) and recalling
(5.1) and (5.7), we infer that

Pc(t) ≤ Pc(T−)+Cdyn
(
E0 + λ2

0 + SM
)1/2√

t−T−+Cdyn
(
E0 + λ2

0 + SM
)

+ C−dyn(t−T−),

where:

C−dyn = Cdyn
(√
η0SM + λ2

0

)1
2 + Cdyn

(√
η0SM + 2λ2

0

)
− ak0 .

We now choose η0, λ0 such that
√
η0SM and λ2

0 are small enough compared to k2
0 so that

C−dyn ≤ −
ak0

2
< 0.

The previous estimate then yields that

Pc(t) ≤ Pc(T−) + Cdyn
(
E0 + λ2

0 + SM
)(

1 +
1

k0

)
∀ t ∈ [T−, T+]. (5.18)

Moreover, Lemma 5.3 implies

Pc(T−) ≤ C
(max)
geo√
η0

+ Cdyn
(
E0 + λ2

0 + SM
)1/2

. (5.19)

Using Lemma 5.3 again and the choice of η0, we eventually conclude that

a
C

(min)
geo√
d(t)

≤ Cdyn + C+
0

(
1 +

1

k0
+

1

k2
0

)
(5.20)

as long as t ∈ [T−, T+]. Hence, the conclusion follows. �

In the sequel, given E0, we simply denote dmin(E0, k0) by d0
min.

Remark 5.8. It is important to emphasize that the lower bound found in (5.20) does not
depend on the length of the time interval (T−, T+) so that it does not depend on the exact
value of the time TM . In particular, it becomes uniform in time when TM = +∞. Observe
also that the elastic force Hh brings the critical contribution in C−dyn that provides the

global control in time of the distance to the boundary. In absence of a vertical restoring
force, we still have a bound which degenerates when |T+ − T−| → ∞ (and is henceforth
valid only in finite time).
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Remark 5.9. The threshold for λ0 in Proposition 5.7 does basically depend on k0 only as

seen from the expression of C−dyn. In particular, λ
(1)
0 depends only on the solid description

through Cdyn and is independent of ρ and µ2. Going back to the physical variables, this
means the threshold is a smallness condition of the pressure drop P0 compared to the
stiffness of the elastic force Fh. Observe that the choice η0 is also independent of ρ and µ2

but it does depend decreasingly on E0. It then follows from (5.18)-(5.19) that the estimate
of the minimal distance does not improve for large viscosity.

In order to complete the proof of Theorem 5.1, and now that we have bounded d(t) as
long as |θ| < θM , it is enough to show that indeed θ never approaches θM . This is the
objective of the next subsection.

5.4. Uniform bound on |θ| and conclusion of the proof of Theorem 5.1. We

assume that λ0 ≤ λ
(1)
0 k0, so that (3.6)-(5.17) apply to any solution (u, h, θ) to (2.4)-(2.5)

on (0, TM ). Given an initial energy E0, in view of (3.4), θM is fixed by α0 and so are the
constants SM and d0

min. As already said, we aim to prove that TM = +∞, which then
proves Assertion (ii) of Theorem 5.1. This will be a consequence of the next theorem,
which in fact contains Assertion (iii).

Theorem 5.10. Assume λ0 ≤ min(λ
(0)
0 , λ

(1)
0 k0). Let ω = ω−0 (E0), σ ∈ (0, 1) and Cgeo > 0

be given by Proposition 5.13. If
2Cgeoλ

2
0 ≤ σω%̄, (5.21)

then
|θ(t)| ≤ α0 ∀t ≥ 0 ,

and there holds

Etot(t) ≤ 3E0 e
−σωt +

2Cgeoλ
2
0

σω
∀t ≥ 0.

Remark 5.11. Theorem 5.10 requires three smallness condition on λ0. The first one is
used to get the basic energy estimate of Theorem 3.1, see Remark 3.2. As emphasized in
Remark 5.9, the second one boils down to a comparison between the pressure drop and
the stiffness of the elastic force Fh. The third one, namely (5.21), is in fact of the same
type as the first two. Indeed, it will be seen that ω has to satisfy two inequalities, see
(5.27). If we fix all the physical parameters but ρ and µ, the smallness condition (5.21)
means λ2

0 should be small in front of %̄2. In terms of physical variables, this is again a
comparison between the pressure drop and the stiffness of the elastic force Fh. Overall, in
the initial physical problem, as soon as the stiffness of the elastic force Fh, the density and
viscosity of the fluid are fixed, we can always define a threshold on the pressure drop so
that all smallness conditions are satisfied. If the pressure drop is given and is compatible
with the density and viscosity of the fluid to get Theorem 3.1, the result then applies if
the stiffness of the elastic force Fh is big enough.

Our main ingredient to prove Theorem 5.10 is to adapt a strategy introduced by Haraux
for the wave equation, see [34] (see also [5, 24] in the context of fluid-solid interaction
models). For ω ∈ (0, 1) to be fixed later on, we add the term ωhh′+ωθθ′ to the total energy
of the solid. However, in a fluid-solid context, this requires introducing also corresponding
terms in the energy of the fluid. To this aim, we define a solenoidal vector field w :
A× (0, TM )→ R2 by

w(x, t) =

(
− ∂

∂x2
(ζ(x)b(x, t)) ,

∂

∂x1
(ζ(x)b(x, t))

)
∀(x, t) ∈ A× (0, TM ) ,
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where

b(x, t)
.
= h(t)x1 +

x2
1

2
θ(t) +

θ(t)

2
(h(t)− x2)2 ∀(x, t) ∈ A× (0, TM ) ,

and ζ ∈ C∞(A) is a cut-off function equal to one in [−2, 2] × [−L + d0
min, L − d0

min], and
equal to 0 for |x2| < L − d0

min/2, or |x1| > 3. By construction and the regularity of
t 7→ (h(t), θ(t)), we therefore have (w, h, θ) ∈W 1,∞((0, TM )×A)×W 1,∞((0, TM ))2, with

divw(t, x) = 0 in Ω(t) , w(t, x) = h(t)ê2+θ(t)(x−h(t)ê2)⊥ on B(t) , w(t, x) = 0 on ∂A .

It is easily seen that the following estimates hold for every t ∈ (0, TM ):
‖w(t)‖L2(A) + ‖w(t)‖L∞(A) ≤ Cgeo

(
d0
min

)−1
(|h(t)|+ |θ(t)|) ,

‖∇w(t)‖L2(A) + ‖∇w(t)‖L∞(A) ≤ Cgeo
(
d0
min

)−2
(|h(t)|+ |θ(t)|) ,

‖∂tw(t)‖L2(A) ≤ Cgeo
(
d0
min

)−2
(|h′(t)|+ |θ′(t)|) ,

(5.22)

for some constant Cgeo > 0 depending on e, L. We note also that (w, h, θ) is an admissible
multiplier in the weak formulation (5.8)-(5.9). We then define a modified energy

Eω(t)
.
= Etot(t) + ω

(
mh(t)h′(t) + J θ(t)θ′(t) +

∫
Ω(t)

u(t) · w(t) dx

)
, t ∈ [0, TM ),

(5.23)
where ω will be fixed later on. Arguing as in Theorem 3.1, i.e. using again [7, Theorem
2.1], we infer that Eω ∈ C([0, TM ]). To make precise the choice of ω, we first emphasize
that Eω is controlled by the total energy and in turn controls the total energy provided ω
is small enough.

Lemma 5.12. Let Cgeo > 0 be as in (5.22), λ
(1)
0 , d0

min be given by Proposition 5.7 and

assume that λ0 ≤ λ(1)
0 k0. For any initial energy E0,

0 < ω ≤ ω0(E0) = Cdynd
0
min min(1, %/2) ⇒ Etot(t)

2
≤ Eω(t) ≤ 3

2
Etot(t) , (5.24)

for all t ∈ [0, TM ).

Proof. Assume ω ≤ ω0 ≤ 1
2 and

Cdynω0 ≤
d0
min

4
min(1, %/2).

Using the distance estimate of Proposition 5.7, Young inequality combined with the esti-
mates in (5.22) yield, for all t ∈ [0, TM ),

ω
(
m
∣∣hh′∣∣+ J

∣∣θθ′∣∣+∣∣∣ ∫
Ω(t)

u · w dx
∣∣∣)

≤ 1

4

(
‖u‖2L2(Ω(t)) +m|h′|2 + J |θ′|2 +

%

2

(
|h|2 + |θ|2

))
.

Recalling the assumption (2.2), the statement (5.24) immediately follows. �

The following proposition is a first step towards the proof of Theorem 5.10.
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Proposition 5.13. Let λ
(1)
0 , d0

min be given by Proposition 5.7, ω0(E0) be given by Lemma

5.12, and assume that λ0 ≤ λ
(1)
0 k0. There exist 0 < σ < 1, Cgeo > 0 and a decreasing

function ω−0 such that for any initial energy E0,

0 < ω ≤ ω−0 (E0) ≤ ω0(E0) ⇒ Eω(t2)− Eω(t1) + σω

∫ t2

t1

Eω(τ)dτ ≤ Cgeoλ2
0(t2 − t1),

(5.25)
for all 0 ≤ t1 ≤ t2 < TM .

Proof. Assume that ω ≤ ω0(E0) as given in (5.24) by Lemma 5.12. We first observe that
(2.10) implies there exists Cdyn > 0 such that for ω ∈ (0, Cdyn), we have

7

32

∫ t2

t1

‖∇u(τ)‖2L2(A)dτ

≤ 1

4

∫ t2

t1

(
‖∇u(τ)‖2L2(A) − ω

(
m|h′(τ)|2 + J |θ′(τ)|2 + ‖u(τ)‖2L2(A)

))
dτ,

(5.26)

whereas we recall that (1.3) entails

$H(h, θ) ≤ Hh(h, θ)h+Hθ(h, θ)θ.

Using ω(w, h, θ) as test function in the weak formulation in the form (2.11) and the energy
estimate (3.1), we then deduce

Eω(t2)− Eω(t1) + ω$

∫ t2

t1

H(h(τ), θ(τ))dτ +
7

32

∫ t2

t1

‖∇u(τ)‖2L2(A)dτ

≤ Cgeo λ
2
0(t2 − t1)− ω

∫ t2

t1

∫
A
∇u : ∇w dxdτ + ω

∫ t2

t1

∫
Ω(t)

ĝ · w dxdτ

− ω
∫ t2

t1

∫
Ω(τ)

(
(u · ∇) s+ (s · ∇)u+f̂ [h]

)
· w dxdτ

+ ω

∫ t2

t1

∫
Ω(τ)

(u · ∂tw + (u · ∇)w · u) dxdτ

for arbitrary 0 ≤ t1 ≤ t2 < TM .

Eω(t2)− Eω(t1) + ω$

∫ t2

t1

H(h(τ), θ(τ))dτ +
3

16

∫ t2

t1

‖∇u(τ)‖2L2(A)dτ

≤ Cgeoλ2
0(t2 − t1) + Cgeoω

∫ t2

t1

(
ω‖w‖2H1(A) + ω‖∂tw‖2L2(A) + ‖w‖L∞(A)‖∇u‖2L2(A)

)
dτ.

Since we know by Proposition 5.7 that the solution satisfies (5.17), we can exploit the
estimates in (5.22) and (2.2)-(2.10) to get

Eω(t2)− Eω(t1) + ω$

(
1− Cgeoω

%$(d0
min)4

)∫ t2

t1

H(h(τ), θ(τ))dτ

+

(
3

16
− Cgeo

ω

(d0
min)2

(
L+ θM +

ω

(d0
min)2

))∫ t2

t1

‖∇u(τ)‖2L2(A)dτ ≤ Cgeoλ
2
0(t2 − t1) .
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Therefore, using (2.10) one more time and (5.26), it is easily seen, taking a smaller constant

C̃geo if necessary, that if ω ∈ (0, Cdyn) satisfies

ω ≤ C̃geo min(%$, 1) (d0
min)

4
and (L+ θM )ω ≤ C̃geo(d0

min)
2
, (5.27)

it holds

Eω(t2)− Eω(t1) +
$

2
ω

∫ t2

t1

H(h(τ), θ(τ))dτ + ω

∫ t2

t1

Ekin(τ)dτ ≤ Cgeoλ2
0(t2 − t1).

Using (5.24), this eventually leads to the estimate

Eω(t2)− Eω(t1) + σω

∫ t2

t1

Eω(τ)dτ ≤ Cgeoλ2
0(t2 − t1)

for some 0 < σ < 1 whose choice is independent of E0. It is clear that since d0
min is a

decreasing function of E0 and the initial choice of θM is increasing with E0, the threshold
ω−0 is a decreasing function of E0. �

We are now ready to give the proof of Theorem 5.10.

Proof of Theorem 5.10. By contradiction, assume that TM <∞. Then, as θ ∈ C([0, TM ]),
it must be that θ(TM ) = θM . We infer from (5.25) that for some 0 < σ < 1

Eω(t2)− Eω(t1) + σω

∫ t2

t1

Eω(τ)dτ ≤ Cgeoλ2
0(t2 − t1) ,

for all 0 ≤ t1 ≤ t2 < TM and ω = ω−0 (E0). Since Eω is continuous with time, Grönwall
Lemma implies that

Eω(t) ≤ Eω(0) e−σωt +
Cgeoλ

2
0

σω
∀t ∈ (0, TM ) .

In particular, we deduce from (5.24) that

Etot(t) ≤ 2Eω(t) ≤ 3E0 +
2Cgeoλ

2
0

σω
∀t ∈ (0, TM ) . (5.28)

We now impose a new threshold on λ0, namely we assume

2Cgeoλ
2
0 ≤ σω−0 (E0)%̄.

This latter bound entails that

H(h, θ) ≤ 3E0 + % .

Exploiting (3.4), we thus deduce the estimate

|θ(t)| ≤ α0 = θM − 1 ∀t ∈ (0, TM ] ,

which gives a contradiction, thus TM = +∞. We can now conclude that (5.28) holds for
all t ≥ 0. We finally observe that

Etot(t) ≤ 2Eω(t) ≤ 2Eω(0) e−σωt +
2Cgeoλ

2
0

σω
≤ 3E0 e

−σωt + % ,

which concludes the proof. �
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5.5. Proof of Lemma 5.5. We construct a by solving a differential equation depending
on θ and θ′. Below we drop time-dependencies for a better legibility. In order to analyze
one by one the terms involved in the definition of Mod(t) in (5.14), we will repeatedly use
the following tools: the local Taylor expansion (4.1)-(4.2), the description of the gap Gλ∗
in terms of the variables introduced in (4.11) and the asymptotic expansions in Appendix
B. With these tools, we deduce that for all d < η0 and θ ∈ R :∫ λ∗

−λ∗

(τ − c⊥∗ )2

(d + γ[θ](τ)− x2[θ])2
dτ =

I2,2(κ2[θ])√
d

+O(1) ,

∫ λ∗

−λ∗

(∂θγ[θ](τ)−∂θx2[θ]) (τ − c⊥∗ )2

(d + γ[θ](τ)− x2[θ])3
dτ =

I4,3(κ2[θ])∂θκ2[θ]√
d

+O(1) ,

(5.29)

where the symbols I2,2 and I4,3 stand for the integrals

I4,3(κ2)=̇

∫
R

τ4

(1 + κ2τ2)3
dτ, I2,2(κ2)=̇

∫
R

τ2

(1 + κ2τ2)2
dτ,

which are smooth and bounded function of κ2 ∈ [κ
(min)
2 , κ

(max)
2 ]. Using the asymptotic

estimates (5.29), the first and third terms can be written as

6a′I2,2(κ2)− 12a θ′∂θκ2I4,3(κ2)√
d

+O(|a′|+ |θ′||a|).

To estimate the second term in (5.14), we first observe that since the three functions ψ̃⊥

and ψ̃||, ψ̃	 are uniformly bounded outside Gλ∗ (recall (4.16)), we have∫
Ω
∂22ψ̃

⊥
(
∂22ψ̃

	 − x2[θ]∂22ψ̃
||
)
dx =

∫
Gλ∗

∂22ψ
⊥
opt

(
∂22ψ

	
opt − x2[θ]∂22ψ

||
opt

)
dx+O(1).

Inside Gλ∗ , we can use the explicit values recalling that∫ 1

0
|∂ssP opt1 (r)|2 dr = 12 ,

∫ 1

0
∂ssP

opt
1 (r)∂ssP

opt
2 (r) dr = −6 .

Recalling the explicit expressions (4.14), we infer that (implicitly, boundary functions are
evaluated in (x1 + τ, h+ γ[θ](τ)), we drop dependencies for legibility):

Mopt
.
=

∫
Gλ∗

∂22ψ
⊥
opt

(
∂22ψ

	
opt − x2[θ]∂22ψ

||
opt

)
dx

=

∫ λ∗

−λ∗

∫ γ[θ](τ)+h

−L

(ψ⊥∗ − c⊥∗ )((ψ	∗ − c	∗ )− x2(ψ
||
∗ − c||∗))

(d + γ[θ](τ)− x2[θ])4
|∂ssP opt1 (r(x1 + τ, x2))|2dx2dτ

+

∫ λ∗

−λ∗

∫ γ[θ](τ)+h

−L

(ψ⊥∗ − c⊥∗ )(∂2ψ
	
∗ − x2∂2ψ

||
∗ )

(d + γ[θ](τ)− x2[θ])3
∂ssP1(r(x1+τ, x2))∂ssP

opt
2 (r(x1+τ, x2))dx2dτ

=

∫ λ∗

−λ∗

(ψ⊥∗ − c⊥∗ )

(d + γ[θ](τ)− x2[θ])3

(
12((ψ	∗ − c	∗ )− x2(ψ

||
∗ − c||∗))− 6(∂2ψ

	
∗ − x2∂2ψ

||
∗ )
)
dτ.

Replacing boundary functions with their explicit expressions and recalling expansion of
singular integrals computed in Appendix B, we conclude that Mopt = M∞opt +O(1), where

M∞opt=

∫ λ∗

−λ∗

τ − c⊥∗
(d + γ[θ](τ)− x2[θ])3

(
6(τ2 − c	∗ ) + 12x2[θ]

(
γ[θ](τ)− x2[θ] + c

||
∗

))
dτ

+ 6

∫ λ∗

−λ∗

τ − c⊥∗
(d + γ[θ](τ)− x2[θ])3

(d + γ[θ](τ)− x2[θ]) dτ .
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Applying again expansion of singular integrals, we prove infer∣∣∣∣M∞opt − κ3I(κ2)√
d

∣∣∣∣ ≤ Cgeo,
where I(κ2) is a combination of functions depending smoothly on κ2 ∈ (0,∞). We refer
to the Appendix B.4 for more details on the expansion of M∞opt. We now conclude∣∣∣∣Mod(t)− 6a′I2,2(κ2)+aθ′ (κ3I(κ2)− 12∂θκ2I4,3(κ2))√

d

∣∣∣∣ ≤ Cgeo (|a′|+ |θ′||a|) . (5.30)

Hence, we fix a by setting the term in factor of 1/
√
d to 0, i.e. defining a by

a′(t) = − θ′a

6I2,2(κ2)
(κ3I(κ2)− 12∂θκ2I4,3(κ2)) .

At this point, we recall that Lemma 4.1 implies κ3[θ] = ∂θK3(κ2[θ]) for some C1-function
K3 : [κmin2 , κmax2 ]→ R. We then deduce that

a(t) = exp

(
−
∫ t

T−

θ′(τ)∂θκ2[θ(τ)]

6I2,2(κ2[θ(τ)])

(
K′3(κ2[θ(τ)])]I(κ2[θ(τ)])− 12I4,3(κ2[θ(τ)])

)
dτ

)
= exp (G(κ2[θ(t)])− G(κ2[θ(T−)])) ,

for a C1-function G depending only on B. Since κ2 is a periodic function of θ, we infer
that a is bounded from above and from below by strictly positive constants, showing (a)
holds. The inequality (b) for a′ follows. Hence, the first term in (5.30) vanishes and by
inequalities (a)-(b)-(2.10) it follows that

|Mod(t)| ≤ Cgeo|θ′| ≤ Cgeo‖∇u‖L2(A) .

This completes the proof. �

5.6. Proof of Lemma 5.6. We start with Rem1. We recall that we splitted Rem1 =

Rem
(a)
1 + Rem

(b)
1 as defined by (5.12)-(5.13). We estimate both terms independently.

Concerning Rem
(a)
1 , we apply first Corollary 4.3 that entails

|d′|√
d
≤ Cgeo‖∇u‖L2(A) .

To estimate the other term in Rem
(a)
1 , we remark that u− ṽ is divergence-free and H1

0 (Ω).
Consequently, we can apply estimate (B.7) to yield a constant Cgeo depending only on the

construction of ṽ⊥ for which:∣∣∣∣∫
Ω
∇ṽ⊥ : ∇(u− ṽ) dx

∣∣∣∣ ≤ Cgeo (‖∇u‖L2(A) + ‖∇ṽ‖L2(A)

)
,

where, by construction of ṽ in (5.10) and by Corollary 4.3, we deduce

‖∇ṽ‖L2(A) ≤ Cgeo
(
|θ′|
d

1
4

+
|d′|
d

3
4

)
≤ Cgeo‖∇u‖L2(A) .

We now focus on Rem
(b)
1 . Once again, as in the proof of Lemma 5.5, we use the local Taylor

expansion (4.1)-(4.2), the description of the gap Gλ∗ in terms of the variables introduced
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in (4.11) and the asymptotic expansions in Appendix B. Then, we infer from the uniform

boundedness of ψ̃ outside Gλ∗ (see (4.16)) and the explicit formulas inside Gλ∗ that

|Rem
(b)
1 | ≤ |θ

′|
[ ∫
Gλ∗

(
2|∂12ψ

⊥
opt|
(
|∂12ψ

	
opt|+ |x2||∂12ψ

||
opt|
)

+ |∂11ψ
⊥
opt|
(
|∂11ψ

	
opt|+ |x2||∂11ψ

||
opt|
))

dx+O(1)

]

≤ |θ′|
(∫ λ∗

−λ∗

(|τ |+O(d))

(d + γ[θ](τ)− x2)2

(
τ2 + (γ[θ](τ)− x2)2 +O(d)

)
dτ +O(1)

)
≤ Cgeo|θ′|(| ln(d)|+ 1) .

Here we apply again Corollary 4.3 in order to conclude that

|Rem
(b)
1 | ≤ Cgeo‖∇u‖L2(A) .

We have then a similar bound for Rem
(b)
1 as for Rem

(a)
1 and we end up with∫ t

T−

a(τ)|Rem1(τ)| dτ ≤ Cgeo
√
t− T−

(∫ t

T−
‖∇u(τ)‖2L2(A) dτ

) 1
2

(5.31)

with Cgeo depending again only on e, L.
We finally proceed with estimating Rem2. Given t > T−, we have∫ t

T−

Rem2(τ) dτ = −J1 − J2 + J3 − J4 ,

where 

J1
.
=

∫ t

T−

∫
Ω(τ)

[∂t(a(τ)ṽ⊥) + (u · ∇)(a(τ)ṽ⊥)] · u dxdτ

J2
.
=

∫ t

T−

mh′(τ)a′(τ) dτ

J3
.
=

∫ t

T−

∫
Ω(τ)

((u · ∇) s+ (s · ∇)u) · a(τ)ṽ⊥ dxdτ

J4
.
=

∫ t

T−

∫
Ω(τ)

ĝ · a(τ)ṽ⊥ dx .

(5.32)

The following estimate

|J1| ≤ Cdyn
∫ t

T−

‖∇u(τ)‖2L2(A) dτ (5.33)

is established in Section B.5 of Appendix B. The Poincaré inequality in (2.10) combined
with assertion (b) of Lemma 5.5 yield a similar estimate for J2.

For J3 and J4, we use Lemma 2.1, assertion (a) of Lemma 5.5 and (4.16)-(5.5) with

λ0 ≤ λ(0)
0 one more time, we infer

|J3| ≤ Cdynλ0

∫ t

T−

‖∇u(τ)‖2L2(A) dτ

|J4| ≤ Cdynλ2
0(t− T−).
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The result yields by combining the latter computations for J1, J2, J3, J4 with (5.31).

6. Convergence to equilibrium

In this last section, we show that, whatever the initial data, if λ0 is sufficiently small,
any solution (U,P, h, θ) to (1.7)-(1.8) converges to the equilibrium configuration. The
equilibrium state of the system is given by the stationary solution to (1.7). As explained in
the introduction, the natural strategy is to compare the solution with its expected limit, i.e.
the unique steady state associated to the stationary position h = θ = 0. The difficulty is
that these equations are set on different domains. To overcome this difficulty, we adapt the
method of weak-strong uniqueness analysis. Namely, we transfer the stationary (smooth)
solution into the geometry associated with the time-dependent (weak) solution. We show
a Grönwall-type inequality on suitable norms of the difference between both quantities
that control in particular the solid motion, implying that it returns to the rest state for
large time.

More precisely, below, we denote the (unique) solution to the following steady boundary-
value problem by (Ueq, Peq, heq, θeq):

− ∆Ueq + (Ueq · ∇)Ueq +∇Peq = 0 , ∇ · Ueq = 0 in Ωeq = A \Beq ,

Ueq = 0, on ∂Beq ∪ Γ ,

lim
|x1|→∞

Ueq(x1, x2) = vp(x2), ∀x2 ∈ [−L,L] .

(6.1)

The following result follows directly from [6] and symmetry considerations. Indeed, since
heq = θeq = 0 and the domain Beq is symmetric with respect to x2 = 0, uniqueness
induces that the vertical force and the torque applied on Beq vanish, similar to Hh(0, 0)
and Hθ(0, 0).

Theorem 6.1. There exists λ
(2)
0 > 0 depending on L, e such that, if λ0 ≤ λ(2)

0 , the steady
problem (6.1) admits a unique solution (Ueq, Peq) ∈ H1

loc(Ωeq)× L2
loc(Ωeq). Moreover, this

solution also satisfies:
Hh(heq, θeq) = −ê2 ·

∫
∂Beq

Σ(Ueq, Peq)n̂ dσ = 0 ,

Hθ(heq, θeq) = −
∫
∂Beq

(x− heq ê2)⊥ · Σ(Ueq, Peq)n̂ dσ = 0.

With such notations, the main result of this section reads.

Theorem 6.2. Let (h0, θ0, h
′
0, θ
′
0) and u0 = U0(x)−s(0, x) be a compatible initial condition

in the sense of (1.11) and (u = U − s, h, θ) be a weak solution to (2.4)-(2.5). There exist
ω−0 , σ > 0 with the same dependencies as in Theorem 5.1, and Cdyn > 0 such that if (5.2)
holds and

2Cdynλ0 ≤ σω−0 ,
then

lim
t→∞
‖U(t)− Ueq‖2L2(A) = lim

t→+∞
(|h(t)|2 + |θ(t)|2) = lim

t→+∞
(|h′(t)|2 + |θ′(t)|2) = 0 .

Theorem 6.2 implies Theorem 1.2 with p0 = 2λ0/L
2 ≤ p

(2)
∗ , where the threshold p

(2)
∗

is deduced from the restriction imposed on λ0. In this statement, we implicitly extended
Ueq by 0 on Beq. We point out that U(t), Ueq ∈ L2

loc(A)∩ (vP +L2(|x1| ≥ 2)) for all times
and consequently, we have indeed U(t)− Ueq ∈ L2(A).
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Remark 6.3. An analogous comment to Remark 5.11 holds also for Theorem 6.2 as the
thresholds are of the same type.

The remainder of this section is devoted to the proof of Theorem 6.2. We split our
approach into three parts. Firstly, we recall properties of the solutions (Ueq, Peq). We
also introduce a change of variables that enables to transfer ueq = Ueq − s− into any
moving geometry. We can then apply this construction to the geometry associated to a
weak solution (u, h, θ) to (2.4)-(2.5) – once ensured that the ellipse B(t) remains close to
the stationary position Beq for large times – by building a vector-field veq that we are
allowed to compare with the velocity field u of the weak solution. Secondly, we provide a
dissipation estimate on the difference ũ = veq − u in the spirit of Proposition 5.13. Such
estimate includes a control on (h, θ) that shows a return to the equilibrium position of the
ellipse making veq converge to ueq asymptotically and thus the exponential decay of the
difference ũ provides the expected result.

6.1. Moving the stationary solution into the time-depending geometry. Assume

λ0 ≤ λ
(2)
0 and let (Ueq, Peq) be the unique H1

loc(Ωeq) × L2
loc(Ωeq) solution to (6.1). Let us

introduce ueq = Ueq − s−, peq = Peq − πp. With computations similar to those of Section
2, we observe that (ueq, peq) is a solution to

− ∆ueq + (ueq · ∇)ueq + (ueq · ∇)s− + (s− · ∇)ueq +∇peq = ĝ− in Ωeq ,

∇ · ueq = 0 in Ωeq ,

ueq = 0, on ∂Beq ∪ Γ ,

lim
|x1|→∞

ueq(x1, x2) = 0, ∀x2 ∈ [−L,L] ,
0 = −ê2 ·

∫
∂Beq

Σ(ueq, peq)n̂ dσ ,

0 = −
∫
∂Beq

x⊥ · Σ(ueq, peq)n̂ dσ ,

where ĝ− is similarly constructed from s− as ĝ is derived from s in Lemma 2.1. In
particular, we recall that supp(ĝ−) ⊂ A0. By classical elliptic regularity [23], we remark
that ueq and peq are smooth on Ωeq with all norms controlled by Cgeo λ0.

Our next aim is to define a change of variables that brings the steady solution ueq in
the time-dependent geometry. In the construction, we first define a mapping that brings
the equilibrium position Beq to a given position B(h, θ), assuming

max(|h|, |θ|) ≤ η0, (6.2)

with η0 small. We will then apply this construction with (h, θ) = (h(t), θ(t)) associated to
a given weak solution.

For the construction, we need to set up some notations. First, we define two neighbour-
hoods O,O′ ⊂ A0 such that

• O ⊂ O′;
• Beq ⊂ O;
• O′ ∩ supp(s−) = ∅.

This is possible since Beq ⊂ A0 and Beq ∩ supp(s−) = ∅.

Lemma 6.4. There exist η0 > 0 and a C1-mapping X : [−η0, η0]2 → C3(A) satisfying

(i) X[0, 0] is the identity,
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and, for all (h, θ) satisfying (6.2),

(ii) X[h, θ] is a C3-diffeomorphism of Ω,
(iii) X[h, θ](x) = hê2 +Q(θ)x in O, X[h, θ] is the identity outside O′,
(iv) X[h, θ](O) ⊂ O′ and X[h, θ]−1(O) ⊃ Beq.

Proof. The proof is standard and can be done by defining X[h, θ] by

X[h, θ](y) = ξ(y)hê2 +Q(ξ(y)θ)y,

where ξ is a cut-off function such that ξ = 1 inside O and ξ = 0 outside O′. Fixing η0

small enough allow to show that X[h, θ] is basically a perturbation of the identity so that
assertions (ii)-(iv) hold. �

In the sequel, we set Y [h, θ] = X[h, θ]−1. In particular,

Y [h, θ](x) = Q(θ)T (x− hê2),

for x ∈ X[h, θ](O) and
X[h, θ](Beq) = B(h, θ).

Given (h, θ) ∈ [−η0, η0]2, we now transform ueq into a divergence-free vector-field defined
on the fluid domain A \B(h, θ) by setting

u[h,θ]
eq (x)

.
= ∇⊥(ψeq ◦ Y [h, θ])(x),

where ψeq is the stream function associated to ueq (that we denote by (u1, u2) in the next
identity), i.e.

u[h,θ]
eq (x) =

(
∂2Y2[h, θ](x)u1(Y [h, θ](x))− ∂2Y1[h, θ](x)u2(Y [h, θ](x))
−∂1Y2[h, θ](x)u1(Y [h, θ](x)) + ∂1Y2[h, θ](x)u2(Y [h, θ](x))

)
. (6.3)

Correspondingly, we define the transformed pressure

p[h,θ]
eq (x) = peq(Y [h, θ](x)).

With such notations, we have the following lemma

Lemma 6.5. Let η0 > 0 be as in Lemma 6.4. There exists Cgeo > 0 (depending only on
e, L and η0) such that given (h, θ) ∈ (−η0, η0)2 we have:

− ∆u[h,θ]
eq +∇p[h,θ]

eq + (u[h,θ]
eq · ∇)u[h,θ]

eq + (u[h,θ]
eq · ∇)s− + (s− · ∇)u[h,θ]

eq

= ĝ[h,θ] in A \B(h, θ),

∇ · u[h,θ]
eq = 0 in A \B(h, θ),

u[h,θ]
eq = 0, on ∂B(h, θ) ∪ Γ,

lim
|x1|→∞

u[h,θ]
eq (x1, x2) = 0, ∀x2 ∈ [−L,L] ,

F [h,θ]
eq = ê2 ·

∫
∂B(h,θ)

Σ(u[h,θ]
eq , p[h,θ]

eq )n̂ dσ ,

0 =

∫
∂B(h,θ)

(x− hê2)⊥ · Σ(u[h,θ]
eq , p[h,θ]

eq )n̂ dσ.

where:

(i) |F [h,θ]
eq | ≤ Cgeo λ0|θ|

(ii) supp(ĝ[h,θ]) ⊂ A0 and

‖ĝ[h,θ] − ĝ−‖L∞(A0\B(h,θ)) ≤ Cgeoλ0(|h|+ |θ|).
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Before giving a proof of our result, we recall that ĝ− as is defined in item (v) of Lemma
2.1 is defined all over A. Assertion (ii) of the previous statement is then not ambiguous.

Proof. We will work differently inside and outside O. Let

ε0 = dist(Beq, A0 \ O) > 0

and set
O0 =

{
x ∈ O : dist(x,Beq) <

ε0

4

}
.

Observe we can assume
|Y [h, θ](x)− y| < ε0

4
,

for all x ∈ A by taking η0 small enough.
Recall that ĝ[0,0] = ĝ−. Hence, for x ∈ A\A0, we remark that Y [h, θ](x) = x = Y [0, 0](x)

which implies that ĝ[h,θ](x)− ĝ−(x) = ĝ[0,0](x)− ĝ−(x) = 0.
If x ∈ A0 \ O0, then Y [h, θ](x) ∈ B(x, ε0/4) ⊂ A \Beq. Since ueq is smooth in A0 \Beq

and (h, θ)→ Y [h, θ] is C1 : [−η0, η0]2 → C3(A0), we can estimate, with standard chain rule

arguments, all quantities involved in ĝ[h,θ] − ĝ− to get

‖ĝ[h,θ] − ĝ−‖L∞(A0\O0) ≤ Cgeo λ0(|h|+ |θ|).

It remains to treat the case where x ∈ O0\Beq and to compute the forces. For x ∈ O0\Beq,
y = Y [h, θ](x) ∈ O and therefore both X[h, θ](y) and Y [h, θ](x) are isometries. Since
s−(x) = 0 and ĝ−(x) = λ0ê1, we infer from the Galilean invariance of the Navier-Stokes

equations that ĝ[h,θ](x) = λ0Q(−θ)ê1 closing the proof of assertion (ii).
Arguing similarly, still by Galilean invariance, we observe that∫

∂B(h,θ)
(x− hê2)⊥ · Σ(u[h,θ]

eq , p[h,θ]
eq )n̂ dσ =

∫
∂Beq

x⊥ · Σ(ueq, peq)n̂ dσ = 0,

and

F [h,θ]
eq = Q(−θ)ê2 ·

∫
∂Beq

Σ(ueq, peq)n̂ dσ = (Q(−θ)ê2 − ê2) ·
∫
∂Beq

Σ(ueq, peq)n̂ dσ.

We then deduce assertion (i) using the regularity of (ueq, peq). �

6.2. Proof of Theorem 6.2: stability estimate. Let (u, h, θ) be a weak solution to
(2.4)-(2.5). Under the assumptions of Theorem 5.1, we infer from (5.4) and (2.2) that

|h(t)|2 + |θ(t)|2 ≤ 2

%̄
H(h(t), θ(t)) ≤ Etot(t) ≤ 3E0 e

−β0t +
Cgeoλ

2
0

β0
,

for all t ≥ 0, yielding the existence of t0 > 0 and λ0(η0) > 0 (depending decreasingly on
E0 and on L, e), such that

max(|h(t)|, |θ(t)|) ≤ η0 (6.4)

for t ≥ t0 whenever λ ∈ [0, λ0(η0)]. This does not yet prove the convergence to equi-
libria since the solid could still oscillate around the rest position. Since the problem is
autonomous, we will assume in the sequel that t0 = 0. We can also suppose that λ0(η0) is
chosen in such a way that (5.4) implies

sup
t∈(0,∞)

‖u(t)‖L2(Ω(t)) ≤ 4E0 , (6.5)

whenever λ ∈ [0, λ0(η0)].

To prepare the proof of Theorem 6.2 and to shorten notations, we denote u
[h(t),θ(t)]
eq (x)

by veq(t, x) from now on, and we define

ũ(t, x) = veq(t, x)− u(t, x),
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for t ≥ 0 and x ∈ Ω(t). Observe that veq is smooth in the space variables on (0,∞). We
denote below:

−∆veq(t) +∇qeq(t) + (veq(t) · ∇)veq(t) + (s− · ∇)veq(t) + (veq(t) · ∇)s−

= geq(t) , in Ω(t) ,

∇ · veq(t) = 0 , in Ω(t)

ê2 ·
∫
∂B(t)

Σ(veq(t), qeq(t))n̂ dσ = Feq(t) ,∫
∂B(t)

(x− h(t)ê2)⊥ · Σ(veq(t), qeq(t))n̂ dσ = 0 ,

(6.6)

where qeq(t) = p
[h(t),θ(t)]
eq and geq(t) = ĝ[h(t),θ(t)], Feq(t) = F

[h(t),θ(t)]
eq for all t ≥ 0. With

obvious notations, we also have that

∂tveq = h′∂hu
[h,θ] + θ′∂θu

[h,θ] .

The function veq gains the W 1,∞ regularity of h and θ in time. In particular, observe that
veq ∈ W 1,∞((0,∞)× A) and ∂tveq = 0 outside O′ and, thanks to the regularity of Y [h, θ]
and ueq (see [23, Section VI.2] for the decay properties of ueq outside A0), there exists a
constant Cgeo for which:

‖∂tveq(t)‖L∞(A0) ≤ Cgeoλ0(|h′(t)|+ |θ′(t)|) , ‖∇veq(t)‖L∞(A) ≤ Cgeoλ0 , (6.7)

for all t ≥ 0.

We can then use a weak-strong argument to compare u(t) and veq for large times. To
this aim, we introduce

Ẽ(t)
.
=

1

2
‖ũ(t)‖2L2(Ω(t)) +

m

2
|h′(t)|2 +

J

2
|θ′(t)|2 +H(θ(t), h(t)) ∀ t ≥ 0.

As previously, we will also use a perturbed version of Ẽ, namely

Ẽω(t)
.
= Ẽ(t) + ω

(
mh(t)h′(t) + J θ(t)θ′(t) +

∫
Ω(t)

ũ(t) · w(t) dx

)
,

where ω ∈ (0, 1) will be chosen small enough in order to derive a dissipation estimate in
the spirit of Proposition 5.13. Similarly to Lemma (5.12), with the further remark that in
view of (6.4) the distance between B(t) and ∂A is now uniformly bounded from below by
1, we have

Ẽ(t)

2
≤ Ẽω(t) ≤ 3

2
Ẽ(t) , (6.8)

under the condition ω ≤ ω0 with ω0 depending only on dynamical parameters. Theorem
6.2 will be a direct consequence of the next proposition where we show the exponential
decay of Ẽω(t).

Proposition 6.6. There exist ω−0 , σ > 0 with the same dependencies as in Theorem 5.1,
and Cdyn > 0 such that, assuming (5.2) and further that

2Cdynλ0 ≤ σω−0 ,

then

lim sup
t→∞

Ẽω(t) = 0.
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Proof. Recalling the definition (5.23) of Eω, we have:

Ẽω(t) = Eω(t)−
∫

Ω(t)
veq(t) · u(t) +

1

2
‖veq(t)‖2L2(Ω(t)) − ω

∫
Ω(t)

veq(t) · w(t) dx. (6.9)

We fix then t2 ≥ t1 ≥ 0 and we use ω(w, h, θ) as test in (2.11) and (3.1) to get, similarly
to the previous section, that

Eω(t2)− Eω(t1) +

∫ t2

t1

‖∇u(τ)‖2L2(A) dτ

+

∫ t2

t1

(
ω
[
Hh(h(τ), θ(τ))h(τ) +Hθ(h(τ), θ(τ))θ(τ)−m|h′(τ)|2 − J |θ′(τ)|2

])
dτ

=

∫ t2

t1

∫
Ω(τ)

[ĝ− − u · ∇s−] · u dxdτ + ω

∫ t2

t1

∫
Ω(τ)

u · ∂tw dxdτ − ω
∫ t2

t1

∫
Ω(τ)
∇u : ∇w dxdτ

+ ω

∫ t2

t1

∫
Ω(τ)

(
ĝ− − (u · ∇)s− − (u · ∇)u− (s− · ∇)u

)
· w dxdτ.

(6.10)

We recall that since |h(t)| ≤ η0 ≤ 1/2 on (0,∞), we have f̂ [h(t)] = 0, ĝ(t) = ĝ−, and
s(t) = s− for t ≥ 0.

We compute then the increment of the second term in the right-hand side of (6.9) by
remarking that (veq, 0, 0) has sufficient space/time-regularity to be admissible test-function
in (2.11). We obtain∫

Ω(t2)
u(t2) · veq(t2)dx−

∫
Ω(t1)

u(t1) · veq(t1)dx+

∫ t2

t1

∫
Ω(τ)
∇u : ∇veq dx dτ

=

∫ t2

t1

∫
Ω(τ)

u · ∂tveq dx dτ +

∫ t2

t1

∫
Ω(τ)

(u · ∇) veq · u dx dτ

+

∫ t2

t1

∫
Ω(τ)

[
ĝ− − (u · ∇) s− − s− · ∇)u

]
· veq dx dτ.

(6.11)

Multiplying now (6.6) by u(t) between t1 and t2 and integrating in time and space, we get∫ t2

t1

∫
Ω(τ)
∇veq : ∇u dxdτ =

∫ t2

t1

Feq(τ)h′(τ) dτ +

∫ t2

t1

∫
Ω(τ)

geq · u dxdτ

−
∫ t2

t1

∫
Ω(τ)

[
(veq · ∇)veq + (s− · ∇)veq + (veq · ∇)s−

]
· u dxdτ.

(6.12)

We also observe that∫
Ω(t2)

veq · w(t2)−
∫

Ω(t1)
veq · w(t1) =

∫ t2

t1

∫
Ω(τ)

(veq · ∂tw + ∂tveq · w) dxdτ (6.13)

and
1

2
‖veq‖L2(Ω(t2)) −

1

2
‖veq‖L2(Ω(t1)) =

∫ t2

t1

∫
Ω(τ)

∂tveq · veq dx dτ. (6.14)

We point out that we used the fact that veq = 0 on ∂B(t) for all t ≥ 0 in this computation
to reduce the material time-derivative to a standard time-derivative by integrating by
parts. Finally, multiplying the equation (6.6) with veq on Ω(τ) for τ ∈ (t1, t2), we have∫ t2

t1

‖∇veq‖2L2(Ω(τ)) dτ =

∫ t2

t1

∫
Ω(τ)

(
geq − (veq · ∇)s−

)
· veq dxdτ (6.15)
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Substracting (6.11)-(6.12)-(6.13) from the sum of (6.10) with (6.15) and substituting
with (6.14), we infer that

Ẽω(t2)− Ẽω(t1) +

∫ t2

t1

‖∇ũ(τ)‖2L2(A) dτ

+

∫ t2

t1

(
ω
[
Hh(h(τ), θ(τ))h(τ) +Hθ(h(τ), θ(τ))θ(τ)−m|h′(τ)|2 − J |θ′(τ)|2

])
dτ

= −
∫ t2

t1

∫
Ω(τ)

((ũ · ∇)s− + ∂tveq + (ũ · ∇)veq) · ũ dx dτ −
∫ t2

t1

Feq(τ)h′(τ) dτ

+ ω

∫ t2

t1

∫
Ω
ũ · ∂tw dxdτ − ω

∫ t2

t1

∫
Ω(τ)
∇u : ∇w dxdτ

+ ω

∫ t2

t1

∫
Ω(τ)

(
ĝ− − ∂tveq − (u · ∇)s− − (u · ∇)u− (s− · ∇)u

)
· w dxdτ.

(6.16)

We then multiply (6.6) by w to deduce∫ t2

t1

∫
Ω(τ)
∇veq : ∇w dxdτ

=

∫ t2

t1

Feq(τ)h(τ) +

∫ t2

t1

∫
Ω(t)

(
geq − veq · ∇veq − s− · ∇veq − veq · ∇s−

)
· w dxdτ.

(6.17)

Multiplying (6.17) by ω and subtracting this identity from (6.16), we infer that

Ẽω(t2)− Ẽω(t1) +

∫ t2

t1

‖∇ũ(τ)‖2L2(A) dτ

+

∫ t2

t1

(
ω
[
Hh(h(τ), θ(τ))h(τ) +Hθ(h(τ), θ(τ))θ(τ)−m|h′(τ)|2 − J |θ′(τ)|2

])
dτ

= −
∫ t2

t1

∫
Ω(τ)

(
(ũ · ∇)s− + ∂tveq + (ũ · ∇)veq

)
· ũ dx dτ −

∫ t2

t1

Feq(τ)(h′(τ) + ωh(τ)) dτ

+ ω

∫ t2

t1

∫
Ω(τ)

ũ · ∂tw dxdτ − ω
∫ t2

t1

∫
Ω(τ)
∇ũ : ∇w dxdτ

+ ω

∫ t2

t1

∫
Ω(τ)

(
ĝ− − geq − ∂tveq − (ũ · ∇)s− − (u · ∇)ũ− (ũ · ∇)veq − (s− · ∇)ũ

)
· w dxdτ

(6.18)
By standard Hölder inequality and Poincaré inequality, we will now estimate the right-
hand side RHS of (6.18). We start with the terms in the first line which can be estimated
by

Cgeo

∫ t2

t1

(
‖s−‖W 1,∞(Ω(τ)) + ‖∂tveq‖L2(Ω(τ)) + ‖∇veq‖L∞(Ω(τ))

)
‖∇ũ(τ)‖2L2(A) dτ

+

∫ t2

t1

|Feq(τ)|(|h′(τ)|+ ω|h(τ)|) dτ.

while the sum of all the remaining terms multiplied by ω is smaller than
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(Cgeo + 1)

∫ t2

t1

(
‖∂tw‖L2(Ω(τ)) + ‖∇w‖L2(Ω(τ))

)
‖∇ũ(τ)‖L2(A) dτ

+

∫ t2

t1

(
‖ĝ− − geq‖L2(Ω(τ)) + ‖∂tveq‖L2(Ω(τ))

)
‖w‖L2(Ω(τ)) dτ

+(Cgeo + 1)

∫ t2

t1

(
‖s−‖W 1,∞(Ω(τ)) + ‖u‖L2(Ω(τ)) + ‖∇veq‖L∞(Ω(τ))

)
‖w‖L∞(A0)‖∇ũ‖L2(A) dτ.

Next, we exploit Lemma 6.5 and estimates (5.22), where d0
min ≥ 1, and (2.10)-(6.5)-(6.7)

to get

|RHS| ≤
[
(Cgeo + 1)(λ0 + ω) +

1

4

] ∫ t2

t1

‖∇ũ(τ)‖2L2(A) dτ

+ (Cgeo + 1) [(1 + E0)ω2 + λ0ω + λ2
0]

∫ t2

t1

(|h(τ)|2 + |θ(τ)|2) dτ

≤
[
(Cgeo + 1)(λ0 + ω) +

1

4

] ∫ t2

t1

‖∇ũ(τ)‖2L2(A) dτ

+ Cdyn [(1 + E0)ω2 + λ0ω + λ2
0]

∫ t2

t1

Ẽω(τ) dτ ,

where in the last inequality we used again (2.2) and (6.8). Similarly, from (1.3) and (2.10),
provided that ω ≤ C−1

dyn, we infer that∫ t2

t1

(
ω
[
Hh(h(τ), θ(τ))h(τ) +Hθ(h(τ), θ(τ))θ(τ)−m|h′(τ)|2 − J |θ′(τ)|2

])
dτ

+

∫ t2

t1

‖∇ũ(τ)‖2L2(A)dτ ≥
∫ t2

t1

(
ωẼω(τ) +

1

2
‖∇ũ‖2L2(A)

)
dτ .

With our assumptions on ω−0 and λ0, we deduce that

Ẽω(t2)− Ẽω(t1) +
ω−0
2

∫ t2

t1

Ẽω(τ) dτ ≤ 0 .

We can then conclude by a Grownwall-type inequality taking into account the continuity
of Ẽω that

lim
t→∞
|h(t)|+ |θ(t)| = lim

t→∞
|h′(t)|+ |θ′(t)| = lim

t→∞
‖u(t)− veq(t)‖L2(Ω(t)) = 0,

and thus, by extending u(t) and veq(t) with their solid counterparts:

lim
t→∞
‖u(t)− veq(t)‖L2(A) = 0.

However, since veq(t) is obtained by transforming ueq into the geometry associated with
(h(t), θ(t)) that converges to 0 the regularity of the transformation (6.3) in L2(A) entails:

lim
t→∞
‖veq(t)− ueq‖L2(A) = 0.

Eventually, we conclude that

lim
t→∞
‖u(t)− ueq‖L2(A) = 0.

�
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Appendix A. Further properties of the ellipse

This appendix contains explicit computations supporting the general description of
Section 4.1 in the case of an ellipse. We also provide a proof of Lemma 4.1 that applies in
this specific case of an ellipse.

A.1. Explicit description of γ[θ]. We start by providing an explicit expression for the
parametrizing function γ[θ] and by proving (4.3). As h has no influence here, we assume
h = 0 without loss of generality and, due to the symmetries of the ellipse, we can consider
the case θ ∈ (−π/2, 0] only. Then, for every (x1, x2) ∈ ∂B there holds

(x1, x2) ∈ ∂B ⇐⇒ Q(θ(t))>(x1, x2) ∈ ∂Beq. (A.1)

Given the shape of the obstacle Beq, condition (A.1) is verified if and only if

g(x1, x2)
.
= (x1 cos θ + x2 sin θ)2 +

(−x1 sin θ + x2 cos θ)2

e2
− 1 = 0. (A.2)

Noticing that the coordinates (x1, x2) of the point of contact Xv must satisfy the relation

∂g

∂x1
(x1, x2) = 0,

we differentiate (A.2) implicitly with respect to x1, thereby obtaining the identity

x1 =
(1− e2) cos θ sin θ

e2 cos2 θ + sin2 θ
x2. (A.3)

Inserting (A.3) in (A.2), we obtain the coordinates Xv = (x1, x2) as functions of the angle
θ

x1 = − (1− e2)cos θ sin θ√
sin2 θ + e2 cos2 θ

> 0 and x2 = −
√

sin2 θ + e2 cos2 θ < 0. (A.4)

We want to express x2 as a function of x1 in some interval of the type [−λ(θ), λ(θ)], with
λ(θ) > 0, by parametrizing the border of the obstacle close to the point of contact. For
this reason, we rewrite the identity (A.2) as a quadratic equation in the unknown variable
x2:

Ã(θ)x2
1 + B̃(θ)x1x2 + C̃(θ)x2

2 − 1 = 0, (A.5)

where

Ã(θ) = (cos θ)2 +

(
sin θ

e

)2

> 0, B̃(θ) = sin 2θ

(
1− 1

e2

)
> 0,

C̃(θ) = (sin θ)2 +

(
cos θ

e

)2

> 0.

Identity (A.5) shows that we can express x2 as a function of x1 provided that

|x1| ≤ λ(θ)
.
=
√
e2 sin2 θ + cos2 θ,

thus yielding

Γθ(x1)
.
= x2(x1) = − B̃(θ)

2C̃(θ)
x1 −

1

C̃(θ)

√
C̃(θ)− x2

1

e2
∀x1 ∈ [−λ(θ), λ(θ)]. (A.6)

Notice that, by construction, we have

Γθ(x1) = x2 and Γ′θ(x1) = 0. (A.7)
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We notice that for all θ ∈ [−π/2, 0]

P(θ)
.
= |λ(θ)− x1| =

√
e2 sin2 θ + cos2 θ +

(1− e2)cos θ sin θ√
sin2 θ + e2 cos2 θ

is uniformly bounded from below: P(θ) > e. We can then take λ0
.
= e, so that

[x1 − λ0, x1 + λ0] ⊂ (−λ(θ), λ(θ)) ∀θ ∈ [0, π/2] , (A.8)

and define γ : [−λ0, λ0] −→ R by

γ(x1)
.
= Γθ(x1 + x1)

= − B̃(θ)

2C̃(θ)
(x1 + x1)− 1

C̃(θ)

√
C̃(θ)− (x1 + x1)2

e2
∀x1 ∈ [−λ0, λ0],

where Γθ : [−λ(θ), λ(θ)]→ R is as in (A.6). In view of (A.8), we infer γ ∈ C∞([−λ0, λ0];R).
From (A.7) we also deduce that γ(0) − x2 = γ′(0) = 0 and γ′′(0) > 0. Then, given
τ ∈ [−λ0, λ0] we can find ξτ ∈ [−λ0, λ0] such that |ξτ − τ | < |τ | and

γ[θ](τ)− x2 =
γ′′(0)

2
τ2 +

γ′′′(ξτ )

6
τ3.

This immediately yields the etimates(
γ′′(0)

2
− λ0

6
‖γ′′′‖L∞([−λ0,λ0])

)
τ2 ≤ γ[θ](τ)− x2 ≤

(
γ′′(0)

2
+
λ0

6
‖γ′′′‖L∞([−λ0,λ0])

)
τ2.

In fact, notice further that

γ′′(0) ≥ 1

e2

(
1 +

1

e2

)−3/2

so that there exists λ1 ∈ (0, λ0) independent of θ and h, sufficiently small so that

γ′′(0)

2
− λ1

6
‖γ′′′‖L∞([−λ1,λ1]) > 0.

The proof of (4.3) is concluded by choosing λ∗ = min{λ1, λ2} and defining

c
(2)
1

.
= inf

θ∈(−π/2,0]

(
γ′′(0)

2
− λ∗

6
‖γ′′′‖L∞([−λ∗,λ∗])

)
,

c
(2)
2

.
= sup

θ∈(−π/2,0]

(
γ′′(0)

2
+
λ∗
6
‖γ′′′‖L∞([−λ∗,λ∗])

)
,

c
(2)
3

.
= inf

θ∈(−π/2,0]

(
1

2

∂

∂θ
γ′′(0)− λ∗

6

∥∥∥∥ ∂∂θγ′′′
∥∥∥∥
L∞([−λ∗,λ∗])

)
,

c
(2)
4

.
= sup

θ∈(−π/2,0]

(
1

2

∂

∂θ
γ′′(0)− λ∗

6

∥∥∥∥ ∂∂θγ′′′
∥∥∥∥
L∞([−λ∗,λ∗])

)
.

A.2. Proof of Lemma 4.1. Let h < 0 and θ ∈ [0, 2π) be fixed and such that (h, θ) ∈ A1,e.
When θ ∈ [0, π/2] we have, by a geometric argument, that the mappings

[0, π/2] 7→ [−1,−e] : θ 7→ x2[θ]

[0, π/2] 7→ [κmin2 , κmax2 ] : θ 7→ κ2[θ]

are diffeomorphisms. This follows from explicit expressions : (A.4) for x2[θ] and (A.10)
below for κ2. Hence, they induce, by composition, two diffeomorphisms K2 and X2 as
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claimed in assertion (i). The property (4.4) extends to every θ ∈ R by symmetry and
periodicity.

To prove assertion (ii) and compute κ2, we provide some more technical computations.
As before, h has no influence here and we assume h = 0 without loss of generality. We
can rewrite identity (A.2) as

x2
1

(
cos2 θ +

sin2 θ

e2

)
+ x2

2

(
sin2 θ +

cos2 θ

e2

)
+ 2x1x2 cos θ sin θ

(
1− 1

e2

)
= 1.

Around x = (x1, x2) we can then plug the ansatz

x1 = x1 + τ x2 = x2 + κ2τ
2 + κ3τ

3 + l.o.t.

Identifying powers of τ, we obtain the following sequence of equations. At order τ0, we
have

x2
1

(
cos2 θ +

sin2 θ

e2

)
+ x2

2

(
sin2 θ +

cos2 θ

e2

)
+ 2x1x2 cos θ sin θ

(
1− 1

e2

)
= 1.

that we rewrite as

x1

[
x1

(
cos2 θ +

sin2 θ

e2

)
+ x2 cos θ sin θ

(
1− 1

e2

)]

+ x2

[
x1 cos θ sin θ

(
1− 1

e2

)
+ x2

(
sin2 θ +

cos2 θ

e2

)]
= 1.

At order τ , we have

x1

(
cos2 θ +

sin2 θ

e2

)
+ x2 cos θ sin θ

(
1− 1

e2

)
= 0.

The τ equation, taking the τ0 equation into account, implies

x1 cos θ sin θ

(
1− 1

e2

)
+ x2

(
sin2 θ +

cos2 θ

e2

)
=

1

x2
. (A.9)

At order τ2, we get(
cos2 θ +

sin2 θ

e2

)
+ 2κ2

(
x1 cos θ sin θ

(
1− 1

e2

)
+ x2

(
sin2 θ +

cos2 θ

e2

))
= 0,

and therefore, using (A.9), we infer that

κ2 = −x2

2

(
cos2 θ +

sin2 θ

e2

)
. (A.10)

At order τ3, we see

κ3

(
x1 cos θ sin θ

(
1− 1

e2

)
+ x2

(
sin2 θ +

cos2 θ

e2

))
+ κ2 cos θ sin θ

(
1− 1

e2

)
= 0,

that is, due to (A.9),

κ3 = −cos θ sin θx2κ2

(
1− 1

e2

)
.

Differentiating then (A.10) with respect to θ, we deduce that

∂θ(κ2/x2) = cos θ sin θ

(
1− 1

e2

)
= − κ3

κ2x2
.

Multiplying this latter identity with κ2x2 yields (4.5).
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Finally, concerning the third assertion, combining (i) and (ii), we see that

κ3 = −
(
κ2 −

κ2
2X
′
2(κ2)

X2(κ2)

)
∂θκ2

and we therefore define

K3(κ2) =

∫ κmax2

κ2

(
ξ − ξ2 X′2(ξ)

X2(ξ)

)
dξ.

�
For technical purpose, we need to compute the θ-derivative of xi[θ], for i = 1, 2 and

prove their boundedness.

Lemma A.1. The derivatives ∂θx1[θ], ∂θx2[θ] are uniformly bounded.

Proof. We recall that x1, x2 is fixed by the conditions:
x2

1

(
cos2 θ +

sin2 θ

e2

)
+ x2

2

(
sin2 θ

d2
+

cos2 θ

e2

)
+ 2x1x2 cos θ sin θ

(
1− 1

e2

)
= 1

x1

(
cos2 θ +

sin2 θ

e2

)
+ x2 cos θ sin θ

(
1− 1

e2

)
= 0,

with the condition x2 < 0. We drop here and below the θ-dependency in the notations for
a better legibility. Differentiating with respect to θ we obtain that (∂θx1, ∂θx2) is solution
to the system: (

x1aθ + x2dθ x2bθ + x1dθ
aθ dθ

)(
∂θx1

∂θx2

)
= S(θ),

where S(θ) is a periodic continuous source-term and

aθ =

(
cos2 θ +

sin2 θ

e2

)
, bθ =

(
sin2 θ +

cos2 θ

e2

)
, dθ = cos θ sin θ

(
1− 1

e2

)
.

In particular(
x1aθ + x2dθ x2bθ + x1dθ

aθ dθ

)−1

=
1

x2(d2
θ − aθbθ)

(
dθ −x2bθ − x1dθ
−aθ x1aθ + x2dθ

)
where:

x2(d2
θ − aθbθ) = −x2

e2

is continuous and periodic, see (A.4). This immediately gives the statement.
�

Appendix B. Analysis of the Stokes asymptotics

In this section, we analyze the properties of the approximations to the solution to the
Stokes system provided in Section 4.2. We start with an elementary lemma that classifies
the family of diverging integrals∫ λ∗

−λ∗

τp

(d + γ[θ](τ)− x2[θ])q
dτ (p, q) ∈ N2,

that are ubiquitous in the forthcoming computations:

Lemma B.1. We have the following bounds when d << 1 :
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• if p is even :∫ λ∗

−λ∗

τp

(d + γ[θ](τ)− x2[θ])q
dτ =

O
(
d
p+1
2
−q
)

if p ≤ 2q − 2,

O(1) if p ≥ 2q,

• if p is odd:∫ λ∗

−λ∗

τp

(d + γ[θ](τ)− x2[θ])q
dτ =

O
(
d
p+2
2
−q
)

if p ≤ 2q − 3,

O(1) if p ≥ 2q − 1.

Furthermore, there exist constants Ki[θ] <∞ such that∫ λ∗

−λ∗

τ2i

(d + γ[θ](τ)− x2[θ])i+1
dτ =

Ki[θ]√
d

+O(1) ∀i ≥ 1. (B.1)

In the above lemma we have introduced Landau notations O for comparing functions.
We recall that whenever real functions f, g are defined in a neighborhood of 0 (possibly
only for strictly positive variables, say d ∈ (0, d0)) with f ≥ 0 we say that g = O(f) if
there exists a constant K > 0 for which:

|f(d)| ≤ Kg(d) ∀d ∈ (0, d0).

In our statement and also in those below, this constant will depend only on d, e. Whenever
f depends on a second variable θ ∈ R we used the same notations to denote:

|f(d, θ)| ≤ Kg(d) ∀d ∈ (0, d0) ∀θ ∈ R.

The constant K is thus independent of θ.

Proof. Let us briefly sketch the proof of these bounds. The even case relies on (4.3). We
can then bound: ∫ λ∗

−λ∗

τp

[(d + γ[θ](τ)− x2[θ])]q
dτ ≤

∫ λ∗

−λ∗

τp

(d + c
(2)
1 τ2)q

dτ.

In case p ≥ 2q the integrand is uniformly bounded in d while if p ≤ 2q − 2 we obtain the
expected result by performing the change of variable τ =

√
ds.

In the odd case, we must first use the explicit expansion (4.1) of γ[θ] by remarking that∫ λ∗

−λ∗

τp

(d + κ2[θ]τ2)q
dτ = 0,

since q is odd. Remarking further that |γ[θ](τ)−x2[θ]−κ2[θ]τ2| ≤ c(3)|τ |3 with c(3) uniform
in θ, we infer that∣∣∣∣∫ λ∗

−λ∗

τp

[(d + γ[θ](τ)− x2[θ])]q
dτ

∣∣∣∣ =

∣∣∣∣∫ λ∗

−λ∗
τp
(

1

(d + γ[θ](τ)− x2[θ])q
− 1

(d + κ2[θ]τ2)q

)
dτ

∣∣∣∣
≤
∫ λ∗

−λ∗

c(3)|τ |p+3

(d + c
(2)
2 τ2)q

dτ.

We conclude then like in the even case.
Concerning the asymptotic expansions we apply the same symmetry trick in order to

obtain ∫ λ∗

−λ∗

τ2i

(d + γ[θ](τ)− x2[θ])i+1
dτ −

∫ λ∗

−λ∗

τ2i

(d + κ2[θ]τ2)i+1
dτ = O(1),
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and we compute then the second integral by performing again the change of variable
τ =
√
ds. This gives (B.1) with

Ki(θ)
.
=

∫ ∞
−∞

s2i

(1 + κ2[θ]s2)i+1
ds.

�

We consider now a boundary data v∗ = ∇⊥ψ∗ and address the relevance of the ap-
proximation ṽ to the solution v of the Stokes problem to (4.6) as constructed in Section
4.2. We provide the arguments in the general case and mention the subsequent results
with the specific boundary conditions concerning ṽ⊥, ṽ||, ṽ	. Following the conventions of
Section 4.2 we assume that ψ∗(x1, x2 + h) = 0 (actually ψ∗ is defined up to a constant
so that this does not restrict the generality). We point out that, with respect to rough

a priori computations, we might gain a factor d1/2 in the following estimates thanks to
symmetry arguments like the ones in the previous section. This might be used without
specific notification.

B.1. Size of c∗. We recall that c∗ is computed by matching the condition∫ x1+λ∗

x1−λ∗
∂222ψopt(x1,−L)dx1 = 0.

Dropping θ dependencies again for legibility and replacing with explicit values, we obtain

−12

∫ λ∗

−λ∗

ψ1(τ)

(d + γ[θ](τ)− x2[θ])3
dτ + 6

∫ λ∗

−λ∗

ψ2(τ)

(d + γ[θ](τ)− x2[θ])3
dτ = 0,

and therefore

c∗ = − 1∫ λ∗

−λ∗

1

(d + γ[θ](τ)− x2[θ])3
dτ

(
6

∫ λ∗

−λ∗

∂2ψ∗(x1 + τ, h+ γ[θ](τ))

(d + γ[θ](τ)− x2[θ])2
dτ

−12

∫ λ∗

−λ∗

ψ∗(x1 + τ, h+ γ[θ](τ))

(d + γ[θ](τ)− x2[θ])3
dτ

)
.

In the general case ψ∗ ∈ C∞(R2) with ψ∗(x) = 0, we obtain readily that

|c∗| ≤ C
√
d‖ψ∗‖C1(A∩|x1|<2d) (B.2)

where C depends only on B. However, in the various cases at-hand here, we obtain the
finer expansion as stated in the next lemma.

Lemma B.2. When d << 1, the expansions

c⊥∗ = dκ3[θ]c⊥∞(κ2[θ]) +O(d3/2),

c
||
∗ = dc||∞(κ2[θ]) +O(d3/2),

c	∗ = dc	∞(κ2[θ]) +O(d3/2),

holds true, uniformly in θ. Moreover c⊥∞, c
||
∞ and c	∞ are C∞ on (0,∞).

Proof. We provide a proof in the case of c⊥∗ . The other cases follow from similar compu-
tations. Replacing ψ⊥∗ with its explicit value, we have

c⊥∗ =
12∫ λ∗

−λ∗

1

(d + γ[θ](τ)− x2[θ])3
dτ

∫ λ∗

−λ∗

τ

(d + γ[θ](τ)− x2[θ])3
dτ. (B.3)
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Let start with computing the denominator, i.e.

den =

∫ λ∗

−λ∗

1

(d + γ[θ](τ)− x2[θ])3
dτ.

Expanding γ and using the control from below given by (4.3), we infer

den =

∫ λ∗

−λ∗

(
1

(d + κ2[θ]τ2)3
− 3

κ3[θ]τ3

(d + κ2[θ]τ2)4

)
dτ

+O

(∫ λ∗

−λ∗

(
τ4

(d + c
(2)
2 τ2)4

+
τ6

(d + c
(2)
2 τ2)5

)
dτ

)
.

By symmetry, the integral of the second term on the first line vanishes while we set τ =
√
ds

when computing the integral of the first term. By straightforward estimate of remainder
terms at infinity, we deduce∫ λ∗

−λ∗

(
1

(d + κ2[θ]τ2)3
− 3

κ3[θ]τ3

(d + κ2[θ]τ2)4

)
dτ =

1

d5/2

∫ ∞
−∞

1

(1 + κ2[θ]s2)3
ds+O(1).

Below, we denote the integral on the right-hand side by den∞(κ2[θ]). We remark that
it is a smooth function of κ2[θ] when it ranges (0,∞) with strictly positive values when
κ2[θ] ∈ [κmin2 , κmax2 ]. With a similar change of variable in the integral, we observe that the

remainder term on the second line of the expression of den is O(d−3/2).
Concerning the numerator, we proceed similarly, remarking that the leading term
τ

(d+κ2[θ]τ2)3
leads to a vanishing integral. We then obtain∫ λ∗

−λ∗

τ

(d + γ[θ](τ)− x2[θ])3
dτ =

(−3)κ3[θ]

d
3
2

∫ ∞
−∞

τ2

(d + κ2[θ]τ2)4
dτ +O

(
1

d

)
.

We point out that the remainder term could be made O(d−1/2) by playing again on
symmetries but this will have no influence below. We denote the integral appearing in
the right-hand side of this latter identity by num∞(κ2[θ]). We remark again that it is
a smooth function of κ2[θ] with strictly positive values when κ2[θ] ∈ [κmin2 , κmax2 ]. We
eventually obtain

c⊥∗ = −36κ3[θ]d−3/2num∞(κ2[θ]) +O(d−1)

d−5/2den∞(κ2[θ]) +O(d−3/2)
= dκ3[θ]c⊥∞(κ2[θ]) +O(d3/2),

where

c⊥∞(κ2) = −36
num∞(κ2)

den∞(κ2)
∈ C∞((0,∞)).

�

The formula (B.3) entails that c⊥∗ depends on the gap geometry through both parameters
d and θ. Considering the mapping (d, θ)→ c⊥∗ – that is smooth on (0,∞)×R by standard
parameter-integral arguments – we prove the following bounds on ∇c⊥∗ .

Lemma B.3. We have the following inequalities for d << 1 and θ ∈ R :

|∂θc⊥∗ | ≤ Cgeod, |∂dc⊥∗ | ≤ Cgeo, (B.4)

with a constant Cgeo depending only on d, e.
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Proof. The proof follows from the following computations :

∂θc
⊥
∗ =

36

∫ λ∗

−λ∗

τ

(d + γ[θ](τ)− x2[θ])3
dτ

∫ λ∗

−λ∗

(∂θγ[θ](τ)− ∂θx2[θ])

(d + γ[θ](τ)− x2[θ])4
dτ(∫ λ∗

−λ∗

1

(d + γ[θ](τ)− x2[θ])3
dτ

)2

−
36

∫ λ∗

−λ∗

(∂θγ[θ](τ)− ∂θx2[θ]) τ

(d + γ[θ](τ)− x2[θ])4
dτ∫ λ∗

−λ∗

1

(d + γ[θ](τ)− x2[θ])3
dτ

,

∂dc
⊥
∗ =

36

∫ λ∗

−λ∗

1

(d + γ[θ](τ)− x2[θ])4
dτ

∫ λ∗

−λ∗

τ

(d + γ[θ](τ)− x2[θ])3
dτ(∫ λ∗

−λ∗

1

(d + γ[θ](τ)− x2[θ])3
dτ

)2

−
36

∫ λ∗

−λ∗

τ

(d + γ[θ](τ)− x2[θ])4
dτ∫ λ∗

−λ∗

1

(d + γ[θ](τ)− x2[θ])3
dτ

arguing then as in the proof of Lemma B.2. �

B.2. Quality of the approximation. In what follows we compare ṽ reconstructed from
ψopt to the exact solution (v, q) to (4.6) with the corresponding boundary data v∗ = ∇⊥ψ∗.
Again, we explain the computations in the general case and write down the results in the
three cases at hand here. Given the variational characterization of ψopt we have:∫

Gλ∗
|∂22ψopt|2 dx ≤

∫
Ω
|∇v|2 dx. (B.5)

Owing to the fact that ṽ matches the same boundary conditions as v on ∂Ω, we infer also
that: ∫

A
|∇(v − ṽ)|2 dx =

∫
Ω
|∇(v − ṽ)|2 dx ≤

∫
Ω
|∇ṽ|2 dx−

∫
Ω
|∇v|2 dx

and, by (B.5): ∫
A
|∇(v − ṽ)|2 dx ≤

∫
Ω
|∇ṽ|2 dx−

∫
Gλ∗
|∂22ψopt|2 dx.

We remark here that our candidate ṽ is uniformly bounded in terms of (h, θ) outside Gλ∗ .
This implies that∫

A
|∇v −∇ṽ|2 dx ≤

∫
Gλ∗

(
|∇2ψopt|2 − |∂22ψopt|2

)
dx+O(1).

The relevance of our approximation ṽ is then related to the computation of the L2-norms
of ∂11ψopt and ∂12ψopt in terms of ψ∗ and the geometrical descriptors d, θ. For instance, in

the case of ψ⊥opt, adopting the change of variables in (4.11) and using Lemmas B.1- B.2,
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we get:∫
Gλ∗

(
|∇2ψ⊥opt|2 − |∂22ψ

⊥
opt|2

)
dx =

∫
Gλ∗

(
2|∂12ψ

⊥
opt|2 + |∂11ψ

⊥
opt|2

)
dx

≤ C
∫ λ∗

−λ∗

(
(τ − c⊥∗ )2τ2

(d + γ[θ](τ)− x2)3
+

1

(d + γ[θ](τ)− x2)

)
dτ = O(d−1/2) +O(1). (B.6)

By similar computations for ψ
||
opt, ψ

	
opt, we obtain the next lemma.

Lemma B.4. We have the expansions when d << 1 uniformly in θ:

‖∇(v⊥ − ṽ⊥)‖L2(A) = O(d−1/2), ‖∇(v|| − ṽ||)‖L2(A) + ‖∇(v	 − ṽ	)‖L2(A) = O(1).

B.3. Pressure. We construct now a pressure q̃ so that

−∆ṽ +∇q̃ = R divṽ = 0,

where R is bounded in a suitable sense. For this, we remark that ṽ is uniformly bounded
outside the gap Gλ∗ whatever the value of d. Hence, we focus on the construction of q̃
inside Gλ∗ . By construction, we have

ṽ = ∇⊥ψopt and −∆ṽ =

(
∂211ψopt + ∂222ψopt
−∂111ψopt − ∂122ψopt

)
.

In this expression, the most diverging term should be ∂222ψopt(x1, x2) = d222(x1) and it
is a function of x1 only. Hence, we set, for (x1, x2) ∈ Gλ∗ :

q̃(x1, x2) = −
∫ x1

x1−λ∗
d222(τ)dτ + ∂12ψopt(x1, x2)

=

∫ x1+λ∗

x1

d222(τ)dτ + ∂12ψopt(x1, x2).

The second identity uses that the mean of d222 vanishes. We can extend this pressure by 0
without generating singularities. We point out that astonishingly, this mean-free property
seems to appear incidentally while it is deeply related to the variational construction of
ψopt. In particular −∆ṽ + ∇q̃ is uniformly bounded outside Gλ∗/2. Then, for arbitrary

(w1, w2) ∈ [C∞(Gλ∗)]2 that vanish on the top and bottom boundaries, we have then∫
Gλ∗/2

(−∆ṽ +∇q̃) · (w1, w2) dx

=

∫
Gλ∗/2

(2∂211ψoptw1 − ∂111ψoptw2) dx

= −
∫ x1+λ∗/2

x1−λ∗/2

∫ h+γ[θ](x1−x1)

−L
(2∂11ψopt∂2w1 + ∂111ψoptw2) dx1dx2

where we integrated by parts the first term. For the second term we use the primitive
operator:

P2∂111ψopt(x1, x2) = −
∫ h+γ[θ](x1−x1)

x2

∂111ψopt(x1, z)dz,
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so that:∫
Gλ∗

(−∆ṽ+∇q̃) · (w1, w2) dx

= −
∫ x1+λ∗/2

x1−λ∗/2

∫ h+γ[θ](x1−x1)

−L
(2∂11ψopt∂2w1 − P2∂111ψopt∂2w2) dx1dx2.

We can then estimate this latter term with Hölder inequalities. In the general case we
obtain the following statement.

Lemma B.5. Under the assumption that ψ∗(x1, x2 + h) = 0, there exists a constant C∗
depending only on B such that there exists a pressure q̃ ∈ L2(Ω) for which

‖ −∆ṽ +∇q̃‖H−1(Ω) ≤ C∗‖ψ∗‖C3(A∩|x1|<d).

The proof is based on the above identity combined with (B.2) and the analysis of the
operator P2 given below in Appendix C.

A straightforward consequence to the previous lemma is that, if we are given an ap-
proximation ṽ = ∇⊥ψopt and two divergence-free test-functions w, w̃ that match the same
boundary condition on ∂B and ∂A, we have∣∣∣∣∫

Ω
∇w : ∇ṽ dx−

∫
Ω
∇w̃ : ∇ṽ dx

∣∣∣∣ ≤ C∗‖∇(w − w̃)‖L2(Ω). (B.7)

B.4. Computation of M∞opt. We split the expression in three terms :M∞opt = 6G1+12G2+
6G3, where

G1
.
=

∫ λ∗

−λ∗

(τ − c⊥∗ )(τ2 − c	∗ )

(d + γ[θ](τ)− x2[θ])3
dτ,

G2
.
=

∫ λ∗

−λ∗

x2(τ − c⊥∗ )(γ[θ](τ)− x2[θ] + c
||
∗)

(d + γ[θ](τ)− x2[θ])3
dτ,

G3
.
=

∫ λ∗

−λ∗

x2(τ − c⊥∗ )

(d + γ[θ](τ)− x2[θ])2
dτ.

The true challenge of these computations is to show that all these integrals can be written
as the multiplication of κ3 with some integral depending on κ2. To this end, we may either
exploit the fact that c⊥∗ has this form or exploit symmetries to cancel integrals with an
odd power of τ on the denominator. For instance, we have

G1 =

∫ λ∗

−λ∗

τ3 − c⊥∗ τ2 − c	∗ τ + c⊥∗ c
	
∗

(d + γ[θ](τ)− x2[θ])3
dτ.

Exploiting symmetries, we infer∫ λ∗

−λ∗

τ3

(d + γ[θ](τ)− x2[θ])3
dτ = −3

κ3I6,4(κ2)√
d

+O(1)∫ λ∗

−λ∗

τ

(d + γ[θ](τ)− x2[θ])3
dτ = −3

κ3I4,4(κ2)

d
3
2

+O(1)

where here and below, we fix the notation Ip,q(κ2) by

Ip,q(κ2) =

∫
R

τp

(1 + κ2τ2)q
dτ ∀ 0 ≤ p < 2q − 1.
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Recalling Lemma B.2 to rewrite c⊥∗ and c	∗ , we deduce that

G1 =
κ3√
d

(
− 3I6,4(κ2)− 3c⊥∞(κ2)I4,4(κ2)

+ 3c	∗ (κ2)I4,4(κ2) + c⊥∞(κ2)c	∞(κ2)I0,3(κ2)
)

+O(1).

As for G2, G3, we first remind that, Assertion (i) in Lemma 4.1 implies x2 = X2(κ2), and
then, arguing as previously, we eventually conclude that

G2 = κ3
X2(κ2)√

d

(
− 3κ2I6,4(κ2)− κ2c

⊥
∞(κ2)I2,4(κ2)

− 3c||∞(κ2)I4,4(κ2)− c⊥∞(κ2)c||∞(κ2)I0,3(κ2)
)

+O(1),

and

G3 = κ3
X2(κ2)√

d

(
−3I4,3(κ2)− c⊥∞(κ2)I0,2(κ2)

)
+O(1).

This ends the proof.

B.5. Computation of J1. This section is devoted to the estimate (5.33) of J1 defined by∫ σ

T−

∫
Ω(t)

[∂t(a(t)ṽ⊥) + (u · ∇)(a(t)ṽ⊥)] · u dxdt = J
(a)
1 + J

(b)
1 + J

(c)
1 ,

where

J
(a)
1 =

∫ σ

T−

∫
Ω(t)

a′(t)ṽ⊥ · u dxdt,

J
(b)
1 =

∫ σ

T−

∫
Ω(t)

a(t)∂tṽ
⊥ · u dxdt,

J
(c)
1 =

∫ σ

T−

a(t)

∫
Ω(t)

(u · ∇)ṽ⊥ · u dxdt.

Regarding J
(c)
1 , we first remark that ṽ⊥ is, by construction, uniformly bounded outside

Gλ∗ , see (4.16). Thus there holds

|J (c)
1 | ≤ Cgeo

∫ σ

T−

(
‖u‖2L2(Ω) +

∣∣∣∣∣
∫
Gλ∗

(u · ∇)ṽ⊥ · u dx

∣∣∣∣∣
)
dt.

To compute the last integral, we introduce

P2∇ṽ⊥(x1, x2) = −
∫ h+γ[θ](x1−x1[θ])

x2

∇ṽ⊥(x1, z) dz
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so that, after integration by parts (noting that P2∇ṽ⊥ vanishes on the top-boundary of
Gλ∗ while u vanishes on the lower boundary):∣∣∣∣∣

∫
Gλ∗

(u · ∇ṽ⊥) · u dx

∣∣∣∣∣ =

∣∣∣∣∣
∫
Gλ∗

∂2u⊗ u : P2∇ṽ⊥ dx

∣∣∣∣∣
≤
∫ λ∗

−λ∗
sup

x2∈(−L,h+γ[θ](τ))
|P2∇ṽ⊥|

(∫ h+γ[θ](τ)

−L
|∂2u(x1 + τ, x2)|2dx2

) 1
2

dτ

×

(∫ h+γ[θ](τ)

−L
|u(x1 + τ, x2)|2dx2

) 1
2

≤ Cgeo

(
sup

τ∈(−λ∗,λ∗)
sup

x2∈(−L,h+γ[θ](τ))
(d + γ[θ](τ)− x2[θ])|P2∇ṽ⊥|

)∫
Gλ∗
|∂2u|2 dx,

where we have used Poincaré inequality with optimal constant on the line x1 = x1 + τ,
x2 ∈ (−L, h + γ[θ](x1 + τ)) to pass from the second to the last line. With the explicit
formulas at-hand, we obtain[

sup
x2∈(−L,h+γ[θ](x1+τ))

(d + γ[θ](x1 + τ)− x2[θ])|P2∇ṽ⊥|

]
≤ Cgeo

so that

|J (c)
1 | ≤ Cgeo

∫ σ

T−

∫
A
‖∇u(τ)‖2 dxdτ. (B.8)

To compute J
(a)
1 , we simply use the control on a′ obtained in Lemma 5.5 combined with

Poincaré inequality. By (4.16), this yields the desired estimate, that is

|J (a)
1 | ≤ Cgeo

∫ σ

T−

|θ′(τ)|‖u(τ)‖L2(A) dτ ≤ Cgeo
∫ σ

T−

‖∇u(τ)‖2 dτ. (B.9)

It remains to compute ∂tṽ
(⊥). By construction ṽ⊥(t, x) = ∇ψ̃⊥(t, x), where

ψ̃⊥(t, x) =



ζ

(
(x1 − x1)

λ∗

)
ψ⊥opt(t, x)

+

(
1− ζ

(
(x1 − x1)

λ∗

))
ζ

(
dist(x,B)

d∗

)(
(x1 − x1)− c⊥∗ )

)
in G2λ∗ ,

ζ

(
dist(x,B)

d∗

)(
(x1 − x1)− c⊥∗

)
in Ω \ G2λ∗ ,

(x1 − x1)− c⊥∗ in B

and

ψ⊥opt(t, x) =
(

(x1 − x1)− c⊥∗
)
P opt1

(
x2 + L

d + γ(x1 − x1)− x2[θ]

)
.

We remind that this formula depends on time through x1, x2, θ and therefore also d. In
particular, we can split

∂tψ̃
⊥ = x′1ψ

(1)
t + x′2ψ

(2)
t + d′ψ

(3)
t + [c⊥∗ ]′ψ

(4)
t in Ω \ Gλ∗ ,
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where ψ
(i)
t (i = 1, 2, 3, 4) are smooth functions, while, in Gλ∗ , we have

∂tψ
⊥(t, x) = ∂tψ

⊥
opt(t, x) = ψregopt (t, x) + ψdivopt(t, x)

where

ψregopt (t, x) =− (θ′∂θx1 + [c⊥∗ ]′)P opt1

(
x2 + L

d + γ(x1 − x1)− x2[θ]

)
,

ψdivopt(t, x) =−
(
d′ + θ′ (∂θγ(x1−x1)− ∂θx1∂xγ(x1 − x1)−∂θx2[θ])

) (x2 + L)

(d + γ(x1 − x1)− x2[θ])2

×
(

(x1 − x1)− c⊥∗
)
∂zP

opt
1

(
x2 + L

d + γ(x1 − x1)− x2[θ]

)
.

Using the differentials computed in Appendix A, the previous computations of integrals
in this Appendix B and the use of the operator P2 (see Appendix C), we infer that

‖∇ψregopt (t, x)‖L2(Gλ∗ ) + ‖∇P2ψ
div
opt(t, x)‖L2(Gλ∗ ) ≤ Cgeo

(
|θ′|+ |d′|

)
,

where

P2ψ
div
opt(t, x) = −

∫ h+γ(x1−x1)

x2

ψdivopt(t, x1, z)dz.

Eventually, we obtain∫
Ω(t)

∂tṽ
⊥ · u dx =

∫
Ω(t)\Gλ∗

∂tṽ
⊥ · u dx+

∫
Gλ∗
∇⊥ψregopt · u dx−

∫
Gλ∗
∇⊥P2ψ

div
opt · ∂2u dx

so that combining the previous computations with (2.10), we get

|J (b)
1 | ≤ Cgeo

∫ σ

T−

(
|θ′|+ |d′|

)
‖∇u‖L2(A) ≤ Cgeo

∫ σ

T−

‖∇u(τ)‖2L2(A) dτ. (B.10)

Combining (B.8)-(B.9)-(B.10) yields (5.32).

Appendix C. Properties of the operator P2

In the previous computations we have used several times the operator

P2f(x1, x2) = −
∫ h+γ[θ](x1−x1)

x2

f(x1, z)dz ∀x ∈ Gλ.

for a function f defined in the gap Gλ. The main purpose of this construction is to gain
regularity in the x2 variable. Precisely, we have the following properties for f ∈ C∞(Gλ).
First, observe that since we have the boundary condition

P2f(x1, h+ γ[θ](x1 − x1)) = 0 ∀x1 ∈ (x1 − λ, x1 + λ),

we can apply a Hardy inequality on (−L, h+ γ[θ](x1 − x1)) for any x1 ∈ (x1 − λ, x1 + λ).
We therefore compute the gradient of P2, i.e.

∂1P2f(x1, x2) = P2∂1f(x1, x2)− ∂xγ[θ](x1− x1)f(x1, h+ γ[θ](x1− x1)) and ∂2P2f = f,

to get∫ h+γ[θ](x1−x1)

−L
|P2f(x1, x2)|2dx2 ≤ (d+γ[θ](x1−x1)−x2[θ])2

∫ h+γ[θ](x1−x1)

−L
|f(x1, x2)|2dx2,

since d + γ[θ](x1 − x1)− x2[θ] = h+ γ[θ](x1 − x1) + L. We thus infer

‖P2f‖2L2(Gλ) ≤
∫ x1+λ

x1−λ
(d + γ[θ](x1 − x1)− x2[θ])2

∫ h+γ[θ](x1−x1)

−L
|f(x1, x2)|2dx1dx2
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and

‖∇P2f‖2L2(Gλ) ≤
∫ x1+λ

x1−λ
(d + γ[θ](x1 − x1)− x2[θ])2

∫ h+γ[θ](x1−x1)

−L
|∂1f(x1, x2)|2dx2dx1

+

∫ x1+λ

x1−λ
(d + γ[θ](x1 − x1)− x2[θ])|∂xγ[θ](x1 − x1)|2|f(x1, h+ γ[θ](x1 − x1))|2dx1.
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