Supplementary Material - Bayesian Uncertainty Quantification for Anaerobic Digestion models

	SA	Calib.	FIM	Beale	Bootstrap	Bayes init.	VarBUQ
AM2 LN	n.a.	0.50	0.00 (0.50)	0.95 (0.45)	50.10 (50.60)	n.a.	1.70
AM2 HN	n.a.	0.43	0.00 (0.43)	0.95 (1.38)	56.25 (56.68)	n.a.	1.68
AM2 LF	n.a.	0.47	0.00 (0.47)	0.6 (1.07)	46.14 (46.65)	n.a.	1.50
AM2 HF	n.a.	0.43	0.00 (0.43)	0.92 (1.35)	47.14 (47.62)	n.a.	1.55
ADM1 LN	0.33	2.32	0.02 (2.67)	1.63 (4.29)	n.a.	0.59	4.82 (5.40)
ADM1 HN	0.32	3.15	0.02 (3.49)	1.92 (5.39)	n.a.	0.59	4.80 (5.39)
ADM1 LF	0.32	2.29	$0.02 \ (2.62)$	2.22 (4.82)	n.a.	0.75	4.77 (5.52)
ADM1 HF	0.33	5.32	0.02 (5.67)	1.43 (6.42)	n.a.	0.72	6.02 (6.74)

Table 1: Computation time for calibration and UQ routines in hours

SA: Sensitivity analysis, Calib.: Calibration, Bayes init.: initialisation of the posterior. For each UQ routine, the total time, including optimisation, is indicated in **bold**.

	BIOCK	θ_0	$\sigma_{\log(heta)}$	AN AN	$\mu^{\Gamma N}$	$\pi_{\rm LN}$	$^{\rm NH} ho$	$\pi_{\rm HN}$	$\theta_{\rm E}$	$ ho_{ m TE}$	π_{LF}	$ heta_{ m HF}$	π_{HF}
$\iota_{1\max} (Day^{-1})$		1.2	0.20	1.23	0.55	1.17	0.91	1.18	0.99	0.86	1.02	0.91	0.86
$l_{2\max} (Day^{-1})$	2	0.74	0.48	1.05	0.99	0.74	0.90	0.78	1.32	2.00	0.95	1.21	1.16
$\chi_{\rm S1}~({\rm kgCOD~m^{-3}})$	Η	7.1	0.32	7.51	5.76	7.34	6.25	7.20	15.98	15.38	15.98	15.13	14.40
$\chi_{S2} \pmod{m^{-3}}$	2	9.28	0.48	11.0	11.0	9.84	10.1	9.09	4.97	5.36	4.5	4.85	4.68
$\vec{\chi}_{12} \pmod{m^{-3}}$	2	256	0.40	196.0	135	256	259	259	345	328	252	290	260

Table 2: Default parameter values, uncertainty and calibration results for AM2

 $g(\theta)$ the standard deviation for the prior distribution (in log space). θ^* is the set of parameters used to generate the data. $\hat{\theta}$ is the result of the non bayesian calibration. $\hat{\pi}[\theta]$ is the means of the posterior distribution (i.e. the result of the bayesian calibration). Block ind

2

	Block	θ_0	$\sigma_{\log(\theta)}$	θ_{N}	$\hat{\theta}_{\mathrm{LN}}$	$\hat{\pi}_{LN}$	$\hat{\theta}_{\mathrm{HN}}$	$\hat{\pi}_{HN}$	θ_F	$\hat{ heta}_{ m LF}$	$\hat{\pi}_{LF}$	$\hat{ heta}_{ m HF}$	$\hat{\pi}_{\mathrm{HF}}$	
$k_{dis} (Day^{-1})$		0.5	0.24	0.36	0.50	0.58	0.50	0.601	0.23	0.50	0.44	0.50	0.49	
$ k_{hyd}CH (Day^{-1})$	1	10	0.12	10	10	11	10	9.9	5.2	10	9.7	10	9.3	
$ \mathbf{k}_{hyd-PR} (Day^{-1})$	1	10	0.12	8.7	10	9.1	10	10	12	10	9.9	10	8.8	
k_{hvd-LI} (Day ⁻¹)	1	10	0.24	23	10	9.5	10	10.3	2.40	10.0	10	10	9.4	
$\mathbf{k}_{m-su} (\mathrm{Day}^{-1})$	7	30	0.12	38	30	32	2.4	30	48	30	32	107	28	
$ \mathbf{k}_{\mathrm{m-aa}}(\mathrm{Day}^{-1}) $	en en	50	0.12	45	50	48	50	56	49	50	51	2.2	51	
k _{m-fa} (Day ⁻¹)	4	9	0.24	5.2	6.0	5.4	6.0	6.5	4.5	6.0	7.1	6.0	5.5	
k _{m-c4+} (Day ⁻¹)	5	20	0.12	21	06	18	12	19	18	37	17	44	16	
$ \mathbf{k}_{\mathrm{m-pro}} (\mathrm{Day}^{-1}) \rangle$	9	13	0.12	13	93	12	26	13	9.9	49	14	9.4	15	
k_{m-ac} (Day ⁻¹)	7	8	0.12	11	80	10	21	11	10	53	8.4	9.3	9.8	
$k_{\rm m-h2}$ (Day ⁻¹)	x	35	0.12	28	35	33	35	33	29	35	37	35	35	
K _{S_su} (kgCOD m ⁻³)	2	0.5	0.12	0.43	0.50	0.50	0.50	0.54	0.29	0.50	0.47	0.50	0.47	
K _{S-aa} (kgCOD m ⁻³)	3	0.3	0.046	0.31	0.30	0.31	0.30	0.31	0.29	0.30	0.30	0.30	0.30	
K _{S-fa} (kgCOD m ⁻³)	4	0.4	0.24	0.39	0.40	0.44	0.40	0.40	0.58	0.40	0.42	0.40	0.43	
$\mathrm{K_{S-c4+}}$ (kgCOD m ⁻³)	ъ С	0.2	0.24	0.30	1.2	0.24	2.0	0.26	0.40	0.90	0.37	0.94	0.35	
K_{S-pro} (kgCOD m ⁻³)	9	0.1	0.12	0.16	0.86	0.100	0.30	0.12	6.5e-2	0.38	9.4e-2	5.1e-2	0.10	
K _{S-ac} (kgCOD m ⁻³)	4	0.15	0.12	0.15	1.2	0.13	0.21	0.13	0.24	1.5	0.15	0.23	0.19	
$\rm K_{S-h2}$ (kgCOD m ⁻³)	×	7e-6	0.12	6.7e-6	7.0e-6	7.6e-6	7.0e-6	6.1e-6	6.1e-6	7.0e-6	7.5e-6	7.0e-6	7.3e-6	
K _{I,H2-fa} (kgCOD m ⁻³)	4	5e-6	0.046	5.0e-6	5.0e-6	4.9e-6	5.0e-6	5.1e-6	5.6e-6	5.0e-6	5.2e-6	5.0e-6	5.0e-6	
KI,H2_c4+ (kgCOD m ⁻	³) 5	1e-5	0.046	1.1e-5	1.e-5	1.e-5	1.0e-5	1.0e-5	1.1e-5	1.0e-5	1.0e-5	1.0e-5	9.9e-6	
K _{I,H2-pro} (kgCOD m ⁻	3) 6	3.5e-6	0.046	3.2e-6	3.5e-6	3.5e-6	3.5e-6	3.6e-6	3.4e-6	3.5e-6	3.7e-6	3.5e-6	3.6e-6	
$K_{I,NH3}$ (kMole m ⁻³)	6	1.8e-3	0.046	1.9e-3	1.8e-3	1.9e-3	7.9e-4	1.8e-3	2.1e-3	1.8e-3	1.8e-3	2.9e-3	2.1e-3	
pH _{UL} :LL aa	10	1.5	0.12	1.2	1.1	1.6	1.3	1.3	1.4	0.31	1.5	1.4	1.5	
pH _{LL aa}	10	4	0.12	5.1	5.2	3.6	6.0	3.5	4.4	2.6	3.8	5.2	3.6	
PHUL:LL ac	6	1	0.046	1.0	1.0	1.0	0.83	0.99	1.0	1.0	1.0	1.0	1.0	
pH _{LL ac}	6	ы	0.046	4.5	5.0	5.0	5.3	4.9	4.8	5.0	5.0	3.8	4.9	
pH _{UL:LL h2}	11	1	0.12	0.52	1.0	1.0	1.0	1.1	1.6	1.0	0.94	1.0	1.0	
pH _{LL h2}	11	5	0.046	5.5	5.0	5.0	5.0	5.0	6.1	5.0	4.9	5.0	4.8	
k_{dec} (Day ⁻¹)	12	0.02	0.12	1.6e-2	2.0e-2	1.8e-2	6.2e-3	1.7e-2	1.5e-2	1.2e-2	1.7e-2	2.8e-2	2.1e-2	
K _{S-IN} (kMole m ⁻³)	13	1e-4	0.046	9.3e-5	1.0e-4	1.0e-4	1.0e-4	9.9e-5	9.5e-5	1.0e-4	1.0e-4	1.0e-4	9.9e-5	
Block indicates groups of parameters	which can be	correlate	ed in the l	osterior	distribut	ion. $\theta_0 cc$	ontains th	le means	of the pr	ior distrib	ution, $\sigma_{\rm l}$	$g(\theta)$ the	standard	deviation for
the prior distribution (in log space).	θ^* is the set	of param	eters used	to gener	ate the d	ata. $\hat{\theta}$ is	the result	t of the n	on baves	an calibra	ation. $\hat{\pi}[\theta]$	l is the r	neans of 1	the posterior
								huction)						
		D	listributio	n (1.e. un	e result c	of the bay	estan call	bration).						

Table 3: Default parameter values, uncertainty and calibration results for ADM1

	Bootstrap	FIM	Beale	VarBUQ
Confidence region shape	Any	Ellipse	Any*	User chosen ^{**}
Output	Samples	Covariance	Samples	Distribution
			Mean squared	
Prerequisite	None	Statistical Model	error calibration	Prior
Theory	None	Cramer-Rao	Beale	PAC-Bayes
Error hypothesis	None	Gaussian***	Gaussian	Bounded
Model hypothesis	None	Linear***	Linear	None

A detailed description of the methods can be found in the documentation section of https://github.com/BayesianUncertaintyQuantifAnaeroDig/AnaeroDigUQ

* The algorithm approximating Beale's confidence regions assumes they are connex. ** Through probability distribution class.

*** While Cramer-Rao's result holds for any statistical model, it only provides an equality for Gaussian noise and linear model.

	LN	HN	LF	HF
k _{m_su}		\checkmark		\checkmark
k _{m_aa}		\checkmark		\checkmark
k_{m_c4+}			\checkmark	\checkmark
k _{m_pro}	\checkmark	\checkmark	\checkmark	\checkmark
k_{m_ac}	\checkmark	\checkmark	\checkmark	\checkmark
$\mathbf{k}_{\mathrm{dec}}$	\checkmark	\checkmark	\checkmark	\checkmark
K_{S-c4+}	\checkmark	\checkmark	\checkmark	\checkmark
$K_{S_{-}pro}$	\checkmark	\checkmark	\checkmark	\checkmark
K _{S_ac}	\checkmark		\checkmark	\checkmark
$K_{I,NH3}$				\checkmark
$\mathrm{pH}_{\mathrm{LL aa}}$	\checkmark	\checkmark	\checkmark	\checkmark
$\mathrm{pH}_{\mathrm{UL:LL aa}}$	\checkmark	\checkmark	\checkmark	\checkmark
$\mathrm{pH}_{\mathrm{LL \ ac}}$				\checkmark
$\rm pH_{\rm UL:LL\ ac}$		\checkmark		

Table 5: Parameter selection through Morris sensitivity analysis for ADM1.