
HAL Id: hal-04592562
https://hal.science/hal-04592562

Preprint submitted on 30 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ACCO: Accumulate while you Communicate, Hiding
Communications in Distributed LLM Training

Adel Nabli, Louis Fournier, Pierre Erbacher, Louis Serrano, Eugene
Belilovsky, Edouard Oyallon

To cite this version:
Adel Nabli, Louis Fournier, Pierre Erbacher, Louis Serrano, Eugene Belilovsky, et al.. ACCO: Accu-
mulate while you Communicate, Hiding Communications in Distributed LLM Training. 2024. �hal-
04592562�

https://hal.science/hal-04592562
https://hal.archives-ouvertes.fr

ACCO: Accumulate while you Communicate,
Hiding Communications in Distributed LLM Training

Adel Nabli1,2 Louis Fournier1∗ Pierre Erbacher1∗ Louis Serrano1
Eugene Belilovsky2 Edouard Oyallon3

1Sorbonne Université, CNRS, ISIR, Paris - France
2Mila - Quebec AI Institute, Concordia University, Montréal - Québec

3 Center for Computational Mathematics, Flatiron Institute, New York - USA
adel.nabli@sorbonne-universite.fr

Abstract

Training Large Language Models (LLMs) relies heavily on distributed implementa-
tions, employing multiple GPUs to compute stochastic gradients on model replicas
in parallel. However, synchronizing gradients in data parallel settings induces
a communication overhead increasing with the number of distributed workers,
which can impede the efficiency gains of parallelization. To address this challenge,
optimization algorithms reducing inter-worker communication have emerged, such
as local optimization methods used in Federated Learning. While effective in mini-
mizing communication overhead, these methods incur significant memory costs,
hindering scalability: in addition to extra momentum variables, if communications
are only allowed between multiple local optimization steps, then the optimizer’s
states cannot be sharded among workers. In response, we propose ACcumulate
while COmmunicate (ACCO), a memory-efficient optimization algorithm tailored
for distributed training of LLMs. ACCO allows to shard optimizer states across
workers, overlaps gradient computations and communications to conceal commu-
nication costs, and accommodates heterogeneous hardware. Our method relies on
a novel technique to mitigate the one-step delay inherent in parallel execution of
gradient computations and communications, eliminating the need for warmup steps
and aligning with the training dynamics of standard distributed optimization while
converging faster in terms of wall-clock time. We demonstrate the effectiveness of
ACCO on several LLMs training and fine-tuning tasks.

1 Introduction

Training modern Large Language Models (LLMs) with billions of parameters requires thousands of
GPUs running in parallel. This is necessary to load the model and optimizer parameters in memory
and reach the mini-batch size in the millions of tokens used to train them [65], relying on a distributed
version of the backpropagation algorithm [29] with a gradient-based optimizer such as Adam [24] or
AdamW [33]. However at this scale, the communication overhead necessary to synchronize gradients
between workers in the data parallel setting can dominate the time to compute the model updates
[46], and it has been estimated that it will remain the case even if models and hardware evolve [49],
hindering the benefits of parallelization. Moreover, as all workers are synchronized through gradient
communication, the training only proceeds at the speed of the slowest machine (straggler) [10, 38].

To alleviate this issue, distributed optimization algorithms reducing the amount of communication
between workers have been developed, such as local optimization methods [61, 69] which are

*Equal Contribution

Preprint. Under review.

especially used in Federated Learning [37, 26]. These methods authorize performing multiple
optimization steps locally before communicating and synchronizing the distributed workers, reducing
the communication overhead. As communication rounds can last longer than a local gradient
computation (see Fig. 3), they also naturally allow to hide the cost of communications in the training
time by running them in parallel to several consecutive local computation steps [68, 57, 76, 63].
Moreover, on heterogeneous hardware, the number of computation steps can be tuned locally to the
worker’s speed so that slow ones compute less than fast ones, maxing out workers’ usage [9, 35].

However, this comes at a drastic memory cost. Indeed, in the standard data parallel setting, most of the
memory consumption of model states comes from storing the optimizer’s parameters, especially when
training with mixed precision. To mitigate that, methods such as ZeRO [51] have been developed to
avoid the replication of redundant optimizer states across the workers by sharding them. But these
methods rely heavily on the fact that each mini-batch gradient is averaged over all the workers during
the backward step. This is no longer the case with local optimization algorithms: if it were, then
an averaging would happen at each step, defeating the purpose of the local method. This forces
each worker to host a full copy of the optimizer’s parameters, drastically increasing the memory
requirements. Moreover, to prevent local steps from reducing the accuracy of the resulting model,
local methods often introduce an outer optimizer step at each communication, which comes with
additional momentum terms [69, 63]. Hence, to store these variables, the latest state-of-the-art
method CO2 [63] needs a memory overhead of 4 model copies compared to a standard distributed
Adam, which itself uses an order of magnitude more memory than its sharded version [51]. This
raises the following question:

Is it possible to design a memory-efficient optimization algorithm that hides the communication cost
of distributed training of LLMs and accommodates heterogeneous hardware?

To completely hide the communication cost while being memory-efficient, making sharded optimizers
compatible with the idea of overlapping gradient computations and communications seems natural.
The concept of running two parallel processes is already present in the sharded optimization literature,
but for a different purpose. ZeRO-Offload [55] introduces the "Delayed Parameter Update" (DPU)
which allows running the optimizer on the CPU while computing and averaging gradients on the
GPU. By running these processes in parallel, the gradients computed during one step are on a version
of the model parameters that are no longer up to date, as they have been updated by the optimizer
concurrently. In practice, this one-step staleness can hurt convergence, and the method can only be
used after sufficiently many warmup steps of non-delayed optimization [55].

Contributions. In this work, we introduce ACcumulate while COmmunicate (ACCO), a simple and
memory-efficient optimization algorithm that (1) naturally allows to shard the optimizer parameters
across workers, (2) overlaps gradients computations and communications, completely hiding the
communication overhead while (3) maximizing GPU usage, even with heterogeneous hardware. (4)
We introduce a novel method to compensate for the one-step delay induced by parallel execution of
the gradient computations and communications, removing the need for warmup steps and (5) perfectly
matching the training dynamic of standard distributed optimization. Moreover, our experiments
across multiple LLMs training and fine-tuning tasks consistently show that ACCO allows for significant
time gains. (6) We release an open-source implementation of ACCO.1

2 Related work

Local optimization methods. Local optimization methods allow to perform several local model
updates between periodic averaging. With the SGD optimizer, these algorithms predate the deep
learning era [84, 36], and their convergence properties are still investigated nowadays [81, 61, 70, 39].
Due to their practical and efficient communication scheme, they have since been used for the
Distributed Training of Deep Neural Networks (DNNs) with methods such as EASGD [76], SlowMo
[69] or Post-local SGD [31, 46], and are ubiquitous in Federated Learning [37, 26, 30], broadening
the choice of optimizers beyond SGD [54, 22, 7]. By overlapping communications over consecutive
steps of local computations, they allow to hide communication bottlenecks, resulting in algorithms
such as Overlap local-SGD [68], COCO-SGD [57] or CO2 [63]. Moreover, with heterogeneous
hardware, they can adapt their local computation rate to their hardware capacity [9, 35]. However this

1https://github.com/AdelNabli/ACCO

2

https://github.com/AdelNabli/ACCO

↑

Reduce-
Scatter

Time

G
PU

 s
lo

w
G

PU
 fa

st
All-Gather

↓

↑↓
 acc.

stream

comm.
stream

comm.
stream

 acc.
stream

Compute estimates Compute

Sharded
Opt. step

Reduce-
Scatter

Reduce-
Scatter

Sharded
Opt. step

All-Gather Reduce-
Scatter

Sharded
Opt. step

Sharded
Opt. step

All-Gather

All-Gather

↑↓

↑↓ . . .

↑ ↓Comm. buffer → params buffer → comm. buffer

Figure 1: Overview of ACCO with a slow and a fast worker running in parallel, showing no idle time
on both and completely hiding communications. The delayed update is compensated by splitting the
mini-batch in two, leading to two different steps in our timeline. The first uses half of the mini-batch
to estimate "next step" parameters, and the second uses the full mini-batch to update parameters.

comes at the price of additional memory requirements: due to their local nature, not only do these
methods prevent the use of sharded optimizers such as ZeRO [51], but they also introduce additional
control variables [69, 39, 63], hindering their scalability as shown in Tab. 1. Moreover, catering for
heterogeneous hardware is not straightforward, as using different numbers of local updates leads to
models shifting at different speeds, requiring extra care to counter this effect [35]. On the contrary,
ACCO does not lead to such disparities: it just affects how the required batch size is reached.

Overlap decentralized optimization. The communication complexity being a core concern in
decentralized optimization [74, 18], strategies have been devised to reduce communication overheads.
For synchronous methods, works focus on designing algorithms with accelerated communication
rates, leveraging Chebyshev polynomials [56, 28, 60]. For the asynchronous ones, they rely on the
properties of the graph resistance [12, 42, 41]. Alternatively, some approaches overlap gradient
and communication steps, either explicitly [3], or by modeling them with independent stochastic
processes [42, 41]. However, none of these works focus on memory efficiency. Thus, they introduce
additional variables and do not consider sharding the optimizer states. Moreover, they do not study
optimizers other than SGD, and extending their beneficial properties to adaptive methods commonly
used for DNN training such as Adam is still an ongoing research topic [2].

Memory-efficient distributed training of LLMs. The activation memory overhead required for
training Transformers [66] can be mitigated for an extra computational cost by reconstructing the input
with reversible architectures [20, 34], or recomputing the activations via checkpointing [6]. Efficient
LLM training also combines parallelism methods. Classical data parallelism (DP) [8] suffers both
from a high communication volume and a linear increase in memory due to the model replicas. ZeRO-
DP [52] and Fully-Sharded DP [79] avoid this issue by sharding the model states (i.e., the optimizer
states, gradients, and parameters) between workers. This comes at the cost of further increasing
the synchronization between workers and the communication volume, which can be mitigated by
compression [67], memory trade-offs [77], or delayed gradients [15]. The memory can be even more
reduced using expensive CPU-GPU communications to unload states on the CPU [55, 53]. On the
other hand, model parallelism partitions the DNN components for parallelization, either with tensor
parallelism [58] by slicing a layer’s computation on several workers, or with pipeline parallelism,
which divides a model into sets of layers trained in parallel on mini-batch slices. Popularized by
[19], this method leaves some workers idling and an inefficient memory overhead [13]. Allowing
delay in the gradients avoids worker idleness [43, 82] but exacerbates the memory overhead, which
can be partially mitigated with gradient accumulation [44, 83] and activation checkpointing [23, 32].
Combining these frameworks results in the effective 3D parallelism [59].

Delayed updates. Delays being intrinsic to distributed asynchronous optimization, there is a rich
literature studying them. In the case of distributed SGD in a parameter server setting, while early
analysis showed convergence rates depending on the maximal delay [1, 62], recent lines of work
improved these dependencies [25, 71, 14], proving that asynchronous SGD beats standard mini-batch

3

SGD even with unbounded delays [38]. However, they only study plain SGD, which is hardly used for
DNN training. In this context, some work focused on the interplay between SGD with momentum and
delays [40, 75], while delay compensation schemes such as re-scaling updates [80, 72] or buffering
them [45] were proposed for Federated Learning. But still, they only study versions of SGD and not
adaptive methods commonly used for LLMs trainingsuch as Adam [24] or AdamW [33]. Closer to
our work, DPU was introduced as a memory-efficient way to train LLMs by running the optimizer
on the CPU while gradients are computed on the GPU [55], inducing a one-step delay between the
gradients computed and the corresponding optimizer step. To mitigate it, they advise starting training
by warming up for several steps with a standard method with no delay. Perhaps surprisingly, we
find in our experiments that this one-step delay has a noticeable influence on the convergence of
LLMs training, even when using warmup steps. Contrary to DPU, we remove the need for them,
with no impact on the convergence of our training. Moreover, as it is not its purpose, DPU still runs
communications in the gradient computation stream, and is thus impacted both by the communication
overhead of scaling and hardware heterogeneity. Finally, in pipeline parallelism, gradient delays
also affect computation, and weight prediction methods have been proposed to mitigate the effect
of staleness, by predicting the future weights using the optimizer’s momentum [5]. More elaborate
predictions have been proposed for SGD to further reduce the impact of the delay [27, 73].

Table 1: Comparison of characteristics and memory consumption between several methods. Ψ:
number of parameters in the model. N : number of workers. K: memory multiplier of the optimizer
(we use Adam or AdamW). For SlowMo [69] and CO2 [63], no mention of mixed precision training
is made. To be fair, we assume they use it and that their additional terms are stored in half precision.
While no additional momentum is required for our method, we still need a communication buffer.

Method No comm. Handle hetero. Sharded No add. Memory consumed K = 12, N = 64,
overhead hardware Opt. momentum per worker Ψ = 7.5B

Baseline DDP [29] ✗ ✗ ✗ ✓ (2+2+K)×Ψ 120 GB
ZeRO-1 [51] ✗ ✗ ✓ ✓ (2+2+K

N)×Ψ 31 GB
SlowMo [69] ∼ ✗ ✗ ✗ (2+2+2×2+K)×Ψ 150 GB
CO2 [63] ✓ ✗ ✗ ✗ (2+2+4×2+K)×Ψ 180 GB
ACCO (Ours) ✓ ✓ ✓ ✓ (2+2+2+K

N)×Ψ 46 GB

3 Method

In this section, we describe our method, including the approach to compensate for the delayed update.
The algorithm will be described from the point of view of each worker i ∈ {1, ..., N}.

Delayed Parameter Update. First, to explain the presence of a delay, we re-purpose the "Delayed
Parameter Update" (DPU) [55] to fit in our framework and match our considerations of communication
overheads. Contrary to the original DPU, we run gradient communications in the same stream as the
optimizer step, in parallel to the gradient computations. Moreover, to prevent the GPU i from being
idle at step t, the computations process accumulates gradients over as many mini-batches N (t)

i ≥ 1
as necessary until the communication process finishes, which can vary depending on the speed of the
worker as shown in Fig. 1. Each worker i starts from the same neural network parameters θ(0) ∈ Rd.
We denote by F : Rd → R the differentiable loss computed by our neural network. A random
mini-batch (modeled through the random variable ξ ∈ Ξ following some law P) is drawn from the
local data shard Di to initialize the stochastic gradient gi(−1) = ∇F (θ(0), ξ

(0)
i) and N

(−1)
i = 1.

Then, for t ∈ [[0, T]] we repeat the following step, with the left and right sides running in parallel:

g
(t)
i =

N
(t)
i∑

k=1

∇F (θ(t), ξ
(t)
i,k) , θ(t+1) = Opt

(
θ(t),

∑
i g

(t−1)
i∑

i Ni
(t−1)

)
, (DPU)

where Opt is the optimizer of our choice (e.g. Adam or AdamW for LLM training). Note that the
right side does indeed combine both the gradient averaging (communications) and the optimizer step,
which runs in parallel to the gradient computations to the left. Then we remark that, except at the
first step t = 0, the gradients used by Opt are computed on parameters θ(t−1) which differ from θ(t),
the ones we apply them to. This is inherently due to the parallel nature of our execution, and what

4

we denote by "delayed update". We will show in Sec. 5.2 that this can have drastic impacts on the
convergence in practice.

Toward ACCO. To counter this, a natural fix is to estimate what would be the parameters θ(t+2) in
addition to computing θ(t+1). That would allow the gradients at the next round to be computed on
these estimates rather than the parameters of the last step, meaning that the version of the gradients
used in the Opt step would match the parameters. We denote this rule by "Weight Prediction" (WP).
This time, we initialize a common θ(0), g̃i(0) = ∇F (θ(0), ξ

(0)
i), N (0)

i = 1 and θ̃(1) = Est(•), where
Est is our estimation function that could take any argument at this point. This leads to the following:

g̃
(t+1)
i =

N
(t+1)
i∑
k=1

∇F (θ̃(t+1), ξ
(t+1)
i,k) , θ(t+1) = Opt

(
θ(t),

∑
i g̃

(t)
i∑

i Ni
(t)

)
, θ̃(t+2) = Est(•) . (WP)

Thanks to Est, the optimizer now apply to the parameters θ(t) the gradients that were computed
on an estimated version θ̃(t), meaning that the one-step delay has been compensated. Akin to the
idea of [5] using the same SGD’s momentum several times to counter delays in pipelining, a simple
estimation function could be to re-use the gradients just received and apply a second optimizer

step, i.e.using θ̃(t+2) = Opt
(
θ(t+1),

∑
i g̃

(t)
i∑

i Ni
(t)

)
. This simple solution (denoted by ACCO-wp) is

investigated in our ablations in Sec. 5.2, but we found that it leads to a training dynamic differing
from the baseline, whereas ACCO, the algorithm we present next, perfectly matches it. The crux of

G
PU

comm./opt.
stream

 acc.
stream

Init. Step 1 Step 2 Step 3 Step 4

Figure 2: Illustration of ACCO’s two-stage mechanism (1)-(2) to compensate the delayed updates.

ACCO is to split the computation of the mini-batch gradients into two successive stages, where the first
half of the mini-batch is used to estimate θ̃(t+1) while θ(t+1) is computed using the full mini-batch.
This is motivated by the fact that training LLMs requires extremely large batch sizes [78], leading to
the usage of gradient accumulation in most cases, and if gradients are computed sequentially on a
worker, we might as well leverage this to produce our estimate. Thus, starting with an initialized θ(0),
g̃i

(0) = ∇F (θ(0), ξ
(0)
i) and N

(0)
i = 1, the two stages are (left and right side running in parallel):

g
(t)
i =

N
(t)
i∑

k=1

∇F (θ(t), ξ
(t)
i,k) , θ̃(t+1) = Opt

(
θ(t),

∑
i g̃

(t)
i∑

i Ñi
(t)

)
, (1)

g̃i
(t+1)=

Ñi
(t)∑

k=1

∇F (θ̃(t+1), ξ̃
(t+1)
i,k) , θ(t+1) = Opt

(
θ(t),

∑
i g

(t)
i + g̃

(t)
i∑

i N
(t)
i + Ñi

(t)

)
. (2)

We describe the different components of our two-stage mechanism as follows:

(1) The gradient computation stream uses the second half of the mini-batch to compute the
gradients g(t)i with respect to parameters θ(t) while the communication stream estimates
what would be the next steps parameters θ̃(t+1) using the estimated gradients g̃(t)i .

(2) The computation stream uses the first half of the mini-batch to estimate what would be the
gradients g̃(t+1)

i of the next parameters θ(t+1) using estimated parameters θ̃(t+1) while the
communication stream computes θ(t+1) using the full mini-batch. Note that it starts from
the same version of the parameters θ(t) as in step (1). The first half g̃(t)i was estimated at
step (2) of the last round, while the second half g(t)i was just computed in (1).

5

As illustrated in Fig. 2, by splitting the computations of the mini-batch gradients into two halves, we
do allow the gradient computations and communications timelines to run in parallel while performing
ACCO’s weight prediction estimation to compensate for the delayed update.

4 Empirical motivation and cluster setting

8 16 32 64 12824
workers

0

2

4

6

8

t (
s) comp./comm.

 computation
All-Reduce

Figure 3: Time (per worker) spent comput-
ing and averaging gradients of a Llama-2 7B
model for different numbers of GPUs.

In this section, we empirically motivate the need
for methods mitigating communication overhead in
Distributed Data Parallel (DDP) [29]. Our goal is to
illustrate that the time spent communicating gradi-
ents can quickly trump the one used for computing
them when using DDP to train LLMs. For that, we
measure the time necessary to perform a forward and
backward pass on a Llama-2 model [65] with 7B
parameters hosted on a single GPU, using a batch
size maxing out its memory. We compare this to
the time necessary to compute an All-Reduce on
those gradients with the NCCL backend, varying the
number of distributed workers. On all the follow-
ing, we experiment on our local cluster of NVIDIA
A100-80GB GPUs with 8 GPUs per node and an
Omni-PAth interconnection network at 100 Gb/s for
inter-node connections, intra-node connections being done with NVLink 300 GB/s. Each distributed
worker is hosted on a single GPU. We observe in Fig. 3 that when we communicate outside of a
GPU node in our cluster, the time needed to average the gradients across workers can take more
than four times the one spent on the whole forward and backward step. As DDP only partially hides
communications during the backward [29], this means that our GPUs remain idle the majority of the
time when we use more than 24 distributed workers, motivating the need for methods leveraging this
time to compute instead.

5 Experiments

.

.

.

GPU0 GPUi GPUN-1

Ze
R

O
-1

B
as

el
in

e
A

cc
o

Parameters Gradients Comm. buffer Optimizer State

Figure 4: Memory requirements of ACCO vs DDP
and ZeRO-1, see Tab.1 for quantitative details.

In this section, we lay down our experiments.
First in Sec. 5.1, we detail the common setup
for all our experiments. Second, in Sec. 5.2,
we illustrate the failings of DPU and ACCO-wp
that we hinted at in Sec. 3, which led us to
crafting ACCO. For this first exploration, we fo-
cus on small language models and datasets, us-
ing TinyStories [11] as our test-bed. Then in
Sec. 5.3, we verify that ACCO allows to effi-
ciently train LLMs at scale by considering a
125M parameters GPT-Neo architecture [4] and
the OpenWebText dataset [17].Finally in Sec.
5.4, we consider even larger models by using
ACCO for an instruction fine-tuning task with a

2.7B parameters GPT-Neo, which accentuates the effects of the inter-node communication bottlenecks
and highlights all the more the benefits of our method. They are further displayed in Appendix C
where we compare between ACCO and DDP on heterogeneous hardware. Our method allows faster
GPUs to accumulate while they wait for the slowest worker instead of remaining idle as in DDP, thus
allowing us to compute gradients for large batch sizes faster than the baseline, resulting in quicker
convergence in wall-clock time.

5.1 Experimental setup

All of our experiments are performed on the GPU cluster described in Sec. 4. A detailed pseudo-code
for ACCO can be found in Appendix A.2. Our implementation is in Pytorch [48], and we verified
that our code for ACCO does indeed produces two different CUDA streams running in parallel for the

6

computations and communications using NVIDIA’s Nsight System to profile it, as shown in Fig. 9
in the Appendix. We trained all our models with AdamW [33], using mixed precision: our model
parameters, gradient accumulation buffer, and communication buffers are in bfloat16 [21] while
our sharded optimizer states are in single precision, as shown in Fig. 4. We compared our algorithm
ACCO to several baselines in different settings, including Pytorch’s Distributed Data Parallel (DDP)
method [29] with ZeRO-1 [51].

5.2 Crafting ACCO on TinyStories

Here, we experiment with small language models on the TinyStories dataset [11], following the
configuration and training hyper-parameters of their paper [11] to the best of our abilities. Hence,
we use a 36M parameters GPT-Neo based [4] decoder-only transformer architecture. To match the
10k vocabulary they used, we trained our own BPE tokenizer on the TinyStories dataset. For our
experiments, we used up to 8 workers on a single node.

Impact of delayed updates. First, we investigate the impact of using delayed updates, re-purposing
DPU [55] as described in Sec. 3. We run three variants of this algorithm: (1) with no warmup, (2)
with 40 warmup steps of non-delayed optimization step before switching to DPU (recommended
recipe in [55]), and (3) with 500 steps of warmup. We report in Fig. 5 our training losses on 8
distributed workers averaged over 3 runs. We remark that using delayed updates can greatly hurt

0 10000 20000 30000 40000
minibatch

2

4

6

8

Tr
ain

in
g

lo
ss

Method
ACCO
DDP
DPU
DPU-warmup 40
DPU-warmup 500

(a) Training with the specified amount in [11].

0 20000 40000 60000 80000
minibatch

2

4

6

8

Tr
ain

in
g

lo
ss

Method
ACCO
DDP
DPU-warmup 500

(b) Training for twice the specified amount.

Figure 5: Impact of the delayed update and the amount of warmup steps on the training
convergence, especially when no or too few warmup steps are performed. Surprisingly, the number
of warmup steps given in [55] does not work here, hinting that it is a sensitive hyper-parameter to
tune for each use-case. When sufficiently many warmup steps are done, first the training loss follows
exactly the baseline one, but immediately spikes as soon as the delay is introduced. If we train for
twice as long than specified in [11], then the DPU training curve approaches the baseline one, without
totally catching it. Contrary to this, the training curve of our algorithm ACCO perfectly matches DDP’s
one from the beginning.

0 10000 20000 30000 40000
minibatch

2

4

6

8

Tr
ain

in
g

lo
ss

Method
ACCO
DDP
ACCO-wp

Figure 6: Comparison of ACCO with its Weight
Prediction version on TinyStories.

A simple approach to compensate delays. Af-
ter noticing the detrimental impact of using delayed
updates on the training performances of our mod-
els, we test our first approach to mitigate it. For
that, we implement ACCO-wp, the Weight Prediction
method described in Sec. 3. This method applies
two consecutive optimizer steps, re-using the same
mini-batch of gradients twice. The first step pro-
duces the usual updated parameters, and the second
one is used to predict the parameters of the next
step so that gradients can be computed on this es-
timate rather than on a stale version of the model.
In Fig. 6 we compare the training curves of this
delay-compensation method to ours. We remark
that, while ACCO perfectly matches the DDP base-

7

line at all times, ACCO-wp displays worse behavior, especially at the beginning of the training. Thus,
we dismiss this method and keep ours for the remaining of the experiments.

5.3 Passing the scaling test: training GPT-Neo on OpenWebText

Table 2: Perplexity of our trained LLMs
Method LAMBADA (ppl ↓) OpenWebText (ppl ↓)
ACCO 1x8 47.1 24.2
DDP 1x8 47.5 24.3

ACCO 4x8 45.5 22.5
DDP 4x8 44.1 21.7

To assess how ACCO scales with larger models
and more data, we pre-trained a model equiv-
alent to GPT-2 [50] with both ACCO and DDP.
Specifically, we used the GPT-Neo architecture
[4] with 125 million parameters and the Open-
WebText dataset [17], which contains 40 GB
of text. We used the GPT-Neo tokenizer, pre-
trained on the Pile dataset [16]. The models were trained on sequences of 1024 tokens, with documents
concatenated using end-of-sequence tokens. To assess the impact of using different hardware, the
experiment was repeated on 2 different clusters. The first was conducted on 8 H100-PCIe 80GB on
a single node. The second was on 32 A100-80G GPU distributed on 4 nodes. We maxed out the
memory of our GPUs with a local mini-batch size of 24. To reach a sufficiently large overall batch
size, we used 1 step of gradient accumulation for DDP, and none for ACCO as our method naturally
accumulates over 1 step, resulting for the first and second experiments in respectively 400K and
1.5M tokens per effective batch for both ACCO and DDP. In Tab. 3, we report additional experimental
details, and notice that training with ACCO allows for significant time gains, which is additionally
illustrated in Fig. 7. Moreover, to prevent GPUs from idling while waiting for communications,
ACCO adaptively scheduled 315 supplementary accumulation steps over the whole training. Further
details and results for the H100 experiment can be found in Appendix B.

0.0 0.5 1.0 1.5 2.0
minibatch 1e6

4

6

8

10

Tr
ain

in
g

lo
ss

Method
ACCO
DDP

(a) Evolution of the loss over the whole training.

0 1000 2000 3000 4000 5000
Time (s)

4

6

8

10

Tr
ain

in
g

lo
ss

Method
ACCO
DDP

(b) Focus on the first part of the training w.r.t time.

Figure 7: Training curves for ACCO and DDP with 32 workers trained for 50B tokens.

Tab. 2 reports the perplexity of trained language models with both methods, which is a commonly
used metric to evaluate pre-trained language models, as it quantifies the uncertainty of a model at
predicting the next token. We evaluate the perplexity of language models on LAMBADA [47] and a
test split of OpenWebText, and report similar results for both methods.

5.4 Advantages of using ACCO for instruction fine-tuning

In previous sections, we compared ACCO against DDP in the pre-training stage. To further validate our
algorithm, we additionally fine-tuned a pre-trained model on supervised instruction data. We consider
the GPT-Neo 2.7B model [4] pre-trained on the Pile dataset [16] and finetuned it on the Alpaca dataset
[64] containing 52k pairs of instruction/answer. We fine-tuned the model using two configurations: 8
A100-80G on a single node, and 8 A100-80G distributed equally across 2 nodes. Samples are padded
to match the longest sequence in the mini-batch. We fixed the mini-batch size at 4, leading to a total
batch size of 128 for all methods. For DDP and DPU, we used a gradient accumulation of 4, while
for ACCO , a gradient accumulation of 2 to account for the ACCO accumulation described in Sec. 1.
The learning rate was set to 2× 10−5 for all methods with a warmup of 50 steps, for DPU.

In this setting, padding to the longest sequence in the mini-batch induces more variability in the
number of tokens per mini-batch. This results in more variability in the computational load for each

8

0 200 400 600
Time (s)

1.10

1.15

1.20

Va
lid

ati
on

 lo
ss

Method
ACCO
DDP
DPU

0 2000 4000 6000
Time (s)

1.1

1.2

1.3

Va
lid

ati
on

 lo
ss

Method
ACCO
DDP

Figure 8: Validation curve with 8 workers on 1 node (left), and 4 workers/node on 2 nodes (right).

worker, leading to increased wait times for synchronization. We observe in Fig. 8 that ACCO hits a
lower validation loss faster than DDP on both 1 node and 2 nodes settings. Note that the difference
between ACCO and DDP is accentuated when workers are distributed on multiple nodes. In 11, we
observe that ACCO is less data efficient at the beginning of training, as evidenced by a higher loss
compared to DDP for the same number of seen tokens. This is likely due to the fact that ACCO favors
using tokens to increase the batch size to hide communication delays, meaning that fewer optimizer
steps are performed per token compared to DDP. However, both algorithms converge to very similar
loss values by the end of the training.

Table 3: Pre-training and finetuning time speedup with ACCO against DDP on various setups.

Stage Model GPUs #tokens DDP ACCO (∆T)

Pre-training GPT-Neo-125M 1x8 6B 4h41min 4h25min (−5.69%)
4x8 50B 14h41min 10h55min (−25.65%)

Finetuning GPT-Neo-2.7B 1x8 80M 43min 25min (−41.86%)
2x4 80M 3h46min 29min (−87.17%)

6 Limitations

Experiments mainly on one cluster environment. Due to the lack of variety in the compute
environments we have access to, the majority of our experiments were performed on a single cluster,
described in Sec. 4. This is a communication-constrained setting, as our hardware is not the most
cutting-edge in that regard as discussed in Sec. 4. This particularly flatters our method in comparison
to DDP, as it accentuates the impact of the communication overhead in the wall clock time. However,
to mitigate this one-sidedness, we also run a small pre-training study on one of the fastest hardware
available today, and report in Tab. 3 that even in that case, ACCO leads to a 5% time gain.

Communication cost only hidden, not reduced. While local optimization methods tackle the
communication overhead problem with scarce communications, here we only hide them. Thus, our
method does not lead to energy savings, nor question the cost of highly synchronized infrastructure.
However, ACCO naturally maximizes the hardware throughput, allowing to reduce their use time.

Further memory savings avenue not explored. Due to the parallel nature of ACCO, removing the
reliance on communication and gradient buffers seems hardly possible, questioning the feasibility of
further memory savings if all executions are kept on the GPU. But, akin to ZeRO-Offload [55], the
communication and optimizer stream could entirely be run on CPU, which would allow significant
memory gains. We did not experiment with this idea, and let this consideration for future work.

Conclusion

We propose ACCO, a novel algorithm that addresses the memory and communication challenges
inherent in training LLMs on distributed systems. By allowing for parallel computation and com-
munication of gradients while permitting sharding the optimizer states, ACCO effectively reduces

9

communication overhead in a memory-efficient fashion. We introduce a novel two-stage mechanism
to compensate for the delayed update inherent to this parallel setting, which ensures consistent
convergence dynamics with the standard optimization algorithm for large-scale distributed LLM
training without the need for warmup steps. We empirically confirm the benefits of our methods over
several pre-training and finetuning tasks, reporting drastically reduced training times compared to our
baseline, especially in multi-node settings or with heterogeneous devices.

Acknowledgements

This work was supported by Project ANR-21-CE23-0030 ADONIS, EMERG-ADONIS from Alliance
SU, and Sorbonne Center for Artificial Intelligence (SCAI) of Sorbonne University (IDEX SUPER
11-IDEX-0004). This work was granted access to the AI resources of IDRIS under the allocations
2023-A0151014526 made by GENCI.

References
[1] A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. In J. Shawe-Taylor, R. Zemel,

P. Bartlett, F. Pereira, and K. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 24. Curran Associates, Inc., 2011.

[2] B. M. Assran, A. Aytekin, H. R. Feyzmahdavian, M. Johansson, and M. G. Rabbat. Advances in
asynchronous parallel and distributed optimization. Proceedings of the IEEE, 108(11):2013–2031, 2020.

[3] M. Assran, N. Loizou, N. Ballas, and M. Rabbat. Stochastic gradient push for distributed deep learning. In
K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 344–353. PMLR, 09–15 Jun
2019.

[4] S. Black, G. Leo, P. Wang, C. Leahy, and S. Biderman. GPT-Neo: Large Scale Autoregressive Language
Modeling with Mesh-Tensorflow, Mar. 2021.

[5] C.-C. Chen, C.-L. Yang, and H.-Y. Cheng. Efficient and robust parallel dnn training through model
parallelism on multi-gpu platform, 2019.

[6] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training deep nets with sublinear memory cost, 2016.

[7] X. Chen, X. Li, and P. Li. Toward communication efficient adaptive gradient method. Proceedings of the
2020 ACM-IMS on Foundations of Data Science Conference, 2020.

[8] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. a. Ranzato, A. Senior, P. Tucker,
K. Yang, Q. Le, and A. Ng. Large scale distributed deep networks. In F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, editors, Advances in Neural Information Processing Systems, volume 25. Curran
Associates, Inc., 2012.

[9] M. Diskin, A. Bukhtiyarov, M. Ryabinin, L. Saulnier, Q. Lhoest, A. Sinitsin, D. Popov, D. Pyrkin,
M. Kashirin, A. Borzunov, A. V. del Moral, D. Mazur, I. Kobelev, Y. Jernite, T. Wolf, and G. Pekhimenko.
Distributed deep learning in open collaborations. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, editors, Advances in Neural Information Processing Systems, 2021.

[10] S. Dutta, J. Wang, and G. Joshi. Slow and stale gradients can win the race. IEEE Journal on Selected
Areas in Information Theory, 2(3):1012–1024, 2021.

[11] R. Eldan and Y. Li. Tinystories: How small can language models be and still speak coherent english?,
2023.

[12] M. Even, R. Berthier, F. Bach, N. Flammarion, H. Hendrikx, P. Gaillard, L. Massoulié, and A. Taylor.
A continuized view on nesterov acceleration for stochastic gradient descent and randomized gossip. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural Information
Processing Systems, 2021.

[13] S. Fan, Y. Rong, C. Meng, Z. Cao, S. Wang, Z. Zheng, C. Wu, G. Long, J. Yang, L. Xia, et al. Dapple:
A pipelined data parallel approach for training large models. In Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 431–445, 2021.

[14] H. R. Feyzmahdavian and M. Johansson. Asynchronous iterations in optimization: New sequence results
and sharper algorithmic guarantees. Journal of Machine Learning Research, 24(158):1–75, 2023.

10

[15] L. Fournier and E. Oyallon. Cyclic data parallelism for efficient parallelism of deep neural networks, 2024.

[16] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A. Thite, N. Nabeshima,
et al. The pile: An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027,
2020.

[17] A. Gokaslan, V. Cohen, E. Pavlick, and S. Tellex. Openwebtext corpus. http://Skylion007.github.
io/OpenWebTextCorpus, 2019.

[18] E. Gorbunov, A. Rogozin, A. Beznosikov, D. Dvinskikh, and A. Gasnikov. Recent Theoretical Advances in
Decentralized Distributed Convex Optimization, pages 253–325. Springer International Publishing, Cham,
2022.

[19] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu, et al. Gpipe:
Efficient training of giant neural networks using pipeline parallelism. Advances in neural information
processing systems, 32, 2019.

[20] J.-H. Jacobsen, A. W. Smeulders, and E. Oyallon. i-revnet: Deep invertible networks. In International
Conference on Learning Representations, 2018.

[21] D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee, S. Avancha, D. T. Vooturi, N. Jam-
malamadaka, J. Huang, H. Yuen, J. Yang, J. Park, A. Heinecke, E. Georganas, S. Srinivasan, A. Kundu,
M. Smelyanskiy, B. Kaul, and P. Dubey. A study of bfloat16 for deep learning training, 2019.

[22] S. P. Karimireddy, M. Jaggi, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T. Suresh. Mime:
Mimicking centralized stochastic algorithms in federated learning. ArXiv, abs/2008.03606, 2020.

[23] C. Kim, H. Lee, M. Jeong, W. Baek, B. Yoon, I. Kim, S. Lim, and S. Kim. torchgpipe: On-the-fly pipeline
parallelism for training giant models, 2020.

[24] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference on
Learning Representations (ICLR), San Diega, CA, USA, 2015.

[25] A. Koloskova, S. U. Stich, and M. Jaggi. Sharper convergence guarantees for asynchronous sgd for
distributed and federated learning. In Proceedings of the 36th International Conference on Neural
Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates Inc.

[26] J. Konecný, H. B. McMahan, D. Ramage, and P. Richtárik. Federated optimization: Distributed machine
learning for on-device intelligence. ArXiv, abs/1610.02527, 2016.

[27] A. Kosson, V. Chiley, A. Venigalla, J. Hestness, and U. Köster. Pipelined backpropagation at scale:
Training large models without batches, 2021.

[28] D. Kovalev, A. Salim, and P. Richtarik. Optimal and practical algorithms for smooth and strongly convex
decentralized optimization. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 18342–18352. Curran Associates,
Inc., 2020.

[29] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke, J. Smith, B. Vaughan, P. Damania,
and S. Chintala. Pytorch distributed: experiences on accelerating data parallel training. Proc. VLDB
Endow., 13(12):3005–3018, aug 2020.

[30] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated optimization for
heterogeneous networks. In ICML Workshop on Adaptive & Multitask Learning: Algorithms & Systems,
2019.

[31] T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi. Don’t use large mini-batches, use local sgd. In International
Conference on Learning Representations, 2020.

[32] Y. Liu, S. Li, J. Fang, Y. Shao, B. Yao, and Y. You. Colossal-auto: Unified automation of parallelization
and activation checkpoint for large-scale models, 2023.

[33] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019.

[34] K. Mangalam, H. Fan, Y. Li, C.-Y. Wu, B. Xiong, C. Feichtenhofer, and J. Malik. Reversible vision
transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10830–10840, 2022.

11

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

[35] A. Maranjyan, M. Safaryan, and P. Richtárik. Gradskip: Communication-accelerated local gradient
methods with better computational complexity, 2022.

[36] R. McDonald, K. Hall, and G. Mann. Distributed training strategies for the structured perceptron. In Human
Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association
for Computational Linguistics, HLT ’10, page 456–464, USA, 2010. Association for Computational
Linguistics.

[37] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas. Communication-Efficient Learning
of Deep Networks from Decentralized Data. In A. Singh and J. Zhu, editors, Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine
Learning Research, pages 1273–1282. PMLR, 20–22 Apr 2017.

[38] K. Mishchenko, F. Bach, M. Even, and B. Woodworth. Asynchronous SGD beats minibatch SGD under
arbitrary delays. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural
Information Processing Systems, 2022.

[39] K. Mishchenko, G. Malinovsky, S. Stich, and P. Richtárik. Proxskip: Yes! local gradient steps provably
lead to communication acceleration! finally! arXiv preprint arXiv:2202.09357, 2022.

[40] I. Mitliagkas, C. Zhang, S. Hadjis, and C. Ré. Asynchrony begets momentum, with an application to deep
learning. In 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton),
page 997–1004. IEEE Press, 2016.

[41] A. Nabli, E. Belilovsky, and E. Oyallon. $\textbf{A}^2\textbf{CiD}^2$: Accelerating asynchronous
communication in decentralized deep learning. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[42] A. Nabli and E. Oyallon. DADAO: Decoupled accelerated decentralized asynchronous optimization. In
A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors, Proceedings of the
40th International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pages 25604–25626. PMLR, 23–29 Jul 2023.

[43] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur, G. R. Ganger, P. B. Gibbons, and
M. Zaharia. Pipedream: Generalized pipeline parallelism for dnn training. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 1–15, 2019.

[44] D. Narayanan, A. Phanishayee, K. Shi, X. Chen, and M. Zaharia. Memory-efficient pipeline-parallel dnn
training. In International Conference on Machine Learning, pages 7937–7947. PMLR, 2021.

[45] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, and D. Huba. Federated learning with
buffered asynchronous aggregation. In G. Camps-Valls, F. J. R. Ruiz, and I. Valera, editors, Proceedings of
The 25th International Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of
Machine Learning Research, pages 3581–3607. PMLR, 28–30 Mar 2022.

[46] J. J. G. Ortiz, J. Frankle, M. Rabbat, A. Morcos, and N. Ballas. Trade-offs of local sgd at scale: An
empirical study. In NeurIPS 2020 OptML Workshop, 2021.

[47] D. Paperno, G. Kruszewski, A. Lazaridou, N. Q. Pham, R. Bernardi, S. Pezzelle, M. Baroni, G. Boleda,
and R. Fernandez. The LAMBADA dataset: Word prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1525–1534, Berlin, Germany, August 2016. Association for Computational Linguistics.

[48] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. Pytorch: an imperative style, high-performance deep learning library. In
Proceedings of the 33rd International Conference on Neural Information Processing Systems, Red Hook,
NY, USA, 2019. Curran Associates Inc.

[49] S. Pati, S. Aga, M. Islam, N. Jayasena, and M. D. Sinclair. Computation vs. communication scaling for
future transformers on future hardware, 2023.

[50] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are unsupervised
multitask learners. 2019.

[51] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He. Zero: memory optimizations toward training trillion
parameter models. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’20. IEEE Press, 2020.

12

[52] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He. Zero: Memory optimizations toward training trillion
parameter models, 2020.

[53] S. Rajbhandari, O. Ruwase, J. Rasley, S. Smith, and Y. He. Zero-infinity: Breaking the gpu memory wall
for extreme scale deep learning, 2021.

[54] S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečný, S. Kumar, and H. B. McMahan.
Adaptive federated optimization. In International Conference on Learning Representations, 2021.

[55] J. Ren, S. Rajbhandari, R. Y. Aminabadi, O. Ruwase, S. Yang, M. Zhang, D. Li, and Y. He. Zero-offload:
Democratizing billion-scale model training, 2021.

[56] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié. Optimal algorithms for smooth and strongly
convex distributed optimization in networks. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 3027–3036. PMLR, 06–11 Aug 2017.

[57] S. Shen, L. Xu, J. Liu, X. Liang, and Y. Cheng. Faster distributed deep net training: computation and
communication decoupled stochastic gradient descent. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, page 4582–4589. AAAI Press, 2019.

[58] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro. Megatron-lm: Training
multi-billion parameter language models using model parallelism. arXiv preprint arXiv:1909.08053, 2019.

[59] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari, J. Casper, Z. Liu, S. Prabhumoye,
G. Zerveas, V. Korthikanti, et al. Using deepspeed and megatron to train megatron-turing nlg 530b, a
large-scale generative language model. arXiv preprint arXiv:2201.11990, 2022.

[60] Z. Song, L. Shi, S. Pu, and M. Yan. Optimal gradient tracking for decentralized optimization. Mathematical
Programming, Jul 2023.

[61] S. U. Stich. Local SGD converges fast and communicates little. In International Conference on Learning
Representations, 2019.

[62] S. U. Stich and S. P. Karimireddy. The error-feedback framework: better rates for sgd with delayed
gradients and compressed updates. Journal of Machine Learning Research, 21(1), jan 2020.

[63] W. Sun, Z. Qin, W. Sun, S. Li, D. Li, X. Shen, Y. Qiao, and Y. Zhong. CO2: Efficient distributed training
with full communication-computation overlap. In The Twelfth International Conference on Learning
Representations, 2024.

[64] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto. Stanford
alpaca: An instruction-following llama model. https://github.com/tatsu-lab/stanford_alpaca,
2023.

[65] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava,
S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu,
B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez,
M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu,
Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta,
K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams,
J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic,
S. Edunov, and T. Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023.

[66] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin.
Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017.

[67] G. Wang, H. Qin, S. A. Jacobs, C. Holmes, S. Rajbhandari, O. Ruwase, F. Yan, L. Yang, and Y. He. Zero++:
Extremely efficient collective communication for giant model training, 2023.

[68] J. Wang, H. Liang, and G. Joshi. Overlap local-sgd: An algorithmic approach to hide communication
delays in distributed sgd. In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, May 2020.

[69] J. Wang, V. Tantia, N. Ballas, and M. Rabbat. Slowmo: Improving communication-efficient distributed sgd
with slow momentum. In International Conference on Learning Representations, 2020.

13

https://github.com/tatsu-lab/stanford_alpaca

[70] B. Woodworth, K. K. Patel, S. Stich, Z. Dai, B. Bullins, B. Mcmahan, O. Shamir, and N. Srebro. Is local
SGD better than minibatch SGD? In H. D. III and A. Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
10334–10343. PMLR, 13–18 Jul 2020.

[71] X. Wu, S. Magnusson, H. R. Feyzmahdavian, and M. Johansson. Delay-adaptive step-sizes for asyn-
chronous learning. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, editors,
Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pages 24093–24113. PMLR, 17–23 Jul 2022.

[72] C. Xie, S. Koyejo, and I. Gupta. Asynchronous federated optimization. In NeurIPS 2020 OptML Workshop,
2020.

[73] B. Yang, J. Zhang, J. Li, C. Ré, C. R. Aberger, and C. D. Sa. Pipemare: Asynchronous pipeline parallel
dnn training, 2020.

[74] K. Yuan, Q. Ling, and W. Yin. On the convergence of decentralized gradient descent. SIAM Journal on
Optimization, 26(3):1835–1854, 2016.

[75] J. Zhang and I. Mitliagkas. Yellowfin and the art of momentum tuning. In A. Talwalkar, V. Smith, and
M. Zaharia, editors, Proceedings of Machine Learning and Systems, volume 1, pages 289–308, 2019.

[76] S. Zhang, A. Choromanska, and Y. LeCun. Deep learning with elastic averaging sgd. In Proceedings of
the 28th International Conference on Neural Information Processing Systems - Volume 1, NIPS’15, page
685–693, Cambridge, MA, USA, 2015. MIT Press.

[77] Z. Zhang, S. Zheng, Y. Wang, J. Chiu, G. Karypis, T. Chilimbi, M. Li, and X. Jin. Mics: Near-linear
scaling for training gigantic model on public cloud, 2022.

[78] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang, Z. Dong, Y. Du,
C. Yang, Y. Chen, Z. Chen, J. Jiang, R. Ren, Y. Li, X. Tang, Z. Liu, P. Liu, J.-Y. Nie, and J.-R. Wen. A
survey of large language models, 2023.

[79] Y. Zhao, A. Gu, R. Varma, L. Luo, C.-C. Huang, M. Xu, L. Wright, H. Shojanazeri, M. Ott, S. Shleifer,
A. Desmaison, C. Balioglu, P. Damania, B. Nguyen, G. Chauhan, Y. Hao, A. Mathews, and S. Li. Pytorch
fsdp: Experiences on scaling fully sharded data parallel, 2023.

[80] S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, and T.-Y. Liu. Asynchronous stochastic gradient
descent with delay compensation. In Proceedings of the 34th International Conference on Machine
Learning - Volume 70, ICML’17, page 4120–4129. JMLR.org, 2017.

[81] F. Zhou and G. Cong. On the convergence properties of a k-step averaging stochastic gradient descent
algorithm for nonconvex optimization. In Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI-18, pages 3219–3227. International Joint Conferences on Artificial
Intelligence Organization, 7 2018.

[82] H. Zhuang, Z. Lin, and K.-A. Toh. Accumulated decoupled learning: Mitigating gradient staleness in
inter-layer model parallelization. arXiv preprint arXiv:2012.03747, 2020.

[83] H. Zhuang, Y. Wang, Q. Liu, and Z. Lin. Fully decoupled neural network learning using delayed gradients.
IEEE transactions on neural networks and learning systems, 33(10):6013–6020, 2021.

[84] M. Zinkevich, M. Weimer, L. Li, and A. Smola. Parallelized stochastic gradient descent. In J. Laf-
ferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information
Processing Systems, volume 23. Curran Associates, Inc., 2010.

14

Appendix

A Implementation Details

A.1 Profiling Results

 accumulation stream∇

Cuda kernels on
accumulation stream

∇

Communication
streams

 accumulation stream∇

Cuda kernels on
accumulation stream

∇

Communication
streams

Clone optimizer
state to buffer

Load the grads from the
buffer to optimizer

All reduce the
grad counter

Reduce scatter the
accumulated gradients
on the buffer

Divide the gradients by
the number of gradient
steps

All gather the
params on the
buffer

Clone buffer to
optimizer state

Copy the params to
buffer

Figure 9: Nsight system profile of our implementation of ACCO: our two steams do run in parallel.
In this Figure, the computation take more time than the communication because we only profiled
small scale experiments with 8 workers, and small number of parameters (36M as we profiled on our
TinyStories [11] setting). This changes when using larger models and more workers, as seen in 4.

A.2 Algorithm presentation

15

B Experimental Details and Further Results

B.1 Pre-training on TinyStories

For experiements in section 5.2, we used the configuration of We used the dataset TinyStories
available on the Huggingface Hub 2. We trained our own 10k vocabulary tokenizer on the dataset.

B.2 Pre-training on OpenWebText

For all pre-training experiments on OpenWebText, the configuration used to instantiate the GPTNeo
125M is available on the Huggingface Hub3. We only changed the "max_position_embeddings"
parameter from 2048 to 1024. We used the OpenWebText dataset available on Huggingface4. We
also report in Fig. 10 further results for the pre-training on H100 GPUs.

0 50000 100000 150000 200000 250000
minibatch

101

3 × 100

4 × 100

6 × 100

Tr
ain

in
g

lo
ss

Method
ACCO
DDP

Figure 10: Training loss during training on OpenWebText with 8 H100 GPUs and 6B tokens.

Table 4: Training hyperparameters for ACCO and DDP configurations.

Hyperparameter 8 H100 32 A100
mini-batch_size 24 24
n_grad_accumulation ACCO: -DDP: 1 ACCO: -DDP: 1
sequence_len 1024 1024
#tokens_batch 400K 1.5M
optimizer AdamW AdamW
learning_rate 6e-4 6e-4
weight_decay 0.1 0.1
adam_beta1 0.9 0.9
adam_beta2 0.95 0.95
nb_steps_tot 50000 50000
scheduler cosine cosine
n_warmup_steps 0 0

B.3 Instruction Fine-Tuning

For all fine-tuning experiments, we used the pre-trained GPT-neo 2.7B available on the Huggingface
Hub5 and the associated tokenizer. We used the Alpaca dataset available on Huggingface6.

2Tiny Stories Available at: https://huggingface.co/datasets/roneneldan/TinyStories
3GPT-neo 125M Configuration Available at: https://huggingface.co/EleutherAI/gpt-neo-125m/

blob/main/config.json
4OpenWebText Dataset Available at: https://huggingface.co/datasets/Skylion007/

openwebtext
5GPT-neo 2.7B Available at: https://huggingface.co/EleutherAI/gpt-neo-2.7B
6Alpaca Dataset Available at: https://huggingface.co/datasets/tatsu-lab/alpaca

16

 https://huggingface.co/datasets/roneneldan/TinyStories
https://huggingface.co/EleutherAI/gpt-neo-125m/blob/main/config.json
https://huggingface.co/EleutherAI/gpt-neo-125m/blob/main/config.json
https://huggingface.co/datasets/Skylion007/openwebtext
https://huggingface.co/datasets/Skylion007/openwebtext
https://huggingface.co/EleutherAI/gpt-neo-2.7B
https://huggingface.co/datasets/tatsu-lab/alpaca

0 5000 10000 15000 20000
minibatch

1.10

1.15

1.20

Va
lid

ati
on

 lo
ss

Method
ACCO
DDP
DPU

0 10000 20000 30000
minibatch

1.1

1.2

1.3

Va
lid

ati
on

 lo
ss

Method
ACCO
DDP

Figure 11: Validation curve with 8 workers on a single node (left), and with 4 workers per nodes on 2
nodes (right).

Table 5: Finetuning hyperparameters for ACCO, DDP and DPU configurations.

Hyperparameter ACCO DDP DPU
mini-batch_size 4 4 4
n_grad_accumulation 2 4 4
total batch_size 128 128 128
optimizer AdamW AdamW AdamW
learning_rate 2e-5 2e-5 2e-5
weight_decay 0.0 0.0 0.0
adam_beta1 0.9 0.9 0.9
adam_beta2 0.95 0.95 0.95
nb_steps_tot 50000 50000 50000
scheduler cosine cosine cosine
n_warmup_steps 0 0 50

C Experiment Using Heterogeneous Devices

To witness the impact of using heterogeneous devices, we run our algorithm ACCO and compared
it to the DDP baseline in a four workers setting, with one of the GPU four times slower than the
other three, as shown in Fig. 12. As we experiment on a cluster of A100 GPUs, we simulated the
heterogeneity of the hardware by using the time.sleep() python command. First, we measured
the time that a standard forward-backward step takes in our homogeneous cluster, and put to sleep
one of the four GPUs for three times this amount after each forward-backward pass. In this context,
DDP is only as fast as the slowest worker, meaning that 3 of the 4 workers are idle a third of the time.
With our method, the other workers accumulate during the time they are waiting for the slow one to
finish. This means that ACCO allows to compute gradients for large batch sizes faster than standard
baselines, resulting in faster convergence in terms of wall-clock time, as displayed in Fig. 12.

0 500 1000 1500
Time (s)

2

4

6

8

Tr
ain

in
g

lo
ss

Method
ACCO
DDP

0 1 2 3
GPU rank

0

1

2

3

4

 ac

c.
/ r

ou
nd

0

100

200

300

t (
m

s)
/

t (
m

s)

t (
m

s)

t (
m

s)

t (
m

s)

Figure 12: Training curves with 3 normal workers and 1 slow worker (4× slower).

17

Algorithm 1 Training with ACCO in parallel for a worker i

1: Input: Model with differentiable loss F , number of models N , initial parameters θ(0), training
steps T , dataset shards Di.

2: Initialize: gradients gi(−1) = ∇F (θ(0), ξ
(0)
i) and number of gradients N (−1)

i = 1
3: # Computation CUDA stream
4: while t < T do
5: Stage 1.
6: while not Ready_for_Stage_2 do
7: ξ

(t)
i ← Di

8: g
(t)
i ← g

(t)
i +∇F (θ(t), ξ

(t)
i)

9: N
(t)
i ← N

(t)
i + 1

10: θ̃(t+1) ← Bufferi
11: Bufferi ← (N

(t)
i , g

(t)
i)

12: Stage 2.
13: while not Ready_for_Stage_1 do
14: ξ

(t)
i ← Di

15: g̃
(t)
i ← g̃

(t)
i +∇F (θ̃(t+1), ξ

(t)
i)

16: Ñ
(t)
i ← Ñ

(t)
i + 1

17: t← t+ 1
18: θ(t+1) ← Bufferi
19: Bufferi ← (Ñ

(t)
i , g̃

(t)
i)

20:
21: # Communication CUDA stream
22: while True do
23: Stage 1.
24: (Ñ

(t)
i , g̃

(t)
i)← Bufferi

25:
∑

i Ñ
(t)
i ← All_Reduce(Ñ (t)

i)

26: Shardi
(∑

i g
(t)
i

)
← Reduce_Scatter(g̃(t)i)

27: Shardi
(
θ̃(t+1)

)
← ShardedOpt

(
Shardi

(
θ(t)
)
, Shardi

(∑
i g̃

(t)
i∑

i Ñi
(t)

))
28: Bufferi ← All_Gather(Shardi

(
θ̃(t+1)

)
)

29: N
(t)
i ← 0

30: Ready_for_Stage_2← True
31: Ready_for_Stage_1← False
32: Stage 2.
33: (N

(t)
i , g

(t)
i)← Bufferi

34:
∑

i N
(t)
i + Ñ

(t)
i ← All_Reduce(N (t)

i +
∑

i Ñ
(t)
i)

35: Shardi
(∑

i g
(t)
i + g̃

(t)
i

)
← Reduce_Scatter(g(t)i +

∑
i g̃

(t)
i)

36: Shardi
(
θ(t+1)

)
← ShardedOpt

(
Shardi

(
θ(t)
)
, Shardi

(∑
i g

(t)
i +g̃

(t)
i∑

i N
(t)
i +Ñi

(t)

))
37: Bufferi ← All_Gather(Shardi

(
θ(t+1)

)
)

38: Ñ
(t)
i ← 0

39: Ready_for_Stage_1← True
40: Ready_for_Stage_2← False

18

	Introduction
	Related work
	Method
	Empirical motivation and cluster setting
	Experiments
	Experimental setup
	Crafting ACCO on TinyStories
	Passing the scaling test: training GPT-Neo on OpenWebText
	Advantages of using ACCO for instruction fine-tuning

	Limitations
	Implementation Details
	Profiling Results
	Algorithm presentation

	Experimental Details and Further Results
	Pre-training on TinyStories
	Pre-training on OpenWebText
	Instruction Fine-Tuning

	Experiment Using Heterogeneous Devices

