Covalency versus magnetic axiality in Nd molecular magnets: Nd-photoluminescence, strong ligand-field, and unprecedented nephelauxetic effect in fullerenes NdM2N@C80 (M = Sc, Lu, Y) - Archive ouverte HAL Access content directly
Journal Articles Chemical Science Year : 2024

Covalency versus magnetic axiality in Nd molecular magnets: Nd-photoluminescence, strong ligand-field, and unprecedented nephelauxetic effect in fullerenes NdM2N@C80 (M = Sc, Lu, Y)

Wei Yang
  • Function : Author
Marco Rosenkranz
  • Function : Author
Georgios Velkos
  • Function : Author
Frank Ziegs
  • Function : Author
Vasilii Dubrovin
Sandra Schiemenz
  • Function : Author
Lukas Spree
Manuel Valvidares
  • Function : Author
Bernd Büchner
  • Function : Author
Fupin Liu
Stanislav Avdoshenko
  • Function : Author
Alexey Popov

Abstract

Nd-based nitride clusterfullerenes NdM2N@C-80 with rare-earth metals of different sizes (M = Sc, Y, Lu) were synthesized to elucidate the influence of the cluster composition, shape and internal strain on the structural and magnetic properties. Single crystal X-ray diffraction revealed a very short Nd-N bond length in NdSc2N@C-80. For Lu and Y analogs, the further shortening of the Nd-N bond and pyramidalization of the NdM2N cluster are predicted by DFT calculations as a result of the increased cluster size and a strain caused by the limited size of the fullerene cage. The short distance between Nd and nitride ions leads to a very large ligand-field splitting of Nd3+ of 1100-1200 cm(-1), while the variation of the NdM2N cluster composition and concomitant internal strain results in the noticeable modulation of the splitting, which could be directly assessed from the well-resolved fine structure in the Nd-based photoluminescence spectra of NdM2N@C-80 clusterfullerenes. Photoluminescence measurements also revealed an unprecedentedly strong nephelauxetic effect, pointing to a high degree of covalency. The latter appears detrimental to the magnetic axiality despite the strong ligand field. As a result, the ground magnetic state has considerable transversal components of the pseudospin g-tensor, and the slow magnetic relaxation of NdSc2N@C-80 could be observed by AC magnetometry only in the presence of a magnetic field. A combination of the well-resolved magneto-optical states and slow relaxation of magnetization suggests that Nd clusterfullerenes can be useful building blocks for magneto-photonic quantum technologies.

Dates and versions

hal-04592537 , version 1 (29-05-2024)

Identifiers

Cite

Wei Yang, Marco Rosenkranz, Georgios Velkos, Frank Ziegs, Vasilii Dubrovin, et al.. Covalency versus magnetic axiality in Nd molecular magnets: Nd-photoluminescence, strong ligand-field, and unprecedented nephelauxetic effect in fullerenes NdM2N@C80 (M = Sc, Lu, Y). Chemical Science, 2024, 15 (6), pp.2141-2157. ⟨10.1039/d3sc05146c⟩. ⟨hal-04592537⟩
8 View
0 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More