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SPEECH FOUNDATION MODELS ON INTELLIGIBILITY PREDICTION
FOR HEARING-IMPAIRED LISTENERS

Santiago Cuervo, Ricard Marxer

Université de Toulon, Aix Marseille Univ, CNRS, LIS, France

ABSTRACT

Speech foundation models (SFMs) have been benchmarked
on many speech processing tasks, often achieving state-of-
the-art performance with minimal adaptation. However, the
SFM paradigm has been significantly less explored for appli-
cations of interest to the speech perception community. In this
paper we present a systematic evaluation of 10 SFMs on one
such application: Speech intelligibility prediction. We focus
on the non-intrusive setup of the Clarity Prediction Chal-
lenge 2 (CPC2), where the task is to predict the percentage of
words correctly perceived by hearing-impaired listeners from
speech-in-noise recordings. We propose a simple method
that learns a lightweight specialized prediction head on top of
frozen SFMs to approach the problem. Our results reveal sta-
tistically significant differences in performance across SFMs.
Our method resulted in the winning submission in the CPC2,
demonstrating its promise for speech perception applications.

Index Terms— Foundation models, speech perception,
intelligibility prediction, hearing aids.

1. INTRODUCTION

Foundation models (FMs) are deep neural networks trained
on large diverse datasets that can be applied to a wide range
of downstream tasks with little or no adaptation . They have
led to great progress in natural language processing problems
on both text and speech [1, 2, 3, 4, 5], often reaching state-of-
the-art performance with little task-specific training.

In the speech domain, which is the focus of our work, sev-
eral studies have benchmarked speech FMs (SFMs) on their
capacity to extract phonetic, semantic, speaker-related and
paralinguistic information [6, 7]. However, there is a lack of
systematic benchmarks on speech perception tasks, in which
the objective is not to decode the content of the speech signal,
but to model how the signal will be decoded by a listener.

We believe that SFMs have significant potential to drive
progress on speech perception. Our belief is based on two
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facts: a) Representations learned by SFMs can capture se-
mantically meaningful information from both speech [6] and
the acoustic background in which it occurs [8], and b) Lan-
guage processing in SFMs and brains shows significant sim-
ilarities [9]. Based on a) we deduce that SFMs can extract
the listener-independent information relevant for perception
from the whole soundscape. From b), we speculate that such
similarities translate in predictive power over perceptual phe-
nomena. We presented evidence for this hypothesis in [10].

In this work we take a step towards benchmarking SFMs
for speech perception. We systematically evaluate 10 differ-
ent SFMs on the Clarity Prediction Challenge 2 (CPC2) [11],
in which the objective is to build machine learning models
that take speech-in-noise binaural audio recordings and the
audiogram from a hearing-impaired listener as input, and pre-
dict the percentage of words that the listener correctly recog-
nizes. Our main contributions are:

• We present a prediction model for the CPC2 leveraging
SFMs. The model uses a specialized prediction head
that extracts multi-layer features from SFMs, and uses
cross-attention to exploit binaural cues. This method
resulted in the winning submission for the CPC2.

• We benchmark 10 SFMs on the CPC2 using our spe-
cialized predictive model, finding statistically signifi-
cant performance differences. Additionally, we study
SFM ensembles obtained by averaging predictions. We
demonstrate that SFMs learn complementary informa-
tion, as evidenced by over 60% of their ensembles out-
performing the best individual model, and all ensem-
bles outperforming all but the single best model.

2. INTELLIGIBILITY PREDICTION MODEL

Our model for intelligibility prediction is depicted in Fig. 1. It
consists of a pre-trained frozen backbone that extracts repre-
sentations from raw binaural speech data, and a head designed
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to predict intelligibility conditioned on the representations ob-
tained from the backbone. We extract features from all layers
of the backbone following [6, 5, 8].

2.1. Backbone

For the backbone we consider multiple state-of-the-art SFMs:
Wav2vec 2.0 consists of two components: An encoder

and a predictor. The encoder is a strided convolutional net-
work that produces embeddings from the speech input. The
predictor is an encoder-only transformer [12] trained con-
trastively to distinguish positive and negative samples from
discretized and masked segments of the encoder’s output. We
use four variants: LARGE pretrained wav2vec 2.0 [2] trained
on 60k hours of the LibriLight dataset (LL-60k), LARGE
pretrained wav2vec 2.0 robust [13] trained on 3k hours of
additional diverse data, and their variants fine-tuned (FT) for
ASR on 960h of the LibriSpeech dataset (LS-960h).

HuBERT uses an encoder-predictor architecture as in
wav2vec 2.0. Instead of a contrastive loss, it is trained with
a masked language modeling task similar to BERT [1], but
masks continuous segments of the encoder’s output instead
of tokens. The targets for the masked prediction are obtained
through unsupervised clustering of raw speech features or
learned features from earlier iterations of the model. We
use the LARGE and X-LARGE variants [3] pre-trained on
LL-60K, and their versions fine-tuned for ASR on LS-960h.

WavLM expands on HuBERT with an auxiliary denois-
ing task. Some inputs are corrupted by mixing them with
noise or other speech. The model is trained to jointly predict
the targets for the masked segments and original uncorrupted
speech. This joint pre-training helps the model learn useful
representations for a wide range of speech tasks. We use the
LARGE variant [5] pre-trained on 94k hours of speech.

Whisper is trained through large-scale multi-task super-
vised learning on over 680k hours of diverse audio, unlike
previous models which were trained using self-supervised
learning. The model is an encoder-decoder transformer
trained on many speech processing tasks, including multilin-
gual speech recognition, speech translation, spoken language
identification, and voice activity detection. Whisper showed
robustness to unseen domains, being often competitive with
prior fully supervised results but in a zero-shot setting. We
use the encoder of the LARGE-v2 variant [4].

2.2. Prediction head

We adapt the transformer across time and layers from [8] for
intelligibility prediction by adding an embedding layer to in-
sert listener information, and a cross-attention block between
binaural channels to account for binaural effects on intelligi-
bility. We describe below its components.

Dimensionality reduction: The output of the backbone
is an L × t × d tensor, L being the number of layers of the

SFM, t the length in time of the speech representations se-
quence, and d the dimension of the representations. Consid-
ering the quadratic computational complexity of transformers
on the sequence length, we downsample in time by a factor of
20 through average pooling, following [8]. We then project
the embeddings from their original d-dimensional space to a
384-dimensional space through a learnable linear projection.

Temporal attention pooling: We use a transformer with
bidirectional attention to compress the downsampled se-
quence along the time axis. As in [1], we append a special
CLS embedding at the beginning of the sequence, which
after being processed by the transformer can be used as a
compressed representation of the whole sequence. Temporal
pooling gives an L× 384 tensor.

Audiogram embedding: We use audiograms as listener’s
information. Audiograms are a vector in R+8 representing
hearing capacity at 8 different frequencies. We project it to
R384 through a learnable linear projection and append it along
the layer axis, yielding an (L+ 1)× 384-dimensional tensor.

Attention pooling across layers: Next, we apply atten-
tion pooling along the layer axis using the same method as
in temporal attention. We use the special CLS embedding to
summarize the sequence of layer and audiogram embeddings,
resulting in a single 384-dimensional representation.

Binaural cross-attention: Each binaural channel is pro-
cessed by the pipeline described above. To account for non-
linear binaural effects in intelligibility [14] we use cross-
attention in the attention pooling transformers (see Fig. 1).

Prediction layer: The whole process yields two 384-
dimensional representations, one per binaural channel. Both
representations are averaged and linearly projected to R. We
apply a sigmoid layer to the output and multiply by 100 to
obtain predictions in the range of the target.

3. EXPERIMENTS AND RESULTS

3.1. Experimental setup

3.1.1. Data, metrics, and baselines

CPC2 provides binaural speech signals processed by hearing
aids, audiograms from hearing impaired listeners to which the
signals are presented, and their responses. The data is split
into three train/test partitions. The challenge requires
training three prediction systems, one per train set. There are
24,630 train and 897 test samples. For each partition, we sam-
ple a dev set using complex scenes from another partition.
Signals are at 32 kHz, we resampled to 16 kHz for the SFMs.

We report average test RMSE, the metric used in the
CPC2. Significance is tested with a paired Wilcoxon signed-
rank test [15]. Baselines are logistic regression on HASPI
[16] (CPC2 baseline) and CPC2 SFM-based submissions.
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Fig. 1: Intelligibility prediction model architecture. With the exception of frozen backbone blocks (grey), blocks with the same
color indicate shared parameters. Left: Pipeline applied to each channel of the binaural signal . Right: Binaural block used in
the temporal and layer transformers. The cross-attention layer enables modeling of non-linear binaural interactions.

3.1.2. Training

All models were trained to minimize a Huber loss for 60k
steps using Adam [17] with a learning rate of 3e−5, β1 = 0.9,
β2 = 0.98, and a batch size of 160. We used a cosine learning
rate schedule with a linear warm-up of 2000 steps. To all
transformer layers we apply dropout [18] with p = 0.1.

3.1.3. Software and computational cost

We use publicly available checkpoints for the backbones . A
training run takes close to 9 hours on a single GPU NVIDIA
A100-80 GB and it requires about 18.4 GB of GPU mem-
ory when using HuBERT X-LARGE or Whisper, and 14.4
GB with other models. We will release our source code at
https://github.com/tiagoCuervo/sfms-cpc2.

3.2. Results

3.2.1. Backbone performance

Table 1 shows results for different SFM backbones. All back-
bones outperform the CPC2 baseline. Wav2vec 2.0 FT has the
lowest average RMSE, but HuBERT L has the overall low-
est. Three other models outperform the best wav2vec 2.0 FT.
Statistical tests (Table 2) show wav2vec 2.0 FT does not sig-
nificantly outperform WavLM, Hubert L FT, and Hubert L.
These four can be considered the best performing models.

https://github.com/facebookresearch/fairseq/,
https://github.com/microsoft/unilm, and https:
//github.com/openai/whisper

Table 1: Prediction test RMSE on CPC2 for different back-
bones using our model. Top: across 15 independent runs and
of best models chosen by cross validation. Bottom: for our
submission and baselines.

test RMSE ↓

Backbone Min / Mean / Max
Best

on dev

wav2vec 2.0 27.15 / 28.64 / 30.15 28.27
wav2vec 2.0 FT 26.65 / 27.76 / 28.80 26.74
wav2vec 2.0 robust 27.21 / 29.21 / 30.31 28.74
wav2vec 2.0 robust FT 26.75 / 30.05 / 32.39 27.36
HuBERT L 25.05 / 27.89 / 29.52 25.05
HuBERT L FT 26.24 / 27.94 / 30.09 26.92
HuBERT XL 26.69 / 29.47 / 32.80 26.85
HuBERT XL FT 27.40 / 30.61 / 33.50 28.50
WavLM 25.28 / 27.88 / 29.03 25.28
Whisper 26.23 / 28.85 / 30.73 27.83

CPC2 baseline (HASPI) 28.70 / - / - -
CPC2 E023 (Whisper) 26.34 / - / - -
CPC2 E002 (Whisper) 25.30 / - / - -
CPC2 E011 (ours) 25.10 / - / - 25.10

3.2.2. Binaural cross-attention ablation

We evaluated the influence of binaural cross-attention in our
predictive model. We conducted ablations with two back-
bones with significant statistical differences: WavLM and
Whisper. The results are presented in Table 3, and show that
binaural cross-attention significantly improves performance.

https://github.com/tiagoCuervo/sfms-cpc2
https://github.com/facebookresearch/fairseq/
https://github.com/microsoft/unilm
https://github.com/openai/whisper
https://github.com/openai/whisper


Table 2: Model ranking according to statistical significance
with respect to wav2vec 2.0 FT. P -values for a Wilcoxon
paired test on the hypothesis of modeli having greater RMSE.

modeli
Wilcoxon p-val

RMSEi > RMSEwav2vec 2.0 FT

WavLM 0.598022
HuBERT L FT 0.319336
HuBERT L 0.151398
HuBERT XL 0.047688
wav2vec 2.0 0.037302
wav2vec 2.0 robust 0.037302
Whisper 0.036499
wav2vec 2.0 robust FT 0.027679
HuBERT XL FT 0.006226

Table 3: Effect of binaural cross-attention on performance
measured across 15 independent runs.

test RMSE ↓ Wilcoxon p-val

Model
with Binaural

attention
w./out Binaural

attention
RMSEwith

< RMSEw/out

WavLM 27.88 ± 2.28 28.65 ± 1.94 0.021322
Whisper 28.85 ± 2.64 29.46 ± 2.07 0.018101

3.2.3. Our submission to the CPC2

Our submission was an ensemble between the models with
the lowest dev RMSE using WavLM and Whisper as back-
bones. The results we obtained are shown in Table 1. Al-
though our submission was an ensemble, the results show that
predictions of single WavLM or HuBERT L backbones would
have outperformed others.

3.2.4. Ensemble performance

From our submission we learned that using ensembles of
predictions from different backbones improved performance.
Therefore, we experimented using ensembles obtained by
averaging the predictions from the best performing models
for each backbone, chosen by cross validation. Results for
the two best and worst ensembles are presented in Table 4,
showing that a relative improvement of 5% could be obtained
using the best ensemble. It also should be noted that even
the worst ensemble outperforms all but the best single model.
Furthermore, the whole set of results showed that over 60%
of ensembles outperform the best single model.

4. RELATED WORK

Our predictive model was first presented in our submission
to the CPC2. With respect to that work, we significantly
expanded the amount of experiments, including statistically
validated benchmarking of 8 additional SFMs, ablations of
binaural cross-attention, and evaluation of SFMs ensembles.

Table 4: Two best (top) and worst (bottom) performing en-
sembles.

Rank Ensemble RMSE ↓
1 HuBERT L+wav2vec 2.0 robust FT 23.86
2 HuBERT L+WavLM 23.88

44 wav2vec 2.0 robust+Hubert XL 25.24
45 wav2vec 2.0 robust+wav2vec 2.0 robust FT 25.25

Moreover, the results here presented outperform our submis-
sion and refute the main hypothesis on which we based it (see
section 5). Our paper is also related to previous works bench-
marking SFMs on the CPC1 [19, 20], but goes beyond them
by considering a larger set of SFMs and showing state-of-the-
art performance in the most recent edition of the challenge.

5. DISCUSSION

Our results showed that four SFMs performed significantly
better than others. All but one of them (wav2vec 2.0 FT)
use masked language modeling training, so this could be a
factor contributing to their performance. Three out of four
of the best models were trained on clean speech only. This
refutes the hypothesis behind our CPC2 submission, namely
that backbones trained on speech with diverse backgrounds
should perform best, and which led us to choose WavLM and
Whisper for our submission. Contrary to the trend in other
applications, the largest models (Hubert XL and Whisper)
performed worse. This could be due to overfitting to extra
variance captured by models with higher capacity.

Our experiments with ensembles demonstrated that differ-
ent SFMs can compensate for each other biases. This suggests
that a SFM better suited for intelligibility prediction could be
achieved by combining properties from the models studied.

Regarding the design choices for our prediction head,
more experiments could be needed to justify them. Binau-
ral cross-attention was shown to have significant impact in
performance, however further experiments are required to
determine if this is due to exploiting binaural cues, or to gains
in expressive power from the extra parameters in the cross-
attention block. The effects of downsampling should also be
studied, as it could obfuscate temporal fine-structure useful
for intelligibility prediction. The role of the audiogram in
the models’ predictions remains an interesting question to be
studied in future work.

6. CONCLUSIONS

We presented a prediction model leveraging SFMs that ob-
tains state-of-the-art performance in the CPC2. Using that
predictive model we benchmarked 10 different SFMS, reveal-
ing statistically significant differences in performance. Our
experiments also showed that ensemble methods show mean-



ingful improvements, and suggest that different SFMs learn
different information useful for intelligibility prediction on
hearing-impaired listeners.
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