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Overview
The objective of this work is to propose an unsupervised deep learning approach for 3D
ultrasound reconstruction. We took inspiration from the neural implicit representations
(NIR), a family of approaches that learn volumetric functions from 3D samples [1].
Inspired by NIR this work aims to use its idea to create a 3D volume based on
freehand 2D ultrasound sweep.
This work is partly inspired and motivated by existing article around the same idea:

ImplicitVol [2] optimizes the positions of the slice along the volume using a NIR
network, and Ultra-NeRF [3] centers its study around a sophisticated render process.
Using NIR we are able to produce:

✒ A denoised volume with high CNR and SNR
✒ A continuous lightweight representation in the form of the network

Neural Implicit Representation

NIR is a concept that revolves around learning spatial properties through
example, and being able to quantify them anywhere in the volume of interest (VOI).
It can be formulated as:

Φθ(γ(x)) = px, (1)

where the network learns a function Φ with the optimized weights θ that maps x
the coordinates in the VOI (and optional additional information) to px a vector of
properties at x. The function γ is an embedding, giving higher dimensionality to
x. Frequency embedding [1] or Hash grid embedding [4] are usually employed.
The impact of this embedding is one of the keys of this work.
Properties learned can be widely different, from occupancy to movement fields or

semantic information. Of particular note is the recent work on novel view synthesis [1]
that allows to learn the radiance emitted from a scene and create new views from a set
of pictures.
The aim of this work is to apply the ideas of NIR to 3D ultrasound volume

reconstruction, leveraging this light, efficient and continuous representation.

Material & Method

To show the potential of the proposed method, simulated and experimental images
are used. The simulated images are obtained by generating synthetic ultrasound images
from a volume for different positions of the simulated ultrasound probe [5]. The volumes
considered are synthetic objects with perfectly known geometry, or 3D in vivo
magnetic resonance volumes.

Figure 1 - Overview of the model training and usage. Each pixel of each slice represents a 4D point
of the coordinates and the gray level of the image. An epoch consists in generating the gray level at the
positions of a slice’s pixels and comparing the results against the actual value using MSE, and use it to

optimize the network’s parameters. Once the training is done, the network can then be used to
estimate the values in a voxel grid to create a 3D volume.

At each learning step, the network’s results are compared against the expected value
on a subset of known locations corresponding to the pixels of one of the ultrasound
slices. The loss function is defined as the mean squared error between the network
output and ultrasound slice pixel value, yielding to the following optimization process:

θ = arg min
θ

||Φθ(γ(x)) − gx||22. (2)

Impact of the Embedding

One of the key points in NIR is the embedding of the input through the function
γ in 1. This encoding phase is the first layer of the network. Its role is to increase
the dimension of the position vector x, allowing the network to represent more finely
spatial variations. In this work, we evaluate three encoding schemes:

✒ Frenquency encoding:
Each component of the input vector x, is mapped from R to R2L (with L being a
meta-parameter) following a function γ(x):

γ(x) = [sin(20πx), cos(20πx), · · · , sin(2L−1πx), cos(2L−1πx)] (3)
✒ Hash grid encoding:
Müller et al. [4] proposed a new approach to expend the input vector to more
meaningful values through a process combining hierarchical acceleration structures
and deep learning. In the general case, this approach tremendously speeds up the
learning process and allows finer details.

✒ No encoding:
Encoding aims at enhancing the high frequencies in the learned medium. While this
property is of high interest in optical applications, it is not necessarily the case in 3D
ultrasound reconstruction, because of the high level of speckle noise that affects
the slices.

Figure 2 - Comparison of the reproduction of an ultrasound slice by a network trained on the same
dataset for 10 minutes (reproduced slice not present in the learning set). Top: MRI slice, simulated
ultrasound image. Bottom: reconstructed slice with frequency encoding, hash grid encoding, and

without encoding.

Results

Figure 3 - Reconstruction based on a simulated double sweep (one horizontal, one vertical) of a T2
pelvic MRI based medium, with the probe trajectory shown in green. a) Ultrasound image given as an

input to the network, b) reconstruction of the image in a) with the proposed method, c) DW
reconstruction, d) 3D reconstruction with the proposed method.

Figure 4 - Reconstruction based on a single horizontal freehand sweep acquired on a nerve phantom
with probe trajectory (green). a) Ultrasound image given as an input to the network, b) Network

reconstruction of the image in a), c) DW reconstruction, d) 3-D reconstruction.
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