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Abstract

On-device training is an emerging approach in machine
learning where models are trained on edge devices, aiming
to enhance privacy protection and real-time performance.
However, edge devices typically possess restricted compu-
tational power and resources, making it challenging to per-
form computationally intensive model training tasks. Con-
sequently, reducing resource consumption during training
has become a pressing concern in this field. To this end,
we propose SCoTTi (Save Computation at Training Time),
an adaptive framework that addresses the aforementioned
challenge. It leverages an optimizable threshold parame-
ter to effectively reduce the number of neuron updates dur-
ing training which corresponds to a decrease in memory
and computation footprint. Our proposed approach demon-
strates superior performance compared to the state-of-the-
art methods regarding computational resource savings on
various commonly employed benchmarks and popular ar-
chitectures, including ResNets, MobileNet, and Swin-T.

1. Introduction
In recent years, there has been a growing interest in

the development and deployment of machine-learning mod-

els due to their exceptional performance in various do-

mains. However, the remarkable success of these models

has come at a cost, as they require substantial computational

resources for training and deployment, which makes train-

ing on resource-constrained edge devices very difficult [1].

To this end, two distinct research directions have emerged,

each focusing on a different aspect of model optimization.

The first line of research centers around pruning algo-

rithms, which aim to reduce the size of machine learn-

ing models without significantly compromising their per-

formance [2]. Pruning algorithms selectively remove re-

dundant or less influential components of a model, such

as connections or parameters, while preserving its overall

functionality [3, 4]. By doing so, these algorithms target

the reduction of the memory footprint and computational re-

quirements of the model without sacrificing its accuracy [5].

Figure 1. Our adaptive framework SCoTTi is based on an opti-

mizable threshold ε. During the training, some neurons learn their

own function (their change rate is measured through a velocity):

all the neurons whose velocity is lower than some threshold ε will

be stopped from updating.

In parallel, researchers have also been exploring ways

to save computational resources during the training process

itself [6, 7, 8]. Training deep learning models typically in-

volves numerous iterations over vast amounts of data, which

can be computationally expensive and time-consuming, es-

pecially when moving to microcontrollers in the context of

TinyML models [9, 10]. Therefore, finding methods to re-

duce the computational burden without compromising the

training quality has become an important research objec-

tive [11], also considering that some steps are being moved

to design hardware supporting dynamic pruning [12]. The

lottery hypothesis [13, 14] highlights that only a small frac-

tion of the tens of thousands of neurons in a neural network

significantly impact the model’s performance. To save re-

sources, we only need to update the portion of neurons that

play a key role.

In our research, we implement the concept of updat-

ing only a subset of neurons during backpropagation and

showed its feasibility through experiments. One approach is

to optimize hyper-parameters like the learning rate through

gradient descent [15], to ensure dynamic and faster con-

vergence across the learning. In most instances, a trade-

off between accuracy and saved Floating Point Operations

(FLOPs) is inevitable, as we will demonstrate in Tab. 1

(Sec. 4.3). To address this issue, we propose SCoTTi, a

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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framework that allows dynamic selection of the neurons re-

quiring an update at the current optimization step. More

specifically, we leverage over the concept of neuron veloc-
ity (introduced in [16]) which is an estimator of learning

convergence at the single neuron scale, to determine the

sub-network to be updated. We propose a scheme where

the velocity threshold ε, which determines whether neu-

rons having a certain (low) velocity are in a frozen state or

not, is learned at training time. Fig. 1 pictures the prac-

tical effect of SCoTTi: ε is naturally, through stochastic

gradient descent, naturally increased as the average veloc-

ities (in the distribution at the bottom) in average drop to

zero. SCoTTi has the big advantage of not requiring rele-

vant hyper-parameters tuning (as both the learning rate and

ε are learned), which ensures flexibility to the specific task

and at the same time efficiency in terms of FLOPs compu-

tation at training time and to the best of our knowledge, is

the first approach proposing a dynamic learned threshold to

determine which part of the network to be learned.

The rest of the paper is organized as follows. In Sec. 2 we

review the relevant literature concerning both pruning for

deep neural networks and efficient hyper-parameters tun-

ing. Next, in Sec. 3 we describe SCoTTi, first introducing

the working mechanisms for the ultimate optimizer Sec. 3.1

and of neurons at equilibrium Sec. 3.2, and then describing

the method proposing as well a rationale behind its working

principle. Then, in Sec. 4 we experiment with our proposed

training scheme over some deep ANNs on many different

datasets, and finally, Sec. 5 concludes while providing fur-

ther directions for future research.

2. Related Works
In this section, we will provide an overview of some of

the most popular approaches to save computation when em-

ploying deep neural networks. To this end, we will divide

the most-relevant literature into pruning-based approaches,

distributed learning, and the most recent new directions to

efficient parameters update.

2.1. Pruning methods

Pruning and quantization have emerged as prominent

model compression techniques and have witnessed exten-

sive development and application in recent years. Three

mainstream pruning strategies - weight pruning [2], filter

pruning [17], and neurons pruning [18] - have rapidly be-

come hotspots of research. Weight pruning achieves model

sparsity by removing small-magnitude weights in deep neu-

ral networks, thereby reducing the model’s parameter count

and computational complexity [19, 20]. Filter pruning fo-

cuses on entire convolutional filters (channels), eliminating

unimportant filters to further compress the model [21]. Neu-

rons pruning simplifies the model by removing entire neu-

rons that make minor contributions to the model’s output.

Additionally, model quantization further reduces model size

and computational requirements by representing model pa-

rameters with lower precision, which is especially benefi-

cial for edge devices with limited memory and computa-

tion capabilities [22, 23]. The application of these pruning

and quantization methods significantly enhances model ef-

ficiency on edge devices, enabling the deployment of more

complex models and achieving outstanding performance in

real-time applications. Despite the big interest of the com-

munity, pruning, and quantization methods also exhibit no-

table limitations. Firstly, pruning requires multiple itera-

tions to remove model parameters, which entails significant

computation and time consumption [24]. Quantization, on

the other hand, may result in some loss of model accuracy

due to reduced precision [25]. Additionally, while these

techniques effectively optimize resource consumption dur-

ing model inference on edge devices, they offer limited as-

sistance in training new models and require specific tech-

niques to address this issue [26]. Consequently, retraining

models on edge devices becomes a challenging task, calling

for innovative solutions to overcome these restrictions.

2.2. Distributed learning

So far, most methods for training on edge devices are

based on the idea of distributed learning [27]. These meth-

ods allow model training on edge devices without upload-

ing raw data to a central server. On-device training meth-

ods based on distributed learning or federated learning of-

fer significant advantages, including enhanced privacy pro-

tection as training occurs locally on edge devices without

requiring data uploads to central servers [28, 29]. This ap-

proach reduces data transmission costs and alleviates the

burden on central servers, contributing to lower inference

latency. Moreover, the near real-time model updates make

these methods suitable for time-sensitive applications.

Distributed learning or federated learning-based method

has, however, certain limitations. The limited computa-

tional and storage resources of edge devices can lead to

slower training efficiency and a prolonged convergence

time [30]. Communication overhead remains a concern,

as model updates among devices might result in substan-

tial network traffic, particularly in scenarios with a large

number of devices [31]. The heterogeneity of edge devices

poses challenges, potentially affecting training stability and

convergence [32]. Furthermore, the complexity of feder-

ated learning algorithms requires careful consideration of

privacy preservation, model aggregation, and model drift,

making algorithm design and optimization demanding tasks

[33].

2.3. Efficient parameters update schemes

The lottery ticket hypothesis [13] posits that within a

neural network, only a small subset of neurons plays a cru-
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cial role in achieving high accuracy, while the majority of

neurons are less significant. Based on this hypothesis, if

we focus on updating only this critical subset of neurons

during the training process, we can attain comparable ac-

curacy to updating all the neurons. The advantage of this

approach is that it leads to more efficient training and im-

proved generalization performance. By updating only the

essential neurons, the training process focuses on the most

informative parts of the model, mitigating the negative in-

fluence of noise and less relevant parameters. The challenge

to identify such sub-networks efficiently is, however, still

ongoing [14]. Some first steps have been moved in such

a direction, achieving similar accuracy to a fully trained

model while requiring fewer iterations and computational

resources [16]. SCoTTi puts itself in such a frame, building

on top of recent advances in the field [16, 15] and provid-

ing a simple yet effective approach that automatically tunes

the updated sub-graph at training time, leading to compu-

tation savings at training time. In the next section, we will

ground and provide more details on the working principles

of SCoTTi.

3. SCoTTi

In this section, we will describe our proposed approach,

which is pictured in Fig. 2. It builds on top of two ap-

proaches: Gradient descent the ultimate optimizer [34]

(reviewed in Sec. 3.1) and To update or not to update?
Neurons at equilibrium in deep models [16] (reviewed in

Sec. 3.2). The innovation of SCoTTi is to make these

algorithms work synergetically and optimize over a (for-

merly) static hyper-parameter (ε) that determines a thresh-

old above which a neuron should be kept updated. This

hyper-parameter is optimized along the training process and

hence does not require fine optimization (as described in

Sec. 3.3).

3.1. Learning the learning rate

The optimization of Deep Neural Networks (DNN) is a

critical task that requires finding suitable hyperparameters

(eg. learning rate) for the optimizer. The optimization of

hyperparameters has been introduced in a previous work

[34]; however, this method suffers from three main limi-

tations. Firstly, the manual differentiation of optimizer up-

date rules is a laborious and error-prone process that needs

to be repeated for each variant of the optimizer. Secondly,

the method only focuses on tuning the learning rate and

neglects other important hyperparameters such as the mo-

mentum coefficient. Lastly, the method introduces an addi-

tional hyperparameter, the hyper-learning rate, which also

requires tuning. These limitations highlight the need for an

improved approach to address these challenges in hyperpa-

rameters optimization.

The ultimate optimizer [15] is a recently proposed op-

timization scheme that operates based on the principle of

dynamically updating the original fixed learning rate and/or

other hyperparameters in real time. It is designed to com-

plement and enhance the functionality of general optimizers

such as Adam [35], SGD [36], and others. The primary ob-

jective of the ultimate optimizer is to adaptively adjust the

learning rate and/or other hyperparameters throughout the

training process to find the most appropriate and effective

one/ones for the current state of the model. By dynamically

updating the hyperparameters like the learning rate, the ulti-

mate optimizer aims to improve the convergence speed, op-

timization efficiency, and overall performance of the neural

network model:

αt+1 = αt − η · ∂f(ωt)

∂αt
(1)

ωt+1 = ωt − αt+1 · ∂f(ωt)

∂ωt
. (2)

As shown in (2), the ultimate optimizer modified the tradi-

tional approach of updating weight ω by treating the learn-

ing rate α as a learnable parameter, as outlined in (1), the

approach of updating learning rate α which is based on the

gradient descent algorithm, an additional hyperparameter η
is required to control the step size for updating the learning

rate α through gradient descent.

3.2. Neurons at Equilibrium

It is widely recognized in the literature that Deep Learn-

ing models commonly employed in state-of-the-art scenar-

ios tend to be over-parametrized [37]. This observation has

spurred two lines of research: reducing the size of these

models through pruning algorithms, or finding ways to save

computational resources during the training process. The

former approach has received significant attention and has

been extensively investigated. However, the latter approach

had been at an impasse until a recent study [13] suggested

its viability.

As shown in the lottery ticket hypothesis, only a small

fraction of the total number of neurons in the model can

be considered effective or influential in determining the

model’s performance (ie. The model’s performance heav-

ily relies on a subset of neurons that play a decisive role

in capturing and representing the relevant patterns and in-

formation in the given data.). As inferred by the authors

of Neurons at Equilibrium (NEq) [16], the existence of re-

dundancy or inefficiency in the training process, where a

large number of neurons may get updates despite not play-

ing a decisive role in capturing the underlying patterns or

information in the data. By identifying and mitigating these

unnecessary updates, it is possible to optimize the training

process and improve the overall efficiency of the model. To
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Figure 2. In the given figure, Xtrain and Xval correspond to the input of the training set Ξtrain and the validation set Ξval, respectively.

Ytrain corresponds to the labels of the training set. Ŷtrain represents the outputs obtained from the model when the corresponding inputs

from the training set are fed into it. We update the threshold ε by the model’s loss on the training set and compare it to the velocity of

each neuron, suppressing updates to neurons with a velocity less than ε, where velocity is a value that indicates the similarity between the

outputs of the same neuron in two consecutive epochs.

this end, we want to identify the crucial neurons that require

updating in each epoch based on a mask that is generated by

employing a fixed threshold-ε.
The method for determining whether a neuron requires

a further update or not follows. First, the cosine similarity

between the outputs of the same neuron in two consecutive

epochs is calculated below and also shown in Fig. 3:

φe = cos(θ) = ŷe−1 · ŷe =
∑

ξ∈Ξval

N∑
n=1

ŷn,ξe · ŷn,ξe−1. (3)

We further use the obtained similarity to calculate the

corresponding velocity as shown below:

Δφe = φe − φe−1 (4)

ve = Δφe − μeq · ve−1. (5)

This is then compared to some threshold ε to determine if

the neuron should be updated. The condition determining

whether a neuron is in a frozen state is:

|ve| ≤ ε. (6)

When the inequality (6) is satisfied, it indicates that

the neuron has reached an equilibrium state at epoch e.1

Consequently, the neuron will be detached from the back-

propagation graph, indicating that it should not be updated

1The state of a neuron at epoch e+1 depends on two factors: its param-

eters and the working region (domain). When frozen, while the parameters

do not change, the working region might (unless all the neurons of the

previous layers are frozen). Hence, the state of a neuron might unfreeze.

Figure 3. For a given epoch e, the model receives the ξ-th sample

from the validation set Ξval. The output of the i-th neuron de-

pends on both the model’s parameters and the specific sample on

the validation set. These outputs are squeezed, concatenated and

the obtained vector is then normalized, obtaining ŷi
e. And we de-

note that φi
e is the cosine similarity of the feature vector ŷi

e and the

feature vector ŷi
e−1 which is obtained at epoch e− 1.

at epoch e. The effectiveness of this approach depends on

two main factors: the optimality of the learning schedule,

and the optimal, dynamic tuning of ε. While the first is ad-

dressed in Sec. 3.1, in the next section we will propose an

approach to dynamically learn ε.
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3.3. Learning the velocity threshold

In our study, we employ the NEq method in conjunction

with the ultimate optimizer to update the weights. Addi-

tionally, we introduce the threshold parameter ε as an addi-

tional optimizable parameter to the update paradigm. After

rearranging the terms of (6), the previous inequality can be

expressed as follows:

|ve| − ε ≤ 0. (7)

We define the i-th neuron to be in the equilibrium state

at epoch e if (7) is satisfied. Our approach is currently

based on the SGD optimizer (but extendible to any other

optimizer), therefore to incorporate ε as a learnable param-

eter that can be optimized by the hyper optimizer as shown

in Fig. 2, we integrate the inequality into the weight update

paradigm, as illustrated below. We utilize step function Θ(·)
to serve as the activation function for this component:

ωt = ωt−1 − α · ∂L
∂ωt

·Θ(|ve| − ε). (8)

As shown in (8), α represents the learned learning rate, ε
presents the learned threshold, ωt represents the weight up-

date at epoch t, ∂L
∂ωt

refers to the gradient of the loss func-

tion, and Θ(·) is the step function that ensures the inequal-

ity condition is met. The hyperparameters α and ε are it-

eratively updated by another hyper optimizer, following the

gradient of the loss function for each parameter, denoted as
∂L
∂α and ∂L

∂ε , respectively. This update scheme ensures that

the parameters are adjusted in a direction that minimizes the

loss function, thereby leading to a reduction in overall loss.

By incorporating the Θ(·) term, compared to the original

update paradigm, our approach presents two major advan-

tages.

We introduce ε as a learnable parameter. The inclu-

sion of Θ(·) enables us to incorporate ε into the update

paradigm as an optimizable parameter. Specifically, ε is op-

timized along the direction of loss reduction, ensuring that

updates are made in a manner that progressively minimizes

the overall loss. This allows us to dynamically adjust the

threshold for determining neuron equilibrium during the op-

timization process.

SCoTTi is consistent with “freezing neurons at equi-
librium”. The use of the Θ(·) function ensures that if a

neuron is in equilibrium, Θ(·) will filter these ones. Con-

versely, if the neuron is not in equilibrium, Θ(·) will al-

low updates. This aligns with the concept of NEq, where

only non-equilibrium neurons undergo updates while equi-

librium neurons remain unchanged.

In the following, we will show how to update α and ε by

a parameter η via gradient descent per iteration and derive

an iterative update paradigm, being for ε.

εt+1 = εt − η · ∂L(wt)

∂εt
= εt − η · ∂L(wt)

∂wt
· ∂wt

∂αt
·

= εt − η · ∂L(wt)

∂wt

·
∂

[
wt−1 − αt · ∂L(wt−1)

∂wt−1
·Θ(|ve| − εt)

]

∂εt

= εt − η · ∂L(wt)

∂wt
· ∂L(wt−1)

∂wt−1
· αt,

(9)

while for α

αt+1 = αt − η · ∂L(wt)

∂αt
= αt − η · ∂L(wt)

∂wt
· ∂wt

∂αt

= αt − η · ∂L(wt)

∂wt

·
∂

[
wt−1 − αt · ∂L(wt−1)

∂wt−1
·Θ(|ve| − εt)

]

∂αt

= αt + η · ∂L(wt)

∂wt
· ∂L(wt−1)

∂wt−1
·Θ(|ve| − εt).

(10)

Indeed, the iterative update paradigm enables us to optimize

both α and ε simultaneously. The iterative process contin-

ues until the values of α and ε converge to their optimal val-

ues, indicating that the model has reached an optimal state.

3.4. Overview on the method

As presented in Algorithm 1, we incorporate a mask in

the ultimate optimizer to constrain the weight updates for a

part of neurons (in the form of a dictionary, E). Addition-

ally, we introduce an additional parameter ε, into the stan-

dard iterative update paradigm for the weights. This enables

us to learn the threshold ε for neuron equilibrium and con-

trol the updates accordingly in real time. Focusing on the

hyper-optimization step, we extend the hyper-optimizer for

the learning rate (line 1) to include updates for ε (line 2).

By optimizing both of them simultaneously, we can fine-

tune the threshold for determining neuron equilibrium and

further enhance the model’s performance. When perform-

ing the update in line 2, to maintain the gradient flow with-

out disruption, we employ a Straight-Through Estimator

(STE) [38]. STE allows for backpropagation through the

weight update operation without modifying the gradient.

This technique enables us to incorporate non-differentiable

operations, such as binarization which we used here (neu-

rons in a frozen state), into the training process while pre-

serving the gradient information. We can successfully skip

the gradient computation for the neurons marked in a frozen
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Algorithm 1 Learned threshold ε approach

Require:
Lt−1: loss calculated on the current minibatch,

E : a dictionary used to store the neurons that are at

equilibrium state,

ve: a dictionary used to record the velocity between

epochs e− 1 and e,

ωt−1: parameters of the model at iteration t− 1,

αt−1: learnable learning rate, at iteration t− 1,

εt−1: learnable threshold, at iteration t− 1,

ηα: hyper-learning rate for α,

ηε: hyper-learning rate for ε.

1: αt ← αt−1 − ηα · ∇αt−1
Lt−1

2: εt ← εt−1 − ηε · ∇εt−1
Lt−1

3: for all the i-th neurons in the model do
4: if i is in E then
5: Gi

t−1 = 0

6: else
7: Gi

t−1 = ∇ωi
t−1

Lt−1

8: end if
9: ωi

t ← ωi
t−1 − αt ·Gi

t−1 ·Θ(|vie| − εt)

10: end for
11: return αt, εt, ωt

state (line 4) and successively we perform a standard update

for the model’s parameters (line 9).

4. Experiment
In this section, we present our experiments describing

datasets, architectures, and learning policies. We first pro-

pose an ablation study (Sec. 4.2) and then we describe the

main experimental results (Sec. 4.3). We have performed

our experiments on an NVIDIA Tesla V100 equipped with

32GB and developed the code using PyTorch 1.13.1.2

4.1. Datasets

CIFAR-10 [39]. The CIFAR-10 dataset is a widely rec-

ognized benchmark in image classification. It consists of

60,000 color images divided into 10 classes representing

specific object categories, such as airplanes, automobiles,

birds, and cats. With 6,000 images per class, the dataset is

evenly balanced. The images have a resolution of 32x32

pixels, making them computationally efficient and suitable

for scenarios with limited computational resources.

CIFAR-100 [39]. The CIFAR-100 dataset builds upon

the CIFAR-10 dataset by introducing 100 fine-grained ob-

2The code is publicly available at https://github.com/liziyu403/SCoTTi

-Save-Computation-at-Training-Time-with-an-adaptive-framework.

ject categories. It contains 60,000 color images, with 600

images per class. CIFAR-100 offers a higher level of la-

bel granularity compared to CIFAR-10, enabling more chal-

lenging classification tasks. The images in this dataset also

have a resolution of 32x32 pixels.

Tiny ImageNet [43]. The Tiny ImageNet dataset is

more extensive than CIFAR-10 and CIFAR-100, consist-

ing of 200 diverse object categories. It includes a total of

100,000 color images, with 500 images per class. The im-

ages in Tiny ImageNet have a resolution of 64x64 pixels,

providing a higher level of detail compared to the previous

2 datasets.

Clipart [45]. The Clipart dataset contains 73,810 im-

ages representing various everyday objects and scenes in a

clipart-style visual format. It consists of 345 object cate-

gories, making it a rich resource for studying domain adap-

tation to clipart-like graphics.

Painting [45]. The Painting dataset consists of 76,174

high-quality images inspired by diverse artistic painting

styles. It includes 345 object categories, providing re-

searchers with ample opportunities to study domain adap-

tation in the context of artistic representations.

4.2. Ablation study

We performed our ablation study training a ResNet-56

[42] on the CIFAR-100 dataset. The baseline models were

trained with Stochastic Gradient Descent (SGD) as the op-

timizer, initialized with a learning rate α of 0.1, momentum

μ of 0.9, and weight decay of 5 × 10−4 for a total of 250

epochs. The learning rate α was reduced by a factor of 10

after 100 and 150 epochs. For the experiments based on the

Ultimate Optimizer (including SCoTTi), we uniformly set

the hyperlearning rate for learning rate to 1.5 × 10−5. For

all other parameters unrelated to the learning rate, we re-

main consistent with the experiments that use SGD as the

optimizer.

In general, a trade-off between FLOPs and accuracy can

be observed in Fig. 4: for less than the model’s accuracy ex-

periences a significant drop when the average FLOPs value

falls below a certain value. In these MFLOPs, we observe

a degradation in the performance of SCoTTi. This can be

observed by testing several representative ε for each of the

two frameworks using a fixed threshold ε (the blue points

approach and green points approach are) to determine the

relationship between FLOPs of backpropagation and accu-

racy. For our proposed framework with optimizable thresh-

old ε (in red), we initialize ε to zaro, and since the ε updating

process is based on the gradient descent method, a hyperpa-

rameter ηε is needed to control the step size when updating

the ε, and a few representative ηε are selected for recording

in our experiments, the learned curves for ε are shown as

Fig. 5.

As Fig. 4 shows, in these two plots, the top plot repre-
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Table 1. Table of experimental results. FLOPs saved refers to the total FLOPs saved at the end of model training as a percentage of the

total FLOPs when the model is updated normally (no frozen); Top-1 refers to the model’s Test Top1-Accuracy. Models marked with “*”

indicate that they utilize a pre-trained model on ImageNet1k. The rows in gray are our proposed SCoTTi.

Dataset Architecture Optimization Approach FLOPs saved Top-1
NEq [16] Ultimate optim. [15] Learned ε

CIFAR-10 [39]

VGG-16 [40]

00.00% 88.54%
� 37.41% 89.86%

� 00.00% 92.76%
� � 30.98% 92.70%
� � � 43.66% 92.58%

Swin-T∗ [41]

00.00% 91.59%
� 39.66% 90.96%

� 00.00% 91.65%
� � 48.84% 91.74%
� � � 58.76% 91.77%

CIFAR-100 [39]

ResNet-32 [42]

00.00% 68.42%
� 38.80% 69.97%

� 00.00% 70.06%
� � 59.89% 69.24%
� � � 60.59% 70.43%

ResNet-56 [42]

00.00% 69.69%
� 41.12% 71.40%

� 00.00% 70.15%
� � 56.58% 70.36%
� � � 58.97% 71.55%

Clipart [43] ResNet-18 [42]

00.00% 73.21%
� 38.06% 72.19%

� 00.00% 73.01%
� � 49.33% 72.60%
� � � 53.86% 73.21%

Painting [43] ResNet-18 [42]

00.00% 64.51%
� 27.94% 62.14%

� 00.00% 60.82%
� � 77.34% 63.46%
� � � 76.92% 65.44%

Tiny ImageNet [43] MobileNet-v2∗ [44]

00.00% 55.69%
� 53.28% 56.40%

� 00.00% 60.02%
� � 80.83% 60.53%
� � � 86.44% 60.68%

sents the results obtained on the TRAIN set, and the bot-

tom plot represents the results on the TEST set. The x-axis

represents the average FLOPs required per epoch, while

the y-axis represents the accuracy achieved. Our objective

is to minimize the FLOPs while maximizing the accuracy.

Therefore, points closer to the upper left corner indicate bet-

ter performance, as they represent lower FLOPs and higher

accuracy simultaneously.

Our proposed optimizable ε approach demonstrates more

pronounced and consistent performance compared to both

the baseline and the NEq method based on the ultimate op-

timizer. We attribute this improvement to the initial small

value of ε during training, which enables the network to ef-

fectively learn the features. In general, as the number of

training iterations increases, overfitting of certain features

often occurs. However, the gradual increment of ε in our

method helps mitigate the overfitting issue to some extent.

This contributes to the enhanced and stable performance ob-
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Figure 4. The x-axis represents the average of FLOPs required per epoch, while the y-axis represents the test accuracy achieved. Points

closer to the upper left corner indicate better performance, as they represent lower FLOPs and higher accuracy simultaneously.

0 50 100 150 200 250
epoch

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

= 10 5

= 7.5 10 6

= 5 10 6

= 10 6

Figure 5. The hyperparameter ε is updated using gradient descent:

εt = εt−1 − ηε · ∇εt−1Lt−1, with different curves corresponding

to different values of ηε.

served in our proposed approach.

4.3. Experimental results

We have chosen a selection of the most representa-

tive models currently available: VGG16, ResNet-18/32/56,

MobileNet-v2, and Swin-T. Among them, MobileNet-v2

and Swin-T use a pre-trained model, on ImageNet1K.

In all the experiments based on the SGD scheduler, we

set the initial learning rate α to 0.1 (initialized to 0.01 for

MobileNet-v2 and Swin-T) and reduced it by a factor of 10

after 100 and 150 epochs (after 30 and 60 for MobileNet-

v2 and Swin-T). The momentum μ was set to 0.9, weight

decay to 5 × 10−4, and the threshold ε to 0.001, with a to-

tal of 250 epochs (90 epochs for MobileNet-v2 and Swin-

T). The parameter settings for the ultimate optimizer-based

experiments were largely the same as those for the SGD-

based experiments, with the key difference being the use

of a hyper-optimizer to optimize the initial learning rate in-

stead of the scheduler. ηα played a crucial role in the ulti-

mate optimizer as it was used to optimize the learning rate.

After conducting tests, we identified a suitable value of ηα
for each architecture, ensuring optimal performance. For

SCoTTi, we primarily adopted the hyperparameters of the

ultimate optimizer, except that ε was initialized to 0, and ηε
was set to half of ηα.

The experimental results are presented in Tab. 1. Our

proposed approach is versatile, allowing for substantial

FLOPs reduction across various datasets and architectures,

while also slightly improving accuracy.

5. Conclusion

This study has presented the SCoTTi, an adaptive train-

ing framework for on-device training. The primary objec-

tive of SCoTTi was to reduce the number of FLOPs with-

out compromising the model’s accuracy. Remarkably, the

results showed that in the majority of experimental cases,

SCoTTi not only achieved state-of-the-art performance but

also demonstrated the potential to enhance model accuracy

in some of the most popular architectures on downstream

tasks. Future works for the SCoTTi framework include in-

vestigating its adaptability to diverse domains such as nat-

ural language processing and audio processing, tailoring it

to various hardware platforms for optimal on-device train-

ing, and conducting large-scale deployment experiments to

assess its viability for real-world applications.
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