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Introduction: The goal of the present study was to test the effect of signaling 
associated with feed-back in learning forest ecosystems in the context of 
realistic living forest simulator, in IVR conditions for students in agriculture. Two 
signaling modalities, corresponding to two signaling levels, were investigated: 
visual flashing of forest elements (tree species, plants, flowers, fungi, wet-
areas etc.) and marker-stones, both with text in pop-up windows, in a 2x2 
experimental plan.

Methods: Ninety-three pupils of an agricultural technological high school had 
to explore (including physically), interrogate (search for) and select (using the 
joysticks) relevant elements of the forest in three living forest areas (visually 
delimited inside of a broader forest area) in order to choose (and justify) the 
best area, among the three, in which an equipped public-tourist reception site 
(picnic, resting, reception site) could be built. The chosen site must have the least 
possible negative impact on the ecosystem of the forest and its development 
over time. After their decision (and justification) they were provided a feed-back 
with a series of VR desktop multimedia slides showing the effect of this choice 
on the ecosystem of the chosen area. After the feed-back they had to decide 
and justify again whether they would change or maintain their first decision. 
Finally, subjective scales were also used in order to investigate presence, 
cognitive complexity, sickness and overall enjoyment.

Results and discussion: Results showed significant positive effects of both 
signaling levels, and of the feed-back on the correct decision answers. Further, 
the combination, and interaction, between signaling and feedback seemed 
to enhance, the activation and retrieval from memory, of the task-relevant 
concepts. In addition, the results indicated a significant positive effect (medium 
size) of presence on decision performances, a finding which is consistent with 
the immersion principle.
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1 Introduction and goal

In a context of major environmental change, the use of immersive 
virtual reality (IVR) for the learning of complex ecosystems such as those 
found in forests could be a promising avenue to explore in the light of the 
ongoing changes in the training of students of agricultural forestry. 
“Seeing” the visible and non-visible forest elements and their interrelations 
in a 3D environment, visually observing, via IVR simulation of forest 
development, the potential “real” short-to-medium and long-term effect 
of human actions and forestry management decisions on tree species and 
the development of wildlife ecosystems could enhance learning and 
interest and improve professional decision-making (Figure  1). For 
example, a typical learning or training task performed by forest 
management students consists in identifying, understanding and building 
a mental model (diagnosis) of the ecosystems specific to various forest 
parcels in order to evaluate the impact of action decisions, such as cutting 
down trees (for forest thinning) or setting up public reception facilities 
etc., on the preservation of these ecosystems. The overarching goal of the 
present research is to contribute to the construction of such models.

The volume of research into IVR-assisted learning is currently 
growing apace, see for example the very recent studies by Makransky 
and Petersen, 2019; Makransky et al., 2020b,c; Stenberdt and 
Makransky (2023), Albus et al. (2021), Petersen et al. (2022), and 
Makransky and Mayer (2022) among many other articles and see 
also below.

Despite the popularity of IVR, which allows a high level of 
perceived presence, user-control and agency [see the CAMIL by 
Makransky and Petersen (2021), and below], a number of recent 

studies have revealed that IVR does not always have positive effects on 
learning compared to conventional desktop multimedia or video 
presentations (Parong and Mayer, 2018; Makransky et al., 2019a,b, 
2020a; Makransky, 2022; Mayer et al., 2022). As stated in the title of 
the article by Makransky et al. (2019b), “Adding immersive virtual 
reality… causes more presence but less learning.” In a recent review, 
Mayer et al. (2022) showed that out of 13 studies comparing IVR with 
more conventional media (or computer-screen VR) such as desktop, 
slideshow or video, seven indicated that students learnt better with 
conventional media than in IVR environments.

Only five studies showed a positive effect of IVR, with most of 
them revealing a small effect size (Cohen’ d from 0.10 to 0.29). In their 
meta-analysis, Wu et al. (2020) found a small advantage of IVR over 
more conventional technologies. In their own meta-analysis, Coban 
et al. (2022), considered fourteen previous meta-analyses and 105 
independent ESs (Effect Sizes) from 48 primary studies: They found 
an overall ES of g = 0.38, which corresponds to a small to medium 
positive effect. Araiza-Alba et  al. (2020a,b) arrived at a similar 
conclusion concerning the use of desktop VR and IVR with children.

The high degree of realism, the enriched nature of the visual 
information, the potentially overwhelming effect of an immersive 
visual field with perceptual saliency effects, the number of elements, 
the user-control and agency factors may lead not only to attentional 
distraction and disorientation but also to an increase in both 
extraneous and germane cognitive load (Sweller et al., 2011; Albus and 
Seufert, 2022; Mayer et al., 2022). According to Makransky (2022), 
“The immersion principle in multimedia learning is that immersive 
virtual environments promote better learning when they incorporate 

FIGURE 1

Snapshots of the VR simulation environment, from left to right and top to bottom: access path to the forest parcels, inside the parcels, view of the trees 
when the learner looks up toward the sky.
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multimedia design principles. In short, immersive media do not 
necessarily improve learning but effective instructional methods within 
immersive virtual environments do improve learning” (page 296).

In this way, one recent line of research has consisted in 
“systematically” testing the potential benefits and effectiveness of 
making use of multimedia principles and features in IVR learning 
environments (Albus et al., 2021; Albus and Seufert, 2022; Mayer 
et  al., 2022). Features that have proven their effectiveness in 
multimedia learning (Mayer and Fiorella, 2022) include, for example, 
the principles of instructional design and generative activities. The 
review by Parong (2022), reported a positive significant added value 
of features such as modality, personalization, pre-training 
summarizing, answering, enacting, and gender matching on learning 
performances in 9 out of 12 studies. Recently, Stenberdt and 
Makransky (2023) tested the feedback principle in IVR-based material 
promoting pro-environmental waste-sorting behavior.

The present study tested another instructional design feature, namely 
the effect of visual signaling associated with feedback for teaching 
agriculture students about forest ecosystems using a realistic living forest 
simulator in IVR conditions. To the best of our knowledge, there are to 
date only very few published studies that report results and have 
investigated verbal signaling in IVR, Albus et al. (2021) and Zhang et al. 
(2023), while another recent study (Decker and Merkt, 2023) has focused 
on the effect of signaling cues in desktop VR and IVR environments.

1.1 Learning in IVR

A second line of research, conducted within the theoretical 
framework of the CAMIL (Makransky and Petersen, 2021), has 
consisted in investigating the effect of the two main immersive 
affordances, namely presence and agency, on cognitive and affective 
factors, i.e., enjoyment, interest, self-efficacy, self-regulation, 
embodiment, cognitive load (extraneous, germane and intrinsic), and 
the effect of these factors on learning outcomes. In addition, new and 
interesting analytical methods, such as structural equation models 
(SEM) and mediation techniques, have been used to investigate 
whether cognitive and affective factors could mediate a hypothesized 
effect of IVR on learning performances (immediate and/or delayed 
retention and comprehension post-tests, as well as transfer post-tests 
etc.). For example, Makransky and Mayer (2022) investigated the 
benefits of taking an IVR-based climate-change-related virtual trip by 
comparing two groups of students (13 to 16 years old), one taking the 
virtual trip to Greenland via a head mounted display (HMD) and the 
other using 2D video. The results showed that the HMD group 
outperformed the 2D video group on presence, enjoyment, interest 
and retention in both the immediate and delayed post-test. The SEM 
analysis showed that enjoyment mediated the pathway from 
instructional design to immediate post-test performances, while 
interest mediated the pathway from instructional design to delayed 
post-test performances. Recent studies conducted within the same 
framework have demonstrated a positive effect of IVR and interactivity 
on enjoyment, interest, self-efficacy, expected outcomes, perceived 
embodiment, spatial presence, motivation and behavioral intention 
changes compared to the same content presented using 2D desktop or 
conventional multimedia technologies, and have done so in very 
different fields and subject areas (Ahn et al., 2022; Andersen et al., 
2022; Makransky and Klingenberg, 2022; Makransky and Mayer, 2022; 

Petersen et al., 2022; Vandeweerdt et al., 2022; Plechatà et al., 2022a,b; 
Bagher et al., 2023; Stenberdt and Makransky, 2023). A similar pattern 
of results was found with young children asked to perform tasks such 
as remembering and recalling a story and the related emotions 
(Araiza-Alba et al., 2020a), understanding and recalling seaside safety 
instructions (Araiza-Alba et al., 2021b) and problem solving (Araiza-
Alba et al., 2021a).

However, while these studies have often shown an effect of IVR 
on mostly perceived cognitive and affective factors, they have not 
always consistently demonstrated an effect on learning performance 
(see also Makransky, 2022), even when moderating factors have also 
been taken into account. Further, and as expected by the CAMIL, 
studies have revealed that IVR-based learning results in an increased 
cognitive load, and especially extraneous and germane cognitive load. 
This could account for the lack of effect observed on learning 
performances and outcomes. Cognitive load has been measured using 
direct brain measures (EEG) and subjective scales (Makransky et al., 
2019b; Breves and Stein, 2022). The effect on cognitive load was 
significant in several studies. For example, Baceviciute et al. (2021) 
found that it was cognitively more demanding (EEG measures) and 
less time-efficient to read one and the same text in an IVR environment 
compared to real physical reading. Furthermore, in studies testing the 
modality effect, Baceviciute et al. (2020) revealed that reading was 
superior to listening for the learning outcomes of retention, self-
efficacy, and extraneous attention. Reading text from a virtual book 
was reported to be less cognitively demanding than reading from an 
overlay interface. EEG analyses showed significantly lower theta and 
higher alpha activation in the audio condition.

The results of these previous studies led to the first line of 
research mentioned above, which tested the potential benefit of 
including multimedia principles in IVR learning environments. So 
far, only a few studies have been conducted (but their number is 
growing) and the initial results seem mixed: for some principles, the 
IVR results were similar to those obtained with multimedia 2D 
documents, whereas for others, they appear to be different (Mayer 
et al., 2022). This is, for example, the case for the modality principle, 
Baceviciute et al. (2020). Recently, Albus and Seufert (2022) also 
identified a reverse modality effect in VR: learning performances 
were better in the visual-only than the audio-visual condition as 
measured on recall, comprehension and transfer, with extraneous 
cognitive load being similar in the two conditions. Furthermore, 
Klingenberg et al. (2022) found that compared to a control condition, 
adding segmentation or summarizing activities to an IVR science 
lesson resulted in better transfer in seventh grade students but not 
in more factual knowledge. Combining segmentation and 
summarization did not improve learning. The body of research on 
IVR learning also reports many differences across studies on factors 
such as the type of task and contents (science lessons, architecture, 
biology, history, science lab environment), declarative or procedural 
knowledge [see the meta-analysis by Coban et  al. (2022)], 
participants’ age and activities, the task requirements and also the 
type of technical implementation: HMD IVR, 360° video, 2D 
on-screen VR, and also the level of rendering of the VR technique 
used. Such factors could account for at least some of the 
heterogeneity among the observed results. It is also necessary to 
address the question of signaling techniques and this issue will 
be addressed in Section 1.3 below after the theoretical background 
to IVR learning has been presented.
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1.2 Theoretical background: “The great 
forgotten factor,” visual perception?

In visually rich IVR environments displayed in 3D, we might 
hypothesize that the distribution of priorities between text and 
pictures changes. In “conventional” multimedia documents, which 
often include a limited number of pictures that are sometimes “poorly” 
designed compared to IVR or full HD videos, text is dominant, and 
previous studies have shown (see, for example, Schmidt-Weigand 
et al., 2009) that learners spend much more time on the text than on 
the pictures. The reverse may be true of IVR presentations because the 
3D and presence effect emphasize the pictures. The cognitive guidance 
and strategies used by the learner should therefore rely less exclusively 
on the text. The feeling of the visual completeness of the environment 
due to the 3D space and the presence feeling that results from effects 
of perceptual salience and immersion may make the visual channel 
much more dominant than the phonological channel, meaning that 
the visual sketchpad would become the priority processing mechanism 
and representational system, taking precedence over the phonological 
and word representation system. This hypothetical explanation could 
partly account for the reverse modality effect observed in the study by 
Albus and Seufert (2022).

The present study follows on from research assessing the use of 
multimedia principles relating to visual signaling/cueing in IVR 
environments conducted within the framework of the CAMIL 
(Makransky and Petersen, 2021) and the CTML (Mayer and Fiorella, 
2022) models.

However, because of the potential dominance of perceptual visual 
and pictorial processing in IVR, which could impose a visual load 
(rarely or never measured per se, Skulmowski, 2023), another 
complementary processing model may be of interest: The Animation 
Processing Model, APM (Lowe and Boucheix, 2008, 2016). IVR 
environments dominated by pictures frequently involve complex 3D 
spatial information and also dynamic, e.g., transient, information. On 
the one hand, the spatial information not only includes depth views, 
e.g., depth perception, but also front, back, side, top and bottom views 
of the display. On the other hand, a transience effect may arise from 
the possible dynamics of the objects, the context and the learner’s 
body movements in the scene when exploring these rich environments. 
As postulated by the APM (Lowe and Boucheix, 2008), understanding 
and building mental models from such complex pictorial 
environments involve (i) pre-attentive (gestalt theory principles) and 
(ii) perceptual processes, which are the bases (“raw material”) for the 
(iii) cognitive processing of concepts, causal relations, knowledge 
building and memorization. Perceptual processes lead to the required 
spatial and temporal partitioning of the content elements in the IVR 
display. The efficiency or relevance of partitioning the scene/content 
may depend on (i) the achievement of an optimal alignment of the 
perceptual salience of the (dynamic) pictorial information, (ii) 
top-down application of the learner’s prior knowledge (iii) the learner’s 
visuo-spatial abilities. Perceptual partitioning seems to be necessary 
in order to allow effective cognitive processing when selecting, 
organizing and structuring the relevant visual information (Mayer and 
Fiorella, 2022). In line with the foregoing, the APM proposes a five-
stage model of the processing of dynamic visuospatial information, 
involving both the decomposition and composition of the visual 
information (Lowe and Boucheix, 2008; Boucheix et al., 2013; Lowe 
and Boucheix, 2016; Lowe et al., 2022).

Stage 1. Localized perceptual exploration. After a very short holistic 
processing, the continuous flow of spatiotemporal information is 
perceptually parsed into small groups of neighboring graphic entities 
in order to identify event units. This takes place through both 
pre-attentive and attentive exploratory processing. Stage 2. Regional 
structure formation. Event units, as well as spatiotemporal entities, begin 
to link up locally to form regional structures representing various parts 
of the display. General causal relations begin to form between these 
regional event units. This processing leads to the formation of dynamic 
micro-chunks (and micro-chunks of entities), which can be considered 
as individual islands of activity and islands of comprehension that 
correspond to what is happening in different regions spread across the 
display area. Stage 3. Global characterization. During this phase, the 
learner develops a more global internal characterization of the dynamics 
of and relations between spatiotemporal micro-chunks. The islands of 
activity are linked into broader coherent structures, such as domain-
general causal chains. Stage 4. Functional differentiation. The relational 
structure is characterized in a domain-specific way. Actions are 
propagated along causal chains and/or bigger visual chunks. Events are 
interpreted in terms of the referent’s central objective and the different 
subsystems are considered as contributing to the overall functioning of 
the system. This processing identifies functional episodes. Stage 5. 
Mental model consolidation. Mental models are thought to facilitate the 
understanding of a system’s behavior, not merely in a single situation 
but also in a variety of circumstances and across varied operational 
requirements. Furthermore, the model should make it possible to adapt 
to different task requirements and performances. This processing 
results in a flexible mental model.

We assume that several features of the APM could be applicable 
to other forms of complex and rich visual displays, such as IVR. For 
example, the decomposition phase, involving the parsing of the 
relevant spatiotemporal entities of the displays at different locations in 
the immersive environment (which can be distant from each other), 
and the composition phase, in which relational systems are created 
between spatiotemporal entities and levels (macro and micro), may 
be also involved in IVR learning. How is it possible to help learners 
process such a complex visual environment?

1.3 The potential benefit of signaling in IVR

Because of the dominance of spatiotemporal and pictorial 
information in IVR, and based on the APM model, adding visual 
signaling related to task-relevant information in IVR could help 
learners direct their attention to relevant information, thus enabling 
them to select, organize, structure and integrate visual information at 
the right location at the right time (Mayer and Fiorella, 2022; Van Gog, 
2022). Such cueing could reduce visual load, assist in the inhibition of 
irrelevant information and create relations between relevant 
information (chunks, causal chains, etc.). In the context of recognizing 
forest flora and fauna, for example, cueing may help learners navigating 
in the IVR forest environment to select tree, flower or plant species and 
choose soil types that promote biodiversity and forest preservation.

1.3.1 Signaling in conventional multimedia 
learning

The signaling principle holds that people learn better when 
signals/cues (verbal and/or visual) are added, not to give more 
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information but to highlight the relevant information and the 
organization of the multimedia presentation (text and/or pictures). 
Verbal signals include, for example, adding pointer words, numbering 
etc. Visual signals include highlighting, spotlighting, zooming, color 
coding and graphic organization (Fiorella and Mayer, 2022; Van Gog, 
2022). Cueing usually introduces and increases the visual contrast 
between the signaled information and the other parts of the display. 
In this way, cueing directs learners’ attention toward the relevant 
information and cuts search times and the extraneous load related to 
the search activity.

The results of numerous previous research studies have reported 
a positive effect of signaling on multimedia learning (for example de 
Koning et  al., 2007, 2009, 2010a,b; Boucheix and Lowe, 2010; de 
Koning et al., 2011; Boucheix et al., 2013). Three main meta-analyses 
have reported that signaling improves learning effectiveness, with 
effect sizes ranging from small to medium being observed. Richter 
et  al. (2016) analyzed the efficiency of signals that highlight 
correspondences between text and pictures and found a small positive 
effect size (r = 0.17) in favor of signaled multimedia for transfer and 
comprehension. Schneider et  al. (2018) used a larger variety of 
multimedia material that included standalone dynamic visualizations 
and revealed a small-to-medium positive effect size of cues on 
retention (g + = 0.53) and transfer (g + = 0.33). Finally, Alpizar et al.’s 
(2020) meta-analysis showed a small-to-medium effect size in favor 
of signaling (d = 0.38). However, eye-movement data has also indicated 
that even if signaling is successful in directing the learner’s attention 
to the specific relevant information, it does not always guarantee a 
significant improvement in comprehension and transfer performance 
(de Koning et al., 2010a; Lowe and Boucheix, 2011). In the case of 
dynamic presentations (animations), comprehension is improved by 
signaling techniques that not only direct the learner’s attention but 
also emphasize the structure of the learning material (de Koning et al., 
2009) or the relation between elements, such as causal chains for 
example (Boucheix and Lowe, 2010). Furthermore, dynamic signaling 
improves the comprehension of transient information more than 
static signaling (Boucheix et al., 2013).

1.3.2 Levels of signaling in complex visual IVR
As mentioned above and as far as we are aware, little previous 

research has investigated the signaling effect in IVR. The study 
conducted by Albus et al. (2021), used signals in the form of textual 
annotations (written labels) during learning from a 3D animation on 
the subject of seawater desalination presented with a low end 
VR-HMD set-up. The effect of the presence or absence (control group) 
of signals on learning outcomes and extraneous and germane 
cognitive load was investigated. Results showed that written 
annotation signals improved learners’ recall performance and 
germane load compared to the control group but did not improve 
either deeper processing (comprehension and transfer) or extraneous 
cognitive load. Adding textual annotations might therefore be  an 
appropriate approach in IVR learning situations. However, it seems 
that the written annotation signals used in the learning material of this 
study were written localized “repetitions” of the aural audio 
information delivered by the animation, and it is therefore possible 
that there was a redundancy effect (Fiorella and Mayer, 2022; Kalyuga 
and Sweller, 2022) that weakened the signaling effect. Whatever the 
case may be, Albus et al. (2021) confirmed the signaling effect and also 
suggested that other forms of signaling should be tested, in particular 

dynamic signals (Boucheix and Lowe, 2010; Boucheix et al., 2013). In 
their recent investigation, Zhang et  al. (2023) used a VR training 
simulation of the process of assembling computer hardware and 
confirmed that textual cues boosted immediate knowledge gain 
(retention) but did not improve transfer.

In the present study, we focused on testing the potential benefits 
of visual signals rather than relying exclusively on textual signals. 
We used a typical training task given to agricultural forestry students. 
In this task, the students have to identify the specific ecosystems and 
biodiversity of forest parcels before deciding on whether and how to 
intervene (by cutting trees, for example). Both comprehension and 
diagnostic activity are required in order to identify the quality of the 
ecosystems of the parcels. Due to the information density and the 
potential “sense of proprioceptive visuospatial comprehensiveness” in 
IVR, we propose that not only one but several levels of signaling could 
be  needed in order to help users better organize the relevant 
information in the environment. Different signaling levels could then 
highlight different levels of the information structure of the visual 
environment: in the forest scenario, for example, these could include 
the level of trees and plant-related information and the level of soil 
information (including soil moisture levels and wildlife information). 
This type of differentiated signaling would not only highlight the 
structure of the relevant information but also could direct attention 
toward conceptual relations that might link the signaling levels: for 
example, between the soil composition level and the tree and plant 
level. However, using too many signals could impose a greater 
perceptual and cognitive load.

1.4 Feedback with generative activities in 
IVR and signaling

The provision of informative feedback is widely recognized to 
be  an effective instructional method that enhances learning 
performance and increases the learner’s engagement (see, for example, 
Hattie and Timperley, 2007; Hattie, 2008). According to the feedback 
principle, students in multimedia learning situations learn better with 
informational and explanatory feedback than with only corrective 
feedback (Johnson and Marraffino, 2022). Recently, and interestingly, 
Stenberdt and Makransky (2023) used two types of feedback in a study 
which investigated the effect of mastery experiences in IVR on 
promoting pro-environmental waste sorting behavior. “Conventional” 
corrective feedback was compared to an exaggerated feedback which 
consisted in showing learners the effect of incorrect waste management 
activities on the environment. The depicted environmental changes 
were exaggerated so that sorting one waste item (incorrectly) reflected 
the effect of many people persistently sorting this type of waste in the 
same way.

In the present study, informative feedback was given to learners 
during the training task, in particular after they had made a first action 
decision based on their diagnostic of the forest ecosystem and before 
making a second action decision. We expected the feedback principle 
to impact task performance, in particular given that during the 
learning-by-exploration time in the IVR environment, the learners 
were actively able to use the joysticks associated with the IVR headset 
to navigate toward specific forest elements (trees, plants, soils etc.) 
and, on reaching them, obtain information about their nature and 
characteristics (see the details in the Method section).
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We are not aware of any previous research that has studied the 
combined effect of signaling and feedback in multimedia-based or 
IVR learning. We hypothesized that there would be an interaction 
effect of signaling and feedback on task performance. We speculated 
that the cognitive processing mechanism underlying such an 
interaction could act as follows. The effectiveness of the cognitive 
processing and interpretation of information feedback may depend on 
the relevance and quality of the knowledge and information acquired 
and memorized immediately beforehand during the task (also 
including prior knowledge). If so, the cued items of information 
preselected for learners in a signaling condition, which are relevant by 
definition, limited in number and reveal the underlying structure of 
the information, might be better retrieved from working memory and 
processed for treating the feedback information than in a 
non-signaling condition. In this latter condition, the internal 
activation of more information, which is potentially irrelevant and 
understructured, would not facilitate the cognitive processing of the 
feedback information. In other word, the signaling of task-relevant 
information could make it easier to establish the necessary internal 
relations between the content of the feedback information and the 
content of the previous information memorized during the task before 
this feedback and indeed improve these relations. As a consequence, 
the positive effect of feedback on task performance might be greater 
when signaling is used than when it is not.

1.5 The present study

As mentioned above, the present study investigated the influence 
of two levels of visual signaling and information feedback in a 
vocational training task involving (i) the exploration, and interrogation 
(forest elements searching), of forest areas for the purpose of 
diagnosing the ecosystem and (ii) two subsequent decisions, including 
a justification given by the learner: a first decision before information 
feedback on the forest elements present in the areas visited during the 
exploration and a second decision after this feedback. The action 
decisions made by forestry professionals and students in agricultural 
colleges in order to ensure forest sustainability, for example whether 
to cut trees, how to manage plots, etc., must result from the application 
of knowledge about biological ecosystems and lead to a diagnosis of 
the biological potential of the forest or the parcel. By learning and 
applying such knowledge, learners are able to predict the effect, 
whether positive or negative, of human action decisions on forest 
development (trees, plants, animals etc.) in the short (1 to 5 years), 
medium (5 to 10 years) and long term (more than 20–50 years to 
100 years). An IVR environment based on authentic agronomic 
forestry models could be an effective learning and training tool. The 
IVR environment used in the present study is a part of a wider project 
called Silva-Numerica (involving several collaborating partners), 
which has involved the design, construction and implementation of a 
realistic live forest simulator which is able to simulate forest 
development (trees, plants, soil, etc.) and, in particular, the effect of 
human action on future changes. It makes use of computer algorithms 
derived from agronomic models.

The project started by testing and implementing a screen-based 
(desktop) simulator for classroom use (college and undergraduate 
university levels). In the present study, we  used a later IVR version 
(Figure 1) which induces a high level of perceived presence, including 
realistic 3D features, and provides verbal and pictorial information on 

visible and invisible elements during the exploration of forest parcels 
(types of trees and plants, fungi and mushrooms, soil types, animals, 
moisture content, micro-habitats, etc., see details in the Method section). 
We  also used a typical training task taken from the agro-ecology 
curriculum. Students were told to explore (and interrogate) several (small) 
forest areas in order to decide which one would be the most suitable for 
building a public reception area with (a forest observatory and) a picnic 
area and keep the impact on the nearby forest ecosystem to a minimum. 
This task involves (i) a first phase of exploration-based learning of the 
areas in order to build a mental model of the characteristics and richness 
of the ecosystem of each area and (ii) making a decision about the most 
suitable area for the location of the public reception area. Naturally, the 
participants were required to give a clear justification for their decisions 
(see the details in the Method section). The cognitive processing required 
before making the decision involved comprehension-diagnostic activities: 
the selection and identification of relevant ecosystem elements (types of 
trees, trees planned for the future, plant species, fungi, soil features, 
potential wildlife) and the establishment of relations between the 
identified elements.

Complementary influencing factors were also controlled for the 
study. First of all, prior knowledge of participants (agricultural 
education students) was assessed. Secondly, since the participants had 
to navigate in forest areas and read verbal information about selected 
forest elements, their spatial abilities [see the recent paper by 
Hartmann et  al. (2023), on spatial abilities and IVR] and verbal 
working memory spans were measured and controlled. In addition, 
and based on the CAMIL model (cf. Makransky and Petersen, 2021), 
several technological features, affordances and cognitive-affective 
factors were assessed using subjective scales based on the assessment 
tool proposed by Makransky et  al. (2017): perceived realism and 
authenticity, presence and immersion, perceived task facility-difficulty, 
usability of the environment’s functionalities, specific knowledge 
requirements, cybersickness, overall enjoyment during the IVR 
experience (see Method section for details).

1.6 Hypotheses

Four main hypotheses were formulated in the light of 
the foregoing.

H1: We expected an effect of visual signaling on the number of 
elements (trees, plants etc.) explored, e.g., targeted (and then 
selected) with the joystick prior to decision-making. In the 
signaled conditions, we  expected learners to target and select 
fewer elements than in the non-signaled conditions. Targeting 
fewer items would help participants select the relevant information 
and organize and integrate it before making a decision.

H2: We expected a positive effect of visual signaling on correct 
(and justified) decisions. This would apply to both the first and 
second decisions. We did not formulate any hypothesis about the 
question of whether there might be differences between the levels 
of signaling, i.e., the signaling of trees and plants (which tended 
to be at or above standing height) and the signaling about the soils 
and less visible information (which tended to be at ground level). 
Both signaling levels are important in order to infer the wealth of 
biodiversity in the explored area.
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H3: We predicted that the information feedback provided after 
the first decision would have a positive effect on performance on 
the second decision. Information feedback about the forest 
elements relevant for building a mental model of the ecosystem 
of the visited forest areas would help participants to make the 
correct decision. Naturally, the provided information did not 
indicate which area had the richest ecosystem and biodiversity. 
However, it did provide an informative description of specific, 
task-relevant, information about the forest elements present in 
the area (types of trees, plant species, soil types, animals, fungi 
and mushrooms etc.).

H4: We expected to observe an interaction between signaling 
and feedback on decision performance, with learners in the 
signaled conditions outperforming those in the non-signaled 
condition for the second decision after the feedback. The internal 
matching between the stored task-relevant information before 
the feedback and the relevant information provided by the 
feedback would be facilitated in the signaled conditions, thus 
facilitating the elaboration of a high-quality mental model of the 
various forest ecosystems. In the non-signaled condition, 
learners might store both irrelevant and relevant ecosystem-
related information before the feedback, making internal 
processing of the feedback more difficult and potentially 
producing subsequent interference.

H5: Regarding justifications, we expected a higher number of 
correct justifications of decisions made in the signaled conditions 
than in the non-signaled condition. Furthermore, signaling was 
expected to increase the number of justifications based on 
considerations of ecosystem biology rather than justifications 
based on human wellbeing and comfort. Finally, regression and 
covariance analyses were run to explore the relations between 
subjective measures, and in particular realism, presence and 
immersion, perceived task facility-difficulty, usability of the 
environment’s functionalities and decision performances in the 
four experimental conditions. This led to H6, namely an expected 
significant covariant relation between presence and performance, 
which would be  consistent with the immersion principle 
(Makransky, 2022).

2 Method

2.1 Participants and design

Eighty-nine students from a French agricultural college took part in 
this study (average age: 16.19 years, 39 girls and 50 boys, respectively 43.82 
and 56.18%). Their curriculum was composed of a common core 
including general subjects (French, Math, English, Life and Earth 
Sciences) and two important special options: agricultural production 
technology and development and outdoor space enhancement with a 
focus on forestry. Four of the college’s classes were invited to take part in 
this experiment, i.e., two classes per grade: two 10th-grade classes and two 
9th-grade classes. The experimental design involved four groups with two 

between-subjects factors corresponding to the two signaling levels factors 
(2×2). One group saw no signaling (no-signal group, n = 23), i.e., there was 
no highlighting of the task-relevant trees and plants by means of flashing 
colors (F-) and no signaling marker stones on the ground (S-, see 
Materials section for details); two groups saw either the flashing 
(highlighted) task-relevant trees and plants (n = 21) or the signaling 
marker stones on the ground (n = 22) (F+S- or F-S+, respectively); one 
group saw both signaling levels, i.e., both the flashing trees and plants and 
the marker stones on the ground (n = 23, F+S+). Feedback was the within-
subjects factor for each of the four groups. The 89 students were randomly 
assigned to the four groups and the groups were matched on prior 
knowledge, spatial orientation ability and grade (see below).

Previous research into the benefits of signaling on learning or 
training performances has indicated small to medium effect sizes (see 
above, Section 1.1). We conducted two power analyses based on a 
medium effect size for a two-way ANOVA analysis, e.g., with two 
between-subjects factors corresponding to the two levels of signaling 
and feedback as a within-subjects factor. A compromise power 
analysis (compute implied α and power, given the β/α ratio, sample 
size and effect size) performed with G*power 3.1 (Faul et al., 2007) 
indicated a β/α ratio of 1 and a power (1- β err.prob.) reaching 0.83 
with a sample of 89 participants for an effect size f of 0.25. A sensitivity 
power analysis was also performed with G*Power (3.1, Faul et al., 
2007) to estimate the minimum effect size that could be detected by a 
factorial ANOVA with the four groups (N = 21 to 23). This analysis 
indicated that a medium effect size f of 0.28 would be detectable with 
the current sample size. We used Cohen’s conventions defining small 
(d = 0.20, ηp2 = 0.02, f = 0.10), medium (d = 0.50, ηp2 = 0.13, f = 0.25) and 
large (d = 0.80, ηp2 = 0.26, f = 0.40) effects (Cohen, 1988).

The experiment included two sessions: (i) a paper-and-pencil-
based pre-test session, (ii) a learning (training) IVR session, which 
was immediately followed by decision 1 (with justification, 
performance on post-test 1) before feedback was provided and 
decision 2 made (with justification, performance on post-test 2). 
Finally, the subjective post-test questionnaires were administered.

The paper-based pre-test session took place in the classroom and 
the IVR session in a special large room used for virtual reality teaching 
(see Figure 2). During the pre-test session, students completed a series 
of tests to assess their working memory and spatial skills and answered 
a prior knowledge questionnaire on the subject of the IVR exploration: 
the forest ecosystem. Students’ performance on these tests and their 
average grade scores in agricultural disciplines, including ecosystems 
theme, were used to create four homogeneous groups (with N = 21 to 
23 participants per group) corresponding to the four IVR forest 
conditions. In the second session, which took place between one and 
three weeks later, students individually explored and interrogate the 
forest space in virtual reality using an IVR headset (HTC Vive).

This exercise, involving the learning by exploration of forest areas, 
was followed by a first decision task. Feedback was then provided, 
followed by the second decision task. Finally, each participant completed 
a series of questionnaires: (i) the subjective scales about the IVR 
experience, (ii) a demographic questionnaire. Each session lasted 
approximately 60 min and the total duration of the experiment was 
120 min. The first session was conducted as a whole class, whereas the 
participants performed the second session individually. At the end of the 
first session, students were informed that they would participate in a 
second immersive virtual reality session, but they were not informed of 
the nature and content of the task they would have to complete.
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2.2 Learning material and experimental 
equipment

2.2.1 Pre-tests
During the pre-test session, participants completed three paper-

based tests in order to allow us to form homogeneous controlled 

experimental groups: (i) a spatial orientation test; (ii) a verbal working 
memory test and (iii) a prior knowledge test. As it can sometimes 
be  difficult to orient oneself in space when immersed in a VR 
environment, (see Drai-Zerbib et al., 2022; Mayer et al., 2022), we also 
asked the participants to perform a spatial orientation test. The spatial 
orientation test was a French translation of the “Perspective Taking/

FIGURE 2

Snapshots of the IVR environment with (A) a forest area; (B) a reproduction of the map accessible in the virtual environment, including a body of water 
(blue), the three zones (green) and a path (orange); (C) a participant during the task; (D) an example of a marker stone, with the textual information 
which popped when targeted and selected; (E, F) an example of a flashing tree, and (G) in white, the textual information which popped on a targeted 
and selected tree: Tree; Id: 203; Species: Sycamore Maple; Diameter: 0.52 meter; Microhabitats: root cavity, dead branch in crown.
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Spatial Orientation Test” developed by Hegarty et al. (2008). This test 
was composed of 12 items organized as follows: various objects, such 
as a car, a house, a cat or a flower, were depicted on a half-page. An 
instruction displayed below the images asked the participants to 
imagine themselves in the place of one of the pictures, look at another 
picture, and from there determine the location of a third item. To 
answer, they had to draw a line in a circular dial located under the 
instruction and were given 5 min to complete the twelve items. The 
Danneman and Carpenter (1980), adapted into French by Desmette 
et al. (1995), was used to assess the verbal working memory span. In 
this test, participants are asked to listen to a series of orally presented 
sentences. At the end of each set of sentences, they must recall the last 
word of each sentence in the set. Each set consists of 2, 3, 4, 5, or 6 
sentences. The participant must therefore listen to the sentences and 
keep the last word of each sentence active in working memory. The 
participants in our study had to listen to the series of sentences and 
then write down the last word of each sentence in the answer booklet, 
but only after receiving the “go” signal. Two scores were calculated 
from the students’ responses: the more demanding criterion for 
scoring the responses was the number of completely successful sets of 
sentences (without errors or missing words, out of 15), and the less 
demanding criterion was the number of words correctly and 
completely recalled in the correct order in all sets of sentences (max. 
40). Both scores were transformed into percentages and we used the 
average of the two scores for data analyses.

The factual knowledge pre-test consisted of two open-ended 
questions: (i) Define as precisely as possible what a forest ecosystem 
is, what its characteristics are; (ii) With reference to the ecosystems 
present, what is the best way to manage a forest area?

We chose this question format, firstly because it uses the types of 
questions usually asked by teachers to students, and also in order to 
avoid influencing the answers given during the following experimental 
phase. Indeed, proposing MCQ encompassing biodiversity, soil 
characteristics and management of the forest environment could have 
led the students to reason differently and give different answers during 
the IVR exploration. In addition, this type of production and 
generative task is thought to have more discriminant power than an 
MCQ-type questionnaire (Mayer and Fiorella, 2022).

To rate these written accounts, we developed a coding criteria 
matrix based on the answers given by a specialist, the life science 
student’s teacher, to these questions. We used the 10 main criteria 
(together with their definitions) provided by the teacher: diversity, 
human intervention, adaptation of flora and fauna (appropriateness), 
dynamic system, biotope, interaction between species, renewal cycle, 
stable environment, sustainability of the environment. Each criterion 
was scored out of 1 as follows: 1 point was awarded to the student 
when the criterion was present and defined completely correctly; 0.5 
points were awarded when the criterion was mentioned by the 
student in an undeveloped or imprecise way and 0 points were 
awarded when the criterion was absent or wrongly defined and 
explained. The experimenter coding of these written data was double 
checked by the specialist teacher. The scores out of 10 were 
transformed into percentages for statistical analysis. The prior 
knowledge pre-test was followed by a demographic information 
questionnaire that included questions about the participants’ age, 
gender, use of computers and digital tools such as social networking 
and video games. We also asked them if they wore glasses and if they 
knew of any learning disabilities.

2.2.2 Learning material
To permit the use of the HTC Vive HMD IVR headset, 

we  delimited a nine square meter exploration area using sensors 
installed on tripods at a height of 2 meters. These two sensors were 
arranged diagonally across the room, each marking the corner of a 
3-meter square. This surface was set up and calibrated using the 
controllers on a Windows 10 “gaming” computer running SteamVR 
software. This action area allowed users to move safely through an 
obstacle-free zone. To indicate the boundary of the exploration area, 
a blue grid appeared in the headset as the user approached it. In this 
way, users could reorient themselves to stay safely within the boundary 
while they were exploring and analyzing the forest areas. The 
environment proposed a simulation-reproduction of typical forest 
plots of varying ages that can be found in real forest environments in 
France (see Figures 1, 2). The numerical model and algorithms of the 
forest environment were based on an agronomic and biological model 
of forest development built in cooperation with scientific experts and 
a research laboratory specializing in image computing and AI. The VR 
implementation was made with Unity.

The aim was to immerse learners in this forest environment so 
that they could explore and analyze various forest areas featuring the 
different elements present (different types of trees, herbaceous plants, 
microhabitats, types of soils with various humidity levels, see below) 
in order to make a diagnosis of the forest ecosystem spaces and 
authorize or prohibit the installation of structures intended to 
welcome walkers and visitors, while having only minimal impact on 
the ecosystems of the visited forest areas. The students arrived at their 
diagnosis of the ecosystem by exploring and analyzing three forest 
areas while also extracting – i.e., targeting and selecting – and linking 
relevant elements. This enabled them to decide in favor of or against 
the installation of a public reception area, such as a forest observatory 
with a picnic area. This task met our needs in terms of research on the 
cognitive processes related to learning in immersive virtual reality 
environments and also dovetailed with the pedagogical needs of the 
learners in their field practice related to their future 
professional activity.

The students were welcomed individually by one of two 
experimenters, each accommodated in a room dedicated to virtual 
reality experimentation in the college. The two rooms were each 
equipped with a computer running the experimental software and an 
HTC Vive HMD.

In order to familiarize each participant with the forest 
environment and the ways in which they could interact with this 
environment using the controllers, a tutorial including a simple task 
in some very simple natural areas was administered prior to the 
main task.

The tutorial was composed of three areas delimited by barriers 
(boundaries). Each of the areas had a marker stones and an herbaceous 
plant. The goal was to allow the students to become familiar with the 
IVR environment and with the control options made possible by the 
joysticks, such as targeting and selecting an element or moving from 
one area to another, without immediately immersing them in the 
forest environment.

The main virtual environment: This consisted of three areas or 
zones within the virtual forest. The student’s task was to learn by 
exploring and analyzing these three zones. While doing so, they 
consulted (targeting-selecting) the different elements present in each 
zone (trees, shrubs, herbaceous plants, fungi, soils) and learned their 
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specific characteristics. The students could walk in the area and move 
around by teleporting into the environment using the joysticks. They 
could also consult and select items and also cancel these selections.

Each element consulted, targeted and selected was automatically 
recorded by the computer. A variety of tree species with a wide range 
of ages and heights was present in each of the three areas: oak, ash, 
spruce, beech, maple, elm, hornbeam, alder. Regarding the layout of 
the different zones, the number and types of trees, their ages and 
heights, as well as the types of shrubs, herbaceous plants, 
microhabitats, soils, were strictly controlled, naturally in the light of 
the level of biodiversity of the ecosystem of each of the three areas. The 
visual density of the trees and plants was also balanced across the three 
areas. In Zone 1, a wetland was located near a water body and was 
partly composed of highly biodiverse elements specific to marshy 
soils, such as iris, ferns, beech and elm trees. A second area, Zone 2, 
was located away from the water body and had stable soil with 
moderate biodiversity: mostly oak but also hawthorn, spurge, beech, 
maple. The third zone was located between the other two zones and 
had stable soil and rich biodiversity: hawthorn, spurge, maple, ash, 
hornbeam, beech, oak and spruce. Microhabitats could be found in all 
three zones and were composed of polypore fungi and mushrooms, 
woodpecker cavities, dead trunks on the ground etc. Thus, the level of 
biodiversity was high in each of the zones, preventing the task from 
being too simple and instead requiring a fine-grained analysis of the 
area of vegetation (trees, plants etc.) of wood.

This controlled diversity and fine-grained difference in terms of 
biodiversity (scarcity of plant species, competition between trees, and 
number of “interesting” trees, e.g.: straight, balanced, vigorous and of 
high productive value of wood) and soil stability between the three 
areas required an in-depth analysis of the elements present in each 
area in order to come to a reasoned decision after the environment 
had been fully explored. At the end of the period of IVR exploration, 
each participant had to decide which of the three zones could be used 
to build a public reception area that made the least possible impact on 
the ecosystem and biodiversity of the forest (see below).

Each zone was delimited by barriers, and only the elements 
located inside these three zones were available for consultation. Each 
zone was composed of approximately 30 trees, 15 shrubs and 20 
herbaceous plants present in similar densities (including a visual 
impression of similar density) in order not to influence the students’ 
responses. Each zone was generated by a software program 
reproducing the real forest balance specific to the type of zone created. 
At any point during the exploration of the forest areas, the students 
were able to access a map via the trigger on the controller in order to 
find their way around the virtual environment (Figure 2B). An arrow 
indicated the student’s position and orientation in real time. Each area 
had a number on it, allowing the students to find their way around and 
then subsequently communicate their choices. Three types of 
numbering were programmed and counterbalanced, as was the order 
of exploration of the three zones.

Each of the forest elements could be targeted, viewed and selected 
with the joysticks. Once the element was targeted, a tooltip gave the 
following written information: the type of element (for example, tree/
shrub/herbaceous plant etc.) and its name. For the trees, the 
information provided consisted of the tree species (type of tree, e.g., 
oak, beech, alder etc.), its age, diameter, and the presence of dead 
branches in the crown, microhabitats, woodpecker cavities, polypore 
fungi and mushrooms or foot cavities (Figure 2G).

In the signaling conditions, whether F+S+, or F+S- F-S+, elements 
relevant for ecosystem diagnosis were signaled. As mentioned above, 
two signaling levels were created using a 2×2 design with four groups. 
The first level was that of trees, shrubs and plants. The signals on the 
relevant elements consisted of contrasting flashing colors, F. In 
flashing mode (Figures 2E,F), the elements flashed one after the other, 
getting darker and then lighter until the student targeted and looked 
at them. The flashing signals did not prevent participants from 
identifying the element, a tree for example, from its visual appearance 
(such as its texture and color). Once the student had looked at an 
element, it stopped flashing and the student had to look for the next 
flashing element.

The second signaling level was that of soil information as well as 
of less visible or invisible information (such as soil moisture, for 
example). The signals took the form of marker stones S, which were 
placed at specific locations in each zone (Figure 2D). Once targeted, 
the marker stones provided written information about the 
environment that was not directly visible, such as: stable soil, wet soil, 
presence of frogs, dragonflies, and garter snakes. However, in the 
non-signaled control condition, F-S-, the same information was 
accessible and could be  obtained by targeting the relevant forest 
element with the joystick. The verbal justifications given by the 
students both during and after their periods of exploration were 
recorded with a voice recorder during the entire experimental phase: 
(i) during the learning-by-exploration phase and (ii) when explaining 
the two decisions, before and after the feedback. These verbal 
justifications were transcribed and the arguments given for each 
targeted and selected element were listed for each participant. 
We recorded the total number of elements selected by each student 
during their exploration and for the two decisions, i.e., before and after 
the feedback.

2.2.3 Feedback materials
The feedback (Figure  3) consisted of three A4 multimedia 

documents, with one page per forest area. Each page consisted of a 
screenshot of a characteristic frame of the relevant area and a written 
summary description (approximately 50 words, see Figure 3) of the 
area’s most important characteristics (types of trees and plants, soil 
properties – for example soil moisture and soil stability – presence of 
micro-habitats and animals). This feedback was presented after the 
learners had made their initial decision in order to allow them to 
confirm or change it. The information text presented together with the 
picture was intended to allow them to compare the information stored 
in memory during the learning-by-exploration phase with the 
information presented in the feedback and establish internal relations 
between them. We  thought that these relational and comparative 
activities might make learners aware of the presence of relevant forest 
elements that they might not have noticed during the exploration 
phase. They could thus compare the different areas with each other 
and interpret the role of potential new elements in the light of those 
found during the IVR exploration.

2.2.4 Subjective scales
Finally, we administered post-test subjective scales presented in a 

questionnaire about the IVR experience. This consisted of 10 scales 
(see Appendix A) intended to assess ten items inspired by the CAMIL 
model and based on the multimodal virtual scale for virtual reality 
published by Makransky et al. (2017), and in particular on two of the 
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three subscales of the overall questionnaire: physical presence and 
self-presence. However, although we kept the specific themes from the 
Makransky et al. (2017) scale, we did not always use the exact wording 
of the scale, as we were obliged to adapt the items to the particular 
characteristics of the forest environment and to the nature of the 
training task we had designed. The 10 items belonged to one of three 
categories: C1, Presence, including 4 items (immersion, realism, ease 
of recognition of forest VR elements, ease of graphical recognition); 
C2: Cognitive Complexity, Extrinsic, including 2 items: ease of 
movement in the environment, ease of use of interaction features 
(joystick, map, elements targeting and selection); C3: Cognitive 
Complexity, Intrinsic, including 2 items: cognitive complexity of 
exploration of the environment (navigation), cognitive difficulties in 
the use of specific knowledge about forest elements. In addition, there 
were two categories with one item each: C4: feeling of cyber sickness; 
C5: overall enjoyment. For each item, participants had to select a 
number on a scale from 1 to 5. The questionnaire ended with an open 
question: “Do you have any comments on the use of the program and 
virtual reality: strengths/weaknesses, other.” For each of the categories 
C1, C2 and C3, we  used the mean of the items of the category 
(out of 5).

2.3 Procedure

In total, the experiment took 120 min. The first session lasted 
60 min. Participants completed the three pre-tests: the verbal working 
memory test, the spatial orientation test, and the prior knowledge test. 
They were also asked to complete a demographic questionnaire that 
included questions about their age, gender, use of computers and 

digital tools such as social networking and video games, and finally 
signed a consent form. They were also asked if they wore glasses and 
if they knew whether they had any learning disabilities. The tests were 
conducted as a whole class (with N: between 20 and 25 per class) using 
specific individual booklets and were supervised by three 
experimenters and a teacher. At the end of the session, the students 
were informed that they would be invited to a second session in which 
they would have to perform various activities. The second session took 
place one to three weeks after the first and also lasted 60 min. The 
students were received individually by one of the two experimenters. 
The sessions conducted by the two experimenters took place in 
parallel in two large rooms of the agricultural college. The 
experimenter explained the general course of the experiment to the 
student and then equipped her/him with the virtual reality headset 
(HTC Vive). The session started with a tutorial in which three 
uncluttered areas were delimited by barriers. Each of the areas had a 
shrub and a marker stones. Students were shown the joystick controls 
and then asked to look at the map, teleport in, look at an item, target 
and select it. When the learner was confident about using the 
equipment, he or she was asked to teleport to a specific area of the 
tutorial. This step took about 10 min depending on how comfortable 
the participant was with the equipment. The students were then given 
the task instructions: namely to explore and analyze the three zones 
and then, at the end of this exploration, to decide in which of them 
they would choose to set up a public reception facility including an 
equipped picnic area while respecting the forest ecosystem as much as 
possible. The students’ task was to explore and visually analyze each 
area and to target and select the elements that seemed important to 
the task requirements. Each time they selected an element, they had 
to justify it. The students had 6 min to explore each zone, i.e., a total 

FIGURE 3

Example of multimedia feedback given to the students. Here is the English version of the textual information on the right of the picture: “Here, we can 
observe several species: maple, alder, ash and elm. The soil is moist, and a variety of plants can be encountered, including ash willow, fern, iris and 
marigold. There are also micro-habitats and the presence of animals”.
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of 18 min. When the 6 min were over, the experimenter told them 
which zone to go to next (counterbalanced order).

After exploring each area, the students removed the virtual reality 
headset and were asked to say where, in which of the three areas, they 
would locate the public reception and picnic area and to verbally 
justify the decision. They then sat at a table where feedback was 
presented. The experimenter provided the series of multimedia 
documents, i.e., images accompanied by a short explanatory text. They 
could then study the feedback images/text document (Figure 3) before 
making their second decision about the best area, allowing them to 
confirm their initial decision or change their minds. In both cases, 
they had to verbally justify the second decision. Finally, participants 
were asked to complete the subjective scales about their experience 
with the IVR. The experimenter remained available to answer 
students’ questions at the end of the experiment and told them not to 
tell their classmates anything about the content or course of 
the experiment.

2.4 Criteria for coding decision answers

The data for the two decisions was coded by the specialist teacher 
(of the students’ classes) and the two experimenters.

2.4.1 Criteria for decision coding
We assigned a score between 0 and 1 to each of the two decisions 

based on the following criteria: 1 point was awarded when the choice 
of the zone and the corresponding justifications were correct; 0.5 point 
were awarded when the choice was correct and the associated 
justifications were partially correct; 0 point when the area chosen was 
not the correct one or when the area chosen was the correct one but 
the justifications produced by the student were wrong or absent.

2.4.2 Criteria for coding verbal justification data
To analyze the justification data, we recorded (i) the total number 

of arguments given by students during the exploration of the virtual 
forest, and (ii) the number of arguments given during their first and 
second decisions. For each argument, we coded (i) the correctness of 
the argument and (ii) the nature of the argument. For correctness, 
we determined whether the argument was true, false, partial or absent. 
We assigned a point to the corresponding category (or categories), i.e., 
true, false, partial, no argument. An argument was considered true 
when the explanation corresponding to the item was correct, and false 
in the opposite case. An argument was considered partial when the 
student provided an incomplete argument. An absence of argument 

was noted when the student could not justify his or her choice when 
selecting the element or when making the decision, e.g., “I know it’s 
important, but I cannot explain why.” For the nature of the arguments, 
we noted the number of arguments given in favor of preserving the 
ecosystem, − “eco-system protection” argument- and the number of 
arguments given in favor of human well-being in the environment, 
− “human welfare” argument. Human welfare arguments may conflict 
with biological arguments in the field of ecosystem preservation. 
We distinguished between the three different justification times: area 
exploration time, first decision time (decision given immediately after 
exploration), and second decision time (decision given after feedback). 
The coding of these written data was checked by the specialist teacher.

2.4.3 Coding example for correctness and nature 
of arguments

“There are bacteria and fungi and mushrooms so it’s not especially 
good for the human body, it’s not very hygienic.” Here, the argument was 
rated as false and also in favor of human welfare rather than 
biodiversity in the forest ecosystem.

“I do not know if it’s beneficial or not, but there are microhabitats, 
so if after the presence of humans and all that, it takes everything away, 
it’s important to preserve it.” This argument was rated as partial, in 
favor of protecting the forest ecosystem.

“Holly is not useful so we are taking it out.” This argument was rated 
as false (holly is a protected species).

Stable soil marker: “Well, the soil structure is good. There is no 
risk of soil collapse or settling.” Here the argument was rated 
as true.

2.4.4 Statistical analysis of data
Factorial, mixed ANOVAs and analyses of covariance ANCOVAs 

were performed to analyze the data. Regression analyses were also 
conducted in order to analyze the effect of the controlled factors and 
subjective scales on decision performance. Because the dependent 
variable “decision accuracy of choices 1 and 2” (including decision 
answer + justification) varied from 0 to 1 for each decision time, 
we  additionally verified the main results of the ANOVAs by 
conducting nonparametric, rank-order, Kruskal-Wallis ANOVAs. For 
all analyses presented in this study, we used p < 0.05 as the criterion for 
significance. Partial eta squared (ηp2) and Cohen’s d values are 
provided as effect size measures for all main effects, interactions, and 
post hoc comparisons. The ηp2 values of 0.01, 0.06, and 0.14 represent 
small, moderate, and large effect sizes, respectively (Clark-Carter, 
2004), and the Cohen’s d values of 0.20, 0.50, 0.80, and 1.3 represent 
small, moderate, large, and very large effect sizes, respectively.

TABLE 1 Means (and SD) for each contolled factor (prior konwledge, school grade, working memory, spatial oroientation abilities) in the four 
experimental signaling conditions, F+S+, F+S-, F-S+, F-S-.

Signaling conditions
Participants number: N

F+S+ F-S+ F+S- F-S-

N  =  23 N  =  22 N  =  21 N  =  23

Prior knowledge score /10 1.85 (1.02) 1.84 (0.86) 1.50 (0.50) 1.52 (0.68)

School grade /20 11.86 (1.84) 12.03 (1.50) 12.26 (1.45) 12.68 (1.71)

Daneman & Carpenter WM test

Correctly recalled words / 40

34.43 (3.35) 33.30 (3.62) 34.37 (4.20) 33.64 (3.38)

Hegarty’s spatial orientation test /12 6.42 (3.32) 6.99 (2.24) 6.46 (3.55) 6.63 (2.45)
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3 Results

3.1 Controlled factors

Controlled factors help prevent potential biases when constituting 
reliable experimental samples. The results for the four controlled 
factors, prior knowledge, average school grade, verbal working 
memory span and spatial orientation abilities, are presented in Table 1 
for each experimental condition.

No significant effect, main effect or between-groups comparisons 
were found for any of the four measures in the four ANOVAs 
conducted, respectively; (i) for the prior knowledge score, 
F(3,85) = 1.29, p = 0.28, ηp2 = 0.04, and when the two most different 
groups were compared (e.g., F+S+ vs. F+S-, Table 1), F(1,85) = 2.08, 
p = 0.15, d = 0.43; (ii) for the average school grade, F(3,85) = 1.10, 
p = 0.35, ηp2 = 0.04, and when the two most different groups were 
compared (e.g., F+S+ vs. F-S-, Table  1), F(1,85) = 2.92, p = 0.10, 
d = 0.46; (iii) for the verbal working memory test score, F(3,85) = 0.51, 
p = 0.67, ηp2 = 0.017, and when the two most different groups were 
compared (e.g., F+S+ vs. F-S+, Table  1) F(1,85) = 1.06, p = 0.30, 
d = 0.32; (iv) for the spatial orientation test F(3,85) = 0.17, p = 0.91, 

ηp2 = 0.006, and when the two most different groups were compared 
(e.g., F-S+ vs. F+S+, Table 1) F(1,85) = 0.43, p = 0.51, d = 0.20. The four 
groups were homogeneous on the four controlled factors.

3.2 Information selection during 
exploration of the environment and effect 
of signaling on decision performances

Results are presented in Table 2 and Figure 4.
Regarding the number of selected elements, the factorial ANOVA 

with flashing and marker stones as two between-factors showed that 
the number of selected elements was significantly lower when first-
level signals, i.e., flashing, were present F(1,85) = 13.09, p < 0.001, 
ηp2 = 0.15. As expected, this result reveals that this signaling level 
directly affects the attention learners pay to relevant information. 
However, with regard to the second level of signaling, the effect of the 
presence of marker stones was not significant, F(1,85) = 0.57, p = 0.45, 
ηp2 = 0.007.

With regard to decision performances, a mixed ANOVA with 
flashing and marker stones as two between-factors, and feedback, 

TABLE 2 Means and SD for, respectively, the number of selected elements and the decision performances before and after the feedback in the four 
experimental signaling conditions, F+S+, F+S-, F-S+, F-S-.

Signaling conditions
Participants number: N

F+S+ F-S+ F+S- F-S-

N  =  23 N  =  22 N  =  21 N  =  23

Mean number of selected (targeted) forest elements during the exploration phase (sum for the three areas) 50.89 (29.25) 85.51 (60.73) 35.98 (13.87) 83.37 (70.42)

Decision ratio (correct justification): decision 1, Before feedback 0.70 (0.33) 0.82 (0.29) 0.43 (0.45) 0.24 (0.33)

Decision ratio (correct justification): decision 2, After feedback 0.87 (0.22) 0.77 (0.30) 0.83 (0.33) 0.56 (0.38)
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FIGURE 4

Mean decision scores in each signaling condition: for decision 1 before the feedback and decision 2 after the feedback, respectively. Statistical p values: 
***p <  0.0001; **p <  0.01, ms =  marginally significant, p <  0.10, ns, no significant.
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TABLE 3 Mean number of arguments (and SD) provided in each phase of the task (exploration time, decision 1 before feedback, decision 2 after 
feedback) and for each type of argument (true, partial, false, absent and biodiversity or human), in the four experimental signaling conditions, F+S+, 
F+S-, F-S+, F-S-.

Task stage
Condition
Argument type

F+S+
N  =  23

F-S+
N  =  22

F+S-
N  =  21

F-S-
N  =  23

Exploration time True 4.56 (3.90) 3.05 (2.33) 3.38 (3.23) 3.04 (3.75)

Partial 9.83 (4.61) 8.71 (5.26) 8.90 (4.50) 9.35 (4.44)

False 2.13 (2.07) 1.62 (1.46) 0.71 (1.05) 1.43 (1.62)

Absent 5.52 (4.50) 4.19 (4.39) 6.47 (6.64) 5.60 (4.81)

Biodiversity 7.39 (4.45) 4.27 (3.25) 6.52 (6.62) 3.96 (3.28)

Human 2.26 (3.27) 2.27 (2.43) 0.81 (1.56) 0.82 (1.46)

Decision 1 before 

feedback

True 1.52 (1.08) 1.31 (1.13) 0.52 (0.75) 0.56 (0.78)

Partial 1.65 (1.19) 1.04 (0.78) 1.86 (0.85) 1.48 (1.12)

False 0.17 (0.49) 0.18 (0.66) 0.28 (0.47) 0.52 (0.67)

Absent 0.35 (0.65) 0.27 (0.70) 0.48 (0.81) 0.30 (0.47)

Biodiversity 1.09 (0.99) 0.77 (0.92) 0.76 (0.83) 0.48 (0.73)

Human 0.04 (0.20) 0.14 (0.35) 0.38 (0.59) 0.26 (0.62)

Decision 2 after feedback True 1.09 (1.24) 0.54 (0.86) 1.67 (1.24) 0.91 (1.08)

Partial 0.69 (0.93) 0.23 (0.53) 1.09 (0.99) 1.08 (1.04)

False 0.01 (0.01) 0.09 (0.29) 0.14 (0.48) 0.35 (0.77)

Absent 0.001 (0.001) 0.09 (0.30) 0.28 (0.64) 0.08 (0.42)

Biodiversity 0.74 (0.75) 0.41 (0.85) 1.14 (1.15) 0.69 (0.76)

Human 0.08 (0.29) 0.04 (0.21) 0.28 (0.29) 0.13 (0.34)

measured on the basis of decision 1 before feedback and decision 2 
after feedback, as dependent repeated measures indicated a significant 
positive main effect of the marker stones signaling level 
F(1,85) = 18.91, p < 0.0001, ηp2 = 0.18; a marginal main effect of the 
flashing signaling level, which failed to reach significance, 
F(1,85) = 2.97, p = 0.088 ηp2 = 0.03; and a strong main effect of 
feedback, F(1,85) = 41.64, p < 0.00001, ηp2 = 0.33. The interaction 
between flashing and marker stones revealed a marginal effect, 
F(1,85) = 3.72, p = 0.057, ηp2 = 0.042 (see Figure 4 for a better visual 
representation of the interactions). This interaction showed that in 
the absence of marker stones, tree/plant flashing improved decision 
performance, whereas it induced no change in performance when 
marker stones are present.

Furthermore, the interaction between feedback and flashing was 
significant, F(1,85) = 5.01, p = 0.027, ηp2 = 0.055, as was the interaction 
between feedback and marker stones, F(1,85) = 20.46, p < 0.0001, 
ηp2 = 0.19. While a positive effect of the presence of the tree/plant 
flashing signaling level was observed on decision 1, this positive effect 
increased significantly after the feedback for decision 2. In addition, 
the detrimental effect of the absence of marker stones level-2 signaling 
was largely compensated for by the feedback.

Two factorial ANOVAs were conducted to explore the 
performances on each decision. One ANOVA was performed for each 
decision, with the two levels of signaling, i.e., tree/plant flashing and 
marker stones, as the two between-factors and decision 1 or 2 as the 
dependent measure.

For decision 1, a main effect of the presence of marker stones was 
found, F(1,85) = 31.53, p < 0.00001, ηp2 = 0.27, whereas there was no effect 

of the presence of flashing, F(1,85) = 0.20, p = 0.65, ηp2 = 0.002 but a 
significant interaction between flashing and marker stones, F(1,85) = 4.29, 
p = 0.04, ηp2 = 0.05. The analysis of this interaction revealed a marginal 
significant difference in favor of the presence of flashing when there were 
no marker stones, F(1,85) = 3.12, p = 0.08, d = 0.47; but when marker 
stones were present, no difference was observed whether flashing was 
present or not, F(1,85) = 1.34, p = 0.25, d = 0.39.

For decision 2, the ANOVA revealed a main effect of flashing 
F(1,85) = 7.58, p = 0.007, ηp2 = 0.08, a marginal effect of the presence 
of marker stones F(1,85) = 3.38, p = 0.07, ηp2 = 0.04, and no interaction 
between the two factors F(1,85) = 1.67, p = 0.20, ηp2 = 0.02.

Finally, in order to extend and improve the reliability of these 
analyses, which were conducted with dependent measures 
including a three-point scale (e.g., 0, 0.5, 1) for each decision (e.g., 
5 point scales for the two decisions), we subjected each decision 
to a between-groups Kruskal-Wallis ANOVA, non-parametric by 
rank. These analyses confirmed the previous results. For decision 
1, significant differences between the four groups were found, H 
(3, N = 89) = 26.03, p < 0.00001, with the following mean Rank 
order: F-S-, R = 27.26; F+S-, R = 38.47; F+S+, R = 53.48; F-S+, 
R = 60.90. For decision 2, significant differences between the four 
groups were also found, H (3, N = 89) = 11.27 p = 0.01, with the 
following mean Rank order: F-S-, R = 32.28; F-S+, R = 45.13; F+S-, 
R = 51.19; F+S+, R = 51.93.

Taken together, these results for decision performances after the 
learning-by-exploring phase suggest a significant trend toward a 
cumulative positive, bounded effect (see Table 1) of the two signaling 
levels. This point will be further discussed in the final section.
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3.3 Analysis of justifications

The results for justifications are presented in Table 3. The two 
types of justification criteria (respectively, quality: true, partial, false 
and absent, and theme of the argument: biodiversity and human well-
being) were analyzed for exploration time, decision 1 and decision 2. 
Factorial ANOVAs were performed on the number of true arguments 
and on the theme of the argument -biodiversity- in each 
learning phase.

For the exploration phase, no effects were found on the number 
of true arguments, i.e., no main effect of flashing, F(1,85) = 1.52, 
p = 0.22, ηp2 = 0.017 or marker stones F(1,85) = 0.79, p = 0.37, 
ηp2 = 0.009, and no interaction between the two factors, F(1,85) = 0.58, 
p = 0.44, ηp2 = 0.006. However, for the theme of the argument, 
we  found a main effect of flashing on the number of biodiversity 
arguments, F(1,85) = 8.61, p = 0.0004, ηp2 = 0.09, but no effect of the 
marker stones signals, F(1,85) = 0.37, p = 0.54, ηp2 = 0.004 and no 
interaction, F(1,85) = 0.08, p = 0.78, ηp2 = 0.0009. In addition, there was 
a difference between the most signaled condition (F+S+) and the 
non-signaled condition (F-S-): F(1,85) = 6.50, p = 0.012, Cohen’s 
d = 2.01.

For decision 1, the factorial ANOVA revealed a main effect of 
marker stones on the number of true arguments, F(1,85) = 17.82, 
p < 0.0001, ηp2 = 0.17, but no effect of flashing, F(1,85) = 0.11, p = 0.77, 
ηp2 = 0.001, and no interaction [F(1,85) = 0.44, p = 0.51, ηp2 = 0.005]. 
For the theme of the argument, the number of biodiversity-based 
justifications was higher in the signaled conditions, i.e., for both 
flashing and marker stones (F+S+ and F-S+), but the differences failed 
to reach significance, respectively for flashing, F(1,85) = 2.57, p = 0.11, 
ηp2 = 0.03, and for marker stones F(1,85) = 2.78, p = 0.09, ηp2 = 0.03, and 
the interaction was also not significant, F(1,85) = 0.0006, p = 0.93. 
However, there was a difference between the most signaled condition 
(F+S+) and the non-signaled condition (F-S-): F(1,85) = 5.55, 
p = 0.021, Cohen’s d = 0.84.

For decision 2, the factorial ANOVA showed, on the one hand, 
that flashing led to a significant increase in the number of true 
arguments after the feedback, F(1,85) = 7.48, p = 0.007, ηp2 = 0.08, and, 
on the other, that learners who did not see a marker stones during the 
exploration phase produced significantly more true arguments after 
feedback F(1,85) = 4.005, p = 0.48, ηp2 = 0.045. This is consistent with 
the strong significant effect of feedback on the elaboration of true 
arguments for decision 2. There was no interaction between flashing 
and marker stones [F(1,85) = 0.20, p = 0.65, ηp2 = 0.002]. Similar results 
were found for the theme of the argument. On one hand, flashing led 
to a significant increase in the number of true arguments after the 
feedback, F(1,85) = 4.24, p = 0.042, ηp2 = 0.05, while, on the other, 
learners who had not seen a marker stones during the exploration 
phase produced marginally more true arguments F(1,85) = 3.35, 
p = 0.07, ηp2 = 0.037. There was no interaction between flashing and 
marker stones [F(1,85) = 0.10, p = 0.76, ηp2 = 0.001].

3.4 Complementary subjective scales and 
performances

Results for the 5 categories of items (Presence, Cognitive 
Complexity -Extrinsic-, Cognitive Complexity – Intrinsic-, Cyber-
sickness and Enjoyment) are presented in Table 4 (see Appendix A for 
the exact wording of the items).

Firstly, participants all understood well the scales, and at the 
descriptive level, the scores observed for the four groups were fairly 
similar. The subjective scores for presence are high (3.73 to 3.96/5), 
in particular for the item relating to the specific sense of immersion 
(4.12 to 4.33/5). As far as extrinsic complexity is concerned, learners 
found their experience easy (4.50 to 4.59/5). Intrinsic complexity 
was scored lower, not because of the complexity of navigation, 
which was judged to be easy (1.41 to 1.72/5), but because of the 
perceived requirement for specific knowledge (3.23 to 3.36/5). 

TABLE 4 Means (and SD) for each of the subjective scale categories and items (out of 5 points) for presence, cognitive complexity-extrinsic, cognitive 
complexity-intrinsic, sickness and enjoyment in the four experimental signaling conditions, F+S+, F+S-, F-S+, F-S-.

Task stage
Condition Scale 
items

F+S+
N  =  23

F-S+
N  =  22

F+S-
N  =  21

F-S-
N  =  23

Presence

1: low; 5: high

Immersion 4.23 (0.79) 4.12 (075) 4.33 (0.86) 4.22 (0.52)

Realism 3.58 (0.83) 3.28 (0.92) 3.38 (0.97) 3.36 (0.57)

Recognition Elements 3.86 (1.01) 3.56 (0.95) 3.90 (0.83) 3.90 (0.73)

Recognition Graph 4.18 (0.72) 3.96 (0.49) 4.09 (0.62) 4.05 (0.64)

Total Mean/5 3.96 (0.59) 3.73 (0.49) 3.93 (0.66) 3.88 (0.37)

Cognitive Complexity

Extrinsic

1: difficult; 5: easy

Ease of movements 4.54 (0.72) 4.57 (0.56) 4.33 (0.79) 4.59 (0.78)

Ease of interaction features 4.46 (0.72) 4.53 (0.57) 4.71 (0.46) 4.62 (0.48)

Total Mean/5 4.50 (0.45) 4.55 (0.34) 4.52 (0.46) 4.59 (0.50)

Cognitive Complexity

Intrinsic

1: easy; 5: complex

Navigation complexity 1.41 (0.72) 1.67 (0.69) 1.38 (0.74) 1.72 (0.81)

Specific knowledge 3.23 (0.73) 3.36 (0.63) 3.28 (1.00) 3.32 (0.87)

Total Mean/5 2.32 (0.51) 2.51 (0.48) 2.33 (0.58) 2.52 (0.67)

Sickness

1: none; 5: high level

Mean/5 1.14 (0.34) 1.39 (0.47) 1.24 (0.44) 1.23 (0.42)

Enjoyment

1: low; 5: high

Mean/5 4.45 (0.72) 4.27 (0.60) 4.28 (0.56) 4.32 (0.46)
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FIGURE 5

Mean performances (ratio) for decision 1 and decision 2, for 
participants with a high presence score (>the median = 3.87/5) and 
participants with a lower presence score (< the median of the group 
3.87/5). Statistical p values: **p <  0.01, *p <  0.05.

While participants did not feel sickness (with low scores from 1.14 
to 1.39/5), overall enjoyment was scored quite high (from 4.27 
to 4.45).

Secondly, in order to explore the hypotheses, about the relation 
between decision performances and subjective experience of presence, 
perceived cognitive complexity, sickness and overall enjoyment, and 
especially H6, linear regressions with the homogeneity-of-slopes 
model were conducted for each of the five categories of measures, with 
the subjective score included as the continuous covariant predictor, 

the two signaling levels as between-subjects factors and the 
performance on decision 1 and decision 2 as the dependent variables. 
Models such as this can be used to test whether continuous predictors, 
as covariate moderators, have different effects at different level of 
categorical independent variables. For each regression, we included 
the interactions between the subjective factor and the signaling factors 
(i) tree/plant flashing and (ii) marker stones in the model. Such 
analyses could reveal a potential moderating effect of the perceived 
level of presence on decision performances.

The results of the regression analyses are presented in Table 5.
As shown in Table 5, positive significant effects of presence on 

performances for decision 1 and 2 were found, as was a marginal 
positive effect of enjoyment in decision 2. The effect of presence on 
performance was not significantly moderated by signaling. Enjoyment 
was positively influenced by flashing for decision 2. The main result 
for presence is summarized in Figure 5.

In order to analyze these results, we performed a factorial ANOVA 
with flashing, marker stones and presence group relative to the 
median, e.g., presence + vs. presence –, as between-subjects factors, 
and decision 1 and decision 2, respectively, as dependent variable. The 
analysis showed a main positive (medium size) effect of presence for 
decision 1, F(1,81) = 6.18, p = 0.015, ηp2 = 0.07, as well as for decision 
2, F(1,81) = 5.33, p = 0.023, ηp2 = 0.062.

In sum, the results for the relation between performances and 
subjective presence scales are consistent with the immersion principle 
developed by Makransky (2022).

TABLE 5 Linear regression analyses for each of the five subjective scale items categories (presence, cognitive complexity-extrinsic, cognitive 
complexity-intrinsic, sickness and enjoyment) for decision 1 and decision 2. Main regression effects on decisions and interactions between subjective 
scale categories and signaling factors, respectively, flashing and marker stones. In bold, significant effects.

Scales items 
categories

Decision 
time

Main regression effect of 
subjective scale categories 

on decisions

Interactions between subjective scale categories and 
signaling factors: flashing and marker stones

Presence Decision 1 Presence: F(1,81) = 4.91, p < 0.03

β = 0.21

Pres*flash: F(1,81) = 0.32, p = 0.85

Pres*marker stones: F(1,81) = 0.51, p = 0.47

Decision 2 Presence: F(1,81) = 5.83, p < 0.02

β = 0.26

Pres*flashing: F(1,81) = 0.19, p = 0.66

Pres*marker stones: F(1,81) = 0.25, p = 0.56

Cognitive Complexity

Extrinsic

Decision 1 Extrinsic Complexity: F(1,81) = 0.1, 

p = 0.98

ECompl*flash: F(1,81) = 0.11, p = 0.73

ECompl*marker stones: F(1,81) = 0.33, p = 0.56

ECompl*Flash*marker stones: F(1,81) = 5.00, p < 0.03

Decision 2 Extrinsic complexity: F(1,81) = 0.01, 

p = 0.99

ECompl*flash: F(1,81) = 0.20, p = 0.66

ECompl*marker stones: F(1,81) = 0.95, p = 0.33

Cognitive Complexity

Intrinsic

Decision 1 Intr-Complexity: F(1,81) = 0.19, p = 0.66 ICompl*flash: F(1,81) = 1.31, p = 0.25

ICompl*marker stones: F(1,81) = 0.23, p = 0.63

Decision 2 Intr-Complexity: F(1,81) = 0.10, p = 0.92 ICompl*flash: F(1,81) = 0.71, p = 0.40

ICompl*marker stones: F(1,81) = 0.040, p = 0.84

Sickness Decision 1 Sickness: F(1,81) = 1.07, p = 0.30 Sick*flash: F(1,81) = 0.05, p = 0.82

Sick*marker stones: F(1,81) = 3.52, p = 0.07

Decision 2 Sickness: F(1,81) = 0.037, p = 0.85 Sick*flash: F(1,81) = 0.30, p = 0.58

Sick*marker stones: F(1,81) = 3.12, p = 0.08

Enjoyment Decision 1 Enjoyment: F(1,81) = 1.98, p = 0.16 Enjoy*flash: F(1,81) = 2.27, p = 0.13

Enjoy*marker stones: F(1,81) = 1.21, p = 0.27

Decision 2 Enjoyment: F(1,81) = 3.55, p = 0.063, 

β = 0.19

Enjoy*flash: F(1,81) = 5.92, p = 0.017

Enjoy*marker stones: F(1,81) = 0.52, p = 0.47

Main regression effects on decisions and interactions between subjective scale categories and signaling factors, respectively, flashing and marker stones.
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4 Discussion-conclusion

The goal of this research was to investigate the effect of the 
signaling and feedback principles in an IVR learning environment. To 
date, very little previous research has investigated signaling (Albus and 
Seufert, 2022; Zhang et  al., 2023) and feedback (Stenberdt and 
Makransky, 2023) in learning in IVR environments and, to our 
knowledge, no study has tested the combined use of signaling and 
feedback. The results of the few previous studies are consistent with 
the large body of research conducted in multimedia learning that have 
shown a small to medium positive effect of signaling on learning, 
comprehension and transfer (de Koning et al., 2007, 2009, 2010a,b; 
Boucheix and Lowe, 2010; de Koning et al., 2011; Boucheix et al., 2013; 
Richter et  al., 2016; Schneider et  al., 2018; Alpizar et  al., 2020). 
We  designed two levels of signaling in the light of the CAMIL 
(Makransky and Petersen, 2021), CTML (Mayer, 2009) and APM 
(Lowe and Boucheix, 2008, 2016) models, and because of what 
we have speculatively called the “sense of proprioceptive visuospatial 
comprehensiveness” in IVR relative to the potential “all-encompassing 
information sensation” of IVR (see also, Naccache, 2020).

The goal of the signals was to enhance the structuring of forest 
elements at the ecosystem level during information processing, mainly 
in terms of their spatial location in the environment.

Regarding feedback, an information text was presented together 
with pictures of the forest areas in an on-screen multimedia document. 
The goal was to prompt learners to compare the information stored in 
memory during the learning-by-exploration phase with the 
information presented in the feedback and to establish relations 
between these elements. Making internal comparisons might make 
learners aware of the presence of relevant forest elements that they 
may not have noticed during the exploration phase. They could then 
compare the different areas with each other and interpret the role of 
potential new elements in the light of those found during the 
IVR exploration.

With regard to H1 and H2, the results of this vocational education 
and training task, in which the participants had to make decisions 
regarding a human intervention having a potential impact on an 
ecosystem in an IVR environment, showed a positive (medium size) 
effect of signaling on decision performances. Signaling not only 
reduced the number of relevant forest elements selected (indicating 
that signals efficiently direct students’ attention toward the task-
relevant information) but also significantly increased correct decision 
(decision + justification) performances.

As predicted by H3, a strong effect of informative feedback on 
decision 2 performances was found. This is consistent with the 
feedback principle in multimedia learning (Johnson and Marraffino, 
2022). Additionally, and more interestingly, the interaction between 
signaling levels and feedback indicated that the levels of signaling had 
different weights at the two decision-making times, i.e., decision 1 
after exploration, and decision 2 after feedback (H4).

For decision 1, the presence of marker stones (signaling soil 
properties, microhabitats) improved decision performance, whereas 
flashing (signaling tree and plant species) did not greatly affect 
decision performance; however, in the absence of marker stones, 
flashing did improve decision 1 performance. Decision performances 
were poorest in the no-signals condition. However, as shown in 
Table  2, the cumulative presence of both signaling levels did not 
change decision performance for this first decision compared to the 
marker stones-only signaling level.

For decision 2, which was given after the informative feedback, 
the positive effect of flashing significantly increased decision 
performances, and the detrimental effect of the absence of the marker 
stones signaling level seemed to be compensated for by the feedback. 
In sum, the two levels of signaling both contributed to the elaboration 
of high-quality mental models of the ecosystems of the forest areas at 
different times during training.

While our results appear to favor the use of different levels of 
signaling in complex immersive environments because they allow 
students to better organize the relevant elements in these 
environments, there is such thing as too much, because the 
accumulation of too many signals could be counterproductive and 
increase cognitive load. Further research is still needed on this issue.

One interesting potential explanation of the interaction between 
signaling levels and feedback in decision performances might 
involve a two-step cognitive mechanism. (i) During the learning-by-
exploring phase, signaling effectively directs learners’ attention 
toward relevant information in such a way that the amount of task-
relevant information to be  stored and remembered (e.g., forest 
elements potentially relevant for ecosystem preservation) is reduced 
and more structured (compared to the no-signals condition); (ii) 
During the processing of the information in the feedback 
(multimedia document), the activation, retrieval from memory, and 
comparison of this selected, condensed information about the task-
relevant concepts present in the feedback information could 
be enhanced. As a consequence, decisions are taken on the basis of 
higher-quality mental models of the ecosystems in the forest areas 
and are therefore more relevant. Of course, this explanatory 
hypothesis of interaction between signaling and feedback will 
require further empirical investigation.

As predicted by H5, the pattern of results regarding justifications 
was consistent with the decision performances. The two signaling levels, 
flashing and marker stones, had positive effects on the verbalization of 
true arguments focusing mainly on biodiversity, but again exerted these 
effects at different stages of the task, i.e., at decision 1 and decision 2. The 
presence of marker stones signals was more influential in decision 1, 
when the flashing level had only a marginal positive effect. However, the 
flashing level was more influential for decision 2. Furthermore, while 
the signaling conditions enhanced the production of more true 
arguments than the no-signal condition both before and, to a less extent, 
after feedback, the number of true arguments also increased in the no 
or less signaled conditions after the feedback. This trend was consistent 
with the effect of feedback on correct decisions. Finally, the effect of 
signaling on the correct justification of the selected elements was less 
significant in the exploration phase. This result appears logical and 
consistent with the idea that students were, at this stage, exploring the 
forest areas and then progressively building a mental model of the 
ecosystem of each area over time.

The relation between the complementary subjective measures of 
(i) presence, (ii) cognitive – extrinsic – ease of interactions, (iii) 
cognitive – intrinsic – task complexity, (iv) sickness, (v) enjoyment 
and decision performance was assessed. The main goal of the 
regression analyses, in which the signaling factors were included as 
moderators, was to identify the potential covariant relation between 
presence and decision performances (H6) within the framework of 
the immersion principle (Makransky, 2022). The main result showed 
a significant positive effect (medium size) of presence on decision 
performances for both, decision 1 and decision 2, a finding which is 
consistent with the immersion principle.

https://doi.org/10.3389/fpsyg.2024.1359071
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Porte et al. 10.3389/fpsyg.2024.1359071

Frontiers in Psychology 18 frontiersin.org

However, the non-significant interactions between signaling 
factors and presence indicated that the positive effect of presence on 
decision performances seemed to be unaffected by signaling (either 
marker stones or flashing). This is a potentially interesting result in 
itself, suggesting that adding guiding signals in an IVR environment 
does not seem to greatly disrupt the sense of presence. This should 
clearly be further investigated in follow-up experiments.

In sum, our main result seems consistent with the few previous 
studies that have investigated the signaling principle in IVR, showing its 
effectiveness in the same way as in multimedia screen-based 
presentations. Albus and Seufert (2022) and Zhang et al. (2023) tested the 
effect of verbal signaling, while we tested the effect of more visual cueing.

The present study also has some limitations. First of all, 
we  did not use a typical “conventional multimedia learning 
lesson” but instead a more vocational learning -or training- task. 
This type of task is naturally of greater ecological interest, 
particularly in the context of recent changes in forestry training 
and student learning geared toward sustainable forestry 
management in response to global warming. However, the 
generalizability of the signaling principle should be also tested in 
more conventional IVR learning contexts.

Furthermore, the feedback provided to the students after the first 
decision, following the exploration phase, was limited to giving a 
“standard” multimedia information about the composition of the 
forest areas (trees, plants, moisture etc.) in static text-picture digital 
documents presented outside of the IVR environment. As a 
consequence, the feedback was not part of the IVR experience. 
However, more realistic feedback presented as part of the IVR 
experience and dynamically showing realistically the effect of the 
decision on the ecosystem of the forest area would be much more 
relevant. In the task used in the present study, this type of dynamic 
feedback could simulate what happens to the ecosystem once the 
public reception area has been set up. In particular, this should 
enhance the establishment of relations between the selected elements 
that are processed during the exploration phase, the decision and the 
dynamic feedback of information. These considerations will 
be addressed in a subsequent follow-up study.

Different levels of signaling were used. Our results suggest that 
different levels of signaling may have distinct effects at different levels 
of learning performance. However, signaling levels should be better 
defined and, in particular, their potential effects should be tested in 
more varied learning situations. It is necessary to investigate in greater 
detail the ways in which signals are perceptually and cognitively 
processed in IVR environments and how learners build relations 
between the signaled information and the feedback information. Direct 
and online measures, such as eye tracking integrated into the VR 
headset, could be used. This will also form part of a future experiment.

Further, the present work was conducted within the specific 
framework of testing multimedia learning principles (Mayer and 
Fiorella, 2022) in IVR environments, and in the background context 
of educational cognitive psychology. However, our results about the 
benefits of visual (and verbal) guidance techniques, and more 
generally about IVR environments for learning, could be used in other 
engineering sciences. For example, in Brain Computer Interface, IVR, 
as well as multimedia principles, could be investigated in order to test 
cost-effect balance (Mridha et  al., 2021). Similarly, comparisons 
between IVR, Augmented Reality (AR) and Mixed Reality in learning 

STEM may be of great interest (Parong, 2022). Time locked attentional 
processes and cognitive load during IVR learning could be better 
assessed using precise physiological measures such as eye-tracking 
(Holmqvist and Andersson, 2017) and EEG (Makransky et al., 2019b) 
that open windows on internal cognitive processes. Such measures 
could be compared to the signal processing devices. Then, eye tracking 
and brain activity measurement data (EEG, fNIRS- functional Near 
Infrared Spectroscopy) could be used in the analysis of programming 
technologies such as LINQ (Language Integrated Query: name for a 
set of technologies based on the integration of query capabilities 
directly into the C# language) and algorithms. Finally, there are many 
other research avenues that could be  investigated using IVR. For 
example, and among many other possibilities, in the domain of 
metacognition, it could be relevant to address how learning experience 
in IVR can change a person’s self-confidence or self-efficacy (de Bruin 
et  al., 2020), or in a very different field, specific IVR software or 
programs could, perhaps, be developed to support vision screening.

In conclusion, this study was carried out as part of a recent line of 
research which consisted in systemically testing the application of 
multimedia principles (Mayer, 2009; Mayer and Fiorella, 2022; 
Makransky, 2022) to IVR environments. The present work is 
consistent with the small number of studies that have already been 
conducted in this area (Albus and Seufert, 2022; Zhang et al., 2023) 
and suggests that the signaling principle has significant beneficial 
effects in immersive environments.
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Appendix A

For each question, circle the answer that best describes you on this scale. There are no right or wrong answers ☺.
Presence

 1- The graphic design is realistic and easy to interpret. (From not at all to yes, absolutely)
 2- The virtual environment allowed me to feel (bodily) immersed – as if I were present there- in the experience. (From not at all to yes, 

absolutely)
 3- The virtual environment appeared real. (From not at all to yes, absolutely)
 4- It was easy for me to recognize and identify the elements of the virtual reality environment. (From not at all to yes, absolutely)

Cognitive complexity – Extrinsic

 5- I was quickly able to move around and get to grips with the interface. (From not at all to yes, absolutely)
 6- The features (mark a tree, access the map, etc.) were useful to me. (From not at all to yes, absolutely)

Cognitive complexity – Intrinsic

 7- I lost time during exploration because of the complexity of the environment. (From not at all to yes, absolutely)
 8- I had to call on my own knowledge in order to answer the problems posed by the experiment. (From not at all to yes, absolutely)

Sickness

 9- I felt uncomfortable during this experiment: uncomfortable helmet, nausea, loss of orientation (From not at all to yes, absolutely)

Enjoyment

 10- My appraisal of this virtual reality experience was rather: (From Highly negative to Highly positive)

Open question

 11- Comments on the use of the program and virtual reality: qualities/possible defects; other:
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