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Abstract

This paper presents an adaptive remeshing strategy between the Finite Element Method (FEM) and the
Discrete Element Method (DEM). To achieve this strategy, an edge-to-edge coupling method based on
Lagrange multipliers has been set-up to ensure the continuity of velocities at the interface. To switch from a
computation initially purely FEM to a FEM-DEM one, a field transfer method was required. In particular,
a displacement field transfer method has been set-up. The switching from a FEM subdomain to a DEM
one is activated by a transition criterion. Each time a FEM subdomain is substituted by a DEM one, the
DEM subdomain microscopic properties are set-up with respect to the subdomain geometry and desired

Email: cedric.hubert@uphf.fr particle refinement. This is performed thanks to the linking to the so-called “Cooker”, a tool distributed

along with the GranOO Workbench. Two subdomain remeshing cases were dealt with: that of an initially
FEM subdomain that is converted to DEM, and that of DEM subdomains which coalesce. A first numerical

Present address
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Mont Houy, 59313 VALENCIENNES Cedex 9 test case shows that the dynamic remeshing method behaves as expected: FEM subdomains are substituted

France by DEM ones when the transition criterion is met, and DEM subdomains coalesce when required. A second
numerical test case shows a good agreement with a crack propagation experiments of the litterature.
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1 | INTRODUCTION

The phenomenology of brittle fracture is frequently observed in structural systems, whether they originate from fields such
as aerospace, automotive, or civil engineering. This historical observation has stimulated the development of theoretical and
experimental methodologies aimed at anticipating the emergence and propagation of damage within these structures. Among
these methodologies, the Kalthoff experiment', for instance, allows the observation of dynamic crack propagation in mixed
mode. Furthermore, the Compact Compression Specimen (CCS)? is another experiment that offers the opportunity to study
mixed crack mode with a complex geometry. In the same context, one can also mention the John-Shah* experiment and various
variants of the Kalthoff experiment, such as those developed by Zhou-Rosakis-Ravichandran®.

The numerical simulation represents the least costly solution when compared to experimental studies for predicting crack
propagation and its influence on structures. However, the use of the Finite Element Method (FEM) reaches its limits due to the
discontinuities caused by cracking, which contradicts the continuity assumption on which this method relies, rendering its
application impossible.

Advanced methods based on the FEM, more precisely, continuum mechanics, have been developed (Cohesive Zone Model=,
XFEMY, PhaseField”) to account for cracking in materials. Each method possesses its own limitations. The Cohesive Zone
Model requires the knowledge of the location of discontinuities in the displacement field during the building of the Finite
Element (FE) mesh, leading to a strong dependence between crack paths and the topology of the FE mesh®. The XFEM method
is not well-suited for modeling dynamic fracture that involves the creation, expansion, and merging of a large number of cracks®.

Abbreviations: FEM, Finite Element Method; DEM, Discrete Element Method; FE, Finite Element; DE, Discrete Element; CD, Central Difference.
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The limitations of PhaseField models become apparent when an initial crack formation needs to be performed in an undamaged

material. In such situations, these models tend to predict a significant decrease in stiffness before the crack actually forms“.

The Discrete Element Method (DEM) finds its main application in modeling discontinuous media such as powders or
granular materials'. Some specific subcategories of DEM, known as Lattice Element Methods 213141 allow the modeling of
continuous media by introducing interaction laws between particles. These laws enable simulating the apparent behavior of
the material by calibrating local parameters appropriately. The DEM is widely recognized for its ability to accurately model
discontinuities. Among these discontinuities, material fractures are included, which are simulated by breaking the links between
Discrete Elements (DE). This distinctive feature gives the DEM remarkable reliability in simulating crack propagation in brittle
materials'®. Thanks to this approach, it is possible to analyze in detail and realistically the behavior of these materials when
subjected to significant stresses or to optimize their design to enhance their resistance to rupture.

However, it is important to note that the use of the DEM requires significant computational capabilities due to the high
computational costs associated with this method.

Some authors have sought to take advantage of the benefits of both FEM and DEM by developing coupling approaches, with

overlap such as the Bridging domain methodZ18, the Separate domain coupling method'® and the Separate edge coupling
method?Y, or without overlap such as the Edge-to-edge coupling method?11222324 These approaches allow modeling a specific re-
gion using DE to account for cracking, while other distant regions whose contribution to the overall behavior must be considered,
are modeled with the FEM. However, these coupling methods may encounter certain issues, including wave reflections at the
FEM/DEM coupling interface®?°. Some authors?Y“Z have shown that the use of overlap helps reduce the phenomenon of wave
reflection, but the use of overlaped layers significantly increases the computation time compared to methods without overlap>2¢.
It should be highlighted that a difficulty relies in the fact that the use of a coupling requires prior knowledge on the subdomains
that would be likely to exhibit crack initiation and propagation. In fact, such information are generally unknown for industrial
applications involving complex geometries or multi-directional loads and boundary conditions. To avoid the need for prior
knowledge on where cracks would be likely to initiate and propagate, it would be interesting to substitute an initially FEM-
meshed region with a DEM region only at the time and the location needed.
Furthermore, since DEM is very costly, using it in some regions from the beginning of the computation, not just when necessary,
makes the initial FEM-DEM coupling expensive. An adaptive remeshing strategy would thus be really interesting. However, to
the knowledge of the authors, such a strategy has not been proposed yet. This is the motivation of the work presented here. It
aims at developing a FEM-DEM remeshing method that allows substituting a FEM region with a DEM region at the instant of
the computation and in the area of the computational domain required, to benefit from FEM efficiency as long as possible, and
then benefit from the precision of DEM for crack modeling. To achieve this, it seems appropriate to explore coupling methods,
field transfer, and dynamic remeshing.

The article is organized as follows. Section [2] presents the features of the time and space discretizations employed in the

computational domain. Section [3proposes the specifications of the dynamic resmeshing strategy. The coupling and field transfer
methods employed are respectively presented in Sections ] and [5] Finally, the methodology proposed is evaluated in Section [6]

2 | DISCRETIZATIONS

In this section, two types of discretizations have been covered: time discretization, which includes the Central Difference (CD)
integration scheme, and spatial discretization, which encompasses FEM and DEM.

2.1 | Time discretization

For the structural domain, the temporal integration is carried out using the CD scheme. The objective of this section is to
incorporate the coupling method (developed in Section[)) into this numerical scheme. Let us consider a variable time increment
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At, where At" represents the time step that led to the current configuration x™*!, and A#**! represents the next time step:

A =g, (1
AP = 2 (2)
It is assumed that the solution is complete, meaning that all discrete quantities are known at time ", and we want to find the

solution at #"*!. First, an intermediate velocity at the half step is introduced, sometimes referred to as the “velocity precursor’
because it depends only on the quantities at ¢, especially on the acceleration a”, and it is calculated:

s’

VR =y (A 2)a" 3)

This is the constant velocity that transforms the configuration from n to n + 1 over the time interval Af". Therefore, the new (that

is, current) displacements are given by:

un+l =u" +Atnvn+1/2. (4)

The positions are then calculated from the displacements as follows:
Xrz+1 =x"+ Atnvn+1/2 — X0 +un+1 (5)

n+1

Next, the accelerations """ are calculated using the equilibrium equations:

an+1 — %—1 (fext _ fim)n+1 . (6)

n+l

Finally, the velocities v'*" are obtained:

Vn+1 — Vn+1/2 + (Atn/2)3"+l, (7)

where £’ and £ are the external and internal forces, defined over the global domain.

2.2 | Spatial discretization
221 | Finite Element Method

There are numerous methods for continuous spatial simulation that span a wide range of domains and are increasingly prevalent
in commercial codes. In this study, we specifically focus on the classical FEM25.

The FEM is based on a discrete mathematical theory allowing to find an approximate solution of a set of partial differential
equation on a continuous compact domain. Within the element, the value of a displacement function u is determined using a
polynomial interpolation of the values of displacements at the nodes u; and elements shape functions N;:

w(x,y,2) = Y Ni(x,y,2) i, ®)
i=1

where n is the number of nodes. The nodal internal forces are determined from the stress tensor o and the strain-displacement

matrix B in the following form:
£ = Z / B odV, )

were the summation symbol represents the ordinary assembly operator over all elements e of the mesh, and V, is the element
volume in the current configuration.

2.2.2 | Discrete Element Method

The DEM used in this article is a hybrid method combining the distinct element method'H' and the lattice method” developed
by André et al.'2, The medium is discretized by an assembly of particles of various sizes distributed randomly in the domain.
The disorderly arrangement is essential to represent the heterogeneous nature that is the source of cracking but also to ensure
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the isotropy of the structure. The particles are interconnected with their nearest neighbors through cohesive bonds of the Euler-
Bernoulli type'?. These bonds have a cylindrical shape that can be described by two parameters: the length [ 1, and the radius 7.
There are also two associated mechanical parameters: the Young’s modulus E,, and the Poisson’s ratio v,,. The microscopic
properties, denoted by the index p, which generally differ from the macroscopic properties, must be calibrated so that the defined
microscopic properties allow obtaining the targetted macroscopic behavior.

The configuration shown in Figure allows for a better understanding of the kinematics of discrete elements>?*?, The cohesive
beam is represented by its centerline and is fixed to the centers of the DE O; and O, located at the ends. The coordinate systems
Fi1(01,X1,Y1,2)) and F5(0,,X>, Y»,7Z,) are arranged such that axes X; and X, are perpendicular to the ends of the cross-section
of the beam. Initially, the beams are in a relaxed state (Figure @ However, as the DE move and rotate, the cohesive beam
undergoes a load, as shown in Figure [Tb]

Cohesive beam median line
Non deformed median line

ZQ X2 Zz

e
.=
-—

c——

0 X, X,
Y1 Y2 X 1
7 Discrete Element 1 Discrete Element 2

(a) Relaxation state (b) Loading state

1 1 02
1

FIGURE 1 Configurations of cohesive beam'%

In the local coordinate system F(O, X, Y, Z), the arrows at O; and O, are zero. The bending rotations of the cross-section at
0, and O, are defined as 6; = (X, X;) and 6, = —(X, X), respectively (Figure[Ib). By applying the principles of the strength of
2930 it is possible to calculate the reaction forces and reaction moments acting on DE 1 and
2, according to the following system of equations:

materials to Euler-Bernoulli beams

m =+E,S, Ali”)? - 6El/2’jl“ ((922 +01)Y + (62 + 61y) Z) ,
Fome = —E,S,, Ali”)? + 6Elglu ((QZZ +61.) Y = (62 + ) Z) , o
Tpiper = +G#IO“ (O~ 01) X — 2Byl ((92y +201,) ¥ — (6, +26;,) Z) ,
" "
Toos = - 22 (G019 X = 2200 (26, +.0,) ¥ - 2024010 Z)
M M

with:

m is the reaction force of the beam on DE 1,

Fipr> is the reaction force of the beam on DE 2,

Tg/pE) 1s the reaction moment of the beam on DE 1,

Ts/pE> 1s the reaction moment of the beam on DE 2,

1,, is the initial length of the beam,

Al,, is the elongation of the beam,

01(01x, 01y, 01,) is the rotation of the cross-section at point Oy,
02(02y, 02y, 02,) is the rotation of the cross-section at point Oy,

S, is the cross-sectional area of the beam,

Io,, is the polar moment of inertia of the beam’s cross-section, N
1, is the moment of inertia of the beam’s cross-section about the Y and 7 axes.
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The main objective of the dynamic remeshing method is to enhance computational efficiency by utilizing the FEM as
extensively as possible, both spatially and temporally, due to its cost efficiency compared to the DEM. It involves using the DEM,
which is more computationally expensive than FEM, only when necessary, based on a user-defined criterion : the subdomain
substitution criterion.

3 | DYNAMIC REMESHING STRATEGY

The different steps leading to the use of the FEM-DEM dynamic remeshing in an initially purely FEM computation are outlined
below.

The first step involves performing a conventional computation using only FE, as illustrated in Figure [2a] This FEM computation
goes on until the iteration preceding the remeshing, in this example (i.e., before the substitution criterion is met), defined by an
applied force value equal to F (Figure .

The second step begins when the predefined substitution criterion for transitioning from the FEM to the DEM is reached. The
choice of the type and numerical value associated will be up to user according to his know-how, and is expected to be potentially
problem dependent. It could for example be based on criteria such as constraints, strains, energies, etc. The FE that meet this
substitution criterion will form one or more subdomains of FE to be replaced. At the current time step, the geometry of these
elements defines the boundaries of the DE subdomain to be generated. Once the DEM subdomain generated, the FE to be
replaced are removed, and the new DE subdomain takes its place, as presented in Figure [2c]

FE domain ?¢ FE domain

O O
O O O O

(a) Initial problem (b) Before remeshing
—

? + ﬁ FE domain ? + AF' FE domain
FGDE domain F3DE domain

0 0

\'\ £ \'\ &
O O O O

(c) Remeshing (d) Crack propagation

FIGURE 2 Dynamic remeshing strategy

Before removing the FE, the coupling interfaces are determined by identifying the common surfaces with neighboring
elements. These surfaces are then used to define the necessary couplings after the substitution of domains. To fill the identified
envelop with DE, it is chosen to employ an application dedicated to and validated for this task (instead of developing a new tool).
To this end, the “Cooker” tool, distributed along with the GranOO Workbench“? is employed. It requires closed shell envelops to
discretize a considered subdomain with DE. In fact, the coupling surfaces determined previously correspond to the requirements
of the application, and are thus provided to it. However, this leads to an insufficient alignment issue between the nodes of DE
and the coupling interfaces, as the position of these nodes depends on the radius of associated particles. Instead, this application
favors a more regular outer surface. As shown in the Figure 3] the DEM subdomain is generated based on the external boundary.

This configuration results in a misalignment between the coupling interface on the FE side and the DE side because the DE
interface is defined by the nodes modeled by the centers of the DE existing at the interface (centers of the DE in light gray, as
presented in the Figure[3). This requires the use of a projection technique to achieve a common coupling surface.

During the substitution phase, the dynamic remeshing involves a phase of transitioning from the FEM to the DEM. At this
transition point, the fields within the FEM domain are known. However, the DEM subdomain is a “raw” domain imported at this
stage. In fact, two cases are envisaged during the computation when substituting a FE subdomain: either the FE subdomain
is isolated, or it is neighboring an existing DE subdomain. In the first case an operation to transfer the fields from the FEM
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FE

DE external Boundary \Coupling surface

FIGURE 3 Shifted nodes configuration

domain to the DEM must be carried out. In this second case a transfer configuration involves transitioning from a subdomain
that combines discrete/finite elements to a subdomain consisting solely of DE, as illustrated in Figure[d] In the second case, there
were two possible options for carrying out the substitution: either substituting each DEM subdomain individually or merging
adjacent DEM subdomains. Substituting DEM subdomains individually may create preferential planes at the junction of DEM
subdomains. To address this, it was decided to always redefine neighboring DEM domains into one.

FE subdomain New DEM FE subdomain New DEM coalesced

/" to be replaced subdomain / to be replaced subdomain
AR S

i, N g
AN

1

PN

FIGURE 4 Transition from a combined FEM/DEM subdomain to a purely DEM subdomain

Due to the geometric complexity of the generated DEM subdomains, as well as the significant computation time required for
calibrating DEM subdomains for each substitution operation, a reference calibration process is initially performed independently
of the main computation. This calibration is carried out, once for all, on a simple geometric reference shape to determine the
microscopic parameters of the DE within the subdomain. In order to preserve the microscopic behavior of the reference domain,
the same average radius of the DE is used in both the reference calibration and the main computation. An organizational chart
illustrating the various stages of the dynamic remeshing strategy and the connections between them is shown in the Figure 5}

The third step begins after performing the substitution of subdomains. The new configuration is characterized by two distinct
subdomains: one domain consisting of FE located outside the area of interest, and one or more DE subdomains in the areas of
interest (for example regions of high gradients, where the substitution criterion was met) that happens to be the most loaded
region. For a generic subdomain consisting of DE, it is essential to define a crack criterion, which can be based on parameters
such as strain, stress, energy, etc. This criterion determines the threshold at which beams must be broken to allow crack
propagation. Consequently, the crack pattern is developed by grouping all beams that satisfy the chosen crack criterion, as
shown in Figure 2d} The crack propagation pattern is expected to influence the transition from FE to DE of some subdomains in
the forthcoming steps of the computation.
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FIGURE 5 Dynamic remeshing flowchart

To successfully implement this strategy, it is necessary to set-up two numerical methods. The first one involves creating a
coupling method between the DE and FE subdomains. The second numerical method entails transferring the fields from the
existing subdomain to be replaced to the new replacement subdomain.

4 | COUPLING METHOD

During the dynamic remeshing process, coupling is an essential phase to ensure cohesion between the FE subdomains and DE
subdomains after transitioning from the FEM subdomain to a combined FEM/DEM subdomain.

The coupling method used>! is a non-overlapping method based on the principle of cohesion between the two FEM/DEM
subdomains. The coupling forces are sought at each computation increment, and a compatibility condition of velocities at the
coupling interfaces is ensured through the use of the Lagrange multipliers method. This condition must be satisfied at each
computation step by calculating new multipliers. In the context of fast dynamics explicit computations, velocity coupling may
be more appropriate than displacement coupling. Indeed, velocity coupling allows for a better consideration of the dynamic
response of the system, especially inertia effects.

The formulation of dynamic equilibrium for both finite and discrete subdomains is modified by the inclusion of a coupling force
term f°, which leads to the expression of the following equation of motion:

Ma =1 fe (11)
This equation can be rewritten in a way to separate each subdomain:

ma,, = 2" —f" + £ (DE subdomain),

. 12
May, =t —fift + 15, (FE subdomain). (12)

41 | Treatment of essential boundary conditions

For a coupled domain, the force f acts on all components of the interface and is calculated by imposing that all components
of the velocities of the subdomains on either side of the coupling interface are equal, in order to prevent detachment, sliding,
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or interpenetration. Let vy;(X) and v,,(X) be the respective velocities at the interfaces I'y; and I',,, defined at the same point X
(Figure [6)), the compatibility condition (kinematic, on velocities) is written as:

Vmx Vinx
Vu(X) | iy | = VX)) | Vi | - (13)
Yy Vinz

FIGURE 6 Domain Decomposition

The condition presented in Equation[T3|can be written in a generalized form to account for all degrees of translational freedom
existing within the coupling interface, based on a coupling matrix C and a velocity vector b that equals a null vector in the case
where VX € I', vy (X) = v,,(X). According to the CD time integration scheme detailed in Section the velocities are computed
at mid time steps. The new generalized matrix system can be written as follows:

Cn+1 Vn+3/2 - bn+1 , (14)

where v and C are composite quantities, which can be expressed in the following form:

v= (VM>, C=(Cy Cp). (15)
Equation [T4]can then be decomposed as follows:
n+312 n+3/2
c! (:M> = (Cpt ) (:M) = Gyl + Gyl = p (16)

In order to introduce the constraints (Equation [I4) into the equilibrium equation (Equation [TT)), the method of Lagrange
multipliers is employed. The unknown coupling forces, which can also be interpreted as cohesion forces, can be expressed as
follows:

e = CTA, (17)

where A is the vector of Lagrange multipliers. By combining Equation[TT]and Equation[I7} the new form of the motion equation
at an increment n + 1 is written as follows:

%"*‘13"“'1 — fext(’H'l) _ fint(""'l) + Cn+1TAn+1 (18)
The matrices .# and C are initially defined matrices, which means that for all n € N, .#" = .# and C" = C. By multiplying
both sides of Equation[18]by C.2":

1(n+1)

Ca™! = C~ (") — ")+ Co ' CTAM. (19)
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Finally, according to Equation[T9] the Lagrange multipliers vector can be expressed in the following form:
AP = LW (20)
where it can be identified, by comparing equations [I9)and 20} that the expressions of L and W have been simply posed such that:
L=Cux'C, 2D

Wn+l — Can+l _ C%71 (fext(’ﬁ'l) _ fint(n"'l)). (22)

The constraint of Equation[20|can be used simultaneously with the CD time integration scheme. Starting from Equations [3|and[7]
the velocities at the interfaces can be expressed, while adhering to the CD temporal discretization, the quantity W presented in
Equation [22] can be rewritten in the following form:

Wn+l _ 2

— xt (7 int (1 1
= o T (bn+l _Cvn+1/2) _CH l(fe 101+l) _ g i (n+ )). (23)

4.2 | Projection technique
A projection technique was used to determine the coupling matrix. This technique is based on the principle of projecting a node

from the discrete interface I',, onto the corresponding facet (represented by a 2D element) of the FE associated with I'y, as
shown in Figure[7]

Iy

No

Q4 element facet

N

HB8 element

FIGURE 7 The projection of a node from the discrete interface

For example, for an HS FE (a first-order 3D hexahedral element with 8 nodes), using the shape functions N; of the associated
Q4 element (a four-node first-order quadrilateral element) with nodes /; and point P, the coupling matrix in the case of Figure
can be written as follows:

NEIXT NP NP NG
C= | NPha NP3 N9x3 NPDG | (24)
NP3 NEIG NG NG -3
with the vector x;, being a vector of dimension (1, n) consisting entirely of zeros except for the component at position p, which is
equal to 1. N%* is a matrix of shape functions defined as follows:

N2 = (N2(&,m) N2 (&) NEHEm) NEHE D). (25)

5 | FIELD TRANSFER METHOD

Dynamic remeshing involves two types of information transfers. The first type consists of exchanging of spatial information
between existing domains, such as in the coupling presented in the previous section. The second type of transfer is temporal, and
it involves the procedure for transporting data from the initial mesh to the new mesh during the transition from one subdomain to
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another. This data can include physical quantities such as temperature, pressure, velocity, etc., which have been computed based
on the initial mesh. The primary objective is to preserve relevant information as much as possible while adapting it to the new
mesh configuration.

5.1 | Transition from a purely FEM subdomain to a purely DEM subdomain

The kinematic variables of DE particles at the time of transfer (at time 7,,;) are obtained through interpolation of nodal (FE) values.
The displacements and velocities are calculated using interpolation that utilizes the shape functions of FE and the displacements
of nodes at #,, and t,,_;. The displacements and velocities of a DE particle are calculated as follows (Figure |§[):

Ul = NX)U", (26)
t,,,,, Utm _ Utnr—l
(o s ) @7
(tnt - tnr—l)

with U, and V, being the displacement and velocity of particle d, Ur and V being the displacement and velocity of the FE that
encompasses d, and N being the matrix of shape functions of the FE.

Discrete element d

, Finite element

FIGURE 8 Displacement transfer

DE have three additional degrees of freedom for rotation compared to solid FE. The transfer of these rotations is based on the
infinitesimal deformations of the “container” FE. For example, the rotation of a point A in the (x, y) plane around z—axis, as
shown in Figure EI, is determined using a decomposition of the displacements along the two axes x (u,) and y (u,) in a first-order
Taylor series (Equation [28).

dy

Ve

FIGURE 9 Displacement decomposition
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X a X
e = ud + v+ —udy,
Ox dy 28)
uy = ul + %dx + %d
YT ox Oy Y
The angle variations can be calculated as follows:
Ou
tan ¥, = - . aux,
ay ay (29)
Mgy du
tan Wy =% _—— =
T Ox Ox

In the context of the small perturbation assumption, or in other words, for small values of ¥; and V,, the variations can be

rewritten as follows:

tan ¥ =0,
(30)
tan ¥, =0,
The rotation 6, of point A, as illustrated in Figure [T0] can be determined as a function of ¥, and ¥:
Ouy  Ouy
0. =0, + WU, = . 31
s=ir =y (31
FIGURE 10 Rotation of point A
The deformation can also be decomposed into a symmetric part and an antisymmetric part:
1 ry, | T
Vu=§(Vu+Vu)+§(Vu—Vu). (32)
g w
In the 2D case, the strain tensor ¢ and the infinitesimal rotation tensor w are written as:
Ou Au, Ouy | du
1 X + AY Y 4 X
— f2) ox B dy
£=3 by | ous ait on | (33)
Ox dy Oy Jy
Ouy ou
1 0 s — o
_ Ox Oy
w == By Ou, (34)
2| -5+ BN 0
The rotation 8, can be rewritten as a function of w:
0, =V + ¥y = 2wy = 2wy, (35

This methodology for calculating rotations can be extended to the ge
written as:

neral 3D case. The infinitesimal rotation tensor (3D) is

0 1 (0w ou\ 1 (0u _ Ou
0 wxy Wiz 2 Ox oy 2 Ox oz
_ _ 1 Ouy Ouy 1 [ Ou; Ouy
W= | Wyx 0 Wy | = 2\~ T Oy 0 2\ay " oz (36)
Wer Wzy 0 L _Oue \ Quc\ 1 (_ Ou , Oty 0
2 Ox 0z 2 dy 0z
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Finally, the rotations 6y, 6, and 6, around the x—, y—, and z—axes, respectively, are obtained as:

0 2wy,
O | = | 2wy | - (37)
0, 2wy

5.2 | Transition from a combined FEM/DEM subdomain to a purely DEM subdomain

The interpolation techniques mentioned earlier are not suitable for the discontinuous nature of the DE domain. To adapt the
interpolation method to a DE domain, it may be wise to introduce an intermediate step that allows for the creation of a FE
mesh from the nodes of the DE. In this perspective, one possible approach is to use the least squares technique to determine all
displacements from the old DE subdomains to the new one. However, this method has several disadvantages, such as the high
computational time cost associated with matrice inversions, as well as choosing the interpolation order. Indeed, with a large
number of transfers, the order of displacement interpolation in the FE is no longer preserved in the DE subdomain, which can
also lead to discontinuity issues with neighboring FE.

On the other hand, the piecewise interpolation approach could be the solution to these problems. It allows for maintaining a
fixed interpolation order using reduced-size or even precomputed interpolation matrices.

To perform this piecewise interpolation, the Delaunay triangulation technique“#33 (or tetrahedralization in 3D) was employed to
create a tetrahedral mesh. The vertices of this mesh are constructed from the positions of the particles, as illustrated in Figure
for 2D case.
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FIGURE 11 Triangular mesh generation (for field interpolation)34

Once we have identified the connections and facets of the linear tetrahedra, the next step is to apply a tetrahedral FE (T4) to
each geometric shape. Creating a FE mesh allows us to utilize the interpolation method described earlier, using the specific
shape functions of the generated T4 element.

At this stage, the transition is made from FEM to DEM rather than from DEM to DEM, thanks to the use of Delaunay
triangulation. Therefore, it is sufficient to import the new DEM domain and to apply in a final step as presented in Section[5.1]
that enables the transition from a FEM subdomain to a DEM one.

5.3 | Compatibility between coupling method and field transfer method

The local study of velocity continuity at the coupling interfaces, using the field transfer technique presented, reveals that
velocities are not continuous when crossing from one side of the interface to the other.
The objective of this section is to propose a method to adjust the displacement fields to ensure velocity continuity. This also
involves adjusting the velocity fields accordingly.
The challenge is to adapt the transferred displacements to the geometric position considered by the coupling (Figure [I2b), while
preserving the overall behavior of the real geometric positions (Figure[I2a). In other words, the modifications to the displacement
fields should not alter internal forces in the beams to maintain the same mechanical behavior between the replaced subdomain
and the replacing subdomain.

Due to mismatching positions, the interface fields were reconstructed (Figure[I3a). The global stiffness matrix K* is defined
as the result of the domain mismatch correction. The terms F* and U* represent, respectively, the displacements and internal
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FIGURE 12 Geometric position configurations
forces associated with this configuration, such as:
F*=K*U". (38)

For the real configuration (Figure [13b), we similarly define the global stiffness matrix K. U’ represents the displacements
transferred to the actual geometric position, while F’ represents the associated internal forces, such as:

F'=KU'. (39)

Reference subdomain Reference subdomain
for calibration for calibration

(a) Virtual DE subdomain configuration (b) Real DE subdomain configuration

FIGURE 13 Virtual and real DE subdomain configurations

The vector U, represents the displacements of the particles present at the coupling interface. These displacements are
calculated using the projection technique presented, which essentially involves interpolating the displacements at the FE nodes
using the shape functions of the 2D element constructed by the facet that coincides with the coupling interface. This vector does
not depend on the type of configuration, whether it is real or virtual.

The vector can be divided into two parts: the displacement of the particles at the interface, represented by U,, and the rest of the
displacements, represented by U
.
U = [U’} . (40)

Ue

The requirement for having identical internal forces for both configurations can be formulated as follows:
F'=F*=KU =K"U". (41)

The current objective is to determine the displacements U* appearing in Equation [#1] while ensuring equality of internal forces.
These displacements are corrected to ensure displacement continuity and, consequently, velocity continuity at the interface.
Since the forces F" are known, the expression for U* can be simplified as follows:

F'=K*U*. (42)
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In order to make this system invertible, an additional condition needs to be imposed during the resolution. This condition can be
enforced by using the known displacements U..
Let F' represent the forces associated with the degree of freedom U;. The stiffness matrix can be decomposed as follows:

K% K
K = [ 7 fg} . “3)
Kr2 KCZ
The new system is expressed as follows:
K K3l || = @)
Developping system [44}
K5.U =F. -K}.U,. 45)
Finally, the displacements are obtained as follows:
Ur = (K3 (FL - K5 .U). (46)

6 | NUMERICAL EXAMPLES

The developments of the previous sections, as well as the FEM and DEM frameworks, have been implemented in an in-house
program written in Matlab®>. This program has been chosen for simplicity of development purposes, and explains the (high)
computation times given for each numerical exemples, compared to what could be obtained using compiled code.

Three test cases are simulated in this section. The first example is a simple tensile test case that allows us to validate the
coupling only. The second one allows us to observe mesh evolution, crack propagation, and assess the consistency between the
two. The third example involves the application of dynamic remeshing in a Kalthoff test case, and the results will be validated by
comparing the crack propagation angle with experimental data from the literature.

6.1 | Coupling evaluation test case

A simple test case is first performed to evaluate the coupling method only, i.e. the meshes defined remain identical to their initial
definition during the whole computation. The specimen is 0.06 m long and features a square cross section with 0.01 m sides. It
remains elastic during the whole computation. This model is divided into two domains (DE and FE), of equal length (0.03 m).
The coupling is defined at the interface z = 0.03 (see Figure[T4) using the Lagrange multipliers coupling described in Section 4]

(a) Pure DEM model (b) Pure FEM model

(c) Coupled FEM-DEM model

FIGURE 14 Models used for the evaluation of the coupling method

A calibration of the discrete subdomain was carried out to determine the microscopic parameters to be applied to the discrete
elements based on macroscopic material properties. The discrete subdomain is comprised of 4007 elements assembled by 11571
beams. The geometrical and material properties of both subdomains are presented in Tables [T] and 2] below:
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Elements DE average radius (m) Beams | Beams radius (m)
DEM 4007 4.8359 x 10* 11571 1.6 x 10
FEM 2800 - -

TABLE 1 Mesh characteristics

Young’s modulus (Pa) | Poisson’s ratio | Density (kgm™)
DEM 5.16 x 1012 0.3 1.25 x 10%
FEM 2.00 x 10™ 0.3 8000

TABLE 2 DEM microscopic and FEM macroscopic material properties

The results obtained are compared to that of two reference models, made exclusively of either DE or FE (Figure[T4). Note that
the discretization steps are the same in the three models, which leads to 7966 discrete elements and 23203 beams for the DEM
model, and 5600 elements for the FEM model.

Both the global behavior (across the entire domain) and the local behavior (at the coupling interface level) are evaluated.
At the global scale, the reaction force time histories are evaluated. At the local scale, the displacement fields at the coupling
interface I' on the FEM side I'y; and on the DEM side I',, were respectively compared to verify if kinematic continuity was well
maintained. Two displacements, u;;, and uy,, are associated with the virtual nodes X, and Xj;, respectively. These two nodes are
defined by the intersection of I',, and 'y, with the centerline of the specimen, as illustrated in Figure @

FIGURE 15 Description of local post-treatment

The boundary conditions applied correspond to that of a simple tensile test case. The specimen is clamped at the left end
(Figure[I6a), while at the right end, it is subjected to a boundary condition of sinusoidal displacement type that evolves over
time, as shown in Figure [T6b]

E -6 .
B 10x10°0  —— U =f) - - R
= ] f .
‘g:: i
U € Bx107°H - T
—> ¢ ]
'_Q‘_‘ m
B ]
A o _
(a) Simple tensile test boundary conditions 0 5x10 10x10
Time ¢t [s]

(b) Applied displacement boundary condition

FIGURE 16 Description of the simple tensile test

Figure [I7] shows that the coupled model produces a reaction force over time that lies between that of the FEM and DEM
reference models. This is a reasuring and somehow intuitive result.

Quantitatively, the coupled FEM-DEM model exhibits a small deviation from both reference models, with a maximum
difference of the order of 1.5% with the FEM model and 3.5% with the DEM model. The difference between the FEM and DEM
reference solutions can be explained by imperfect calibration between microscopic and macroscopic properties, as well as a
non-uniform distribution of masses in DEM, leading to varying levels of inertia effects across different parts of the structure.
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FIGURE 17 Reaction force time histories for DEM, FEM, and coupled FEM/DEM models.

10x1075

To quantify the vector quantities u;, and uy;, the time histories of u;, and u}; are presented in Figure[T8] It shows that the
displacements on both sides of the coupling interface (FEM side and DEM side) are nearly identical, with a very low relative
error, of the order of 0.0039%. This confirms the kinematic continuity at the coupling interface.
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FIGURE 18 Displacement time history for the two post-treatment nodes
6.2 | 6.2 Dynamic remeshing evaluation test case

6.2.1 | Test case definition

10x1075

This test was conducted on a specimen subjected to uniaxial tension by applying a displacement. The geometry of the specimen
promotes crack propagation at the center (Figure[I9), and in this context, the crack pattern must be perpendicular to the loading
direction. The microscopic parameters of the DE subdomain and the macroscopic mechanical properties of the FE are presented
in Table El The tests were conducted on a specimen with dimensions of 3 m in length, 1 m in width, and 0.1 m in thickness.

TABLE 3 Macroscopic parameters (FEM) and microscopic parameters (DEM)

Young’s modulus (Pa)

Poisson’s ratio

Density (kg m™)

Beam radius (m)

Micro

9.92 x 1012

0.3

automatic

0.0026

Macro

2.00 x 10™

0.3

8000
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(a) Notched specimen geometry

(b) Applied displacement boundary condition

FIGURE 19 Description of the notched tensile test

The failure criterion used in the beams is based on the maximum axial strain and can be written in the following form:

-1

—2 > 001, (47
lo

with / and [ representing the current and initial lengths of the beam in question. The FE substitution criterion is based on the

maximum strain and can be written in the following form:

max(e) > 0.008. (48)

6.2.2 | Numerical results

The results of the mesh evolution and crack propagation at three time instants, r = 0.0047 s, t = 0.005 s, and ¢ = 0.0064 s, are
presented in Figure[20] The model was initially constructed entirely from FE (Figure[20a). At time 7 = 0.0047 s, a first remeshing
operation was performed. After this remeshing, crack initiation appeared, as illustrated in Figure[200] This cracking propagated
in the central part of the specimen until it reached the FE area, which required a second remeshing operation at # = 0.005 s
(Figure [20c). The cracks then propagated in two directions, extending within the new subdomain of DE until they joined
(Figure20d). The initial configuration was built with 182 FEs, and at the end of the simulation, the final configuration consisted of
157 EFs and 3115 DEs. The FEM computation time was 51 min, while the coupled FEM-DEM computation time was 6 h 28 min.

(@r=0s (b) 1 =0.0047 s

()t =0.005s (d) 7 = 0.0064 s

FIGURE 20 Mesh evolution and crack propagation

The asymmetric distribution of DE within the subdomains results in an asymmetry in the crack propagation pattern, leading to
an asymmetry in the substitution of subdomains. This feature of DE offers a significant advantage for this method, as it allows for
the creation of weak zones in the structure, similar to the presence of real imperfections in materials. These weak zones provide
a favorable site for crack initiation, eliminating the need for pre-cracking, unlike crack simulation with continuous methods.
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A comparison of computation times was conducted using the same modeling for two scenarios: the first employing the
FEM-DEM remeshing method, while the second only used the DEM. This analysis revealed a significant difference between the
two approaches, with remeshing computations are estimated to be 26.7 times faster, thereby demonstrating the efficiency and
cost-effectiveness of using the FEM-DEM remeshing method.

6.3 | Kalthoff and Winkler’s experiment

The study conducted by Kalthoff and Winkler“®! involved subjecting a rectangular specimen with two identical initial notches
parallel to the impact of a cylindrical projectile (Figure 21). Depending on the applied load velocity, the material type, or
temperature, various modes of fracture occur. At relatively low velocities, the experimental results indicate a fracture mode
oriented as Mode II, characterized by an average propagation angle of about 70 degrees relative to the initial notch direction.
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FIGURE 21 Kalthoff experiment=0l

The goal here is to compare the results of this experiment with those obtained using the developed remeshing method. The
modeling was carried out using the geometry of the specimen presented in Figure[22a] Only half of the specimen is modeled due
to the symmetry of the problem. The impact is simulated by imposing a velocity V, on the left side of the specimen, which
contains a pre-crack, as illustrated in Figure 22D].

The geometric properties of the model and initial conditions are given in Table[d]

TABLE 4 Geometry and initial condition

Parameter ! h t a Vo
Value 100mm | 200mm | 9mm | 50mm | 10ms!

The material represents high-strength brittle martensitic steel 18Ni1900, which is the material used in the experiments. The
material properties are as follows: E = 190 GPa, v = 0.3, p = 8000 kg m~. To model crack initiation, a critical strain €7 has been
used, with e, =4 x 107,

The failure criterion used in the beams is based on the maximum axial strain and can be written in the following form:
-1y

— 2 54x107, (49)
Iy
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FIGURE 22 Modeling the Kalthoff experiment

with [ and [, representing the current and initial lengths of the beam in question. The FE substitution criterion is based on the
maximum strain and can be written in the following form:

max(e) >3 x 107, (50

The simulation results show an angle of 66° (Figure 23) between the pre-crack and the crack propagation path, which is
consistent with experimental observations, as illustrated in Figure 24] The initial configuration was built with 174 FEs, and at the
end of the simulation, the final configuration consisted of 164 EFs and 4220 DEs. The FEM computation time was 1 h 7, while
the DEM computation time was 20 h 4 min.

FIGURE 23 Crack path angle

7 | DISCUSSION
7.1 | Spurious waves at the coupling interface

Spurious wave reflections are likely to occur at the coupling interface between sub-domains. This kind of phenomenon occurs not
only when coupling FEM and DEM discretized sub-domains 232658 pyt quite generally when coupling different discretizations
for which the sub-domain discretization steps also vary. Indeed, such spurious reflections have for example been observed when
performing atomic-to-continuum®?, FEM to peridynamic, DEM to Natural Element Method (NEM)*, DEM to Boundary
Element Method (BEM)*2 couplings, to cite only a few examples.



20 YAHYA ET AL.

(a) Simulation result (b) Experimental resullmII

FIGURE 24 Comparison between the experiment and the simulation

To avoid spurious wave reflections, a first possibility would be the use of damped time-integration schemes in order to filter
out spurious high-frequency components of the response. A quite exhaustive review of such time-integration schemes was
proposed by Fung. Some authors also proposed the use of time or spatial ﬁltering@.

To avoid any additional filtering or damping, many authors employ overlapping methods such as Arlequin. However, it
appears that no more than half the spurious wave magnitude is mitigated. To enhance the mitigation of spurious waves, the
diagonalisation of the Lagrange multipliers, the relaxation of the Lagrange multipliers coupling condition, or the increase of
the overlapping subdomain dimensions were proposed. Even damping conditions were also introduced in the overlapping
sub-domain“Z.,

Finally, the approaches proposed hardly succeeded in totally canceling the spurious waves, at least without sacrificing the
shock energy conservation or the computational efficiency.

Note that the treatment of spurious waves is voluntarily not adressed in this paper, and a dedicated innovative mathematical
spurious wave mitigation method will be proposed in a forthcoming paper.

7.2 |  DE subdomain filling and boundaries

The choice of the “Cooker” program, included in the GranOO Workbench®C, was a natural choice to avoid the development
of such tool, which involves contact management between discrete elements and domains boundaries. Although developing
our own tool dedicated to this study would have enabled the generation of discrete domains with elements center lying on the
boudaries, half of the discrete elements would have overlapped with the FE domains, thus leading to additional mass in the model.
Another treatment would thus be necessary to weight this mass across the overlapping region, such as using unity partition
functions, in a similar way as in the Arlequin method described by Ben Dhia et al.%3. It would nevertheless be interesting to test
this solution to estimate the pros and cons.

8 | CONCLUSION AND PROSPECTS

The paper presents a dynamic remeshing strategy between the FEM and the DEM. This method is based on two approaches
aimed at ensuring the spatial and temporal continuity of physical quantities in the problem. Spatial continuity is guaranteed
through coupling, which ensures velocity compatibility at interfaces using the Lagrange multipliers method. Temporal continuity
is ensured through a field transfer method, where during the replacement of subdomains, the displacements at the FE nodes are
interpolated using FE shape functions to the DE nodes. These displacements are then used to determine other fields in the DE.
To automate the coupling method and subdomain substitution management, a substitution strategy has been developed.

Numerical examples using the FEM-DEM dynamic remeshing are presented. The first example deals with a simple tensile
specimen cracking problem. This case demonstrates realistic crack propagation results and good consistency between domain
substitutions and crack path propagation. Additionally, a computation time comparison is made between FEM-DEM remeshing
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and fully DEM computations, highlighting the efficiency of the developed method. The second test case involves comparing
crack patterns with the Kalthoff experiment, showing that the numerical results closely match those obtained in experiments
conducted by Kalthoff.

The dynamic remeshing strategy could be adapted to overlapping couplings if required (coupling enhancement), if/when
computation times are affordable, and other future work will deal with the study of the mathematical treatments of waves
reflexion. The application of this method cannot be limited to brittle materials. The next step is to apply it to problems involving
various non-linearities.
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