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Introduction

Text S1 describes the method based on Fourier series to compute the time-periodic so-
lution of the mathematical model defined in section 2.6. The numerical validation of the
method is displayed in Text S2 (including Figs. S1 to S3). A brief comparison between
Fourier series (FS) and the resolution of the transient problem by time integration (TI)
is presented in Text S3 (including Figs. S4 to S6).

Text S1

The resolution by Fourier series requires a slight modification of the model defined in
section 2.6. Eq. (17) resulting from the air energy balance is of order 1 in space, so that
only 1 boundary condition must be imposed, the air temperature at the inlet. Since
the position of the inlet changes at each flow reversal, the boundary condition has to be
applied alternatively on each side of the conduit. This is possible when the problem is
solved by time integration, but difficult to implement with Fourier series. This difficulty
is overcome by adding a dispersion term in the air energy balance which turns to second
order in space, making it possible to apply Dirichlet boundary conditions on both sides
of the conduit whatever the flow direction. Eqs. (17-18) turn to:

µ(t̃)Re
∂θa
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)
ϕ̃w +RePe−1 ∂

2θa
∂x̃2

, (S1)

θa(x̃ = 0, t̃) = sin(2πt̃) and θa(x̃ = L̃dom, t̃) = 0. (S2)

It is important to note that the new dispersion term in Eq. (S1) is a numerical trick
with no physical sense. If the Peclet number Pe is large enough, the addition of the
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dispersion term in Eq. (S1) does not significantly modify the model output. An excep-
tion is the outlet region, where the dispersion term induces the air temperature to fit
the external temperature at the end of the conduit. This change in the air temperature
field takes place over a distance from the outlet of the order of Pe−1, which can be
arbitrarily small if Pe is large enough. The constant value Pe = 105 was set in all the
simulations. We checked on a few cases that imposing Pe = 106 did not change the
results.

In a second step, all the functions of time are approximated by truncated Fourier
series and inserted in the mathematical model. These functions of time include:

• Two model inputs: the reduced air flowrate µ(t̃) and heat transfer coefficient η(t̃).

• Two model outputs: the rock and air temperatures, respectively θw(x̃, r̃, t̃) and
θa(x̃, t̃).

We begin with the model inputs. The exact expression of µ(t̃) and η(t̃) are known a
priori (see section 2.6). Considering that µ(t̃) is an odd function of time and η(t̃) an
even function of time, their approximations by truncated Fourier series read:

µ(t̃) =

Nµ∑
k=1

µk sin(2πkt̃) and η(t̃) = η0 +

Nη∑
k=1

ηk cos(2πkt̃) , (S3)

where µk and ηk are real coefficients deduced from the exact expressions of µ(t̃) and
η(t̃), respectively. Nµ and Nη are the number of modes taken into account. Increasing
Nµ and Nη improves the accuracy of the approximated relations (S3), but requires more
computational resources.

We now focus on the model outputs. The temperatures fields in the rock
θr(x̃, r̃, t̃) and in the air θa(x̃, r̃, t̃) are approximated by the truncated Fourier series:

θr(x̃, r̃, t̃) = θr,0(x̃, r̃) +

Nθ∑
k=1

θr,k(x̃, r̃) cos
(
2πkt̃+ ϕr,k(x̃, r̃)

)
=

Nθ∑
k=−Nθ

Θr,k(x̃, r̃) exp(2πjkt̃) ,

(S4)

θa(x̃, t̃) = θa,0(x̃) +

Nθ∑
k=1

θa,k(x̃) cos
(
2πkt̃+ ϕa,k(x̃)

)
=

Nθ∑
k=−Nθ

Θa,k(x̃) exp(2πjkt̃) ,

(S5)

where the same number of modes Nθ is considered for the rock and air temperatures.
The complex coefficients Θr,k are such that Θr,−k is the conjugate of Θr,k. They are
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related to the real amplitudes (θr,k and θa,k) and phase shifts (ϕr,k and ϕa,k) through
the standard relations:

θr,0 = Θr,0 and θa,0 = Θa,0 , (S6)

θr,k = 2
√

Θr,kΘr,−k and θa,k = 2
√

Θa,kΘa,−k for k > 0 , (S7)

tanϕr,k = −j (Θr,k −Θr,−k)

Θr,k + Θr,−k
and tanϕa,k = −j (Θa,k −Θa,−k)

Θa,k + Θa,−k
for k > 0 . (S8)

Injecting Eqs. (S3-S5) in the mathematical model of section 2.6 yields the equations:

Re

2j

Nµ∑
m=1,3...

µm
(dΘa,k−m

dx̃
− dΘa,k+m

dx̃

)
=
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)
Φ̃w,k +RePe−1 d2Θa,k

dx̃2
, (S9)

Θa,k(x̃ = 0) =
1

2j
for k = 1, Θa,k(x̃ = 0) = 0 for k 6= 1 , (S10)

Θa,k(x̃ = L̃dom) = 0, (S11)

2πjkΘr,k =
1

r̃

∂

∂r̃

(
r̃
∂Θr,k

∂r̃

)
+
∂2Θr,k

∂x̃2
, (S12)

Θr,k(0, r̃) =
1

2j
for k = 1, Θr,k(0, r̃) = 0 for k 6= 1 , (S13)

∂Θr,k

∂x̃
(x̃ = L̃dom, r̃) = 0 and

∂Θr,k

∂r̃
(x̃, r̃ = R̃dom) = 0 , (S14)

Case A : Φ̃w,k =
∂Θr,k

∂r̃
(x̃, R̃)

= Bi

Nη∑
n=0,2,...

ηn
2

[
Θr,k−n(x, R̃)−Θa,k−n(x̃) + Θr,k+n(x̃, R̃)−Θa,k+n(x̃)

]
,

(S15)

Case B : Φ̃w,k =
∂Θr,k

∂r̃
(x̃, R̃) and Θa,k(x̃) = Θr,k(x̃) , (S16)

where j =
√
−1 and k is an integer varying from 0 to Nθ. Eqs. (S9) and (S12) thus

define a set of 2(Nθ + 1) coupled partial differential equations (PDE) with boundary
conditions (S10-S11,S13-S16). This set of PDE, which does not include the time variable
t̃, is solved numerically by finite elements (Galerkin method with quadratic Lagrangian
elements, Comsol Multiphysics software). The resolution yields the complex coefficients
Θr,k(x̃, r̃) and Θa,k(x̃). The real amplitudes and phase shifts are deduced from relations
(S7-S8) and the temperatures as a function of time from relations (S4-S5).
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Text S2

The choice of Nµ, Nη and Nθ results from a compromise between the accuracy of the
results on one hand, the difficulty of the implementation and the available computa-
tional resources on the other hand. The sensitivity of the simulation results to Nθ, Nµ

and Nη is investigated below for case A with R̃ = 0.2 and Re = 7.2× 105.

We first set Nη = 0 and Nµ = 1 and we investigate the effect of Nθ. Figure
S1 displays the effect of Nθ on the time series of the wall temperature at x̃ = 10 and
x̃ = 100. The general shape of the curve is little modified for Nθ ≥ 6, but the descrip-
tion of the rapid oscillations around t̃ ' 0.05 and t̃ ' 0.45 requires a larger number of
modes. The same approach is used to investigate the effect of Nη and Nµ. Figure S2
shows that these parameters have little effect on the results for the selected configura-
tion. In all the simulations, we imposed Nθ = 18, Nη = 6 and Nµ = 7 which happened
to be a reasonable compromise between accuracy and complexity. We checked on a few
configurations that increasing the number of modes above the selected values did not
significantly changed the results.

In order to confirm its validity, the numerical solution based on Fourier series
was compared with the solution obtained by time integration (Galerkin method with
quadratic Lagrangian elements, time discretization using implicit Backward Differen-
tiation Formula, Comsol Multiphysics software). The TI simulation was done over 28
cycles (i.e., from time t̃ = 0 to t̃ = 28) taking as the initial condition the solution ob-
tained from Fourier series at t̃ = 0. The comparison between TI (last cycle, from time
t̃ = 27 to 28) and FS is displayed in Fig. S3. Small discrepancies are observed during
the rapid oscillations around times t ' 27.05 and t ' 27.45 for x̃ = 10 and x̃ = 100,
but the overall agreement is excellent.

Figure S1. Time evolution of the wall temperature at x̃ = 10 (a) and x̃ = 100 (b) for
Nη = 0, Nµ = 1 and different values of Nθ. Case A with R̃ = 0.2 and Re = 7.2× 105.
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Figure S2. Time evolution of the wall temperature at x̃ = 10 (a) and x̃ = 100 (b) for
Nθ = 18 and different values of Nη and Nµ. Case A with R̃ = 0.2 and Re = 7.2× 105.

Figure S3. Time evolution of the conduit wall temperature calculated using Fourier series
(FS) or time integration (TI), at different distances from the entrance x̃. FS solution at t̃ = 0
used as the initial condition of TI simulation. Case A with R̃ = 0.2 and Re = 7.2× 105.

Text S3

A standard approach, not used in this study, would consist in solving the time-dependent
problem by TI starting from an arbitrary initial condition (e.g., θr(x̃, r̃, t̃ = 0) =
θa(x̃, t̃ = 0) = 0). The time-dependent solution converges to the periodic regime at
infinite time. A good approximation can thus be obtained if the simulated time is long
enough. Figures (S4-S6) display the parameters defined in Section 4 calculated from
TI as a function of time or FS, for case A with R̃ = 0.189 and Re = 1.8 × 105. With
the exception of W̃1, TI results converge slowly to the periodic regime. Taking FS as a
reference, TI yields errors at time t̃ = 50 in the range from 10% to 30% for θ̄w, ∆θw, L̃0

and L̃1. These errors are acceptable if rough estimates are required. In contrast, TI un-
derestimates W̃0 by an order of magnitude. To get a correct estimate of this parameter
and improve the accuracy of others, TI would require to simulate a time of the order of
the diffusion time W̃ 2

0 ' 642 ∼ 4× 103, i.e. thousands of years. Such simulations would
require computational times hardly compatible with current computer resources.
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Figure S4. W̃0 (a) and W̃1 (b) estimated from Fourier series (FS) or time integration (TI).
Initial conditions in TI simulations set to zero. Case A with R̃ = 0.189 and Re = 1.8× 105.

Figure S5. AMT of the conduit wall (a), θ̄w (b) and L̃0 (c) estimated from Fourier series
(FS) or time integration (TI). Initial conditions in TI simulations set to zero. Case A with
R̃ = 0.189 and Re = 1.8× 105.

Figure S6. ATF of the conduit wall (a), ∆θw (b) and L̃1 (c) estimated from Fourier series
(FS) or time integration (TI). Initial conditions in TI simulations set to zero. Case A with
R̃ = 0.189 and Re = 1.8× 105.
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