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Abstract. Higher-order networks are a general form of network models that include memory
nodes used to capture indirect dependencies between entities. When built from sequential or
pathway data, random walks performed on these networks usually represent input sequences
better than traditional first-order models. Unlike the latter, there are various ways to build
higher-order networks that already exist in the literature. We introduce a new variable-order
network where nodes can encode sequences of varying length. Nodes are selected by looking
at sub-sequences that are unlikely extensions of already detected sub-sequences. Using ex-
periments on real-world datasets, we demonstrate that our method produces smaller and as
accurate models compared to the main variable-order model in the literature. We also study the
differences achieved when ranking items using a higher-order reformulation of the PageRank
metric.

Keywords. Higher-order networks; Sequential data; Monte-Carlo; PageRank

1 Introduction
Networks can be used to represent dependencies found in sequential data. One direct approach
is to aggregate pairwise interactions between items in the input sequences. Examples include
the number of clicks between two web pages or the number of times a ship navigates from one
port to another. Most of the time, network mining algorithms use the indirect dependencies
induced by the network topology, e.g. the PageRank metric is linked to the behaviour of a
random walker on the graph.

The use of this traditional representation raises an issue in the case of networks built from
sequential data as the indirect relations induced by the network topology may not correspond
to observed sub-sequences. For example, the graph in Fig. 1b suggests an indirect relation
between item C and E going through D. But no such transitions exist in the input dataset the
graph was built with (see Fig. 1a). Indeed, using this network representation presupposes that
the modeled system respects the Markov property i.e. the information useful for predicting the
future state is contained only in the current state (the process is also said to be “memory-less”).
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Figure 1: Examples of network representation of sequential data (1a). We assume here that
each sequence is observed several times. There is a 50% chance to leave D to go to either E or
F. First-order networks can encode these transitions probabilities (arc labels in 1b). However,
when looking at the sequences, we can see that coming from C before D then its next destination
is always F. Higher-order networks (1c and 1d) can encode these indirect dependencies by using
multiple representations of each item. Fon2 network (1c) include all order-2 dependencies even
those that do not help in predicting next item (i.e. BD). Von Network (1d) keeps only relevant
dependencies (i.e. excluding BD but adding ABD) leading to a sparser and better representation
of the sequential dependencies. The three red nodes are representations of the item D. Node
labeled ABD is then a memory node of order 3.

In order to address this issue, higher-order networks can be used instead. In these networks, the
memory on the previous steps is encoded into memory nodes. An item can then be represented
not by one (as in first-order models) but by several nodes. On this new class of networks, a
random walk will better simulate the input sequences. In the example, coming for C, the only
possible destination for a random walker after D is F. We focus specifically on variable-order
networks (see Fig. 1d) where there are no constraint on the length of memory nodes.

The main question is: how do we select the memory nodes to add to the network? In the
Fig. 1d, the sequence ABD is included as a memory node while BD is not. Indeed, only knowing
that B is observed before D does not add more information. We say that the sequence ABD is a
relevant context as it adds information about the following items. The issue of relevant context
definition is the central topic of this paper. The use of variable-order network was introduced
by Xu et al. [23, 18] who provided a first answer to this question. However, as there are several
ways to define “relevance”, several variable-order network representations of the same sequential
dataset are possible. In this paper, we introduce a new approach called MC-Von to construct
variable-order networks where the relevance of a context is assessed using a statistical test.
We show on real-world data that this new model can be as efficient as predicting sequences
while being sparser that the model of Xu et al.. Furthermore, we evaluate the effect of model
selection on higher-order PageRanks rankings.

French Regional Conference on Complex Systems
May 29-31, 2024, Montpellier, France

2126



J. Queiros et al. Sampling based sequential dependencies discovery in Hon

2 Related works
The concept “higher-order networks” (Hon) is used to describe graph models that are not
limited to dyadic relations and design to capture different system dependencies (e.g. temporal,
sequential, subset, spatial dependencies) [7, 21]. Like several authors [21], we use here the term
“higher-order” to refer exclusively to networks that encode sequential dependencies (transition
probabilities for contexts of length (or order) longer than 1). Applications of Hon include the
identification of overlapping modules or the evaluation of items centrality [23, 17, 13].

Most of the existing literature focus on fixed-order networks we call Fonk [17]. These models
generalize classic memory-less models as they are networks where the probability of a random
walker to reach item σ depends on the previous k steps rather than only the last one. The
parameter k can be set to a given value [17] but the estimation of the optimal order for a given
dataset was also investigated [20, 19].

We focus in this paper on a less discussed family of models called variable-order networks
(Von). Variable-order Markov models of discrete sequences have been studied in the past [3].
But, to the best of our knowledge, the only applications to network analysis is the seminal
work of Xu et al. [23, 18]. Their main idea is that orders should be found locally rather than
determining a global order for the system i.e. memory nodes should only be included if they
indeed impact the behaviour of a random walker.

The number of memory nodes in a Fonk grows exponentially with k. Therefore, Von models
are useful when higher-order dependencies existing in the system are sparse. This is a safe
hypothesis since real-world networks are considered sparse. Still, Xu et al. rightly suggest that
one should find a balance between the resulting network size and the corresponding model’s
goodness-of-fit w.r.t. input sequences. In the present paper, we compare their network model
(denoted DKL-Von) to ours (denoted MC-Von). These models are defined in the following
section.

3 Methods
Let A be the set of items. An input dataset corresponds to a set S = (s1, s2, . . .) of sequences
si = σi

1σ
i
2σ

i
3 . . . where all σi

j ∈ A. For a sequence s of symbols in A, the order of s denoted
|s| is the length of s and the support of s denoted c(s) is the number of occurrences of s in
dataset S. We will also use Cs = (c(sσ), σ ∈ A) to denote the occurrences of items following
the sequence s. Let s = s1s2 be a sequence resulting in the concatenation of sequences s1 and
s2. Here, s1 is a prefix of s, s2 is a suffix of s while we call s an extension of s2. Based on
a vector K = {Kσ, σ ∈ A} ∈ N|A|, where Kσ represents the number of occurences of element
σ, we define the probability measure QK(σ) = Kσ/

P
σ′∈A Kσ′ , i.e. the probability to choose σ

when drawing a random element from K.

In discrete sequences prediction, we want to estimate P (σ|σ1 . . . σk) i.e. the probability to
encounter item σ after the sequence σ1 . . . σk. In a higher-order Markov model, we assume
we have a set R (the relevant contexts) of sequences of items including A. The probability
P (σ|σ1 . . . σk) will be estimated using P R(σ | σ1 . . . σk) := QCs′ (σ) where s′ is the longest suffix
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of σ1 . . . σk ∈ R. In a memory-less Markov model (or first-order model), we have R = A and
only the last visited item is taken into account i.e. P A(σ | σ1 . . . σk) = P A(σ | σk).

The Hon models studied here are built from the same general procedure described in the Section
3.1. We defined known Hon models using this procedure. The difference in the method we are
proposing comes down to the identification of the set of relevant contexts R which is detailed
in 3.2.

3.1 Generic Higher-Order Networks construction procedure
Higher-order networks aim at encoding transition probabilities of higher-order Markov models
into a regular weighted directed graph (as the example in Fig. 1b). From a set of relevant
contexts R, the weighted directed graph G(R) = (R, E, w) is built with each item σ ∈ A
represented by multiple nodes corresponding to the contexts having σ as the last entry. We say
that these memory nodes are the representations of item σ. The edge set E and the weights
w are defined as follows. Let s ∈ R and σ ∈ A such that P R(σ|s) > 0, G(R) contains a link
s → s∗σ of weight w(s → s∗σ) = P R(σ|s) where s∗ is the longest suffix of s ∈ R. For example,
let s = abc and s∗σ = bcσ be relevant extensions of c and σ respectively then there will be a
link s → s∗σ if abcσ ̸∈ R and P R(σ|s) > 0.

Algorithm 1: Von Generic Algorithm
Data: S: set of sequences over itemset A
Input: sc, sv: current and last relevant contexts
Result: R: set of relevant contexts
if existRelevantExts(sc, sv) then

for σ ∈ A do
if isRelevant(σsc, sv) then

R ← R ∪ Von(σsc, σsc)
else

R ← R ∪ Von(σsc, sv)

return R ∪ prefixes(sv)

As previously said, the difference between Hon models mainly comes from the way the set of
contexts R is defined. Algorithm 1 is a general framework used in [18] to extract such a set.
Relevant contexts are recursively found as extensions of contexts found at lower orders. For a
dataset S and an itemset A, the final set of contexts is defined as R := S

σ∈A Von(σ, σ).

The functions isRelevant and existRelevantExts depend on the model used. The test
isRelevant(sc, sv) is passed when sc is judged relevant when compared to the last relevant
suffix identified sv. The function existRelevantExts is used to identify situations where no
relevant extensions of sv are possible and, therefore, where the recursion must be stopped. As
such, this function should not need to count sub-sequences σ1scσ2. This operation is to be
done only if a relevant extension is possible. If well designed, it should make possible the use
of Algorithm 1 on large datasets [18].

Finally, function prefixes returns the set of prefixes of sv (including itself). Indeed, a random
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walker on a higher-order network can only reach memory node s1s2 . . . sk if there is a path
s1 → s1s2 → · · · → s1s2 . . . sk. Therefore, every prefix of sv are added in the network even if
some are not relevant. In the example of Fig. 1d, knowing that we observed A before B does not
provide more information than simply knowing it came from B. However, the representation AB
is here as a prefix of ABD which is a relevant context.

Definition 1 The fixed-order network Fonk is obtained by treating a sub-sequence as relevant
if its order is lower or equal to k.

With this definition, the network Fon1 is the traditional first-order network (Fig. 1b). Fixed-
order networks are usually defined as subgraphs of the k order De Bruijn graph over A in
the literature. But this formalism does not allow to keep track of transition probabilities for
contexts of order lower than k. This model is also called multi-order model [19].

Definition 2 The variable-order network DKL-Von(λ) [18] is obtained by treating the sub-
sequence σsc as relevant w.r.t sv iff

DKL (Pσsc ||Psv) >
λ|σsc|

log2(1 + c(σsc))
(1)

with λ ∈ R+ the threshold multiplier, Ps := QCs the distribution of items following s and DKL

the Kullback-Leibler divergence (in bits).

One main advantage of DKL-Von when compared to Fonk is that the length of contexts is
locally defined in order to best fit the data. The right side of Eq. 1 makes longer and sparsely
observed contexts harder to be recognized as relevant.
The parameter λ is not actually included in the original definition of [18] (we have an equivalent
definition for λ = 1). The original definition of the authors is indeed parameter-free. However,
the interpretation of the right-side threshold function in relation to the DKL divergence is hard
to grasp. We argue that the definition of the threshold function actually hides an arbitrary
choice of “scale” made by the authors. Therefore, the “parameter-freeness” of DKL-Von is
limited in our opinion. We shall use different value of λ in order to compare DKL-Von model
to the one defined below.

3.2 MC-Von model definition
Our proposal to construct a variable-order network model is to use to the quantity DKL (Pσsc ||Psv)
as in [18], but as a test statistic in a hypothesis testing paradigm to avoid relying on an ad
hoc threshold function. Indeed, if σsc is not a relevant context, then Cσsc should behave like a
draw of c(σsc) elements from Csv without replacement, i.e. from a multivariate hypergeometric
distribution MH(Csv , c(σsc)). Therefore, we will decide that σsc is a relevant context when
Cσsc does not behave like a random draw, that is while we can reject the null hypothesis

H0 : Cσsc ∼ MH(Csv , c(σsc)) vs. H1 : Cσsc ≁ MH(Csv , c(σsc)).

The nominal level α ∈ (0, 1) of the test allows us to choose how surprising we want the draw
Cσsc to be in order to consider sc as a relevant context. It is also an upper bound for the
probability of a context being considered relevant when it is not.
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Definition 3 The variable-order network MC-Von is obtained by treating the sub-sequence
σsc as relevant w.r.t sv iff

DKL (Pσsc ||Psv) > q1−α (c(σsc), sv) or equivalently p < α (2)

where Ps := QCs the distribution of items following s, q1−α (c(σsc), sv) is the (1 − α)-th quantile
of the distribution of DKL (QD||Psv) where D is a random draw from MH(Csv , c(σsc)) and

p = P (DKL (QD||Psv) ≥ DKL (Pσsc ||Psv))

is the p-value of the test.

Example 1 Assume we have an order 1 subsequence sv with Csv = (1, 2, 5, 0, . . .) and we want
to assess the relevancy of the extension σsc with Cσsc = (1, 0, 0, 0, . . .). We have DKL (Pσsc ||Psv) =
− log2(1/8) = 3. Since it is the hightest possible DKL, the probability that a draw from
MH(Csv , 1) has a divergence higher or equal is the probability to draw Cσsc i.e. p = 1

8 . Tak-
ing a standard threshold of α = 10−3, we would accept H0 and declare that this extension is
not relevant. On the other hand, for DKL-Von(1), the threshold function of Eq. 1 is equal to

2
log2(2) = 2. The extension σsc would here be considered as relevant.

However, p (or q1−α (c(σsc), sv)) can be difficult to compute, particularly if c(σsc) is neither
small nor close to c(sv). Therefore, we propose different approximations to estimate it and
decide whether (2) holds or not. The first possibility is to use a Monte-Carlo algorithm that
draws M independent replications {Di, 1 ≤ i ≤ M} from MH(Csv , c(σsc)) and estimate p by
bp = SM/M where

SM =
MX

i=1
I {DKL (QDi

||Psv) ≥ DKL (Pσsc ||Psv)}

follows a binomial distribution of size M and probability p, i.e.

P(SM = k) =
 

M

k

!
pk(1 − p)M−k =: b(n, p, k).

The choice of M will affect the precision of our decision, particularly if p is close to α. On the
contrary, if the conclusion is more obvious, i.e. p ≪ α or p ≫ α, we might have chosen a smaller
value for M to get a reasonable precision. Methods that adapt the number of replications to
the distance between p and α were proposed, e.g. in [8] and [6] among others. These two papers
both control the resampling risk defined by

RRp(bp) =



Pp (bp > α) if p ≤ α

Pp (bp ≤ α) if p > α.

This resampling risk measures the probability to take the wrong decision regarding (2). For a
given ϵ > 0, [8] and [6] propose procedures that ensures that RRp ≤ ϵ. Nevertheless, there is
no bound on the number of replications needed and the procedure might not end if p = α, i.e.
DKL (Pσsc ||Psv) = q1−α (c(σsc), sv). A maximum number of iterations must be chosen and the
resampling risk is therefore not truly controlled. For this reason, we divide α into a lower value
α− and a higher value α+ so that the number of iterations is always finite. The cost of this
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finite number of iterations is made by accepting slightly less relevant sequences (α− < p ≤ α+)
rather than missing sequences that are relevant (p ≤ α−) and define

gRRp(bp) =





Pp (bp > α∗) if p ≤ α−

0 if p ∈]α−, α+]
Pp (bp ≤ α∗) if p > α+

where α∗ ∈ ]α−, α+[ is a critical value for bp such that we will reject H0 iff bp < α∗. We construct
a procedure that ends after a finite number of steps and such that

sup
p∈[0,1]

gRRp(bp) ≤ ϵ. (3)

We define the algorithm 2 that ensures (3), where

α∗ = 1 − log (α+/α−)

log
 

α+/(1 − α+)
α−/(1 − α−)

! ,

is such that b(n, α−, nα∗) = b(n, α+, nα∗). α∗ is also the value of p that will require the highest
number of draws on average. The termination of the algorithm comes from the fact that the
function x 7→ (n + 1)b(n, x, np̂) is the beta density with parameters np̂ + 1 and n(1 − p̂) and
tends to a Dirac measure in p as n → ∞. Therefore at least one of the two values b(n, α−, Sn)
and b(n, α+, Sn) must tend to zero.

Algorithm 2: MC-Von Decision Algorithm
Data: DKL,obs: observed KL divergence
Input: α−, α+, ϵ: test levels and bound for resampling risk
Result: bp : estimated p-value
S = 0 ; n = 0
while b(n, α−, S) > ϵ/(n + 1) and b(n, α+, S) > ϵ/(n + 1) do

D ∼ MH(Csv , c(σsc))
if DKL (QD||Psv) ≥ DKL,obs then

S = S + 1
n = n + 1

return bp = S/n

For the function existRelevantExts(sc, sv), we use a simple lower-bound on the p-value. In-

deed, there are at most z =
 

c(sv)
min

�
c(sv)

2 , c(sc)
�
!

draws from MH(Csv , c(σsc)) for any σ ∈ A.

Therefore if z−1 > α+ there is no possible extensions of sc that can be found relevant.

4 Experiments
We use four different datasets (see Table 1) for the experiments. They offer a variety not only
in terms of origin of the data but also in terms of size of the itemsets and sequences. Two of
them (AIR and PORTS) correspond to spatial pathway data. AIR contains the itineraries of
US passengers for domestic flights extracted from the RITA TransStat database. PORTS con-
tains the sequences of ports where shipping vessels stop over between April and October 2009.
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Table 1: Summary of datasets used

Dataset |A| |S| min/max |s| Refs.

Shipping path. (PORTS) 909 4243 2/183 [23, 5]
US Airflight (AIR) 175 286,810 2/14 [19]
Wikipedia clicks (WIKI) 100 29,573 2/22 [20, 19]
MSNBC clicks (MSNBC) 17 388,434 2/1810 [20, 19]

This is an extract from the Lloyd’s Maritime Intelligence Unit database. WIKI and MSNBC
are clickstream datasets. WIKI is the result of Wikipedia navigation games. Following [19],
we only retain the sequences going through the top 100 visited pages. MSNBC gathers click
streams of visitors of the website of the channel. The pages are grouped into 17 categories (e.g.
“business”, “local”, “sports”,. . .). We also removed all consecutive repetitions from the input
sequences.

To construct the networks MC-Von we use a standard value for the confidence threshold
α− = 10−3 with α+ = α− + 2.10−3 to control a risk ϵ = 0.05. This means we make the correct
decision for p-values outside )α−, α+( with a probability at least 1−ϵ. We report results for the
DKL-Von [18] model as it is the the main other model of variable-order networks existing in
the literature. In order to compare the contexts retained by each approach in terms of accuracy,
we will also determine λ∗ such that DKL-Von(λ∗) contains a number of nodes equivalent to
MC-Von. Similarly, we determine the α−

∗ such that MC-Von(α−
∗ ) contains a number of

nodes equivalent to DKL-Von(1), the other parameters being equal. We also include the
results obtained with the Fon1 network and the Fon with the optimal order according to [19].
The honyx python package1, developed by the authors, was used to generate the higher-order
networks. The datasets and the scripts used for the experiments can be found at [15].

4.1 Networks size and models accuracy
We investigate here the difference between the constructed Hon and whether a better or similar
accuracy with a smaller model can be achieved using MC-Von. Table 2 reports the results
for each constructed network on the four datasets using the whole set S. Networks size is
represented by the number of nodes |V | in the networks. The order correspond to the maximum
order among the vertices. The last columns reports each model accuracy score Acc (Eq. 4) when
splitting S into a 90% training set and a 10% testing set ST . It corresponds to the average
probability to identify the correct next item in ST :

Acc(R, ST ) := 100
|ST |

X

s∈ST

1
|s| − 1

|s|−1X

i=1
P R(si+1|s1s2 . . . si) (4)

The increase in accuracy between Fon1 and the other models justifies the use of higher-order
models. For example we can correctly predict almost half of the ports visited by ships in the
PORTS dataset using DKL-Von or MC-Von. This score drops to 13% for the regular Fon1
network. This difference is less important for WIKI. Accordingly, the optimal order found using
Scholtes’ method [19] is 1 for this dataset.

1https://pypi.org/project/honyx/
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Table 2: Comparison of the network models used.

Dataset Network |V | Order Acc ±2sd

PORTS

Fon1 909 1 13.71 ± 0.73
Fon2 9,437 2 31.73 ± 1.38
DKL-Von(1.95) 9,559 6 38.56 ± 1.63
DKL-Von(1) 18K 8 46.48 ± 1.89
MC-Von(0.001) 9,553 16 42.93 ± 2.22
MC-Von(0.05) 18K 27 48.17 ± 2.23

AIR

Fon1 175 1 19.48 ± 0.09
Fon2 1,716 2 27.44 ± 0.10
DKL-Von(2.85) 28K 6 36.50 ± 0.15
DKL-Von(1) 58K 6 39.37 ± 0.19
MC-Von(0.001) 28K 6 37.11 ± 0.15
MC-Von(0.29) 58K 6 39.19 ± 0.20

MSNBC

Fon1 17 1 13.82 ± 0.07
Fon3 4,061 3 22.18 ± 0.16
DKL-Von(1.585) 5,774 8 22.04 ± 0.15
DKL-Von(1) 28K 11 22.29 ± 0.17
MC-Von(0.001) 5,771 122 22.44 ± 0.17
MC-Von(0.027) 28K 145 22.43 ± 0.16

WIKI

Fon1 100 1 21.48 ± 0.65
DKL-Von(3.39) 306 4 21.87 ± 0.67
DKL-Von(1) 2,260 4 23.29 ± 0.64
MC-Von(0.001) 304 4 22.85 ± 0.65
MC-Von(0.35) 2,257 12 23.39 ± 0.70

We now compare the networks created using DKL-Von and MC-Von. For a given order,
the set of contexts found relevant is different even if the parameters are tuned to have sets of
similar size. This suggests that the difference between the two methods is not just a matter of
parameterization. The relevant contexts occur less frequently on average in DKL-Von than the
contexts found using MC-Von. This effect may be similar to the situation shown in Example
1: the low-frequency contexts may have a large DKL value that easily passes the test of Eq. 1.
Networks constructed using MC-Von have a larger maximum order which can be very large.
This is expected since the criterion used does not inherently penalize large contexts. The largest
discrepancies are obtained with MSNBC and PORTS. Note, however, that such contexts are
rare; the vast majority of memory nodes are of order 2 or 3.

When comparing variable-order networks of similar size, MC-Von seems to match DKL-Von
in terms of accuracy. For PORTS or WIKI, it clearly outperforms it. For MSNBC and AIR,
the results are closer. This supports the idea that the criterion used for MC-Von helps to
produce higher-order networks that are more consistent with the data. A final observation is
that the computational time required to construct networks using MC-Von is several orders
of magnitude higher than the time required using DKL-Von (e.g. half an hour versus a few
seconds for MSNBC). Although network analysis tasks rarely come with online computational
constraints, a future challenge would be to improve the computation of MC-Von.
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Table 3: Spearman correlations between higher-order PageRank rankings and Levenshtein edit
distance between the Top10s.

Dataset Networks Fon∗ DKL-Von(1) MC-Von

PORTS
Fon1 0.96 / 3 0.95 / 5 0.98 / 5
Fon∗ 0.99 / 4 0.96 / 5
DKL-Von(1) 0.96 / 4

AIR
Fon1 0.99 / 3 0.98 / 4 0.97 / 4
Fon∗ 0.99 / 2 0.98 / 2
DKL-Von(1) 0.99 / 0

MSNBC
Fon1 0.99 / 4 0.97 / 4 0.98 / 3
Fon∗ 0.98 / 2 0.99 / 2
DKL-Von(1) 0.98 / 4

WIKI Fon1 1. / 0 0.90 / 6 0.96 / 5
DKL-Von(1) 0.94 / 6

4.2 Higher-order PageRank
We now investigate how the choice of model impacts network mining algorithms results. In
particular, we look at the rankings achieved using a higher-order version of the PageRank
(PR) centrality measure. Since higher-order networks are still weighted graph, we can compute
nodes’ PRs and then define items’ PR as the sum of their representations’ PR values [23]. To
be more precise, we use a corrected version of the PR metric for higher-order networks [5].
This reformulation corrects a bias due to the multiplicity and the non-normal distribution of
the representation of each item. With this correction, we can compare PR items for Hon of
different sizes.

Table 3 reports the Spearman correlation coefficient as well as the edit distance between the
top 10 found for each network. We observe strong similarities in rankings between all of the
networks including Fon1. For all of Spearman correlations, the hypothesis of independence
between the samples can be rejected. Therefore, the choice of Hon model does not completely
reverse the hierarchy of items. Even if sequential dependencies exist in the dataset, PR-based
centrality analysis is still relevant without taking them into account. However, there are still
differences between the ranking found as suggested by the difference between the top 10 most
important items. These rank differences are more common when the PR values are more evenly
distributed (e.g. for the WIKI dataset). In order to better see these differences, Fig. 2 shows
the actual top 10s for the PORTS dataset.

5 Conclusion
We introduced a variable-order network model MC-Von that uses statistical significance for
the identification of relevant contexts in a variable-order Markov model. Experiments have
shown that we can construct sparser networks in which random walks will represent input se-
quences almost as well or even better than using known models. We therefore argue that our
approach is a good alternative to DKL-Von. On the other hand, the difference between the
networks is not as important when looking at the items PageRank rankings. This suggests
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Figure 2: Differences between the top 10 ports in terms of PageRank according to the network
model (PORTS dataset).

the effects of the choice of model on the information we extract from those network may be
more limited. However, the choice of model may be more important when using other network
mining algorithms [13].

A direction for future work is the improvement of the computation of our model p value. The
method here is designed to obtain a stable solution that is not affected a lot by Monte-Carlo
innate randomness. We believe that faster approximations and still stable procedures are
possible, for example using Sequential Monte-Carlo techniques.
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