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Binary classification based Monte Carlo simulation
Elouan Argouarc’h, François Desbouvries, Senior Member, IEEE

Abstract—Acceptance-rejection (AR), Independent Metropolis
Hastings (IMH) or Importance Sampling (IS) Monte Carlo
(MC) algorithms all involve computing ratios of two probability
density functions (pdf) p1 and p0. On the other hand, classifiers
discriminate samples produced by a binary mixture and can be
used to approximate the ratio of corresponding pdfs. We therefore
establish a bridge between simulation and classification, which
enables us to propose pdf-free versions of ratio-based simulation
algorithms, where the ratio is replaced by a surrogate function
computed via a classifier. Our modified samplers are based on
very different hypotheses: the knowledge of functions p1 and p0 is
relaxed (- they may be totally unknown), and is counterbalanced
by the availability of a classification function, which can be
obtained from a labelled dataset. From a probabilistic modeling
perspective, our procedure involves a structured energy based
model which can easily be trained and is structurally compatible
with the classical samplers.

Index Terms—Neural Classification, Binary Cross Entropy,
Stochastic Simulation, Acceptance-Rejection, Importance Sam-
pling, MCMC, Energy Based Models

I. INTRODUCTION

If a and b are two positive numbers,

r =
a

a+ b
∈ (0, 1)⇔ r

1− r
=

a

b
> 0. (1)

This equivalence has interesting consequences in Bayesian
classification, machine learning and stochastic simulation.
Indeed, if a and b are probabilities of two classes in a
binary mixture context for a given sample, then ratio a

a+b
is the posterior probability which provides with the class
probabilities for a given sample, and can be approximated
by a parametric classifier rϕ trained to distinguish between
the two probability distributions. On the other hand, positive
ratios a

b play a key role in AR, IMH or IS techniques. Equation
(1) relates r to such positive ratios, and tells us that ratio a

b
can be computed exactly from r, or, in practice, approximately
from rϕ, without necessarily knowing a nor b. This observation
enables us to propose approximate versions of these algorithms
which rely on weaker hypotheses.

Let λ, 1 − λ ∈ (0, 1) be the prior probabilities of two
categories k = 1, 0, distributed resp. ∼ p1 and p0. Binary clas-
sification distinguishes samples from mixture λp1+(1−λ)p0
by identifying the pdf which generated them. The appropriate
way to classify relies on the posterior probability: x is a sample
∼ p1 rather than ∼ p0 with probability

Pr(k = 1|x, λ, p0, p1) =
λp1(x)

λp1(x) + (1− λ)p0(x)
. (2)
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Indeed, as is well known (see e.g. [1, Chap. 11]), assigning
a sample to the label with highest posterior probability is
the optimal decision rule in the sense that it minimizes the
probability of misclassification.

To compute this posterior probability, one needs to evaluate
the pdfs p1, p0 and know the prior probability λ but they are
often unknown, leaving (2) intractable. If however we dispose
of a set D = {(x(ki)

i , ki)}N0+N1
i=1 of labelled observations, we

can make use of a parametric classifier. So let us assume that
we have at our disposal a classifier function rϕ, parameterized
by ϕ which mimics the unknown posterior pdf:

rϕ(x) ≈
N1p1(x)

N1p1(x) +N0p0(x)
. (3)

Our paper is based on the observation that (3) is equivalent to

N0

N1

rϕ(x)

1− rϕ(x)
≈ p1(x)

p0(x)
, (4)

which implies that (typically neural network based) classifiers
can also be used for approximating pdf ratios.

Equation (4) has already been observed, and exploited in
contexts where estimating a ratio of pdfs is relevant. First,
classifiers are at the core of adversarial training techniques in
which divergence measures involving a ratio are replaced by
an approximation based on a classifier [2]. This enables to
learn implicit generative models (i.e., with intractable pdfs)
[3] [4]. Moreover, classifier based pdf ratio approximation
has been applied to estimation of such metrics as Mutual
Information [5]. Finally, classifiers based ratios have been
applied successfully in statistical hypothesis testing procedures
[6], which heavily rely on likelihood-ratio tests.

If p0 is an instrumental distribution with tractable pdf, then
(4) can be turned into an approximation of target pdf p1.
So classifiers can be used for density estimation, conditional
density estimation, or likelihood-to-evidence ratio estimation,
making them especially relevant in a likelihood-free inference
setting [7][8][9].

However, the question of sampling from the corresponding
model remains open, and this is precisely the point we discuss
in this paper. We realize that pdf ratios also play a key role in
such simulation techniques as the AR or Markov Chain Monte
Carlo (MCMC) methods, in which samples from instrumental
p0 are transformed into samples from the target p1 via a
sampling mechanism which involves the ratio of the two
densities. This establishes a connection between classification
and MC sampling, and will enable us to relax the assumption
of tractable pdf p0, p1 of these sampling algorithms, at the
price of approximate sampling. Our approach is therefore
completely pdf-free, and as such is especially relevant when
the target distribution is unknown or with intractable, noisy, or
costly to evaluate pdf (see [10] for a review of MC techniques
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in this setting, and [11] for a review of likelihood-free Ap-
proximate Bayesian Computation techniques); and/or when the
instrumental p0 is defined by a generative model with implicit
pdf [12][3][13]. The rest of this paper is organized as follows.
In §II we recall classical ratio-based stochastic simulation
algorithms, i.e. the AR, IMH and IS techniques. In §III we
show that classifiers computed via the Binary Cross Entropy
(BCE) criterion indeed provide with an approximation of the
posterior (2). Finally in §IV we propose classification based
sampling methods, illustrate our method via simulations1, and
revisit it under the perspective of probabilistic modeling. We
end the paper with a conclusion.

II. CLASSICAL RATIO-BASED SAMPLING ALGORITHMS

Stochastic simulation includes a variety of techniques, see
e.g. [14]-[20]. In this section we focus on AR, IMH and IS
which share in common that they all compute a ratio of pdfs.

A. The AR algorithm

1) A brief reminder of AR Sampling: AR Sampling [16,
chap. 2] [19, chap. 3] is a simulation algorithm that yields
samples distributed according to a target distribution p via
samples from a proposal distribution q, which are accepted
or rejected as valid samples from p via some acceptance
probability. More precisely, let the support of p be inside that
of q. This means that there exists a constant C ≥ 1 such
that for all x ∈ Rd, p(x) ≤ Cq(x). Let X ∼ q, and let k a
Bernoulli random variable with parameter αAR(X) = p(X)

Cq(X) .
AR sampling is based on the fact that X|k = 1 is distributed
according to p. Note that Pr(k = 1) = 1

C , so the lower the
value of C, the higher the acceptance rate.

In order to use the algorithm in practice, we thus need to
know pdf p, and build q such that one can sample easily from
q and there exists C such that p(x) ≤ Cq(x) for all x, we can
compute one such value of C, and C is as small as possible.
Note finally that the algorithm can easily be adapted to the
cases where p and/or q are known up to a (non necessarily
common) constant, see e.g. [18, Th. 4.5].

2) Revisiting AR sampling as optimal binary classification:
As we shall now see, AR sampling is indeed nothing but
a binary classification procedure (see also [21, §6] for an
application of this principle).

Starting from the target pdf p(x), we find an easy-to-sample
distribution Q and constant C > 1 such that Cq(x) envelopes
p(x). Since Cq(x)− p(x) is non negative, we write Cq(x) as
p(x) plus a positive reminder which, up to a constant, is also
a pdf; so enveloping p(x) with Cq(x) is nothing but building
the implicit binary mixture pdf (see also fig. 1 below)

q(x)︸︷︷︸
proposal

=
1

C
p(x)︸︷︷︸
target

+ (1− 1

C
)
q(x)− 1

C p(x)

1− 1
C︸ ︷︷ ︸

reminder

(5)

with a priori probabilities 1
C and 1− 1

C . The first component
of the mixture is the target pdf p, and the second one is the
law of the rejected samples. The score point of AR consists

1Code available at github.com/ElouanARGOUARCH/Binary-
Classification-Based-Monte-Carlo-Simulation

Fig. 1: Envelopping target pdf builds an implicit mixture.

in drawing samples from q without needing to sample from
its two implicit mixture components (see the r.h.s. of (5)).
Accepting (or rejecting) a sample depending on the ratio
probability

αAR(x) =
p(x)

Cq(x)
=

1
C p(x)

1
C p(x) + (1− 1

C )
q(x)− 1

C p(x)

1− 1
C

(6)

then amounts to classifying the samples with the posterior pdf
(compare (6) to (2)).

B. IMH

MCMC algorithms build a Markov chain whose invariant
distribution is the target distribution p; so simulating the chain
yields samples asymptotically distributed ∼ p. The Metropolis-
Hastings (MH) algorithm [16] [17] is a particular MCMC
method in which the transition is a two-step procedure:
given a current state xt, we propose x∗ from q(.|xt), and
then we compute the acceptance probability αMH(x∗, xt) =

min(1, p(x∗)q(xt|x∗)
p(xt)q(x∗|xt)

). x∗ is accepted as the new state xt+1

with probability αMH(x∗, xt); if x∗ is rejected then the chain
remains in the current state xt. In practice, q(.|.) plays a crucial
role in the performance of the MH algorithm: if not well-tuned,
it can lead to a poor exploration of the target distribution.

The IMH algorithm is a simplified version of MH which
considers an independent transition. The new point x∗ is hence
proposed independently of the current state xt, according to
an independent proposal q(.). In this case, the acceptance
probability reduces to αIMH(x∗, xt) = min(1, p(x∗)q(xt)

p(xt)q(x∗) ).

C. IS

Many problems involve computing the expectation of some
function f with respect to pdf p: Ep

[
f(x)

]
=
∫
f(x)p(x)dx.

In practice the integral can be intractable, so we may need to
resort to MC approximations. IS is a technique for reducing
the variance of such MC estimates which can be traced back
to the 1950’s [22] [23] [20, §5.4].

The crude MC estimate reads 1
N

∑N
i=1 f(xi), xi

iid∼ p. How-
ever, on the one hand it is generally difficult to sample directly
from p, and on the other hand it can yield a poor estimate
when the regions where p is large do not coincide with
those where f is large. Rewriting Ep

[
f(x)

]
= Eq

[
p(x)f(x)

q(x)

]
,

for some importance distribution q, leads to the IS estimate
1
N

∑N
i=1

p(xi)
q(xi)

f(xi), xi
iid.∼ q. One can easily show that the pdf

which minimizes the variance is, up to a constant, |f(x)|p(x).
Even if this optimal importance distribution cannot be used in
practice, this tells us that the regions of importance are not
those where p is large, but rather those where |f |p is large.

https://github.com/ElouanARGOUARCH/Binary-Classification-Based-Monte-Carlo-Simulation
https://github.com/ElouanARGOUARCH/Binary-Classification-Based-Monte-Carlo-Simulation
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Note that the IS estimate can be computed only if p and q are
known exactly, or known up to a common constant; if this is
not the case one can resort to self-normalized IS [24].

Besides being a variance reduction technique, IS can also
be seen as a two step sampling procedure for producing
samples (approximately) drawn from p, out of samples orig-
inally drawn from q. The technique is known as Rubin’s
SIR mechanism [25] [26] [27] [28, §9.2]: Let {xi}Ni=1 be
iid samples from q(x) and let {x̃i}Mi=1 be M iid samples
from

∑N
i=1

p(xi)/q(xi)∑N
i=1 p(xi)/q(xi)

δxi(dx) (in other words, we draw

samples from q, weight each proportionally to wu(xi) =
p(xi)
q(xi)

,
and resample iid points from this random discrete distribution).
Then {x̃i}Mi=1 become iid. samples from p if N →∞.

III. PARAMETRIC CLASSIFIER BY MINIMIZING THE BCE

From now on we consider the setting where λ, p1 and
p0 are unknown, and we only have the set D of labeled
samples from p0 and p1 (resp. with labels k = 0, 1), see §I.
In this context, for classification purposes we should build a
parametric function rϕ(x) that approximates the posterior pdf.
The aim of this section is to show that minimizing a BCE loss
indeed yields such a suitable approximation. To see this, first
recall the definition of the BCE criterion:

LBCE(ϕ) = −
N1∑
i=1

log(rϕ(x
(1)
i ))−

N0∑
i=1

log(1−rϕ(x
(0)
i )), (7)

where rϕ(x)
∆
= Prϕ(k = 1|x) is the probability under model

ϕ that the label associated to an observation x is 1. Let h(x, k)
be the joint distribution over observations and labels:

h(x, k) =
Nk

N1 +N0︸ ︷︷ ︸
h(k)

pk(x)︸ ︷︷ ︸
h(x|k)

, x ∈ Rd, k = 0, 1. (8)

Using rϕ(x), we can build another joint distribution
hϕ(x, k) = h(x)rϕ(x)

k(1 − rϕ(x))
1−k, where h(x) is

the x-marginal in (8). The BCE is then, up to addi-
tive and multiplicative constants, nothing but an approxi-
mate of DKL(h(x, k)||hϕ(x, k)) = Eh(x,k)[log(h(k|x))] −
Eh(k,x)

[
log(Prϕ(k|x))

]
, where only the last term depends on

ϕ. We indeed retrieve the BCE with the MC approximation:

Eh(k,x)[log(Prϕ(k|x))]
(8)
=
∑
k=0,1

Nk

N1 +N0
E[log(Prϕ(k|x)]

≈ 1

N1 +N0
(

N1∑
i=1

log(rϕ(x
(1)
i )) +

N0∑
i=1

log(1− rϕ(x
(0)
i ))).

So argminϕ DKL

(
h(x, k)||hϕ(x, k)

)
≈ argminϕ LBCE(ϕ).

The interest of this interpretation is that, as is well known, a
DKL equals zero when the two distributions are equal almost
surely. So, if rϕ represented any arbitrary function, minimiz-
ing DKL

(
h(x, k)||hϕ(x, k)

)
would ensure that rϕ(x)

k(1 −
rϕ(x))

1−k = h(k|x) for all x ∈ Rd and k = 1, 0, ie that
the classifier reaches the target posterior pdf. Of course, in
practice, minimizing the BCE does not ensure that this DKL

reaches zero. First, we only dispose of a finite number of

labeled observations and minimizing an MC approximation
of the DKL does not minimize the DKL itself. Next, the
parametric family does not contain h(k|x) in general, in which
case we can only ever reach a positive minimum of the
DKL. Lastly, standard optimization techniques would only
guarantee convergence to a positive local minimum of the
DKL. Therefore in practice, minimizing the BCE loss only
provides with rϕ which approximates the unknown posterior.

IV. USING A BINARY CLASSIFIER FOR (APPROXIMATE)
SAMPLING

We now come to the heart of this paper. If p1 is a pdf of
interest in an MC sampling setting, and p0 a suitable easy-to-
sample instrumental distribution - be it the proposal in AR, the
independent kernel in IMH, or the importance distribution in
IS; then the three sampling algorithms involve the pdf ratio
p1(x)/p0(x), which is unknown when at least one pdf is
intractable. As explained in section III, a parametric binary
classifier trained from a set D of labeled observations com-
putes an approximation of the unknown posterior distribution.
However, remember that (3) is equivalent to (4); we thus see
that classifiers can also be used for approximating pdf ratios of
interest, which enables us to propose approximate versions of
the sampling algorithms based on this classifier-ratio approx-
imation, and thus to relax the requirement of tractable pdf, but
at the cost of approximate sampling. Of course, the closer p0
is to p1, the more efficient the sampling algorithms; however,
here p0 is supposed to be given and our problem is not to
adjust p0 from a given p1, but rather leverage D in the case
where p0, p1 are fixed but unknown pdfs.

Assumptions.

p1 is the distribution of interest and p0 a fixed instrumen-
tal distribution from which we can propose samples. Ratio
p1(x)/p0(x) is unknown, but we dispose of the labeled dataset
D, and assume that we can train a binary classification model
rϕ which minimizes (7).

A. Classifier-based sampling algorithms

A key ingredient for running the algorithms of §II, is the
ratio p1(x)/p0(x) which appears in αAR(x), αIMH(x, xt)
and in wu(x), so following the idea expressed in (4), we
can however make use of a classifier for approximating the
unavailable ratio by making the following substitutions:

αAR(x)←
1

C̃

rϕ(x)

1− rϕ(x)
where C̃ = max

y∈D

rϕ(y)

1− rϕ(y)
; (9)

αIMH(x, xt)← min

(
1,

rϕ(x)(1− rϕ(xt))

(1− rϕ(x))rϕ(xt)

)
; (10)

wu(x)← rϕ(x)

1− rϕ(x)
. (11)

Our procedure is summarized by fig. 2: we first train rϕ
from labeled samples from p1 and p0; we next use ratio
rϕ(x)/(1 − rϕ(x)) as a surrogate of p1(x)/p0(x), which
enables us to use the AR, IMH or IS procedure, and thus
to turn samples from p0 into (approximate) samples from p1.
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Fig. 2: Summary of the classifier based sampling approach

A main advantage of our approach is that a distribution which
is only defined by its sampling procedure and has implicit pdf
can be used as instrumental p0. Indeed our approach does not
require evaluating the pdf p0 neither during the training of the
classifier, nor in the proposed sampling procedures.

B. Illustrating examples

Fig. 3: Density ratio (middle-right) via classification of sam-
ples from p1 (left) and p0 (middle-left) - approximate samples
from p1 (right) obtained via a ratio based algorithm: AR (top),
IMH (middle), IS (bottom)

We illustrate our approach (see fig. 3) on reference 2D
examples in order to illustrate the mechanism of (i) obtaining
an approximate of the pdf ratio from samples using a feed-
forward neural network [29] with 3 hidden layers, 32 hidden
units per layers and SiLU activation function that outputs
logit(rϕ(x)) trained according to the BCE criterion; and (ii)
sampling from the target distribution via that pdf ratio using
the AR, IMH or IS samplers. The instrumental p0 was set to
be a Gaussian with mean and covariance estimated from the
samples from p1 (even though it can be computed, pdf p0 was
not used during the procedure).

C. Probabilistic modelling
So far, we have presented our work as a technique to

perform approximate MC sampling; let us now revisit it
under the scope of probabilistic modelling. If we rewrite p1
as p1(x) = p0(x)(p1(x)/p0(x))∫

p0(z)(p1(z)/p0(z))dz
, then using (4) amounts to

building an approximation pϕ of p1:

pϕ(x) =
p0(x)(rϕ(x)/(1− rϕ(x)))∫
p0(z)(rϕ(z)/(1− rϕ(z)))dz

. (12)

Our procedure consists in applying the AR, IMH or IS sam-
plers to pϕ with proposal p0 (at least up to the approximation
of constant C in the AR case, see (9)). This construction
corresponds to a specific energy-based model [30][31][32]
with energy function Eϕ(x) = − log(p0(x)) − logit(rϕ(x)).
Model pϕ inherits the advantages of this energy structure: (i) it
can be trained without evaluating the gradient of the numerator
of (12) nor of the intractable normalizing constant; (ii) it is
structurally compatible with the AR, IMH or IS samplers
as sampling from pϕ with instrumental p0 is equivalent to
applying the approximate sampling presented in section IV-A.
In Fig. 4, we display such an approximation of the distribution
of an image. logit(rϕ(x)) defined via a neural network with 3
hidden layers of size 512 (SiLU activation function), trained
according to the BCE criterion, produces a ratio based energy
model able to capture details of the target distribution. Samples
can effortlessly be obtained via any of the three samplers,
with target pϕ and instrumental p0. Note that computing the
unormalized pdf in (12) (displayed in the middle-right in
Fig. 4) indeed requires evaluating pdf p0 but, again, it is not
required for sampling.

Fig. 4: Classifier based energy model: unormalized pdf
(middle-right) and samples (right); obtained from samples
(middle-left) from a grayscale image (left) 2D distribution.

V. CONCLUSION

The classical AR, IMH and IS samplers require that both the
target p1 and the easy-to-sample instrumental p0 are known
functions. In practice however, both functions may be either
unknown (for p1) or untractable (for p0). In this paper we
observed that these samplers use p1 and p0 only via their
ratio p1

p0
which, in turn, can be approximated by a classifier.

We thus showed that one can still approximately sample
from p1 using AR, IMH or IS if functions p1 and/or p0
are totally unknown, provided that we dispose of a classifier
function, which can be obtained from a set of labeled samples
from both distributions. The advantages or our approach are
twofold: (i) it is completely pdf-free as compared to standard
approaches (neither p1 nor p0 needs to be known explicitely);
(ii) training reduces to a parametric classification task. From a
probabilistic modeling perspective, our approximate samplers
coincide with the original ones when applied to some specific
energy based approximation of target p1 which, thanks to
its specific structure, can both be trained easily via standard
classification, and is structurally compatible with the AR, IMH
or IS sampling techniques.
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