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Abstract—Estimating the electrophysiological activity at the
origin of electroencephalography (EEG) measurements is an ill-
posed inverse problem. Several methods solve this problem by
imposing different priors on the solution. Machine learning could
allow to learn the inverse function directly from the data and thus
make the choice of one of the multiple solutions of the inverse
problem more reliable. This work is based on simulations of
electrophysiologic data containing single or multiple extended
sources, using the SEREEGA simulation toolbox [1]. These data
are used to train a one-dimensional convolutional network (1D-
CNN) and to compare the results of this learning approach to
those obtained by a recurrent long short term memory (LSTM)
network from the literature, and by minimum norm energy [2]
(MNE) and standardized low resolution brain electromagnetic
tomography [3] (sLORETA) methods. These results on simulated
data are encouraging about the potential contribution of learning-
based methods to the problem of spatio-temporal EEG source
imaging. Additional work still needs to be done in order to also
evaluate the ability of the network to generalize to real data.

Index Terms—EEG, deep learning, neuroimaging, inverse
problem

I. INTRODUCTION

Electroencephalography (EEG) provides a non-invasive,
millisecond time-resolved measurement of potentials gener-
ated by electrical activity in the brain using electrodes placed
on the scalp. The forward model in EEG links a known
brain activity, modeled by a current distribution, and EEG
measurements via the leadfield matrix. EEG source imaging
(ESI) is the estimation of the current distribution from the EEG
data. It is an ill-posed inverse problem. To solve it, a prior on
the activity to be estimated must be added. The choice of a
prior on the source to estimate influences the final solution,
may be subject to many questions and is challenging. Some
type of brain activity models, such as those with extended or
multiple sources, remain challenging for ESI. In this context,
machine learning approaches, in particular the use of neural
networks, could allow the learning of the inverse function from
realistic data.
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Some of the earliest works using machine learning for
ESI focused on estimating the position of a few equivalent
dipoles from one or multiple time samples of the EEG signal,
using multilayer perceptrons (MLP) [4] or recurrent networks
Long Short Term Memory (LSTM) [5]. Another family of
approaches consists in estimating the amplitude of equivalent
current dipoles (ECD) placed on vertices of the brain mesh.
There are two main categories of methods, the first one focuses
mainly on the spatial distribution of the ECD by estimating
the current distribution for a single time sample: [6], [7], [8],
while the second one aims at estimating the spatio-temporal
distribution, i.e. reconstructing the distribution of the ECD for
several consecutive time samples. In this case, the typical input
of a network is a window of T time samples of EEG data.
The output is the corresponding window of source activity.
This paper focuses on the last category of approaches: spatio-
temporal EEG source imaging.

One of the important aspects in designing a deep learning
algorithm is how to best represent the EEG data in order
to extract spatial and temporal information. By considering
the EEG data as a multivariate time series, a bidirectional
LSTM network can be used to estimate the activity of spatially
extended sources [9]. An auto-encoder using convolutions se-
quentially on the different dimensions has also been proposed,
as well as a network based on a spatial module (ResNet)
and a temporal module (LSTM) to extract spatio-temporal
information from data [10].

In this work, we investigate the use of neural networks
for ESI, compared with state-of-the-art variational methods.
Quantitative evaluation relying on simulated realistic data
using SEREEGA [1] is performed on two different neural
network architectures: an LSTM network adapted from Hecker
et al. [9] and a one dimensional convolutional neural network.
These two networks are compared to variational methods MNE
and sLORETA.

The paper is structured as follows: the simulation of elec-
trophysiological data is presented in Section II-A. The inverse
problem solving methods, learning and non-learning based,
are described Section II-B and II-C respectively. Section II-D



gives details about the evaluation metrics used to compare the
performance of the different methods, in Section III.

II. METHODS

A. Data simulation

Since direct measurement of electrophysiological brain ac-
tivity is an invasive process, there is generally no ground truth
data for brain activity at the source level corresponding to EEG
recordings. To train neural networks in a supervised manner
to solve the inverse problem, but also to evaluate the results
of different ESI methods, ground truth data are needed.

The activity measured by EEG on the scalp corresponds to
the activity of groups of synchronously active neurons, which
can be modeled by an equivalent current dipole [11]. The
relationship between the activity of each equivalent dipole, or
source, at a given position in the brain and values of potential
on the scalp is represented by the leadfield matrix according
to the forward model M̃ = GD, where M̃ ∈ RNe×T is
the distribution of noiseless potentials at Ne given positions
(electrodes) on the scalp, for T time points, D ∈ RNs×T is the
source distribution and G ∈ RNe×Ns is the leadfield matrix.
The leadfield matrix is built out of anatomical and biophysical
information about the brain and is computed by solving the
forward problem, i.e. by solving Poisson’s equation on the
head domain. Thus, to generate synthetic pairs of EEG and
brain activity data, a source distribution is generated and then
projected onto the electrodes using the forward model. The
simulation of a source distribution can be divided into three
parts: the definition of the head model, which is based on
geometrical and biophysical information about the brain, the
definition of the spatial and the temporal pattern of the source
activity. In this work we used mne-python [12] to create the
head model and SEREEGA [1] to simulate the sources and
the resulting EEG activities.

Two datasets were created: a dataset containing data for
which a single extended source is active and a dataset con-
taining data for which multiple extended sources are active.
The same head model is used for both datasets.

1) Head model: The head model that was used is defined
from the MRI template fsaverage (mne-python, FreeSurfer).
The leadfield matrix is computed using a boundary element
method (BEM) with three layers: brain (cortex), skull, and skin
with respective conductivity values of 0.3 S/m2, 0.006 S/m2

and 0.3 S/m2. The cortical mesh is subsampled to create a
source space with Ns = 1284 cortical dipole sources with an
orientation fixed normal to the surface. The electrode array
has Ne = 90 electrodes.

2) Single extended source: An extended source consists of
a region of neighboring dipoles that are similarly active. In
this situation, one of the challenges of ESI is to estimate not
only the center of the source, but also its correct extension.

a) Spatial pattern: The spatial pattern refers to the set
of active sources. An extended source is created by selecting
a seed source and an extension order, and recursively adding
the neighbors of the seed source to the region, as explained
in [13]. Neighboring sources are sources that share a common

TABLE I: Simulation parameters and intervals for the multi-
source dataset, variability between different examples in the
dataset and between different regions within an example.
Parameters are sampled uniformly in the given ranges.

Parameter Range between
examples

Range between
regions

Number of regions [1;5] ∅
Extension order [1;5] ∅
Amplitude [nAm] [0.5;1.5] [0.15;1.7]
Center [ms] [125;375] [87; 487]
Width [ms] [48;51] [43;56]

edge in the brain mesh. We select the extension order in the
range [[1; 5]].

b) Temporal pattern: The temporal pattern is the tem-
poral shape of the signal associated to each of the active
sources. For the extended single source dataset, the temporal
pattern is similar to that of an event related potential (ERP). It
is generated using the function from the SEREEGA toolbox
which corresponds to the ERP simulation. The signal is a
Gaussian function in time of the form

f(t) = ae−
1
2 (

6(t−c)
w )

2

, (1)

defined by its amplitude a, its center c and its width w = 6σ.
These parameters are randomly chosen in given ranges for
each example in the dataset. All sources in a region are as-
signed the same temporal signal with an amplitude decreasing
as a Gaussian function of the distance between the considered
source and the seed source of the region.

For this simulation the amplitude is selected in the range
0.5–1.5 nAm, center and width are selected in ranges 0.5–
1.5ms and 48–51ms respectively. Each example has a 500ms
duration with a sampling frequency of 512Hz, i.e 256 tempo-
ral samples: D ∈ RNs×256.

A noiseless EEG signal M̃ is then generated by projecting
a source distribution D onto the electrode space using the
forward model.

3) Multiple extended sources: Another challenge of ESI
is to estimate the activity of multiple (extended) sources in
the brain. We therefore considered this case by simulating a
dataset with one or more active extended sources.

a) Spatial pattern: The same principle as explained for
the single source dataset is used to select the sources that form
an active region. In this dataset, multiple seeds and extension
orders are randomly selected in given ranges, to create a source
distribution composed of multiple non-overlapping regions.

b) Temporal pattern: The same ERP-like Gaussian sig-
nal as for the single extended source dataset is assigned to
the active sources, with the same principle of amplitude decay
within a region. Variability between regions of the same source
distribution is added, so that different regions of the same
source distribution sample have different waveforms. Each
sample has a 500ms duration and a sampling rate of 512Hz.
The parameters and intervals used for this simulation are given
Table I.



4) Noise: White Gaussian noise is added to the EEG data at
a given signal to noise ratio (SNR). If we write M̃ ∈ RNe×T

the matrix of noiseless EEG data, and ϵ ∈ RN×T, ϵ ∼ N (0, I)
a white Gaussian noise, the SNR can be adjusted by computing

M = M̃+
ϵ

∥ϵ∥F
∥M̃∥F√
SNR

. (2)

where ||.||F is the Frobenius norm.
EEG data with SNRs of 30 dB, 20 dB and 10 dB are

generated as different datasets to evaluate the noise robustness
of a method.

B. Supervised learning based methods to solve the inverse
problem

In this work, two methods are used to study the contribution
of machine learning to ESI: a bidirectional long short term
memory network with 513 400 parameters, adapted as closely
as possible from the one proposed by Hecker et al. [9], and a
one-dimensional convolutional neural network (1D-CNN) with
7 102 464 parameters. The LSTM network is composed of two
bidirectional LSTM layers and a dense layer, which allows to
obtain an output with the number of sources of the consid-
ered source space, from the characteristics extracted in the
recurrent layers. The 1D-CNN consists of a one-dimensional
convolutional layer and a dense layer. The dimension of
the convolution kernels is Ne × 5 to account for all EEG
channels and a temporal neighborhood. The output dimension
of the convolution layer is set to 4096 and the output of
the dense layer is 1284 (number of sources to estimate).
The two networks are trained with a cosine similarity loss
function. More precisely the loss is the opposite of the mean
over time instants of the cosine similarity of the estimated
source distribution vector at time t and the ground truth source
distribution vector at time t.

Cosine similarity does not take into account the amplitude of
the data. To compute the amplitude of the estimated sources, a
normalization is performed so that the EEG signals simulated
from the estimated sources have the same global power at each
time as the EEG data used as input to the network (global field
power (GFP) scaling, method adapted from [9]).

C. Non-learning based inverse problem solving methods

Minimum norm estimates (MNE) [2] and standardized low-
resolution brain electromagnetic tomography (sLORETA) [3],
two methods to solve the inverse problem in EEG based on
an energy minimization prior, are used here as algorithms for
comparison with machine learning methods. Both methods are
implemented in the mne-python library [12] and require the
computation of the noise covariance of the data. To compute
this covariance matrix, points of the simulated signal that
correspond to noise and not to active signal are aggregated
to obtain a signal containing only noise samples.

The MNE method corresponds to the use of a L2 norm
regularization term (Tikhonov regularization), the variational
formulation of the inverse problem is then of the form

d̂ = argmin
d

{
∥m − Gd∥2 + λ∥d∥22

}
, (3)

where d is a vector of sources at time t, m the corresponding
EEG vector, G the leadfield matrix and λ the regularization
coefficient. Appropriate λ can be computed using methods
such as L-curve. In practice a common choice is to set lambda
to 1/SNR2, that is what is done in our experiments.

D. Evaluation metrics

The purpose of the different evaluation metrics in ESI is
to evaluate the spatial and temporal aspects of the solution
with respect to the ground truth. For a time t0, the source
distribution is a vector of amplitudes, and for each indexed
element of the vector (each source) a corresponding position
in space is known. An ideal solution would allow to perfectly
estimate the amplitude vector, and thus to locate the active
sources at their real position.

In the case of a distribution with a single extended source,
the goal is to correctly estimate the source with maximum
activity, the extension of the active region and the amplitude
of the activity [14], [15]. All the metrics described bellow are
computed at the time of maximum activity of the ground truth
seed source, except for the peak-signal-to-noise ratio (PSNR)
which is computed over the entire time series.

To evaluate the ability of a method to correctly estimate the
position of active sources, localisation error (LE) is used. It
is defined by

LE(D:,t0 ,
ˆD:,t0) = ∥rs − rŝ∥2, , (4)

which is the Euclidean distance between the true maximum
source s at position rs and the estimated maximum source ŝ
at position rŝ. For an ideal solution, LE = 0.

To characterize the ability of a method to properly recover
the extension of an active source the area under the ROC
(receiver operating characteristic) curve (AUC) is com-
puted. The AUC is generally used to measure the accuracy
of a classifier [16]. For the source estimation problem, the
absolute value of the estimated distribution is scaled between
0 and 1 and then thresholded. In this way, we have a binary
classification problem where the classes are the active and
inactive sources. The AUC characterizes the ability of a
method to correctly estimate the source extension and not to
create outliers.

The time error (TE) provides information about the ability
of a method to correctly estimate the source waveform. The
temporal error is the absolute value of the difference between
the instant of maximum activity of the ground truth and the
instant of maximum activity for the estimated source (instant
of maximum amplitude of the estimated core source). TE =
|tmax − t̂max|.

To evaluate the quality of amplitude estimation the
normalized mean squared error (nMSE) and PSNR are
used. The nMSE is the mean square error (MSE) between
the normalized source distributions, i.e. the source distribution
divided by its maximum amplitude value. Normalizing the
source distribution allows for better comparison of metric
values between different methods. It takes into account the
estimated global pattern more than the exact amplitude values.



Metric
Aspect of the source

distribution that is
evaluated

Localisation Error (LE) Localisation
normalized MSE (nMSE) Amplitude
AUC Extension
Time error (TE) Temporal
PSNR (on multiple time instants) Amplitude

TABLE II: Aspect evaluated by the different evaluation met-
rics.

It is also more informative since the ”amplitude” estimated by
different methods does not always have the same meaning.

MSE or nMSE do not provide strong information about the
location error: spurious activity will have the same effect on
the MSE if it is located close to the active source region as if
it is far away.

The PSNR is computed between the normalized signals
(as for the nMSE). It is computed over the entire source
distribution (several temporal samples) to give information
about the overall temporal activity.

For multi-sources activities, the maximum activity time of
each ground truth seed source is first estimated. Then for each
pair of seed s and corresponding time of maximum activity t0,
the estimated source is identified as the source with maximum
amplitude in a 7th order neighborhood of the ground truth
seed, at time t0. The metrics are computed on a seed-by-seed
basis in the same way as for a single seed source. The final
metric value is the average of the metrics associated to each
seed. The PSNR is computed in the same way as for the single
source activity.

III. RESULTS

A. Training details

Each dataset, with single and multiple sources and for each
SNR value, contains 10 000 examples. For each experiment,
8000 examples are used for training and 2000 for validation.
The optimizer used is ADAM, with a learning rate of 0.001.
For the LSTM, the batch size is 8 and gradients are clipped to
1 to match the training parameters of the original paper [9].
For the 1D CNN, the batch size is 16 and the gradients are
not clipped.

B. Electrophysiological source imaging of single extended
source

The results are presented in Table III and an example of
visualization of the source data estimated by the different
methods is presented Fig. 1a.

The results obtained with the two neural networks are
comparable, and are superior to those obtained with MNE
and sLORETA, for all evaluated metrics. The difference is
particularly visible in localization error, for which the net-
works have a 2-fold lower error than sLORETA. Fig. 1a also
shows the better ability of the neural networks to estimate
the correct source extension, which is also expressed by the
AUC. The temporal shape is globally well reconstructed by all
methods, but the amplitude error is smaller for the networks.

This is especially true in comparison with sLORETA which
does not return an amplitude in the physical sense of the source
amplitude.

C. Electrophysiological source imaging of multiple extended
sources

Results for multiple extended sources are presented in
Table III. In addition, an example of spatial estimation for an
example containing two visible sources in the left hemisphere
is shown in Fig. 1b. Here again, the two networks used perform
better than the MNE and sLORETA methods. Visually the
two sources are well reconstructed. The extension is estimated
more accurately by the CNN-1D and LSTM than by the two
energy minimization methods, which struggle to reconstruct
two distinct sources.

IV. CONCLUSION

To solve the ill-posed inverse problem of ESI, many algo-
rithms use a prior on the brain activity to estimate. However,
the choice of a realistic prior is not straightforward and in-
fluences the obtained solution. The study of extended sources,
single or multiple, is an example of brain activity that remains
a challenge for many methods. Deep learning methods applied
to ESI allow to learn the relationship between input EEG data
and output brain activity without the external addition of a
prior. In order to train a network for this task, simulated data
is used. In this paper, the performance of an LSTM recurrent
network and a one-dimensional convolutional network are
compared to state-of-the-art MNE and sLORETA methods,
based on an energy minimization prior. The results on realistic
synthetic data of extended sources, single or multiple, are
encouraging for the use of neural networks.

In the context of learning based approaches, the choice of
the architecture is important and must be well adapted to the
data: both networks have similar performances but the LSTM
network of Hecker et al has about 15 times fewer parameters
than the 1D-CNN. In order to validate the effectiveness of
these methods more comprehensively, evaluations on real data
must also be performed to study the ability of the networks to
generalize, which is essential for their clinical use. Finally, the
approach studied in this article consists in supervised learning
of the inverse operator. A future research direction could be to
develop a more flexible variational approach [17], in particular
by learning the regularization term.
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