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Microgravity induces a cephalad fluid shift that is responsible for cephalic venous stasis 
that may increase intracranial pressure (ICP) in astronauts. However, the effects of 
microgravity on regional cerebral blood flow (rCBF) are not known. We therefore investigated 
changes in rCBF in a 5-day dry immersion (DI) model. Moreover, we tested thigh cuffs as 
a countermeasure to prevent potential microgravity-induced modifications in rCBF. Around 
18 healthy male participants underwent 5-day DI with or without a thigh cuffs 
countermeasure. They were randomly allocated to a control (n = 9) or cuffs (n = 9) group. 
rCBF was measured 4 days before DI and at the end of the fifth day of DI (DI5), using 
single-photon emission computed tomography (SPECT) with radiopharmaceutical 99mTc-
hexamethyl propylene amine oxime (99mTc-HMPAO). SPECT images were processed using 
statistical parametric mapping (SPM12) software. At DI5, we observed a significant 
decrease in rCBF in 32 cortical and subcortical regions, with greater hypoperfusion in 
basal ganglia (right putamen peak level: z = 4.71, puncorr < 0.001), bilateral occipital regions 
(left superior occipital peak level: z = 4.51, puncorr < 0.001), bilateral insula (right insula peak 
level: 4.10, puncorr < 0.001), and bilateral inferior temporal (right inferior temporal peak level: 
4.07, puncorr < 0.001). No significant difference was found between the control and cuffs 
groups on change in rCBF after 5 days of DI. After a 5-day DI, we found a decrease in 
rCBF in cortical and subcortical regions. However, thigh cuffs countermeasure failed to 
prevent hypoperfusion. To date, this is the first study measuring rCBF in DI. Further 
investigations are needed in order to better understand the underlying mechanisms in 
cerebral blood flow (CBF) changes after exposure to microgravity.
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INTRODUCTION

Exposure to microgravity has detrimental effects on human 
physiology, such as muscle atrophy, bone demineralization, 
sensorimotor and cardiovascular deconditioning, and immune, 
hormonal, and metabolic changes (Michel et  al., 1976; West, 
2000). Body fluid redistribution begins in the first hours of 
space flight. This so-called cephalad fluid shift is responsible 
for cephalic venous stasis, characterized by dilation of the 
jugular vein and facial oedema. This phenomenon is mainly 
due to loss of the cranial-to-caudal flow gradient induced by 
weightlessness (Parazynski et  al., 1991; Arbeille et  al., 2001). 
During long-duration spaceflights, the cephalad fluid shift 
observed in astronauts may increase intracranial pressure (ICP), 
as suggested by the assessment of optic nerve sheath diameter 
(ONSD) by ultrasound and MRI (Kramer et  al., 2012; Sirek 
et  al., 2014) and cerebral hemodynamics seem to be  modified. 
However, these mechanisms are not fully understood.

Indirect assessment of cerebral blood flow (CBF) by 
transcranial Doppler ultrasound of the middle cerebral artery 
has revealed a decrease in cerebral vascular resistance (CVR) 
and an increase in CBF during the first days of space flight, 
after which these parameters normalize (Arbeille et  al., 2001). 
Cerebral autoregulation is the mechanism that maintains CBF 
relatively constant, despite change in cerebral perfusion pressure 
(CPP). Previous studies have shown that cerebral autoregulation 
is preserved or even improved after short-term exposure to 
microgravity, whereas cerebral autoregulation was impaired 
after long-term exposure (Kermorgant et al., 2020). Nevertheless, 
the mechanisms behind modifications in CBF, CVR, and cerebral 
autoregulation after exposure to weightlessness have not yet 
been clearly elucidated.

Different methods are used to study microgravity on Earth. 
Head-down bed rest (HDBR) is the most used method and 
it induces most of the effects on the human body observed 
during space flight, including cephalad fluid shift (Hargens 
and Vico, 2016). Dry immersion (DI) consists of immersing 
a subject into thermoneutral water covered with a waterproof 
fabric, the subject being “free suspended” in the water bath. 
DI reproduces most of the change observed during space flight, 
and even more rapidly and more intense than with HDBR 
(Navasiolava et al., 2011; Figure 1). Few studies have measured 
regional (r) CBF in humans after exposure to simulated 
microgravity. Guell et  al. (1982) found in healthy volunteers 
who underwent −4° HDBR for 7 days, an increase in regional 
cerebral blood flow (rCBF; measured by 133Xe inhalation method) 
after 6 h, but returned to the baseline state at 72 h (Guell 
et  al., 1982). No study has so far measured rCBF both during 
spaceflight and microgravity analogs such as DI.

Thigh cuffs are elastic strips that are designed to have the 
same effects on lower-limb distensibility as a counterpressure 
of about 30 mmHg. These elastic strips, used by Russian 
cosmonauts, are effective against the cephalad fluid shift by 
trapping the venous volume in the lower limbs. Thigh cuffs 
are generally worn by cosmonauts during the day and removed 
at night for comfort reasons (Pavy-Le Traon et  al., 2001; 
Figure  2).

The aim of the present study was to investigate possible 
changes in rCBF using DI as a ground-based model of 
microgravity. A second objective was to test whether thigh 
cuffs can serve as a countermeasure, limiting any changes in 
rCBF, by restricting the cephalad fluid shift and potential 
increase in ICP.

MATERIALS AND METHODS

Participants
Twenty healthy men were recruited. Two withdrew before the 
4 days of baseline data collection (BDC) for reasons unrelated 
to the protocol. A total of 18 participants were therefore 
included in the study and randomly allocated to either a control 
or a cuffs group (9/9 split). All participants were informed 
about the experimental procedures and gave their written 
consent. The experimental protocol was conducted in accordance 
with the standards set by the Declaration of Helsinki and 
approved by the local ethics committee (CPP Est III: 2 October 
2018, no. ID RCB 2018-A01470-55) and French health authorities 
(ANSM: 13 August 2018). ClinicalTrials.gov identifier: 
NCT03915457.

General Protocol
The experiment (DI5-CUFFS) was an integrative study carried 
out at the MEDES Space Clinic in Toulouse (France) from 
19/11/2018 to 23/03/2019. The experimental protocol consisted 
of 4 days of ambulatory BDC before DI (BDC-4 to BDC-1), 
5 days (120 h) of DI (DI1–DI5), and 2 days of ambulatory 
recovery (R0, R + 1, and R + 2 morning).

A week before the beginning of the protocol, participants 
went to MEDES for a Pre-DI thigh muscle biopsy and resting 
metabolic rate measurement.

Participants into the cuffs group wore the thigh cuffs 
throughout the 5 days of DI, from 10 AM to 6 PM on DI1, 
and from 8 AM to 6 PM on DI2-DI5. Calf plethysmography, 
performed in the supine position at BDC-2, was undertaken 
to adjust the cuffs to each participant. At DI1, thigh cuffs 
were placed on subjects immediately prior to DI onset at 10 AM.

The general protocol for DI was implemented according to 
the methodology described elsewhere (Friston et  al., 1991). 
Two participants, one control and one cuffs, underwent DI 
simultaneously in the same room, in two separate baths (except 
for two participants, one cuffs and one control, who were 
each alone in the room). Thermoneutral water temperature 
was continuously maintained (32.5–33.5°C). Lights were switched 
off from 11 PM to 7 AM. Daily hygiene, weighing and some 
specific measurements required exit from the bath. During 
these out-of-bath periods, participants maintained the −6° 
head-down position. Total out-of-bath supine time for the 120 h 
of immersion was 9.7 ± 1.3 h. On DI1-DI4, out-of-bath time 
was 1.1 ± 0.6 h/day. On DI5, out-of-bath time was 5.3 ± 1.1 h, 
owing to a muscle biopsy in the right thigh and encephalic 
and spinal MRI. Otherwise, during DI, participants remained 
immersed in a half-seated position for all activities and were 
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continuously subjected to video monitoring. Bodyweight, blood 
pressure, heart rate (HR), and tympanic body temperature were 
measured daily. Water intake was fixed at 35–60 ml/kg/day. 
Within these limits, water intake throughout the protocol was 
ad libitum and quantified. The menu for each experimental 
day was identical for all participants, and dietary intake was 
individually tailored and controlled during the study. 
Measurements of HR and arterial blood pressure were performed 
with an automatic device twice a day (morning and evening). 
VO2max was measured in the evening of B-2 and R0. Percent 
change in plasma volume on DI-1-evening, DI-3-morning, 
DI-5-morning, DI-5-evening, R0-morning, and baseline (DI-1-
morning before the onset of immersion) was estimated using 
Hb and Hct count (Dill and Costill formula).

Daily questionnaires were proposed to subject each morning 
and evening from B-1 to R0. Visual analog scale 0–10 was 
used to assess General discomfort, Back pain, Quality of night 
sleeping, and Discomfort at thigh level. Scoring scheme of 
0–5 was used for “Fluid shift” complaints-face swelling sensation, 
nasal congestion, and impaired vision.

Single-Photon Emission Computed 
Tomography Acquisitions
99mTc-hexamethyl propylene amine oxime (99mTc-HMPAO) is a 
lipophilic radiopharmaceutical used for measuring rCBF. The 
radio-labelled compound was prepared from a commercial kit 
(Cerestab™; GE Healthcare, Norway), mixed with 

FIGURE 1 | Illustration of dry immersion (DI). Participants are immersed in a half-seated position, up to the neck and separated from the water by a waterproof 
fabric (Photo MEDES/E. GRIMAULT).

FIGURE 2 | Illustration of thigh cuffs. (A) Thigh cuffs are elastic strips that can be adjusted to the size of the thigh with a clamping segment (white segment); 
(B) Thigh cuffs are worn on the upper thigh. (C) Individual adjustment of thigh cuffs with plethysmography to apply a 30-mmHg pressure on the upper thigh, 
performed at baseline data collection (BDC)-2 (Photo MEDES).
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sodium-(99mTc)-pertechnetate and diluted in a saline solution 
(0.9% sodium chloride). At BDC-4, 261 ± 8 MBq of 99mTc-HMPAO 
were intravenously administered, within 3 h of preparation. 
Before and after the injection, participants were isolated from 
sensory stimulations in a dark and quiet room, wearing earplugs 
and a sleep mask for 10 min. The 99mTc-HMPAO injection 
performed at BDC-4 was conducted in a half-seated position, 
so that participants were in a similar position to that at R0 
when, just before the end of DI, 263 ± 10 MBq were injected, 
while participants were immersed in the bath. Both injections 
for all the subjects took place in the morning, between 9 
and 11 AM.

Single-photon emission computed tomography (SPECT) 
acquisitions were performed on a dual-head hybrid camera 
(SymbiaT6; Siemens Healthcare, Erlangen, Germany) equipped 
with a low-energy high-resolution collimator. The energy 
window was 140 keV ± 7.5% (with additional low energy 
window for scatter correction). Acquisition parameters for 
SPECT were: 60 projections over 180°, with 30 s per projection 
(matrix: 128 × 128, zoom 1.78). To perform attenuation 
correction, a brain computed tomography (CT) scan was 
also acquired with the following parameters: 110 kV, 50 mAs, 
and collimation 6 × 2 mm. Iterative reconstruction was 
performed with a flash3D algorithm (12 iterations, eight 
subsets, and 8-mm Gaussian filter). Images with scatter and 
CT-attenuation corrections were then generated. Any decrease 
in radioactivity was corrected during analysis with statistical 
parametric mapping (SPM12) software, by applying a weighting 
factor depending on the radioactivity period of 99mTc for 
each acquisition.

Statistical Analysis
Single-photon emission computed tomography images were 
processed using SPM12 software (Evans et  al., 1993), 
implemented in MATLAB (MathWorks, Sherborn, MA, 
United  States). SPM combines the general linear model and 
theoretical Gaussian fields to make statistical inferences about 
regional effects. All SPECT images were realigned and 
normalized to a standard template in MNI space using SPM12 
(Wilkerson et  al., 2005), then smoothed with a Gaussian 
kernel filter of 8 mm at full width and half maximum. 
We  compared rCBF at BDC-4 compared to R0 for all the 
subject together, using a paired t-test, considering that our 
data are normally distributed. We also compared rCBF between 
the cuffs and control group at BDC-4 and at R0, and the 
change in rCBF during DI between the cuffs and control 
groups, using a two-sample t-test. We tested the null hypothesis 
that the voxel-to-voxel contrast is zero. For all the tests, 
we  chose an uncorrected threshold puncorr < 0.001 with an 
extended threshold of 100 voxels. From the SPM12 results, 
we  extracted a statistical parametric map in tscore, overlaid 
on a MRI template that represents the result of the change 
in rCBF at R0 compared with BDC-4, for an uncorrected 
threshold puncorr < 0.001 with an extended threshold of 100 voxels.

General hemodynamic parameters (heart rate, systolic, 
diastolic, and mean arterial blood pressure) were expressed as 
mean ± SD and 95% CI of the mean.

RESULTS

Group Characteristics
Baseline group characteristics are detailed in Table  1.

rCBF Measurement
Regional cerebral blood flow was significantly reduced in cortical 
and subcortical regions at R0, compared with BDC-4, with a 
significance threshold of puncorr < 0.001 and an extended threshold 
of 100 voxels. Around 32 cortical and subcortical regions that 
were significantly less perfused at R0 than at BDC-4 were 
highlighted, the decrease in rCBF being greater in basal ganglia 
(right putamen peak level: z = 4.71, puncorr < 0.001), bilateral 
occipital regions (left superior occipital peak level: z = 4.51, 
puncorr < 0.001), bilateral insula (right insula peak level: 4.10, 
puncorr < 0.001), and bilateral inferior temporal (right inferior 
temporal peak level: 4.07, puncorr < 0.001; Table  2; Figure  3).

There was no significant difference in rCBF between the 
cuffs and control groups at BDC-4 and R0 (puncorr < 0.001 and 
extended threshold of 100 voxels).

There was no significant difference in the change in rCBF 
at R0 compared with BDC-4 between the cuffs and control 
groups (puncorr < 0.001 and extended threshold of 100 voxels).

Blood Pressure and Heart Rate
Heart rate, systolic blood pressure (SBP), diastolic blood pressure 
(DBP), and mean blood pressure (MBP) were not significantly 
changed after DI, both in the control and cuffs groups (Table 3).

Daily Questionnaires, VO2 Max, and 
Plasma Volume
Results about daily questionnaires, VO2 max measurement, and 
plasma volume are detailed in Robin et  al. (2020).

There was no significant correlation between change in plasma 
volume, scoring of general discomfort, back pain, quality of 
night sleeping, discomfort at thigh level, face swelling sensation, 
nasal congestion, or impaired vision with decrease in rCBF at R0.

DISCUSSION

Decrease in rCBF After a 5-Day DI
After 5 days of DI, we  observed a significant decrease in rCBF 
in 32 cortical and subcortical regions. No previous study had 

TABLE 1 | Baseline group characteristics at BDC-2.

All (n = 18) Control (n = 9) Cuffs (n = 9)

Age (years) 34.0 ± 5.5 33.9 ± 7.1 34.1 ± 3.7
Right-handed 16 8 8
Height at selection 
(cm) 178 ± 6 176 ± 6 180 ± 4
Weight (kg) 74.1 ± 8.0 73.9 ± 7.5 74.3 ± 8.8
BMI (kg/m2) 23.3 ± 1.8 23.9 ± 1.7 22.7 ± 1.8
VO2 max (ml/min/kg) 46.7 ± 6.9 46.5 ± 8.1 46.9 ± 5.8
Morning T (°C) 36.4 ± 0.4 36.4 ± 0.3 36.4 ± 0.5
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measured rCBF in humans after DI. A study in HDBR measuring 
rCBF with the 133Xe inhalation method found an initial increase 
at 6 h, but no difference at 72 h (Guell et  al., 1982). Some 
studies measuring rCBF have been performed in animals. 
Consistently with our results, Wilkerson et  al. (2005) 

demonstrated in a 2-week head-down tail suspension study 
performed in rats, a decrease in rCBF in 21 cortical and 
subcortical regions, measured with [14C]-IPIA autoradiography, 
the decrease being more intense in the basal ganglia (Wilkerson 
et  al., 2005).

TABLE 2 | Negative change in regional cerebral perfusion after DI.

zscore peak level tscore peak level Number of voxels in cluster

Basal ganglia

 Left caudate 3.39 4.13 680
 Left putamen 4.09 5.46 680
 Right caudate 3.80 4.88 3,213
 Right putamen 4,71 6.92 3,213

Brainstem
 Left midbrain 4.16 5.61 1,006
 Right midbrain ns

Cerebellum
 Left cerebellum 3.78 4.82 120
 Right cerebellum 3.93 5.12 551

Cortex
 Cingulate
  Left middle cingulate gyrus ns
  Left anterior cingulate gyrus ns
  Left posterior cingulate gyrus ns
  Right middle cingulate gyrus 3.55 4.40 105
  Right anterior cingulate gyrus 3.47 4.27 269
  Right posterior cingulate gyrus 3.97 5.20 130

Frontal
 Left superior frontal gyrus ns
 Left medial orbital gyrus 3.45 4.24 144
 Left middle frontal gyrus 3,72 4,72 100
 Left posterior orbital gyrus 3.54 4.40 144
 Left superior frontal gyrus medial ns
 Right superior frontal gyrus 3.57 4.44 269
 Right medial orbital gyrus 3.42 4.20 3,213
 Right middle frontal gyrus ns
 Right posterior orbital gyrus 3.92 5.09 3,213
 Right superior frontal gyrus medial 3.57 4.44 269

Insula
 Left insula 4.09 5.46 680
 Right insula 4.10 5.48 3,213

Occipital
 Left inferior occipital gyrus 4.35 6.02 6,570
 Left middle occipital gyrus 4.35 6.02 6,570
 Left superior occipital gyrus 4.51 6.42 6,570
 Right inferior occipital gyrus 4.38 6.09 6,570
 Right middle occipital gyrus 4.38 6.09 6,570
 Right superior occipital gyrus 4.38 6.09 6,570

Parietal
 Left angular gyrus ns
 Left postcentral gyrus ns
 Right angular gyrus 3.17 3.78 157
 Right postcentral gyrus 3.74 4.75 157

Temporal
 Left fusiform gyrus 3.61 4.52 121
 Left inferior temporal gyrus 4.06 5.40 201
 Right fusiform gyrus ns
 Right inferior temporal gyrus 4.07 5.41 308

Thalamus
 Left thalamus 4.46 6.30 1,006
 Right thalamus 3.67 4.62 1,006

Negative change in regional cerebral perfusion at R0 compared with BDC-4 in all the 18 participants, in maximum zscore, maximum tscore, number of significant voxels per cluster; 
puncor < 0.001 and extent threshold > 100 voxels.
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We measured a decrease in rCBF in many cortical and 
subcortical regions, mostly in the basal ganglia, insula, occipital, 
and inferior temporal cortex. These regions are involved in 
many brain functions, such as the control of movements and 
equilibrium, sensorimotor, vegetative, cognitive, and limbic 
functions, those are impaired after microgravity exposure (Hasser 
and Moffitt, 2001; Koppelmans et  al., 2017; Lacquaniti et  al., 
2017; Van Ombergen et al., 2017). Moreover, a greater reduction 
in gray matter volume (measured by MRI) in multiple brain 
regions, including regions located in the bilateral frontal lobes, 
temporal poles, insula, and right hippocampus was observed 
during a 30-day HDBR study (Li et  al., 2015).

Hypothesis on the Mechanisms Which 
May Decrease rCBF
As the cranial box is rigid and inextensible, and intracranial 
content is not compressible, ICP depends on three parameters: 
craniospinal elastance, resistance to cerebrospinal fluid flow, 
and brain blood volume (Tameem and Krovvidi, 2013). Although 
ICP has never been directly measured during long exposure 
to microgravity in humans, indirect evaluation methods 
(measurement of ONSD) suggest an increase in ICP favored 
by the cephalad fluid shift (Hargens and Watenpaugh, 1996; 
Kramer et  al., 2012). However, the magnitude of a possible 
increase in ICP during space flights and its precise underlying 
mechanisms remain unclear.

Cerebral perfusion pressure is the result of mean arterial 
pressure (MAP) and ICP, according to the equation CPP =  
MAP – ICP (Partington and Farmery, 2014). Consistently with 
our findings, studies have shown that MAP does not seem to 
vary significantly in studies in HDBR (Arbeille et  al., 2001) 
and after 3-day DI (Ogoh et  al., 2017).

According to Poiseuille’s law, CVR depends on cerebral 
vessel diameter. CBF depends on CPP and CVR, according 
to the equation CBF = CPP/CVR. When CPP decreases or 
CVR increases, that leads to a decrease in CBF. CPP is directly 
correlated to ICP; When ICP increases, CPP is maintained 
by an increase in blood pressure up to a certain limit. There 
is no direct measurement of ICP in microgravity in humans. 
However, direct measurements performed in animals (Krotov 
et  al., 1994) and indirect measurements in humans (Kramer 
et  al., 2012; Kermorgant et  al., 2017) argue in favor of a 
moderate elevation in ICP. During 3-day DI, Kermorgant 
et  al. (2017) showed an increase in ONSD of about 30%, as 
measured with ultrasound (Pre-DI: 4.64 ± 0.40 mm; DI3: 
6.01 ± 0.49 mm; p < 0.001; Kermorgant et  al., 2017). In 
DI5-CUFFS, Kermorgant et al. (2021) have found a significant 
increase of ONSD after 5 days of DI by 20% in the control 
group and 14% in the cuffs group (Kermorgant et  al., 2021). 
These ONSD values are equivalent to an elevation of ICP 
around 20 mmHg, the normal range being between 7 and 
15 mmHg (Geeraerts et al., 2008). It, therefore, seems unlikely 

FIGURE 3 | Statistical parametric map of regional cerebral blood flow (rCBF) after DI. Cerebral map expressed in tscore of the negative change in rCBF at R0 
compared with BDC-4, paired t-test, puncorr < 0.001, extent threshold > 100 voxels.

TABLE 3 | Hemodynamic parameters.

All (n = 18) Control (n = 9) Cuff (n = 9)

BDC-2 R0 BDC-2 R0 BDC-2 R0

HR (bpm) 58 ± 7

(54–61)

58 ± 8

(55–62)

58 ± 8

(53–64)

57 ± 9

(51–63)

57 ± 6

(53–60)

60 ± 7

(55–65)
SBP (mmHg) 116 ± 10

(111–121)

117 ± 10

(113–121)

117 ± 10

(110–124)

114 ± 10

(107–120)

115 ± 11

(108–123)

120 ± 8

(115–126)
DBP (mmHg) 68 ± 7

(65–71)

67 ± 8

(64–71)

68 ± 9

(62–73)

66 ± 7

(62–71)

68 ± 5

(65–72)

68 ± 9

(63–74)
MBP (mmHg) 86 ± 7

(83–89)

85 ± 7

(82–88)

86 ± 8

(80–91)

83 ± 7

(78–88)

86 ± 5

(83–89)

87 ± 7

(83–92)

Measurements for heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean blood pressure (MBP), before (BDC-2) and after (R0) DI.  
All measurements were performed in the morning. Mean ± SD. Values in parentheses represent 95% CI of the mean.
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that a moderate elevation in ICP during DI would exceed 
the adjustment capacities of CPP.

During HDBR studies, Doppler measurements showed an 
increase in CVR and a decrease in CBF during the first week, 
after which these parameters returned to baseline values (Frey 
et  al., 1993; Arbeille et  al., 2001; Sun et  al., 2002). After 3-day 
DI, Ogoh et  al. (2017) failed to observe any change in CBF as 
measured by Doppler ultrasound. However, they observed an 
increase in CVR (Ogoh et al., 2017). Compared with the literature, 
our results showing a decrease in CBF after 5-day DI are consistent 
with the increase in CVR measured during the first week in 
simulated microgravity. According to studies performed in hindlimb 
suspension in rats, the increase in CVR could be  a consequence 
of prolonged vasoconstriction in the first days, in response to 
the increased blood flow in the brain, due to the HDT position. 
After several days, the chronic vasoconstriction induced hypertrophy 
and modifications in the wall of cerebral arteries (Wilkerson et al., 
2002). Previous studies have depicted hypertrophy in the media 
layer, an increase in thickness, an increase in spontaneous tone, 
and myogenic vasoconstriction of brain arteries mediated by altered 
secretion of endothelial NO (Geary et  al., 1998; Zhang et  al., 
2001; Wilkerson et  al., 2005). According to the authors, the 
prolonged vasoconstriction and these histological changes could 
be  responsible for an increase in CVR, thus contributing to the 
decrease in CBF (Wilkerson et  al., 2005). During DI5-CUFFS, 
Robin et  al. (2020) observed a decrease in plasma volume by 
15–20% throughout DI experiment. Likewise, during 3-day DI, 
Ogoh et al. (2017) demonstrated a correlation between the decrease 
in plasma volume and the decrease in blood flow velocity and 
conductance in the internal carotid artery, suggesting that the 
loss of plasma volume also contributes to the vasoconstriction 
of cerebral arteries. In accordance with the literature, 
we  hypothesized that the decrease in rCBF after 5-day DI is the 
consequence of three mechanisms that all contribute to the increase 
in CVR: vasoconstriction of cerebral arteries in response to increased 
CBF induced by the cephalad fluid shift; the decrease in plasma 
volume; and a moderate increase in ICP, which may contribute 
to the increase in CVR through compression of cerebral blood vessels.

Cerebral autoregulation is the process of maintaining CBF 
relatively constant for CPP ranging from 50 to 150 mmHg. 
Above these limits, CBF varies proportionally to CPP (Tameem 
and Krovvidi, 2013). Cerebral autoregulation is mainly mediated 
by small arteries that modify their diameter according to the 
change in CPP, in order to maintain constant CBF (Kontos 
et  al., 1978). Indeed, cerebral autoregulation has been shown 
to be  preserved or even improved in short-term studies 
(Kermorgant et  al., 2020). Nevertheless, according to studies 
in rats, an increase in ICP may increase CVR through compression 
of the cerebral blood vessels (Wilkerson et  al., 2002).

The basal ganglia interact with the cortex in a system of 
cortico-subcortical loops, in order to integrate cortical 
information and relay it to the cortex via the thalamus and 
brainstem (Parent and Hazrati, 1995). As they form the hub 
of information processing in the brain, these regions may 
be  more intensely affected by change in CBF. An alternative 
explanation for the greater decrease in rCBF in the basal ganglia 
concerns the potential modification in neurotransmitter 

metabolism. Until now, to the best of our knowledge, little is 
known about neurotransmitter metabolism in humans in 
microgravity. In a study performed in rats, a change in the 
binding of neurotransmitters to their receptors was noted after 
7 days on board Spacelab 3. 5-HT1 receptors were more 
numerous, and binding of dopamine D-2  in the striatum was 
decreased (Miller et  al., 1989).

Nonspecific Factors That May Influence 
rCBF
Many factors could have influence on rCBF. Neurosensory 
stimulation during injection may influence the HMPAO 
distribution in the brain (Woods et al., 1991). Thereby, we paid 
attention to isolate the subjects from neurosensorial stimulation 
during the injection at BDC-4 and at R0.

Cerebral blood flow changes according to the circadian 
rhythm. Indeed, it has been showed that CBF velocity is lower 
in the morning than in the afternoon and in the evening 
(Conroy et al., 2005). In our study, we performed the HMPAO 
acquisitions in the morning, roughly at the same hour at BDC-4 
and at R0, consequently, the circadian rhythm had little influence 
on our results.

Hypocapnia is known to reduce CBF by decreasing CPP 
and decreasing CVR (Grüne et  al., 2015). However, breathing 
function seems to be  not altered in DI (Popova et  al., 2013).

No Significant Effect of Thigh Cuffs on 
rCBF
We did not find any significant change in rCBF after 5-day 
DI between the cuffs and control groups. We  hypothesized 
that, by limiting the cephalad fluid shift and its consequences, 
thigh cuffs limited the increase in CVR. During 5-day DI, 
Arbeille et  al. (2020) found a significantly attenuated increase 
in volume in the right jugular vein (measured with ultrasound) 
at 2 h post-immersion in the cuffs groups (control group: 
0.27 ± 0.15 cm3 to 0.94 ± 0.22 cm3 p < 0.05; cuffs group: 
0.32 ± 0.13 cm3 to 0.64 ± 0.32 cm3; p < 0.05). However, at DI4, 
there was no longer any significant difference between the 
control and cuffs group (control group: 0.47 ± 0.22 cm3; cuffs 
group: 0.35 ± 0.14 cm3, p < 0.05). Moreover, the right jugular 
vein was less dilated compared to 2 h post-immersion. Therefore, 
thigh cuffs seemed to be  effective in limiting the dilatation 
of the jugular vein in the first few hours of DI, but their 
effectiveness seemed to diminish after a few days of DI. 
Studies suggested that thigh cuffs have an effect against the 
cephalad fluid shift and its consequences only when they are 
worn, and that there was no significant memory effect when 
they were removed at night (Herault et  al., 2000). It is worth 
noting that rCBF was measured in the morning, after a night 
without thigh cuffs. Therefore, the absence of a significant 
effect of thigh cuffs on the modification of rCBF in our 
study has many possible explanations, including a lack of 
statistical power, the fact that thigh cuffs appear to have 
little effect on the cephalad fluid shift after 5-day DI, and 
the absence of a memory effect on rCBF after a night without 
thigh cuffs.
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Justification for the Choice of  
99mTc-HMPAO-SPECT
99mTc-hexamethyl propylene amine oxime SPECT is a tried and 
tested technique for measuring rCBF (Abdel-Dayem et  al., 1988); 
however, it is not a technique for measuring CBF in large vessels. 
99mTc-HMPAO is a SPECT tracer, which has lower spatial resolution 
than a PET tracer (e.g., 18F-FDG, O15H2). The choice of this tracer 
was ideal for our study, as 99mTc-HMPAO reaches its binding 
peak 2–3 min after being injected. This allowed us, by injecting 
participants at the end of DI in the bath, to image rCBF while 
they were still immersed. After the end of DI, participants underwent 
a lower-body negative pressure test at the MEDES clinic after 
the injection, and then went to the nuclear medicine department 
for the SPECT scans. Because of the study design, the interval 
between the injection and scans was different at BDC-4 than at 
R0: scans began 20 min after injection at BDC-4, and after 90 min 
at R0. Because of the irreversible brain binding of 99mTc-HMPAO 
after its injection, we were able to make the acquisitions comparable. 
We  corrected for the difference of acquisition time after injection 
at BDC-4 and at R0, by calculating a weighting factor for each 
image, based on the 99mTc decay constant. We  then applied this 
weighting factor, for each image, in the analysis with SPM12 software.

Study Limitations
Our study had several limitations. Because of the semi-
quantitative measurement of rCBF with 99mTc-HMPAO, it is 
not possible to determine in our study whether the decrease 
in rCBF was sufficient to induce or be  a consequence of brain 
function impairments. Moreover, it was not planned in the 
design of the experimentation to collect neurological clinical 
data, in order to correlate with the rCBF modification.

The small sample size (N = 18) may have weakened the 
statistical power of our results. This could explain why we  did 
not find a significant result by correcting the alpha risk for 
multiple testing by a familywise error rate or false discovery 
rate. However, we  did adjust the alpha risk and applied a 
good extent threshold that made our results more robust.

For radioprotection reasons, we  injected the volunteers, in 
our initiative, with a less active radiotracer (261 ± 8 MBq), 
compared to the recommended standards (555–1,110 MBq). 
We  did not lengthen the time acquisition compared to the 
recommendations for a reason of comfort for the subjects 
(30 s per projection and 30 min for the total time acquisition; 
Kapucu et  al., 2009); that could have weakened the signal-to-
noise ratio of our images.

Moreover, DI is a ground-based model of microgravity with 
a particular environment for the subject, such as physical 
immobility, that could also influence the decrease in cerebral 
perfusion. Further studies are needed to explore modifications 
in CBF in microgravity.

CONCLUSION

That is the first study measuring rCBF in DI, we  measured a 
decrease in rCBF in cortical and subcortical regions after a 
5-day DI. We  hypothesized that prolonged vasoconstriction of 
cerebral arteries in response to increased CBF resulting from 
the cephalad fluid shift, the decrease in plasma volume, and a 
moderate increase in ICP may contribute to the increase in 
CVR, thus inducing a decrease in rCBF. Although our study 
has several biases, that could influence the change in rCBF, this 
study could be  considered as an explorative investigation that 
shows interesting results. Further studies are needed to better 
understand the effects and consequences of microgravity on rCBF.
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