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A R T I C L E  I N F O   
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A B S T R A C T   

Ultrafine-grained and heterostructured materials are currently of high interest due to their superior mechanical 
and functional properties. Severe plastic deformation (SPD) is one of the most effective methods to produce such 
materials with unique microstructure-property relationships. In this review paper, after summarizing the recent 
progress in developing various SPD methods for processing bulk, surface and powder of materials, the main 
structural and microstructural features of SPD-processed materials are explained including lattice defects, grain 
boundaries and phase transformations. The properties and potential applications of SPD-processed materials are 
then reviewed in detail including tensile properties, creep, superplasticity, hydrogen embrittlement resistance, 
electrical conductivity, magnetic properties, optical properties, solar energy harvesting, photocatalysis, elec-
trocatalysis, hydrolysis, hydrogen storage, hydrogen production, CO2 conversion, corrosion resistance and 
biocompatibility. It is shown that achieving such properties is not limited to pure metals and conventional 
metallic alloys, and a wide range of materials are currently processed by SPD, including high-entropy alloys, 
glasses, semiconductors, ceramics and polymers. It is particularly emphasized that SPD has moved from a simple 
metal processing tool to a powerful means for the discovery and synthesis of new superfunctional metallic and 
nonmetallic materials. The article ends by declaring that the borders of SPD have been extended from materials 
science and it has become an interdisciplinary tool to address scientific questions such as the mechanisms of 
geological and astronomical phenomena and the origin of life.   
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1. Introduction 

Severe plastic deformation is receiving significant attention as a 
powerful process to produce materials with ultrafine grains (UFG) and 
large fractions of crystal lattice defects such as vacancies, stacking faults, 
dislocations, twins and grain boundaries [1–3]. These microstructural 
features of SPD-processed materials lead to their enhanced properties for 
various applications [4,5]. Although high strength through the 
Hall-Petch strengthening mechanism is the most known property of 
SPD-processed materials [6,7], these materials exhibit a wide range of 
mechanical and functional properties [4,5]. In addition to microstruc-
ture control by SPD, the process has other applications such as phase 
transformation control [8,9], mechanical alloying [10,11] and consoli-
dation of powders [12,13]. The application of SPD has been extended 
from metallic alloys to a wider range of materials such as polymers [14], 
carbon [15] ceramics [16], etc. Since the properties of such 
SPD-processed materials are superior compared to conventional engi-
neering materials, the term superfunctional materials has been recently 
used for them [17]. As shown in Fig. 1, the number of publications about 
SPD has experienced a gradual increase since the year 2000, and over 
1000 papers are currently published about SPD every year. 

The historical development of SPD was discussed in a recent review 
paper by 49 active scientists in the field [5]. Such a historical develop-
ment can be briefly summarized in Fig. 2 [5]. The SPD was known in 
ancient times in sword making, and it became popular during the 
transition from the Bronze Age to the Iron Age [18]. The repeated 
forging and folding that was used for sword making is considered an 
ancient form of modern accumulative roll-bonding (ARB) [19]. Another 
transition in the SPD occurred in the 1930 s [20,21] followed by a book 
in 1952 [22] when Bridgman could apply SPD to a wide range of ma-
terials by the introduction of the high-pressure torsion (HPT) method 
(see details in [23]). It should be noted that superplastic deformation 
(severe plastic elongation by thermally-activated deformation mecha-
nisms) was also reported in metallic materials in the 1930 s by Pearson 
[24], which received the term “super-plasticity” in polymer sciences in 
the 1930 s [25]. The invention of equal-channel angular extrusion/-
pressing (ECAP) and ECAP-conform by Segal and his co-workers in the 
1970 s was another important development that resulted in scaling up 
the size of SPD-processed samples by simple shear [26–28]. The 

discovery of the formation of UFG microstructure by SPD was another 
important finding, which was first reported by Bridgman using X-ray 
diffraction (XRD) [20–22] and later visualized by transmission electron 
microscopy (TEM) in a few papers in the 1970 s [29,30] and a book 
written in Polish in 1976 [31] (the content of the book was summarized 
in English in [32]). The achievement of low-temperature superplasticity 
by Valiev and his co-workers in the 1980 s was an important finding that 
showed the interesting properties of SPD-processed materials with UFG 
structures and a large fraction of high-angle grain boundaries [33]. An 
extension of this study to Western and Asian countries [34,35] followed 
by the publication of a review paper in 2000 [1] resulted in the birth of 
the modern NanoSPD (nanomaterials by severe plastic deformation) 
field and eventually in the commercialization of the method for 
biomedical applications [36]. 

Despite significant progress in the SPD field, there are some argu-
ments regarding the terminology of SPD. The SPD process was defined as 
the introduction of large strains in a bulk sample without changing its 
shape [2]. In SPD processes, the applied pressure should be usually high 
to avoid the fracture of materials, and the temperature should be below 
the recrystallization temperature when the objective is to produce UFG 
materials [37,38]. However, there are comments that the strain level 
(usually over a von Mises equivalent strain of 6) should be considered as 
a border of SPD regardless of the method used for the application of such 
strain levels. Such strains can be sometimes applied at low temperatures 
by conventional methods such as rolling, wire drawing and extrusion 
[39]. Moreover, there have been long-term efforts to apply such large 
strain on the surface of bulk materials [40,41] or in powders [42,43]. 
Since all these processes follow the same principles, SPD methods can be 
classified into three broad categories: (a) bulk-SPD, (b) surface-SPD and 
(c) powder-SPD. Despite such classification, a rigid strain border can be 
hardy defined for SPD because the microstructure-strain relationships of 
materials are quite different [5]. Moreover, the objective of SPD is not 
always the formation of UFG (materials with grain sizes below 1000 nm 
having high angles of misorientation) or nanograined (materials with 
grain sizes below 100 nm) materials, but it may be used in lower strain 
levels to control lattice defects [44] or produce heterostructured mate-
rials [45]. 

Despite significant progress in the field of SPD in recent years, there 
are limited comprehensive review papers about the field [1–5]. More-
over, available review papers are either old or mainly focus on SPD as a 
metal processing tool. However, the borders of SPD have been extended 
to non-metallic materials and various disciplines other than metallurgy. 
By considering the progressive changes of SPD in terms of concept and 
research direction, a comprehensive review paper is required to discuss 
the most recent aspects and future direction. Such a review paper should 
also clarify the classification of the SPD process and discuss the behavior 
of various types of materials during severe straining. This article, which 
was prepared by a large number of active researchers in different aspects 
of SPD, aims to provide a comprehensive overview of the latest concepts 
and findings in the field of SPD. The article classifies these findings by 
considering the processing methods, microstructural and structural 
features, mechanical and functional properties, and processed UFG and 
heterostructured materials. At the end of the manuscript, the application 
of SPD as a potential scientific tool for elucidating some natural phe-
nomena such as earthquakes and the origin of life is briefly mentioned. 

2. SPD methods 

As mentioned in the introduction, the SPD processes can be classified 
as bulk-SPD, surface-SPD and powder-SPD methods. In bulk-SPD, the 
goal is to modify the bulk microstructure of a material with reasonably 
large sizes, although the surface is also affected [1–3]. In surface-SPD, 
only surface and sub-surface layers are modified, and the core of the 
sample remains reasonably unchanged [46]. In powder-SPD, the mate-
rial is in the form of powder, and strain is introduced on the surface layer 
and core of the powder particles usually by ball milling methods [43]. 

Fig. 1. Number of publications per year about SPD and HPT [Scopus, January 
15, 2024]. 
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To introduce large levels of strain in the sample, the SPD method 
should be able to introduce strain at low temperatures without failure of 
the sample. To satisfy these conditions, high pressure is an important 
requirement, as indicated by Bridgman decades ago [20–22]. The 
pressure should be higher than the final yield stress of the material after 
processing to realize the plastic flow [38]. Furthermore, introducing 
large shear strains in the material is difficult when the dimensions of the 

sample change [2]. For example, if a von Mises strain of 6 is applied by 
rolling a plate with a thickness of 1 cm, its thickness is reduced to 
300 nm, which is not practical. Different methods based on rolling, 
torsion, forging and extrusion can satisfy the required conditions for SPD 
processing of bulk material [5]. In most of these methods, the di-
mensions of the samples remain unchanged; however, some methods 
result in some dimensional changes in the samples. In this section, SPD 

Fig. 2. Illustration of the historical development of SPD. From left to right: sword making by repeated forging and folding (photograph of a sword made in Luristan, 
Iran, 750–650 BSE), principles of HPT (a drawing by Bridgman, 1935), principles of ECAP (visualization of simple shear by Moire Fringes and coordinate grids 
reported by Segal, 1970 s), formation of UFG structure by HPT processing (micrographs reported by Erbel, 1976), high strain rate superplasticity in an aluminum 
alloy processed by ECAP (a work by Valiev, et al., 1997), and commercialization of ECAP-processed titanium for implants [5]. 

Fig. 3. Schematic illustration of main SPD methods and corresponding equivalent strain [50]. For HPT, N, r and h are the number of turns, distance from the center 
and disc thickness, respectively. For TE, r, R, and β are radial distance from the center, maximum radial distance from the center, and angle between the extrusion 
axis and the twist line, respectively. For ECAP, N is the number of passes. For MDF, h0 and h are the initial and final height of the sample, respectively. For CEC and 
ARB, N is the number of cycles. 
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methods are comprehensively reviewed and some recent trends in SPD 
processing are discussed. 

2.1. Bulk-SPD methods 

In the majority of SPD methods, and particularly the popular 
methods such as HPT, ECAP and ARB, the introduction of large strain is 
possible due to no change in the sample dimensions [47]. HPT is 
becoming increasingly popular because it works at very high pressure 
and is therefore suitable for all types of metallic and non-metallic ma-
terials. In addition, the process can apply extremely large shear strains 
which are not achievable with other processes. ECAP has the benefit of 
the big sample size which makes it appropriate for commercial appli-
cation. ARB is of interest because it is a simple and continuous process.  
Fig. 3 shows schematics and equivalent plastic strains of the main SPD 
methods including HPT [20], twist extrusion (TE) [48], ECAP [26], 
multi-directional forging (MDF) [49], cyclic extrusion compression 
(CEC) [50] and ARB [19]. 

Various methods were developed in recent years mainly by modifi-
cation of major SPD processes to either improve straining conditions, 
modify the shape and dimensions of samples, or make the process 
continuous [50]. In most of these processes, the dimensions of the 
samples remain unchanged. Die structure and corresponding equivalent 
plastic strain of such SPD methods are summarized in Table 1 [51–109]. 
In some limited methods, the introduction of high plastic strain on the 
sample is associated with cross-section change. These methods are 
included in Table 2 [110–120]. 

2.2. Surface-SPD methods 

In surface-SPD, gradient microstructures are generated from the 
treated surface to the core instead of producing a homogeneous plastic 
deformation within the bulk of the sample. The materials processed by 
surface-SPD can take advantages of the characteristics of both the 
refined surface layer and the coarse-grained core of the sample. When 
surface properties such as biocompatibility, wear resistance and corro-
sion resistance are of importance, surface-SPD processes have high 
technical benefits for commercial applications. Over time, several ap-
proaches have been designed to generate surface-SPD. Table 3 contains 
schematic representations of several surface-SPD methods, which are 
mainly based on peening, grinding, ultrasound and rolling [121–145]. 
Among these methods, ultrasonic shot peening (USSP or USP) [41] and 
surface mechanical attrition treatment (SMAT) [134] have received high 
attention in producing gradient-structured materials. The methods have 
a high potential for processing large sheets with enhanced properties. At 
the end of this article, the mechanical and functional properties of 
surface-SPD-processed materials with gradient microstructure are 
reviewed. 

2.3. Powder-SPD methods 

The most known method for inducing SPD in powders is high-energy 
ball milling, which was developed in the 1960 s [43]. In this method, 
powders of materials together with some hard balls (steel, tungsten 
carbide, zirconia, alumina, etc.) are introduced into a vial. The strain is 
introduced by rotation or vibration of the vial which leads to the impact 
of powders between the balls in dry or wet conditions [146]. In addition 
to straining, other phenomena such as welding and fracturing occur 
during the process [43]. The grain sizes achieved by this method are 
usually smaller than those achieved by bulk-SPD and surface-SPD 
methods, but the method suffers from contamination by milling media 
(balls and vial) as well as oxidation [43]. Ball milling followed by 
high-temperature sintering is a process to make bulk UFG materials, 
although the size of grains can be large due to the high-temperature 
effect [147]. Ball milling can be conducted using reactant liquids and 
gasses which is known as reactive ball milling [148]. Ball milling is 

applicable to almost all types of material [149], while bulk-SPD methods 
(except for HPT) have limited applications to various metallic and 
non-metallic materials. Ball milling has contributed to the synthesis and 
discovery of various materials since the last century [150] until now 
[151,152]. The most popular ball milling methods are shown in Fig. 4, 
which include attritor milling, vibratory milling, planetary milling and 
high-pressure gas milling [153]. 

2.4. Recent trends in SPD methods 

Although the most focused research direction in the SPD field is the 
examination of characteristics and properties of SPD-processed mate-
rials, there are some efforts on the modification or invention of pro-
cessing methods. Some efforts focused on making the SPD methods 
continuous [154]. Despite these efforts, classic methods of ARB [19,155] 
and ECAP conform [28,156] are still among the most powerful and 
popular continuous SPD methods. Some studies focused on the appli-
cation of hydrostatic pressure to make SPD processes more practical in 
terms of load and energy [157]. Some other studies focused on the 
modification of the shape and size of the sample to a form that can be 
more appropriate for practical applications such as rods [158], pipes 
[159] and sheets [160]. In most of these methods, high pressure plays a 
critical role. The application of SPD through cyclic viscoelastic defor-
mation is another effort in this regard, although it has been employed by 
limited groups [161]. SPD processing under extreme processing condi-
tions such as cryogenic temperature [162], ultra-high pressure [15], 
ultra-high strain rate [163] and ultra-high shear strain (known as 
ultra-SPD) [164] is another important progress in the field in recent 
years. In the following sections, some of these recent trends in SPD 
methods are discussed. 

2.4.1. SPD methods with hydrostatic pressure 
Despite high attraction in SPD during the last three decades, most 

SPD methods are limited to laboratory-scale experiments. This matter, 
which prevents the utilization of SPD methods for industrial goals, is 
mainly relevant to the higher load when processing longer samples [50]. 
Total processing load includes deformation load (FD), friction load (Ff) 
and required load for the redundant work (FR) [157]. It should be noted 
that the magnitude of the total processing load is mainly affected by the 
friction load portion especially when processing long samples [157]. In 
this regard, an increase in the sample length leads to higher surface 
contact between the die and the sample, which consequently increases 
the total processing load remarkably. An increase in the processing load 
increases the chance of buckling and yielding of the punch. Therefore, 
any approach that reduces the total processing load opens the oppor-
tunity for processing relatively long samples as a requirement for in-
dustrial applications [5]. Using high-pressure fluid instead of a solid 
punch is one of the best candidates, which was implemented in 
single-pass hydrostatic deformation processes as modified versions of 
conventional methods. Single-pass hydrostatic deformation processes 
include hydrostatic extrusion (HE) [165], hydrostatic extrusion inte-
grated with circular equal channel angular pressing (HECCAP) [166], 
hydrostatic backward extrusion (HBE) [167] and hydrostatic radial 
forward tube extrusion (HRFTE) [168]. The presence of high-pressure 
fluid in the gap between die-sample contact eliminates the friction 
force which is very huge in processing longer samples. This reduces the 
processing load and makes it possible to process samples with a higher 
aspect ratio (length to diameter) compared to conventional methods. It 
was reported that a sample with an aspect ratio of 0.27 with a processing 
load of ~264 kN was processed by conventional backward extrusion 
while only a fifth of this load was required in HBE to process a sample 
with an aspect ratio of 8.5 [167]. 

The application of high-pressure fluid to SPD methods leads to the 
development of hydrostatic SPD methods as new counterparts of con-
ventional SPD processes [157] including equal-channel angular hydro-
extrusion (ECAH) [169], hydrostatic cyclic extrusion compression 
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Table 1 
Die structure and equivalent plastic strain of some SPD methods (references do not necessarily refer to the first publication of each method).  

Equivalent Plastic 
Strain Schematics of Process Equivalent 

Plastic Strain Schematics of Process 

Single-task incremental 
HPT (SIHPT) [52]

=
√

Incremental HPT (IHPT) 
[51]

Tube high-pressure shearing 
(t-HPS) [54]

= ( )
√

Continuous HPT (CHPT) 
[53]

Ring HPT (RHPT) [56] 

=

High-pressure tube 
twisting (HPTT) [55]

= ( )

=
√ ( )

+
√

High-pressure torsion 
extrusion (HPTE) [58]

=
√

High-pressure sliding 
(HPS) [57]

(continued on next page) 
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Table 1 (continued ) 

√

Equal channel multi-angular 
extrusion (ECMAE) [64] 

Side extrusion ECAP 
[63]

=

Planar HPT [60]
Accumulative HPT [59]

+

√

+
+

√

Dynamic-channel angular 
pressing (DCAP) [62]Rotary-die ECAP [61]

(continued on next page) 
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Table 1 (continued ) 

Twist channel angular 
pressing (TCAP) [69]

Extrusion-expansion 
channel angular pressing 
(EECAP) [68]

Cyclic extrusion 
compression angular 
pressing (CECAP) [67]

ECAP with parallel 
channel [66]

ECAP with back pressure 
[65]

(for ) 

Multi-pass die ECAP
[50]

(continued on next page) 
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Table 1 (continued ) 

ECAP conform [28]

Twist channel multi-
angular pressing 
(TCMAP) [70]

C-shape equal channel 
reciprocating extrusion 
(CECRE) [72]

Equal channel angular 
drawing (ECAD) [71]

Expansion ECAP (Exp-
ECAP) [74]Torsional ECAP [73] 

(continued on next page) 
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Table 1 (continued ) 

=

√

Pure shear extrusion (PSE) 
[76]

̅

Repetitive forging using 
inclined punch (RFIP) 
[75]

Dual equal channel lateral 
extrusion (DECLE) [78]

Incremental ECAP 
(IECAP) [77]

= +

Friction-assisted lateral 
extrusion process (FALEP) 
[80]Plastic flow machining

[79]

(continued on next page) 
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Table 1 (continued ) 

=
√

=
√

Channel angular pressing 
with converging billets 
(CAPCB) [81]Channel angular pressing 

with converging billets 
(CAPCB) [81]

Multiple direct extrusion 
(MDE) [83]

=
√

Multiple direct extrusion 
(SSE) [82]

Accumulated extrusion 
(AE) [85]

Vortex extrusion [84] 

(continued on next page) 
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Table 1 (continued ) 

Cyclic expansion extrusion 
(CEE) [87]

Accumulative press 
bonding (APB) [86]

Equal channel forward 
extrusion (ECFE) [89]

Severe forward extrusion 
(SFE) [88]

Accumulative back 
extrusion (ABE) [91]

Accumulative fold 
forging (AFF) [90]

(continued on next page) 
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Table 1 (continued ) 

=
√

Cyclic closed die forging 
(CCDF) [93]

Repetitive upsetting and 
extrusion (RUE) [92]

Accumulative roll bonding 
and folding (ARBF) [95]

Repetitive corrugation 
and straightening (RCS) 
[94]

Equal channel angular 
rolling (ECAR) [97]Continuous frictional 

angular extrusion 
(CFAE) [96]

(continued on next page) 

K. Edalati et al.                                                                                                                                                                                                                                 



Journal of Alloys and Compounds 1002 (2024) 174667

15

Table 1 (continued ) 

=
( )

√

Cone–cone method (CCM) 
[99]Conshearing [98] 

Rubber pad-constrained 
groove pressing (RP-CGP) 
[101]

=
√

Constrained groove 
pressing (CGP) [100]

Friction stir processing 
(FSP) [103]

Interface sheet 
constrained groove 
pressing (ISCGP) [102] 

(continued on next page) 
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Table 1 (continued ) 

=
√

+ 
)  

 + 

Parallel tubular channel 
angular pressing (PTCAP)
[105]

̄

=
√

+ 
)

cosec(
+ 

Tubular channel angular 
pressing process (TCAP) 
[104]

ECAP for hollow parts [55]Combined parallel 
tubular channel angular 
pressing (Combined 
PTCAP) [106]

=
√

)  

Cyclic flaring and sinking 
(CFS) [108]

=
√

Rubber pad tube 
straining (RPTS) [107]

=  
( )
( )

Accumulative spin 
bonding (ASB) [109]
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Table 2 
Die structure and equivalent plastic strain of SPD methods with cross-sectional area change.  

Equivalent plastic 
strain Schematics of process Equivalent plastic 

strain Schematics of process 

=  +

Non-equal channel angular 
pressing (NECAP) [111]ECAP with chocked exit 

channels (ECAPCEC) 
[110]

Integrated extrusion and 
ECAP (IEECAP) [113]

Half-channel angular 
extrusion (HCAE) [112]

Integrating forward extrusion 
and torsion deformation 
(IFETD) [115]

Porthole-equal channel 
angular pressing (P-
ECAP) [114]

(continued on next page) 
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(HCEC) [170], hydrostatic cyclic extrusion expansion (HCEE) [171], 
hydrostatic twist extrusion (HTE) [172], hydrostatic tube cyclic extru-
sion compression (HTCEC) [173] and hydrostatic tube cyclic extrusion 
expansion (HTCEE) [174] as shown schematically in Fig. 5. Five main 
advantages of utilizing SPD methods with high hydrostatic pressure can 
be summarized as:  

• lower processing load  
• higher aspect ratio of the processable sample  
• more homogeneous properties  
• lower ductility loss  
• smaller saturated grain size 

Similar to common SPD methods, a decrease in grain size and an 
increase in dislocation density leads to an increase in yield and ultimate 
strength in hydrostatic SPD processes [174]. However, in these 

processes, ductility loss is usually lower than that in common SPD 
methods. The strength-ductility paradox is one of the challenges ahead 
of the industrial application of SPD. As an example, it was reported that 
pure copper with simultaneously higher ductility and strength is 
achievable by the hydrostatic TCEE method in comparison with other 
conventional SPD methods like common TCEE, ECAP and ARB [174]. It 
was also reported that HCEC applies more homogeneous strain to the 
sample compared to the common CEC method [170], which results in 
more uniform grain refinement and mechanical properties after HCEC 
[175]. Since mechanical properties are a function of grain size, the 
minimum achievable grain size or minimum saturated grain size is a 
remarkable parameter in SPD methods, which is highly influenced by 
hydrostatic pressure [50,175]. As an example, HTE [172] was capable of 
producing samples with a grain size of 800 nm, which was 50% smaller 
than that of the TE method [176]. Also, among all SPD methods with 
high hydrostatic pressure, those that create higher hydrostatic pressure 

Table 2 (continued ) 

Friction stir tube back 
extrusion process (FSTBE) 
[117]

Friction stir back 
extrusion (FSBE) [116]

Radial backward extrusion 
(RBE) [119]

Radial forward extrusion 
(RFE) [118]

Caliber rolling (CAROL) 
[120]
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Table 3 
Schematic representations of some surface-SPD methods (references do not necessarily refer to the first publication of each method).  

scitamehcSssecorP

Spherical motion burnishing 
(SMB) [121] 

Surface mechanical grinding 
treatment (SMGT) [122]

Conventional deep cold rolling 
(CDCR) [123] 

Ultrasonic deep cold rolling 
(UDCR) [124] 

Surface mechanical rolling 
treatment (SMRT) [125]

High-pressure surface rolling 
(HPSR) [126]

(continued on next page) 
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Table 3 (continued ) 

Fast multiple rotation rolling 
(FMRR) [127]

Vibration-centrifugal 
hardening (VCH) [128,143]

Ultrasonic cold forging 
technology (UCFT) [129]

Ultrasonic nanocrystal surface 
modification (UNSM) [130]

(continued on next page) 
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Table 3 (continued ) 

Rotating pins ultrasonic 
peening (RPUP) [131]

Ultrasonic peening (UP) [132]

Ultrasonic impact peening 
(UIP) [133]

Ultrasonic shot peening 
(USSP) [41] 

Surface mechanical attrition 
treatment (SMAT) [134]

Surface mechanical impact 
treatment (SMIT) [135]

(continued on next page) 
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Table 3 (continued ) 

Abrasive waterjet peening 
(AWJP) [139]

Vibratory peening (VP) [140, 
144]

Laser shock peening (LSP) 
[141,145]

High energy shot peening 
(HESP) [136] 

Severe shot peening (SSP) 
[137] 

Gradient severe shot peening 
(GSSP) [138]

Friction stir processing (FSP)
[142]
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produce samples with better mechanical properties. In this regard, 
CEC-based methods such as HCEC and HTCEC are more capable of grain 
refinement compared to CEE-based methods including HCEE and 
HTCEE [175]. 

In conclusion, the application of high hydrostatic pressure through a 
liquid phase provides specific features for scaling up the sample size. 
Moreover, this strategy improves the microstructure and mechanical 
properties of the final product. 

2.4.2. Upscaling disc sample to rod 
It is well known that HPT is the most effective method in terms of 

reachable strain, versatility of treatable materials, grain refinement and 
processing costs [177,178], but the size of HPT-processed disc samples is 
small, which prevents the industrial application of this method. Over the 
past 30 years, numerous other methods of SPD allowing the production 
of billets and sheets have been developed. A comprehensive overview of 
these methods can be found in a recent review publication [179]. 
Typically, multiple processing passes are required to accumulate a sig-
nificant strain, which is necessary for refining the microstructure of a 
billet to the sub-micrometer range (one-pass processing is possible in 
limited methods like ECAP-conform [156]). As a result, integrating these 
methods into a technological processing chain is challenging, despite the 
clear advantages demonstrated by SPD-processed materials [36, 
180–182]. There have been some attempts to overcome this problem 
and the introduction of high-pressure torsion extrusion (HPTE) is one of 
them. 

The HPTE method reproduces the stress-strain conditions similar to 
HPT conditions (i.e. obtaining very high torsional strain in a single pass) 
but in a rod-shaped sample [183]. The technical detailed description of 
the method was reported elsewhere [58]. In short, a rod-shaped 

specimen is deformed by the punch (moving with the velocity v) as well 
as by the containers (one of them rotates with the velocity ω) (Fig. 6a) in 
such a way that the entire length of a specimen is torsionally deformed, 
as a specimen gradually passes through the shear zone. During the 
deformation, the plastic flow of the billet material follows a spiral 
pattern, as evidenced using aluminum marker wires embedded in a 
copper billet (Fig. 6b) [184,185]. To constrain torsional deformation 
within a thin layer of a billet, and to prevent slippage of the billet in the 
die, the die design was modified to include special holding elements 
(Fig. 6a). Similar to HPT, strain distribution at HPTE is not uniform 
along the billet radius (as well as along the billet height), as follows from 
FEM calculations of the strain distribution in the billet [58,184,186]. 
Therefore, HPTE at low strain levels can be used for the processing of 
gradient structure in the billet, favorable concerning the good balance of 
strength and ductility [187,188]. On the other hand, at a high enough 
strain, the microstructure of the billet can be homogenous due to the 
saturation of grain refinement phenomenon observed at SPD processing 
[38,189]. 

By now HPTE was successfully used for processing commercially 
pure copper [58,190] and aluminum [191], 6101 Al-based alloy, 
niobium [192], magnesium as well as ZK30 and ZK60 Mg-based alloys. 
In each case, the mean grain size of the treated metals and alloys has 
been effectively refined to the submicrometer range. This is illustrated, 
for example, in Fig. 7a which highlights the microstructure refinement 
of copper. Both the microhardness and tensile strength of 
HPTE-processed metals and alloys are significantly higher than those in 
the annealed state. Uniform elongation is reduced to a few percent, but 
total elongation remains rather large, similar to the annealed sample 
(Fig. 7b). This is in agreement with the “strength-ductility paradox” 
proclaimed for some SPD-processed materials [193]. Therefore, HPTE 

Fig. 4. Various types of high-energy ball milling for powder-SPD: (a) attritor milling, (b) vibratory milling, (c,d) planetary milling and (e) high-pressure gas milling 
[43, 151, 153]. 
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appears to be feasible for fabricating metallic rods with small grain size 
and enhanced mechanical properties in one pass, while other 
rod-processing SPD methods like ECAP require several passes [193]. 
HPTE can be also used for processing architectured (gradient and 
hybrid) samples [194–196]. Application of HPTE to a rod sample with 
inserted hardening wires leads to a refinement of the matrix micro-
structure and transforms the shape of wires from straight to helical 
(Fig. 6b). Such architectures resemble the morphology of natural tissues 
having high fracture toughness (bones, shells, etc.) [197,198], and can 
be used for parts operating in special conditions such as shock loading. 

In conclusion, there are ways to upscale the sample size and modify 
the shape by modification of SPD methods, and the HPTE method is one 
of the successful examples that can be used for processing bulk speci-
mens like rods [158]. The main highlight of this method includes the 
possibility of accumulating large shear strain in one pass (orders of 
magnitude larger than in ECAP [27], TE [199] and CEC [87]) under high 
pressure. 

2.4.3. Pipe sample processing 
Pipes and tubes are of significance in industrial applications, but as 

shown in Table 1, quite limited SPD methods are available for the pro-
cessing of pipes. There have been some attempts in recent years for SPD 
processing of pipes and tube high-pressure shearing (t-HPS) is one 

Fig. 5. Schematics of different SPD methods with high hydrostatic pressure [157].  

Fig. 6. (a) Schematics of the HPTE process with three billets inside the die 
[184]. (b) X-ray tomography reconstruction of aluminum wires embedded into 
the copper billet after HPTE processing with translational velocity v =
6 mm/min and rotational velocity ω = 1 rpm (aluminum wires are shown in 
three different colors for better visualization) [185]. 
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successful friction-driven process for such an application [54,159]. The 
t-HPS is different from other friction-driven processes such as HPT [23], 
where the strain planarity of simple shear is violated [159,200], and 
high-pressure sliding (HPS), where the achievable strain level is limited 
by the plunger stroke [57]. Therefore, t-HPS provides a monotonic 
deformation process characterized by constant shear direction and 
strain planarity to high strain levels over 2000 [201]. The development 
of this SPD technique may be classified into three sectors with different 
names as rotation shear [202], high-pressure tube twisting [203,204] 
and t-HPS [54], where they include the same core concept of 
friction-driven azimuthal shear in the tube and independently devel-
oped by three different scientific groups. Continuous processing of t-HPS 
was also investigated [205]. The principle of t-HPS is depicted sche-
matically in Fig. 8 [54,159,200,206,207]: (i) a tube sample is radially 
constrained between a central mandrel and an outer cylinder; (ii) a 
sufficiently high hydrostatic pressure is introduced in the tube wall by 
the four schemes illustrated in Fig. 8, so that frictional forces at the in-
terfaces between the sample-mandrel and the sample-cylinder are suf-
ficiently high to prevent any localized slip between the interfaces; and 
(iii) a simple shear strain is then produced in the tube wall by fixing the 
mandrel and rotating the outer cylinder (or vice versa) [54,202,203]. 
Although t-HPS is different from HPT by the planarity of shear 

deformation [159,200], it has a strain gradient along the radius of the 
sample, but it is the reverse of HPT [54,200,208,209]. 

The microstructure evolution upon t-HPS is distinguished between 
geometrical parameters, such as grain size and aspect ratio versus 
crystallographic parameters, such as grain boundary misorientation, 
high-angle grain boundary fractions and texture. The evolution of 
geometrical parameters is observed to be consistent with those observed 
in general SPD processes [159,210]. Fig. 9a presents an example of pure 
aluminum processed by different SPD methods compared to t-HPS 
[211–220]. Grain size and aspect ratio demonstrate a clear trend of 
stagnation at a t-HPS equivalent strain of ~30 [220]. This is consistent 
with the saturation features of many metals during HPT at equivalent 
strains between 10 and 30 [38]. This general trend was also demon-
strated by Shan and Tóth using different materials like commercially 
pure aluminum [202,204,221], AA5056 alloy, interstitial-free (IF) steel, 
copper and magnesium [204,210]. Accompanying this stagnation in the 
geometrical parameters, the crystallographic parameters evolve 
continuously in contrast. Fig. 9b shows that the average grain boundary 
misorientation and high-angle grain boundary fractions increase first at 
low strain levels, passing through a peak at around the equivalent strain 
of ~9, and decrease thereafter monotonically. The intensity of the 
texture sharply decreases at low strain levels, passing through a mini-
mum at an equivalent strain of ~20, and increases monotonically 
thereafter, where a new texture component gradually dominates [220]. 

The t-HPS method has some advantages. For example, tubes with 
multilayered structures composed of unitary pieces of metals can be 
fabricated in one step of t-HPS [200]. A detailed comparison between 
ARB and t-HPS in multilayered laminate synthesis is given in [200]. 
Moreover, t-HPS provides a new channel to bypass the phase separation 
in solidification and to synthesize homogeneous alloys directly from 
monolithic bulk elements, which provides more freedom in the design 
and synthesis of alloys with enhanced properties. For example, excep-
tional superplasticity as shown in Fig. 9c is achieved in a Pb-40Sn (wt%) 
alloy with off-eutectic composition, synthesized from lead and tin bulks 
in one step of the t-HPS step [201]. The reason for large superplasticity 
by t-HPS is bypassing the inherent pre-eutectic Pb-rich phase separation 
during solidification [222]. A similar effect is also observed in other 
systems [223,224]. 

Fig. 7. (a) Inverse pole figure map of the copper microstructure in the longi-
tudinal cross-section of the billet after HPTE at 373 K with a translational ve-
locity of v = 1 mm/min and a rotational velocity of ω = 1 rpm [190]. (b) 
Tensile curves of copper samples in the initial coarse-grained state (initial) and 
after HPTE at 373 K with a rotational velocity of ω = 1 rpm and translational 
velocities of v = 1 mm/min (v1ω1) and v = 10 mm/min (v10ω1) [185]. 

Fig. 8. Illustration of t-HPS schemes: (a) compression directly applied on two 
ends of tube by pressure ring in scheme E1 [54,206], (b) compression directly 
applied on two ends of tube by stepped mandrel together with stepped cylinder 
in scheme E2 [200,207], (c) a small tapper angle is introduced to tube and die 
parts so that compression can be directly applied to the tube wall in scheme W 
[207,208] and (d) compression directly applied to both ends and wall of tube 
by stepped mandrel together with stepped cylinder in scheme EW [207,208]. 
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In summary, although there are limited SPD methods for processing 
pipes, the newly developed ones such as t-HPS exhibit high potential for 
various applications such as the generation of UFG structure, fabrication 
of multilayered laminates from monolithic materials, and synthesizing 
bulk micro-duplex alloys. The high planarity character of SPD methods 
for processing tubes makes it possible to produce a sole component shear 
texture, which challenges the long-standing position of a torsion-based 
method as a typical simple shear method and this may further bring 
about new challenges to the existing theory of texture evolution for 
simple shear [225]. 

2.4.4. Upscaled sheet processing 
Despite significant progress in the development of SPD techniques 

[1–3,32], limited techniques can apply SPD in sheet samples in a 
continuous process. Among popular methods such as ECAP [193,226], 
ARB [19,227,228], MDF [229,230] and HPT [20,23], only ARB can 
process large sheets continuously [154]. There have been various at-
tempts for continuous SPD processing or processing sheets [156, 
231–235], but SPD processing of large sheets is still challenging. One of 
the recent attempts to process large sheets is the application of HPS [57]. 
The HPS process is similar to HPT because both processes are operated 
under high pressure, and they are applicable to hard-to-deform and/or 
less ductile metallic materials due to highly constrained conditions. The 

Fig. 9. (a) Evolution of average grain sizes and grain aspect ratios upon increase of t-HPS equivalent strain (grain size obtained from other deformation processing of 
aluminium with 99.999% purity are also included for comparison) [220]. (b) Evolution of average grain boundary misorientation, high-angle grain boundary 
fractions and intensity of {110}<110> texture upon increase of t-HPS equivalent strain [220]. (c) Engineering stress-strain curves for the Pb-Sn alloys tested at the 
initial strain rate of 1.0 × 10− 3 s− 1 at room temperature (inset: appearance of the specimens after pulling to failure) [201]. 
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major difference between the two processes is that, while the HPT 
process is used with disc or ring forms of the samples [30,56,177,236, 
237], the HPS process utilizes the samples in rectangular sheet forms 
and sometimes in rod or pipe forms [238,239]. The HPS process has 
more advantages in upscaling the sample size [179]. 

A typical example of the upscaling of sheet samples by HPS is the 
development of incremental feeding HPS (IF-HPS) process as illustrated 
in Fig. 10a. [160,240]. The incremental feeding, which has been com-
bined with HPT in some studies as well [51,58,60,241], has a high po-
tential for upscaling the sample size without any need to increase the 
machine capacity. Fig. 10b shows a detailed cross-sectional view 
including a sheet sample between a plunger and anvils, and Fig. 10c 
illustrates a strained area that is extended to a larger scale by repeating 
the operation of sliding and successive feeding. The feeding pattern can 
be made in one- or two-dimensional directions. Until now, IF-HPS has 
been successful in enlarging the SPD-processed area to 100 × 100 mm2 

in a Ni-based superalloy (Inconel 718) [160,240]. It should be noted that 
it is possible to increase the sizes of rods and pipes by adopting a 
multi-pass HPS [238,239]. In developing the IF-HPS process, the 
following three points are important as recently described in detail [160, 
242]: (i) the use of flat-type anvils to make sample feeding easier and 
sheet surface smoother, (ii) the control of the sliding mode determined 
by the sliding distance and the numbers of the reciprocation of the 
sliding direction and (iii) the control of the feeding pattern determined 
by the feeding distance and the feeding direction. The performance of 
the IF-HPS process was demonstrated with the application to a Ni-based 
superalloy (Inconel 718) [240], a Ti-6Al-7 Nb (wt%) alloy [243] and 
commercially available aluminum alloys (A1050, A3105, A5052 and 
A5182) [242]. 

As an example of the properties of sheets processed by IF-HPS,  
Fig. 11 shows the stress-strain curves of the Inconel 718 after HPS pro-
cessing for a single pass under 4 GPa using (a) flat-type anvils and (b) 
groove-type anvils. The total elongations reached 220% and 710% for 
the sliding distances of 10 and 15 mm using the flat-type anvils [240], 
while they exhibited 770 and 670% using the groove-type anvils for the 
corresponding sliding distances [244]. The difference is significant 
when the sliding distance is 10 mm but no difference was observed when 
the sliding distance is longer than 15 mm [160]. The superplastic 

Fig. 10. (a) Schematic illustration, (b) cross-sectional view and (c) incremental feeding pattern for consecutive 1st, 2nd and 3rd passes of incremental-feeding 
HPS [160]. 

Fig. 11. Stress-strain curves of tensile specimens extracted from samples pro-
cessed using (a) flat-type and (b) groove-type anvils of incremental-feeding HPS 
for sliding distances of 5, 10 and 15 mm (tensile tests were performed at1073 K 
with an initial strain rate of 2 × 10− 2 s− 1 [160]. 
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behavior of these sheets confirms that SPD could be successfully 
imparted in them by using IF-HPS. 

In conclusion, sheet processing is a key issue in the commercializa-
tion of the SPD process. While ARB is still the most practical process for 
the continuous processing of large sheets, methods like IF-HPS can be 
used to process large sheets of hard materials under high pressure. 

2.4.5. Hard cyclic viscoplastic deformation 
Despite the potential of SPD in reducing the grain size [3,22,245, 

246] and increasing tensile strength and hardness [247–250], the 
thermal stability of such materials is relatively low depending on their 
microstructural evolutions [5,251,252]. To have a better balance be-
tween the microstructure, mechanical properties and thermal stability, 
the evolution of these features should be examined step by step during or 
after SPD processing [253–255]. To study the microstructure and 
properties evolution of metallic materials before and after SPD, a pro-
cessing method, called hard cyclic viscoplastic deformation (HCVD), 
was developed based on viscoplasticity theory [256–260], cyclic 
ratcheting [261] and Bauschinger effect [262, 263]. 

The main parameters of HCVD are a strain-controlled deformation 
process with an amplitude of tension-compression in the range from 
±0.2% to ±3.0% with several cycles from 20 to 30 per strain level and a 
frequency of 0.5–2.5 Hz of cycles [161, 263–269]. The 
tension-compression cycle is applied at constant strain amplitude, by a 
strain-controlled system at room temperature (Fig. 12). The load or 
stress amplitude, which depends on the mechanical properties of the 
metallic material, is introduced in the viscoplastic region. During HCVD, 

the viscoplastic region parameters affect the microstructure and me-
chanical, physical and chemical properties of the materials. HCVD can 
be used to study the stability and viability of metallic materials with 
different microstructures and grain sizes and to predict their suitability 
over time in harsh environments such as aerospace and defense appli-
cations where the strain amplitude is greater than ±0.2% of the strain 
[268]. It was shown that the microstructure and properties of the ma-
terial obtained before or after SPD processes alter in HCVD testing. For 
example, the initial strength properties of a coarse-grained material 
increase, but the strength properties of a UFG material may decrease. 
Also, other features of materials such as electrical conductivity, dislo-
cation density, etc., change during HCVD processing [269, 270]. 
Changes in physical properties (Figs. 13a and 13b) before material 
failure were reported during HCVD [267]. 

In summary, the HCVD method can provide information about the 
behavior of materials, including SPD-processed materials in various 
extreme operating conditions such as aerospace and defense applica-
tions, when the margin coefficient is very small and the deformation can 
be increased to 0.2% and higher. Such information provided by HCVD 
can expand the application of SPD in the industry by clarifying the re-
lationships between microstructure, mechanics, physics and chemistry 
with processing parameters. 

2.4.6. Cryogenic-SPD 
An effective way to obtain high-strength UFG materials is by con-

ducting SPD at cryogenic temperature in liquid nitrogen [5, 271–273]. 
UFG metals and alloys obtained by cryogenic-SPD exhibit exceptional 

Fig. 12. (a-c) HCVD stress amplitude versus strain amplitude curves of niobium for viscoplastic tension-compression straining at (a) an amplitude of ε = ±0.1% and 
corresponding deformation amplitude of v ꞊ ± 0.01 mm in the base length of 10 mm in elastic regime, (b) ε = ±0.5% and v ꞊ ± 0.05 mm and (c) ε = ±2.0% and v ꞊ ±
0.2 mm. (d) HCVD stress amplitude versus time curves at ε = ±2%. (e) Effect of elastic-plasticity on the deflection of the curves during the compression (C) and 
tension (T) cycles [161]. 
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mechanical properties in a wide temperature range, especially at cryo-
genic temperatures, due to the activation of additional deformation 
mechanisms, such as twinning and phase transitions [274–276]. The 
coexistence of several deformation paths affects the evolution of the 
microstructure and deformation mechanisms during cryogenic-SPD. 
This section reviews the influence of various methods of 
cryogenic-SPD (ECAP [193], quasi-hydroextrusion [277], HPT [22]) on 
the mechanical properties of some metals (titanium, zirconium, cobalt), 
titanium grade 2 alloy and high-entropy alloys (HEAs). The influence of 
cryo-rolling on the mechanical properties of titanium is also briefly 
mentioned [278–282]. A more complete review of the results on this 
topic was given elsewhere [162]. 

Cryogenic-SPD has received attention, particularly in recent years 
[283–289]. Such studies were partly motivated by the effectiveness of 
cryo-rolling in controlling microstructure [278–282]. Cryo-rolling 
studies on commercially pure titanium grade 2 showed that the mate-
rial after cryo-rolling demonstrates a higher rate of hardening (due to 
the rapid growth of twins and a slower dynamic recovery process) than 
after rolling at room temperature. Titanium exhibits an increase in 
strength and a finer nanostructure with an average grain size of 
30–80 nm (compared to 200 nm after rolling at room temperature). 
Commercially pure titanium grade 2 was also processed by cryo-ECAP, 
which led to a decrease in the average grain size and an increase in 
strength (by about 10%) compared to ECAP at room temperature [283]. 
The effect of HPT on the structure and mechanical properties of 
high-purity titanium was also investigated in [284]. The hardness and 

strength of nanostructured titanium treated with cryo-HPT is 10–14% 
higher compared to room-temperature processing due to the smaller 
average grain size (100 nm instead of 160 nm). A combination of 
different SPD methods (ECAP and quasi-hydroextrusion) at cryogenic 
temperature was also applied to commercially pure titanium in a study 
[285]. A significant increase in the yield strength by a factor of two 
(from 0.42 GPa at 300 K to 0.86 GPa at 77 K) was achieved using simple 
shear via ECAP and axisymmetric deformation via quasi-hydroextrusion 
at 77 K. These results showed that additional modes of plastic defor-
mation with a different set of working sliding systems significantly affect 
the microstructure and mechanical properties of titanium. 

It was reported that extra strengthening by cryogenic-SPD is not 
limited to titanium and similar results were reported for other metals 
such as zirconium and cobalt [286, 287]. After HPT at 77 K and 300 K, 
the average grain sizes are 80 nm and 200 nm for zirconium and 70 nm 
and 100 nm for cobalt, respectively. The values of microhardness, yield 
strength and strength under deformation by uniaxial compression after 
cryo-HPT (at temperatures of 77 K and 4.2 K) are approximately 10% 
higher than those after HPT at room temperature. These effects are due 
to the slowdown in the processes of dynamic recovery during cryo-HPT 
and an increase in the contribution of the twinning process to grain 
refinement. The effect of cryo-HPT on the structure and strength prop-
erties of HEAs was studied as well[288–291]. After cryo-HPT, both 
hardening and softening processes are observed in HEAs. In some HEAs 
(CoCrFeNiMn, CoCrFeNiMnV0.2, Co20Cr26Fe20Mn20Ni14), cryo-HPT re-
sults in lower yield strength and microhardness than those after HPT at 

Fig. 13. (a) Variation of Vickers hardness versus aging temperature and (b) electrical conductivity versus aging temperature, (c) tensile strength versus elongation 
and (d) experimental values of stress amplitudes obtained during HCVD testing for 20 cycles at a frequency of 0.5 Hz and a strain amplitude of ±1% for Cu-0.66Cr- 
0.03Si-0.02Fe-0.016S (wt%) alloy processed under different conditions (initial coarse-grained sample, SPD by indirect extrusion angular pressing IEAP and SPD 
followed by heat treatment at 723 K IEAP+HT) [267]. 
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room temperature. The reasons for such softening may be related to 
phase transformations (FCC-HCP) and a decrease in the dislocation 
density [292–295]. Such transformations during and after cryo-HPT are 
shown in Figs. 14 and 15 [288]. It should be noted that in nano-
structured CoCrFeMnNi [274] obtained at certain values of pressure and 
number of revolutions, subsequent holding at room temperature leads to 
reverse structural transformations. Despite reported results on HEAs, 
cryogenic-SPD can generally be considered an effective method for 
producing high-strength materials that can be used as materials for 
structural and functional purposes. 

Fig. 14. Inverse pole figure images and (100) pole figures for Co20Cr26-

Fe20Mn20Ni14 alloy after cryogenic-SPD via HPT for (a,d,g) 1 rotation, (b,e,h) 3 
rotations and (c,f,k) 5 rotations, (d–f) show the grains with sizes smaller than 1 
μm (maximum texture intensity is indicated for each pole figure in mrd). (j-m) 
Inverse pole figure images of Co20Cr26Fe20Mn20Ni14 alloy after cryogenic-SPD 
via HPT for (j,l) 1 rotation and (k,m) 5 rotations, where (l,m) show the 
grains with sizes smaller than 1 μm [288]. 

Fig. 15. (a-f) SEM backscatter electron images of Co20Cr26Fe20Mn20Ni14 alloy 
after cryogenic-SPD via HPT for (a,d) 1 rotation, (b,e) 3 rotations and (c,f) 5 
rotations where (d-f) are the magnified images of the corresponding areas 
highlighted in (a-c). (g-i) TEM images of the Co20Cr26Fe20Mn20Ni14 alloy after 5 
rotations of HPT at 300 K, where (g) is a bright-field image, (h) is a dark-field 
image and (i) is the corresponding selected area electron diffraction pattern. (j) 
Schematics illustrating the microstructural evolution of Co20Cr26Fe20Mn20Ni14 
alloy which accommodates stored strain energy during and after cryo- 
HPT [288]. 

Fig. 16. Schematic illustration of ultra-SPD concept, in which severe shear 
strains are applied to a material so that the thickness of sheared phases is 
reduced to the subnanometer level [298]. 
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2.4.7. Ultra-SPD 
The ultra-SPD concept was defined in 2017 in an attempt to discover 

new materials by mechanical alloying via SPD [296]. As schematically 
illustrated in Fig. 16, ultra-SPD is defined as SPD processes in which the 
applied shear strain significantly increases so that the thicknesses of 
phases are reduced to the subnanometer level [296]. The shear strain 
required to achieve these changes depends on the initial phase di-
mensions and co-deformation behavior of various phases, but it was 
suggested that the applied shear strain should be over 1000 in ultra-SPD 
[178]. Besides the original target of ultra-SPD was the synthesis of new 
materials, it has also raised questions concerning the deformation 
behavior of materials at the steady state [38, 45]. It was shown that 
some deviations from the steady-state hardness occur in a few pure 
metals after ultra-SPD [178]. These observations suggested that there 
can be new deformation stages beyond stage V of deformation at 
extremely large shear strains [297]. 

Among various bulk-SPD methods [1–3, 37, 299], HPT, which ap-
plies to disc [3, 177] or ring [56, 300] samples, is currently the only 
method used to apply ultra-SPD. There are a few reasons that HPT ap-
pears as the best candidate for this application. (i) Shear strain can be 
continuously enhanced in HPT by increasing the number of rotations of 
anvils with almost no limitations, a fact that was first recognized by 
Bridgman [20]. (ii) High pressure in HPT makes it applicable to metals 
with high hardness such as hafnium [301], molybdenum [302] and 
tungsten [303] and their powder mixtures for mechanical alloying. (iii) 
The method is one of the most effective methods to introduce lattice 
defects [304–306] for enhancing dynamic interdiffusion [307, 308] and 
controlling solid-state phase transformations [9, 10]. 

The concept of ultra-SPD has been successfully used to synthesize 
various materials such as binary alloys [309–312], ternary alloys 
[313–315], HEAs [316, 317], intermetallics [318–321], hydrides [322], 
oxides [323–325] and oxynitrides [326, 327]. The materials synthesized 
by this method exhibit interesting properties such as ultrahigh strength, 
stability at high temperatures, enhanced superplasticity at room tem-
perature, storage of hydrogen at low temperature, compatibility with 
biological environments, superconductivity and photocatalytic activity 
for hydrogen and oxygen production and CO2 conversion, as reviewed in 
a few papers [164, 298]. Some of the features of materials processed by 
ultra-SPD are briefly reviewed below.  

• Materials processed by SPD usually exhibit poor thermal stability 
because of large stored energy [328–331], but ultra-SPD can 
contribute to thermal stability by the generation of supersaturated 
solid solution and second-phase precipitation. Ultra-SPD-developed 
supersaturated alloys of aluminum with calcium [311], iron [310], 
zirconium [332] and lanthanum and cerium [315] exhibit not only 
high thermal stability but also strengthening through precipitation 
hardening.  

• A combination of high strain and high pressure and their interaction 
with lattice defects can lead to the formation of hidden phases [8]. In 
this regard, ultra-SPD could stabilize large fractions of phases that 
are not formed in equilibrium phase diagrams. The formation of 
body-centered cubic (BCC) and face-centered cubic (FCC) phases in 
magnesium alloyed with titanium [333], zirconium [334] and 
hafnium [335] are the most highlighted examples because these el-
ements are immiscible in magnesium even in the liquid form. 

• Nanograined intermetallics are usually produced by two-step pro-
cesses such as the production of nanopowders followed by high- 
temperature sintering [43, 336–338]. On the contrary, ultra-SPD 
synthesizes bulk nanograined intermetallics in a single step. Mg2X 
(X: various elements) [339], AlNi [318], Al3Ni [319, 320] TiAl 
[321], FeNi [340] and Ni2AlTi [341] are some intermetallics syn-
thesized by ultra-SPD from elemental powders.  

• Materials for orthopedy should have a combination of low elastic 
modulus, high hardness and good biocompatibility [342]. 
SPD-processed biomaterials, which are usually based on titanium, 

show high hardness and good biocompatibility but suffer from high 
elastic modulus [36, 343–345]. In a few attempts to produce bio-
materials with high hardness and low elastic modulus, ultra-SPD was 
employed to synthesize various alloys in the Ti-Zr-Hf-Nb-Ta alloy 
system [312, 317].  

• Superplasticity can be usually achieved at homologous temperatures 
over 0.5, where grain boundary sliding is dominant [346]. Due to the 
activation of grain boundary sliding at high homologous tempera-
tures, the achievement of room-temperature superplasticity is not 
possible in conventional magnesium and aluminum alloys. To reduce 
the superplastic deformation temperature, two strategies can be used 
[347]: (i) grain refinement which was employed to attain 
low-temperature superplasticity by conventional SPD processing 
[33, 348, 349]; and (ii) enhancement of grain boundary diffusion by 
the engineering of grain boundaries. The second strategy was real-
ized by ultra-SPD in Mg-Li and Al-Zn alloys to attain 
room-temperature superplasticity for the first time in magnesium 
and aluminum alloys [350, 351]. 

• Nb-Ti alloys are the most used superconductors which are industri-
ally produced by several repetitions of wire drawing and long-time 
annealing [352–355]. Ultra-SPD provides a single-step process to 
produce Nb-Ti superconductors with properties similar to industrial 
products [356].  

• The production of magnesium alloys for storing hydrogen at room 
temperature has been a long-time objective of many research works, 
but there has been little success in this regard [357, 358]. Ultra-SPD 
was used for the synthesis of some Mg-based hydrogen storage ma-
terials like Mg2X (X: various elements) [339], Mg-Ti [322, 333], 

Table 4 
Summary of the application of ultra-SPD to various materials [164].  

Alloy Shear 
Strain 

Characteristics Ref. 

Mg–Li  7800 Superplasticity at room 
temperature 

[351] 

Mg2X (X: 21 
elements)  

5500 Storing hydrogen [339] 

Mg–Ti  5500 Storing hydrogen [333] 
Mg–Zr  55000 Storing hydrogen in new phases [334] 
Mg–Hf  3900 Biocompatible new phases [335] 
Mg–V–Cr  50000 Storing hydrogen [313] 
Mg4NiPd  59000 Storing hydrogen at room 

temperature 
[359] 

MgTiVCrFe  12000 Storing hydrogen [314] 
MgTiH4  17000 Storing hydrogen [322] 
Al–Ca  39000 Thermal stability [311] 
Al–Fe  39000 Thermal stability [310] 
AlNi  4700 Enhanced microhardness [318] 
Al3Ni  4700 Enhanced microhardness [319, 

320] 
Al–Cu  3900 Quick interdiffusion [308] 
Al–Zn  7800 Superplasticity at room 

temperature 
[351] 

Al–Zr  39000 Thermal stability and age 
hardening 

[332] 

Al–La–Ce  39000 Thermal stability and age 
hardening 

[315] 

TiAl  2000 Enhanced strength/plasticity [321] 
TiV  5500 Storing hydrogen with no 

activation treatment 
[309] 

Ti–Nb  5900 Biocompatibility with good 
strength/elasticity 

[312] 

TiZrHfNbTa  2000 Biocompatibility with good 
strength/elasticity 

[317] 

TiZHfNbTaO11  7800 Photocatalytic H2 evolution and 
CO2 conversion 

[323, 
324] 

TiZrHfNbTaO6N3  3900 Photocatalytic H2 evolution and 
CO2 conversion 

[326, 
327] 

TiZrNbTaWO12  3900 Photocatalytic O2 evolution [325] 
FeNi  3900 Quick phase transition [340] 
Ni2AlTi  4700 Enhanced microhardness [341] 
Nb–Ti  3900 Superconductivity [356]  
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Mg-Zr [334], Mg-V-Cr [313] and Mg-V-Ti-Cr-Fe [314], but the most 
interesting results were reported for Mg-Ni-Pd which could revers-
ibly store hydrogen at room temperature [359].  

• Photocatalysis is a clean technology to produce hydrogen and oxygen 
from water or convert CO2 to CO under sunlight [360, 361]. 
Ultra-SPD contributed to this field by the introduction of the first 
high-entropy photocatalysts such as TiZrHfNbTaO11 [323, 324], 
TiZrNbTaWO12 [325] and TiZrHfNbTaO6N3 [326, 327]. 

Table 4 summarizes major studies on the application of ultra-SPD, 
including the compositions of processed materials, applied shear strain 
and reported characteristics. All these results suggest the high potential 
of ultra-SPD in exploring new functional materials. 

3. Microstructural features after SPD 

SPD induces large plastic deformation in a piece of sample, and thus, 
significant microstructural changes are introduced. Since such plastic 
deformations are introduced at temperatures below the traditional 
recrystallization temperature and under high pressure, the introduced 
microstructural features are usually unique and can hardly be intro-
duced by other methods [2, 3]. Continuous refinement of grains and the 
introduction of various defects during SPD increases the internal energy 
of the material, leading to the reduction of the temperature for contin-
uous dynamic recrystallization to room temperature [362]. This issue 
finally leads to the saturation of microstructural evolution, the forma-
tion of UFG grains with nanometer or submicrometer sizes, the 
appearance of high-angle grain boundaries and the weakening or 
randomization of texture [3, 363]. The saturation of grain refinement to 
the steady state and parameters influencing the steady-state grain size 
have been a matter of study for a long time [189, 297, 364, 365]. Im-
purity atoms, alloying, the addition of a second phase, and reduction of 
homologous temperature (i.e. reducing the processing temperature or 
increasing the melting point) are well-known factors that reduce the 
steady-state grain size [189, 297, 364, 365]. It is well established that in 
materials with covalent or ionic bondings such as ceramics, the steady 
state grain size can be lower than in metallic materials due to difficult 
dislocation slip and grain boundary motion in these materials [365]. 
There have been some suggestions that the materials with low stacking 
fault energy can have smaller grain sizes [364], while some studies 
showed that the steady-state grain size is reasonably independent of 
stacking fault energy [365]. Moreover, steady-state grain size is inde-
pendent of pressure if no phase transformation occurs [366]. Besides 
grain refinement, SPD introduces large fractions of lattice defects such as 
vacancies [306] and dislocations [305]. Grain boundaries formed by 
SPD have special features usually not in equilibrium conditions [307] 
and can sometimes be decorated by segregation or dynamic precipita-
tion [304]. In the following sections, after a discussion of features of 
high-angle grain boundaries, recent advances in the investigation of the 
microstructure of SPD-processed materials are reviewed. 

3.1. Grain boundaries and related phenomena 

SPD drives bulk materials far away from equilibrium and opens up 
new opportunities to explore hitherto uncharted regions of structure- 
property correlations with respect to grain size, strain and defect den-
sity under extreme conditions [5]. The SPD processing involves the 
interaction of defects of different dimensionality during deformation 
and their interrelation with fluxes of solute atoms or with segregation 
fields under complex elastic strain fields, resulting in chemo-mechanical 
coupling effects especially accompanying nucleation and precipitation 
of secondary phases [367]. All of these aspects that result from the 
complex interactions of defects and solutes strongly affect phase equi-
libria and phase- and microstructure evolution and stability. Naturally, 
material properties, such as diffusion rates or the plastic response of 
SPD-processed materials are controlled by the SPD-induced 

microstructure, giving rise to new opportunities for “defect engineering” 
[368]. For such defect engineering, fundamental aspects of the 
processing-microstructure-property correlations under these boundary 
conditions have to be addressed. While most SPD-related work has 
focused on crystalline materials and microstructures [299, 369], 
amorphization transformations [370, 371] and deformation-induced 
structure modifications of bulk metallic glasses [372] present new as-
pects and additional opportunities that expand the spectrum of 
SPD-engineered materials with superfunctional properties [180]. 

A prominent aspect of specific and characteristic microstructural 
features that are induced by SPD processing of crystalline materials is 
the appearance of so-called “non-equilibrium” or “deformation-modi-
fied” grain boundaries as one of the prominent characteristics of SPD 
processing [307, 373]. The non-equilibrium grain boundaries in 
SPD-processed materials were suggested to be characterized by 
increased elastic strains, enhanced diffusivities and elevated grain 
boundary energies [374–376]. An in-depth analysis of local strains using 
geometrical phase analysis from TEM images with atomic resolution 
[377, 378] revealed an accumulation of defects at the grain boundaries 

Fig. 17. (a) Strain map showing the in-plane rigid-body rotation ωxy for HPT- 
processed PdAg alloy [377]. (b) Relative enhancement of diffusion rate for 
non-equilibrium grain boundaries with respect to diffusion along relaxed gen-
eral high-angle grain boundaries as they are present in the polycrystalline 
counterparts for SPD-processed nickel [380], copper [381], Cu-0.17Zr (wt%) 
[382] and Cu-1Pb (wt%) [383] where inverse homologous temperature scale, 
Tm/T, is used for proper comparison. The relative enhancements measured for 
manganese and iron in additively manufactured CoCrFeNiMn HEA are shown in 
(b) for comparison [384]. 
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with atomic-scale arrangements [379] and the resulting significant 
accumulation of strains at such grain boundaries (Fig. 17a). Radiotracer 
measurements of diffusion rates along such interfaces in SPD-processed 
metals and alloys confirmed a non-equilibrium state of high-angle grain 
boundaries in terms of severely enhanced diffusion rates (Fig. 17b), 
orders of magnitude above those typical of polycrystalline counterparts 
[379–383]. 

However, recent results clearly demonstrated that the existence of 
such a non-equilibrium state of grain boundaries is not limited to SPD- 
processed materials. In fact, similar grain boundary states have 
recently been discovered in additively manufactured alloys [384–386], 
where the processing history did not involve externally applied defor-
mation. In the micrograph and energy-dispersive X-ray spectroscopy 
mapping of Fig. 18a, the non-equilibrium segregation of manganese 
atoms at both low-angle and high-angle grain boundaries in an addi-
tively manufactured CoCrFeMnNi alloy is indicated. The lack of similar 
segregation and equiatomic concentrations at grain boundaries has been 
observed in polycrystalline CoCrFeMnNi alloys [387], which are 
prominent members of the HEA family. Measurements of tracer diffu-
sion in the additively manufactured alloy revealed a significant 
enhancement of grain boundary diffusion rates by many orders of 
magnitude, even exceeding the relative enhancement observed for pure 
metals or highly concentrated binary alloys (Fig. 17b). This enhance-
ment is exemplified for manganese and iron in Fig. 17b. This unexpected 
result may be related to the larger configuration space of grain boundary 
structures in complex, multicomponent alloys. For example, segregation 
must be taken into account and the structure of grain boundary com-
plexions could also be affected by the presence of minute amounts of 
alloying elements that are not sufficiently concentrated to allow obser-
vation of segregation. The strong enhancement of grain boundary 
diffusion disappears completely after one-hour annealing treatment at a 
moderate temperature of 773 K, which has been shown to cause no 
measurable changes in the microstructure [385]. 

SPD processing can also serve for bonding or mechanical intermixing 
at low homologous temperatures. Previous work on HPT-processed 
HEAs has typically been focused on single-phase solid solutions 
[388–392]. However, recently the potential for fabricating UFG or even 
nanocrystalline HEA composites via HPT processing has been analyzed 

[370]. For this reason, single-phase equiatomic FCC CoCrFeMnNi and 
BCC HfNbTaTiZr HEAs were severely co-deformed by HPT, enabling the 
fabrication of a novel generation of HEA nanocomposites. Bulk nano-
composites consisting of alternating elongated nanocrystalline CoCr-
FeMnNi and amorphous HfNbTaTiZr nano-lamellae with residual 
crystalline fractions of HfNbTaTiZr developed (Fig. 18b), exhibiting 
complex microstructures with vortex-like regions and extremely high 
hardness. The hardness of the co-deformed BCC-FCC-amorphous nano-
composite exceeded both single-phase materials deformed under similar 
conditions and reached values exceeding 6 GPa. Amorphization during 
severe co-deformation and the associated defect accumulation and 
defect interaction at the severely strained heterophase interfaces may 
represent a rather extreme material response. However, these results 
highlight the importance of strain-induced modifications that can occur 
at heterophase interfaces during SPD processing [370]. 

SPD processing under at least partial confinement and involving high 
hydrostatic pressure introduces significant structural modifications of 
metals and crystalline as well as amorphous alloys and drives internal 
interfaces into states that are denoted as non-equilibrium. The modified 
grain boundary structure in terms of structural defects (or complexions 
[393, 394]) affects grain boundary segregation [395, 396] and diffusion 
[397], and influences strain accumulation [398] or inhibits grain 
boundary migration by rotational defects [367]. Such modifications are 
not limited by the SPD processing of materials. Non-equilibrium pro-
cessing via additive manufacturing drives grain boundaries to similar 
non-equilibrium states featuring both non-equilibrium segregation and 
enhanced diffusion [384]. 

In-depth analysis shows a strong heterogeneity of grain boundary 
structures [386], segregation response [304, 370, 395, 396], precipita-
tion, amorphization and/or phase decomposition along interfaces with 
the same macroscopic degrees of freedom [370], and therefore requires 
new approaches that go beyond purely geometric descriptions of the 
atomic structure and the related properties of internal interfaces, espe-
cially after non-equilibrium processing. 

3.2. Investigation of non-equilibrium grain boundaries 

As mentioned earlier, SPD allows the production of bulk UFG 

Fig. 18. (a) Microstructure and energy-dispersive X-ray spectroscopy chemical maps of additively manufactured CoCrFeMnNi alloy in the as-printed state with 
pronounced non-equilibrium segregation of manganese [386]]. (b) A virtual dark-field image reconstructed from nanobeam diffraction mapping of co-deformed 
FCC/BCC HEA composite (left panel), individual diffraction patterns revealing crystalline reflections of the FCC CoCrFeMnNi phase (red square), an amorphous 
halo in the Ta-rich (green square) and an amorphous halo with crystalline reflections at the equiatomic HfNbTaTiZr regions (blue square) and color map of the phases 
using the value of the intensity-weighted mean of the reciprocal diffraction distance around the first strong crystalline reflections of each nano-beam diffraction 
pattern (right panel) [370]. Homogenous red and yellow regions fit with the FCC phase. The green regions match the BCC phase and/or the mixed phase regions. The 
blue regions correspond to a Ta-rich amorphous-nanocrystalline composite. 
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materials with more attractive properties compared to their coarse- 
grained counterparts [5]. As will be discussed later, these materials 
demonstrate higher strength and hardness, increased toughness and 
wear resistance, and enhanced fatigue strength and superplasticity [182, 
347, 399–401]. In UFG materials processed by SPD, the role of grain 
boundaries is especially high not only because of their high density but 
also due to their specific state [3]. In the present chapter, specific fea-
tures of grain boundaries in various materials nanostructured by 
different modes of SPD are considered in detail. 

As mentioned in the previous chapter, grain boundaries in UFG 
materials processed by SPD are in a non-equilibrium state, which is 
responsible for the improved mechanical properties [394, 402]. Nazarov 
worked out a theoretical model, according to which modification in the 
structure and properties of grain boundaries under the SPD results from 
the absorption of lattice dislocations, and the non-equilibrium grain 
boundaries are characterized by excess free energy, higher fields of 
long-range elastic stresses and larger free volume compared to conven-
tional high-angle grain boundaries [376]. In recent publications, the 
term deformation-modified grain boundaries is used along with 
non-equilibrium [307, 373]. It was suggested that localized residual 
strain fields are located in the near-boundary regions of 
deformation-modified grain boundaries, rather than long-range elastic 
stress fields [403]. The specific state of deformation-modified grain 

boundaries can be revealed by various methods.  

• Firstly, a conclusion about the non-equilibrium state of boundaries in 
nanostructured materials was made based on TEM. For example, 
significant elastic distortions near grain boundaries in nanocrystal-
line nickel and Ni3Al were observed by high-resolution TEM [404]. 
In [405] the “zigzag” stepped configurations of grain boundaries in 
UFG pure copper and Al-3Mg (wt%) alloy processed by HPT were 
attributed to their non-equilibrium state. An analogous appearance 
of grain boundaries was observed in HPT-processed niobium and 
nickel (Figs. 19a and 19b) [406, 407].  

• The state of grain boundaries can be assessed qualitatively and 
quantitatively by emission Mössbauer spectroscopy [408], which 
reveals the specific deformation-modified state of grain boundaries 
in molybdenum, tungsten and niobium [406, 409–411]. In Fig. 19c, 
the isomer shifts of 57Co(57Fe) spectral lines versus annealing tem-
perature are compared for coarse-grained and UFG niobium [406]. 
In coarse-grained niobium, the isomer shifts of both lines (grain--
boundary line – component 1 and volume line – component 2) in-
crease slightly with increasing annealing temperature approaching 
the isomer shift in the regular lattice. In UFG niobium, the isomer 
shifts of both lines are noticeably lower, especially at low tempera-
tures (673–723 K), because of an excessive free volume, which is one 

Fig. 19. (a,b) Stepwise boundaries in HPT-processed (a) niobium and (b) nickel [407]. (c) Isomer shifts of 57Co(57Fe) spectral lines versus annealing temperature in 
coarse-grained niobium (red lines and symbols) and UFG niobium (blue lines and symbols) [406]. (d) Microhardness versus grain size (d) in nickel processed by 
various techniques [407]. 
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of the main features of the deformation-modified grain boundaries. 
Above 723 K, the isomer shifts of both lines increase sharply, and 
after annealing at 873 K, the isomer shift of the volume line of the 
UFG sample approaches the value for the coarse-grained sample. The 
increase of isomer shift with increasing annealing temperature is 
explained by the recovery processes in grain boundaries and 
near-boundary regions of crystallites.  

• The state of grain boundaries can also be revealed by diffusion 
methods. For example, in [412], an additional free volume was 
supposed in the deformation-modified boundaries of titanium pro-
cessed by ECAP based on the tracer diffusion data. In some publi-
cations, it was shown that under the SPD processing, a part of 
high-angle boundaries acquires the deformation-modified state, 

characterized by accelerated atomic transfer [380, 403, 413, 414]. 
As demonstrated in [415–418], the grain-boundary diffusion co-
efficients of cobalt in UFG nickel and niobium processed by HPT are 
several orders of magnitude higher than in their coarse-grained 
counterparts, suggesting that non-equilibrium grain boundaries 
form under SPD processing.  

• Additional information on the specific state of deformation-modified 
grain boundaries can be obtained from the joint analysis of emission 
Mössbauer spectroscopy and radiotracer data [419]. Based on this 
approach, it was shown in [420] that grain boundaries in UFG mo-
lybdenum processed by HPT are the ultrafast diffusion paths, the 
coefficients of which are several orders of magnitude higher than 
those for grain boundaries of recrystallization origin, and this is a 

Fig. 20. (a) Number of scientific documents that included EBSD as keyword since 1994 until now and their distribution according to the research field (information 
obtained from Scopus data base on June 2023). (b) EBSD system and main calculation and representation techniques [437, 439, 442, 443]. 
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direct part of the evidence for the specific non-equilibrium state of 
grain boundaries. 

In [407], tunneling microscopy was additionally applied to reveal 
the specific state of grain boundaries in HPT-processed nickel. The 
relative energy of grain boundaries was determined by the method of 
etching grooves and calculated from the dihedral angle at the bottom of 
an etching groove by Equation 1. 

γrel =
γgb

γs
= 2cos

ψ
2

(1)  

where γrel, γgb and γs are the relative energy of a grain boundary, the 
grain boundary energy and the energy of a free surface, respectively, and 
Ψ is the angle at the bottom of the groove. The relative energies of grain 
boundaries markedly increase with straining, and even at HPT by 0.5 
revolutions, γrel is much higher than in coarse-grained nickel, where it 
equals 0.30 [421]. 

Fig. 19d demonstrates the Hall-Petch dependence of microhardness 
on the square root of the average crystallite size for nickel [329, 380, 
407, 422–424], and it is obvious that for grain sizes down to ~ 100 nm 
the dependence is linear, indicating that the main strengthening factor is 
grain refinement rather than the specific state of grain boundaries. This 
conclusion is confirmed by the results of X-ray studies, based on which 
the level of microstresses was determined. These studies showed that 
under HPT conditions, the microstress changes from 0.23 GPa for a 
sample deformed by 0.5 revolutions to 0.35 GPa for a sample deformed 
by 5 revolutions [407], and this is much less than the total strengthening 
of nickel after SPD processing. 

The main conclusion of this section is that the specific non- 
equilibrium state of grain boundaries, characterized by excess free en-
ergy and larger free volume compared to conventional relaxed high- 
angle grain boundaries, is formed in metals and alloys under various 
modes of SPD. This can be revealed by different methods. The contri-
bution of the deformation-modified state of grain boundaries to 
strengthening is relatively small, and the strengthening mainly results 
from grain refinement by SPD processing. 

3.3. Investigation of microstructure by electron backscatter diffraction 

UFG materials produced by SPD methods present complex micro-
structures involving different phases, high density of defects, heteroge-
neous grain sizes and local texture variations that cannot be 
characterized by conventional optical microscopy [425]. In this regard, 
scanning electron microscopy (SEM) coupled with an electron back-
scatter diffraction (EBSD) detector has gained importance over the years 
for a thorough microstructure characterization of polycrystalline mate-
rials [426, 427]. Fig. 20a proves the continuously growing interest in 
this technique as the number of published documents has increased in 
the last thirty years in diverse research fields such as medicine, mathe-
matics, energy, chemistry, physics and materials science. In this tech-
nique, an electron beam strikes the surface of a 70◦ tilted sample, where 
the diffracted electrons produce a characteristic pattern known as 
Kikuchi lines on a phosphorous screen (Fig. 20b) [428–430]. This 
pattern reflects the crystal structure and orientation of the region from 
which it was generated, so it is recorded and indexed according to the 
previously selected database [431]. Various in situ and ex situ micro-
structural measurements can be performed inside the SEM vacuum 
chamber: After the data acquisition, several microstructural represen-
tations and calculations can be obtained: phase identification, texture 
[432], recrystallized fractions (using local strain indicators like kernel 
average misorientation KAM and image quality IQ) [433, 434], 
composition distribution [435], grain size distribution, geometrically 
necessary dislocations GND and Schmid factor quantifications. These 
techniques enable the study of grain fragmentation and plasticity of 
materials [436, 437], characterization of grain boundaries, strain 

distribution and microstructural heterogeneity (e.g. grain reference 
orientation deviation GROD) [438, 439]. EBSD has evolved tremen-
dously during the last decade in terms of software and hardware due to 
new detectors that enable fast scans (i.e. several samples analyzed in a 
few hours) and the building up of three-dimensional microstructures at 
high resolution [440]. Furthermore, the transmission Kikuchi diffraction 
technique, also known as transmission-electron backscatter diffraction, 
can overcome some limits of standard EBSD. These constraints include 
the spatial resolution of around 20 nm and the angular resolution of 
approximately 1◦. This method utilizes TEM samples within the SEM 
chamber, enabling a greater spatial resolution compared to conven-
tional EBSD. Therefore, it is particularly well-suited for analyzing 
nanomaterials due to its exceptional sensitivity to small variations in the 
crystal lattice [441]. 

EBSD allows for the analysis of several microstructural characteris-
tics. For example, Fig. 21a-c show the microstructure evolution as IQ 
map with the overlapping low-angle and high-angle grain boundaries for 
Armco iron after annealing treatment (Fig. 21a) and subsequently ECAP 
processing by one (Figs. 21b) and 16 ECAP passes (Fig. 21c). This rep-
resentation highlights the microstructure transformation from the 
coarse-grained annealed state to a UFG microstructure, passing through 
a substructure state dominated by a high fraction of low-angle grain 
boundaries. The transformation from low-angle grain boundaries to 
high-angle grain boundaries at room temperature (i.e. very low homol-
ogous temperature) has been described as a continuous dynamic 
recrystallization process [444]. It is pertinent to note that conducting a 
successful EBSD analysis necessitates accurately defining microstruc-
tural parameters such as the minimum grain size and the minimum grain 
boundary misorientation to obtain reliable results. Typically, a grain 
should consist of at least five pixels to be considered as such, and the 
minimum grain boundary misorientation needed to differentiate be-
tween grains falls within the range of 1–5◦. It is important to mention 
that these are general guidelines, and the specific requirements may 
vary depending on factors such as the crystal structure, sample prepa-
ration methods and instrument settings [426]. 

EBSD representations like GROD and GND can evaluate the micro-
structure heterogeneity and the lattice curvature following Equations 2 
and 3, respectively [436, 448]. 

GRODi,j = Δ(θij, θavg) (2)  

ρ(2D)

GND =
1
b

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α2
12 + α2

13 + α2
21 + α2

23 + α2
33

√

(3)  

where θij is the misorientation at the position (i, j), θavg represents the 
grain average misorientation, b is the magnitude of Burgers vector and 
αij represents the five components of the Nye’s tensor that can be 
determined from two-dimensional mapping. Fig. 21d-e illustrates the 
GROD maps of interstitial free steel across the sheet thickness after cold 
symmetric and asymmetric rolling, respectively. This analysis proves 
that the asymmetric rolling process gives rise to microstructure het-
erogeneity across the sheet thickness. At the same time, the deformation 
on the symmetric rolled material is evenly distributed in different zones 
of the sheet. The large GROD values close to the sheet surfaces after 
asymmetric rolling emphasize a higher density of dislocations and faster 
grain refinement than in the symmetrically rolled sample due to the 
velocity gradient and the intense shear strain component (i.e. faster 
texture randomization than in symmetric rolling) [442, 449]. In view of 
GNDs and texture evolution in heterostructured materials, Fig. 21f dis-
plays the GND maps considering the slip systems for commercially pure 
titanium after two passes by equal-channel angular sheet extrusion (an 
ECAP-based technique applied to sheets to create heterogeneous mate-
rials, with a specific focus on plane geometry deformation). These maps 
and the pole figures suggest that dislocation activity occurs primarily on 
the basal and prismatic planes rather than pyramidal planes (larger 
Burgers vector and, therefore, a higher resolved shear stress for 
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Fig. 21. (a-c) Armco iron processed by (a) zero, (b) one and (c) 16 ECAP passes [445, 446]. (d,e) Grain reference orientation deviation (GROD) maps for interstitial 
free steel processed by (d) cold symmetric rolling and (e) asymmetric rolling [442]. (f) Geometrically necessary dislocations (GND) and pole figures for commercially 
pure titanium after two passes of equal-channel angular sheet extrusion (ECASE) [439]. (g) Schmid factor evolution for low-carbon 1020 steel after heat treatment 
(HT) and four ECAP passes [447]. (h) Phase maps for an austenitic stainless steel processed by one ECASE pass [437]. 
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dislocations to slip), which is indicative of the titanium low formability 
capacity at room temperature and the strong material anisotropy [439, 
450]. Regarding plasticity, Fig. 21g shows the Schmid factor evolution 
for low-carbon steel processed by ECAP at room temperature. In this 
plot, the initial heat-treated and four ECAP pass processed materials 
present similar distributions, indicating that the low-carbon steel can 
withstand more significant amounts of plastic deformation even when 
the ductility after four ECAP passes is almost neglectable [447, 451]. 
EBSD also enables the evaluation of phase transformation from austenite 
to martensite on steels like the austenitic stainless steel 304 L processed 
by equal-channel angular sheet extrusion, which creates a heteroge-
neous material across the sheet thickness, as indicated in Fig. 21h. The 
aforementioned results demonstrate the efficacy of the EBSD technique 
in characterizing materials with homogenous coarse, homogeneous 
UFG, and heterostructured microstructures. 

The information obtained by EBSD leads to a better understanding of 
the microstructural and mechanical properties of different SPD- 
processed metallic materials. Fig. 22a-c compiles results from different 
SPD processes, like ECAP, ARB, and HPT, concerning the grain boundary 
misorientation examined by EBSD [443, 445, 446, 452–475]. Thus, 
metallic materials processed by ARB present a faster transition from 
low-angle grain boundaries to high-angle grain boundaries with less 
accumulated strain than ECAP and HPT. However, all the processes 
suggest a plateau state after von Mises plastic strains larger than seven, 
which is associated with the slowing of grain fragmentation, i.e. satu-
ration of the grain size reduction and low ductility [445]. In this sense, 
metallic materials subjected to SPD techniques are characterized by high 
yield strength but low ductility, limiting their application, as indicated 
in Fig. 22d. To overcome this strength-ductility paradox, the newly 
emerging research field of heterostructured materials appears as a so-
lution (Fig. 22d) [443, 452]. EBSD characterization thus plays a crucial 

role in understanding the property-microstructure relation and hard-
ening mechanisms of SPD-processed materials. 

3.4. Investigation of microstructure by synchrotron X-ray and neutron 
diffraction 

The investigation of microstructure evolution during SPD and under 
extreme conditions can be accomplished in reciprocal space using 
various diffraction techniques, including X-ray, synchrotron and 
neutron diffraction. A portrayal of Laue–Bragg interference is depicted 
in Fig. 23a [476], where λ is the wavelength, θ is the Bragg angle, ki and 
kf are the incoming and scattered wavevectors, respectively, d is the 
lattice spacing and G is the reciprocal lattice vector. Lab-scale XRD and 
its line profile analysis have been effectively employed to study the 
microstructural evolution and phase transformation of bulk nano-
structured metals processed through SPD [477–481]. Such 
reflection-type XRD, having a limited penetration depth [482], presents 
unique opportunities to unveil microstructural heterogeneity even when 
different planes and sections are scanned within SPD-processed metals. 
Some examples of such capability are different textures at local and 
global regions of ZK60 discs after HPT [483] and heterogeneous phase 
transformation and order-to-disorder transformation in a TiAl interme-
tallic compound through HPT [484]. By contrast, synchrotron X-ray and 
neutron diffraction techniques, both in penetration-type settings [485, 
486], complement each other, providing distinct measurement capa-
bilities and offering valuable insights into dynamic microstructural 
changes [476, 487]. 

High-energy synchrotron X-rays enable the penetration of millime-
ters into metals using a micro- to nano-scale beam, revealing precise 
local probing of interest with a high reciprocal space resolution 
providing the through-thickness microstructural information [476, 

Fig. 22. High-angle grain boundary (HAGB) fractions for different metallic materials processed by (a) ECAP (Armco iron [446], steel 1020 [447], duplex steel [453], 
pure copper [454], Cu-0.2Mg [455], Cu-0.5Mg [455], pure aluminum [456], AA8079 [457], Al-0.13Mg [457], AA6060 [458], AA6082 [459], Mg-based alloy [460] 
and commercially pure titanium [461]), (b) ARB (Armco iron [462], interstitial free (IF) steel [463], TRIP (transformation-induced plasticity) steel [464], stainless 
steel [465], AA1050 [466] and Al/SiC composite [466]) and (c) HPT (AA6061 [467], Cu-0.17Zr [468], Cu-Ni-Si [469], pure copper [470] and pure magnesium 
[471]). (d) Yield strength and elongation evolution for UFG, coarse-grained and heterostructured materials (sandwich stainless steel [472], Cu-Ni-Cr-Si [473], hi-
erarchical stainless steel [474] and bimodal stainless steel 316 L [475]). 
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490]. The technique of high-energy XRD with a micro-beam is utilized at 
beamline BL02B1, SPring 8, Japan, [491] by scanning the local region of 
an HPT-induced diffusion-bonded Al-Mg metastable alloy over the disc 
surface, enabling a mapping of heterogeneous phase fractions and 
microstructure over the whole sample volume [488]. Fig. 23b showcases 
the position-dependent microstructure of the HPT-deformed Al-Mg disc, 
where the map is constructed from a series of high-energy XRD patterns, 
with an enlarged representative diffractogram aiding in the visualiza-
tion of heterogeneous phase fractions and microstructure across the 

entire sample volume [488]. The polymorphous phase transformation as 
a function of plastic strain is demonstrated during the nanostructuring 
and diffusion bonding of aluminum and magnesium through HPT. 

Neutrons offer the advantage of integrating over larger sample vol-
umes [476], rendering them highly suitable for targeted investigations, 
especially in the context of titanium alloys [487, 492], where their 
diverse diffraction contrasts can effectively detect order and disorder 
structures. Neutron diffraction characterization facilitates the study of 
time-resolved structural changes, thereby elucidating the evolution 

Fig. 23. (a) A portrayal of Laue–Bragg interference [476]. (b) Position-dependent microstructure map constructed by a series of high-energy XRD (HEXRD) patterns 
with an enlarged representative diffractogram [488]. (c) A contour plot showing neutron diffraction patterns with time and temperature [489]. 

Fig. 24. A heterogeneous phase transformation observed by laser-scanning confocal microscopy (LSCM) at the cross-sections of the HPT-processed CoCrFeNiMn 
alloy disc edges upon heating [499]. 
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mechanisms and transitions in bulk samples [493]. The incorporation of 
additional parameters such as heating or cooling enables real-time 
characterization of crystallographic changes with varying tempera-
tures. A neutron diffraction study on a nanostructured 316 L stainless 
steel under a heating-cooling cycle was conducted at the iMATERIA 
beamline BL20 [494, 495] located within J-PARC, Japan [496, 497]. A 
contour plot showing neutron diffraction patterns against time and 
temperature is shown in Fig. 23c. The neutron diffraction data were 
analyzed and the structural evolution in the nanostructured stainless 
steel is described by the changes in relative lattice expansion and 
contraction, crystallite size, micro-strain and dislocation density with 
heating through 1300 K [489]. This technique elucidates the detailed 
structural relaxation behavior upon heating with detailed transition 
temperatures of the bulk nanostructured alloy after HPT [498]. A recent 
report displayed a comprehensive summary of the utilization of the 
synchrotron X-ray and neutron diffraction techniques on SPD-processed 
nanostructured materials [499]. 

In the context of characterization techniques for capturing the het-
erogeneously appearing microstructural recovery upon heating of 
nanostructured metals, in situ examination by laser-scanning confocal 
microscopy with a heating system [500–502] demonstrates a pre-
liminary result on a nanostructured CoCrFeNiMn HEA after HPT for 15 
turns [499]. A series of micrographs taken at arbitrarily selected tem-
peratures upon heating from 373 to 923 K at a rate of 10 K/min is shown 
in Fig. 24 displaying a gradual and heterogeneously occurring phase 
transformation upon heating at a similar disc edge region of the 
HPT-processed CoCrFeNiMn HEA [499]. Microstructural recovery is 
visible mainly due to the phase separation of the alloy [503–505]. The 
delayed multi-phase microstructure formation during recovery is 
evident in the middle-height region of the nanostructured HEA disc after 
HPT. At the central section, the morphology of the multi-phases appears 
more equiaxed, in contrast to the elongated structure along the shear 
pattern observed in the surface regions. This characterization method 
serves as an excellent preliminary technique for in situ and ex situ 
nanoscale microstructural and mechanical testing and the interpretation 
of local diffraction studies as previously stated. 

In summary, the novel and unique microstructural characterization 
techniques via synchrotron X-ray and neutron diffraction present not 
only alternative and complementary approaches but also go beyond by 
allowing in situ observations and incorporating time and temperature 
scales. This integration of real-time and localized monitoring enhances 
our ability to gain a deeper understanding of the heterogeneity in 
nanostructures across multiple length scales. 

4. Phase transformations 

In addition to microstructural evolutions, crystal structure evolu-
tions through strain-, pressure- and temperature-induced phase trans-
formations are another feature of SPD. The history of SPD has a close 
relation to phase transformations [20], and the topic is still of high in-
terest [8, 9, 15]. It is well established that SPD can affect both the 
thermodynamics and kinetics of phase transformations and contribute to 
the discovery of new phases [8, 9, 15]. The SPD-induced phase trans-
formations were reported in various elements including titanium [506], 
zirconium [507], hafnium [508], cobalt [509], bismuth [510], carbon 
[511], silicon [15], germanium [512] and phosphorous [20]. Phase 
transformations and solid-state reactions in alloying systems containing 
two or more elements were frequently observed after SPD [10, 11] and 
particularly in the systems with full immiscibility in the solid and liquid 
forms (e.g. Mg-Ti [333], Mg-Zr [334] and Mg-Hf [335]) after ultra-SPD 
[164]. Phase transformations by SPD are not limited to metallic mate-
rials as such transformations were reported in various nano-metallic 
materials such as oxides [513], nitrides [514], hydrides [515], etc. In 
this section, after reviewing phase transformations in metallic materials 
and ceramics, recent findings on coupling theoretical studies with in situ 
experiments are discussed. 

4.1. Phase transformations in metallic alloys 

Along with grain refinement, SPD can cause various phase trans-
formations in metals and metallic materials [516]. Titanium, zirconium 
and hafnium, along with iron, cobalt and bismuth, belong to the metals 
in which allotropic phase transformations occur when temperature or 
pressure changes. These phase transformations make it possible to 
design mechanical and heat treatments to control the properties. 
Metallic alloys after SPD usually do not contain the same phases as 
before processing with SPD. SPD can drive the phase transformations 
both in the bulk and in grain boundaries of alloys. In turn, the 
SPD-driven bulk phase transitions can be divided into three large 
groups.  

• The first group of phenomena includes competition between 
decomposition and formation of a solid solution. During the 
decomposition of a supersaturated binary solid solution, particles of 
a second phase form and grow, and the concentration of the alloying 
element in the solid solution decreases. During the formation of a 
supersaturated solid solution, particles of the second phase dissolve 
during SPD, increasing the concentration of the second component in 
the solid solution [517–520]. It is well known that during SPD 
(especially during HPT), a stationary state (or steady state) can be 
reached with the strain increase [521]. It turns out that, as a rule, 
when the decomposition and formation of a solid solution compete, a 
certain stationary concentration is established. Interestingly, this 
concentration usually is equal to the solubility of the second 
component at some elevated temperature called effective tempera-
ture (Teff) [522]. Most frequently, Teff significantly exceeds the room 
temperature being usually the temperature of SPD treatment [523].  

• The second group of phenomena includes SPD-driven amorphization 
of crystalline phases [524–527], or nanocrystallization from an 
amorphous phase [528–530]. Interestingly during HPT, one, two, or 
several different amorphous phases can appear [531].  

• The third class of phase transformations during SPD is observed in 
metals that possess several allotropic modifications at different 
temperatures or pressures. In this class of phenomena, the SPD- 
driven transformations in titanium and its alloys are best studied. 

Titanium alloys are one of the most important classes of materials in 
modern technologies [532–534]. Pure titanium (like zirconium or 
hafnium) can exist in three crystallographic modifications, namely the 
low-temperature α-Ti with a hexagonal close-packed crystal structure 
(space group P63/mmc), the high-temperature β-Ti with a 
body-centered cubic structure (space group Im3m), and the 
high-pressure ω-Ti with a hexagonal structure (space group P6/mmm). 
Many SPD studies are devoted to the change in the properties and 
structure of titanium and its alloys, such as pure titanium [535–540], 
binary titanium alloys like Ti-Al [541, 542], Ti-Mg [333, 543], Ti-Fe 
[544, 545], Ti-Ni [546, 547], Ti-Co [548, 549], Ti-Mo [550, 551], 
Ti-Nb [552, 553], Ti-Hf [554], Ti-V [309, 555], ternary alloys like 
Ti-Nb-Zr (TNZ) [556, 557], Ti-Nb-Ta [558], quaternary Ti-Nb-Ta-Zr 
(TNTZ) [559, 560] and quinary Ti-Al-Zr-Mo-V (TA15) [561]. Howev-
er, only a small portion of these works concern HPT-induced phase 
transformations in titanium and its alloys. 

In a recent study, HPT processing of various binary titanium alloys 
with β stabilizers (iron, cobalt, nickel, molybdenum and niobium) was 
studied [544]. Before HPT, the samples were annealed and contained (i) 
pure β-phase, (ii) α+β mixture with different portions of phases, (iii) α’ 
or α’’ martensites, (iv) the mixture of α-Ti and respective intermetallic 
phase. It was observed that HPT can lead to various phase transitions in 
the alloys. In particular, the metastable high-pressure ω phase and α’ 
martensite could form [544]. The orientation relationship between the 
lattices of β-Ti and α/α’-Ti is described as 

(0001)α

⃦
⃦
⃦(110)β;

〈
1120

〉

α
‖〈111〉β [562]. As shown in Fig. 25a, at low 
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iron concentrations, the fraction of the ω phase after HPT is modest and 
amounts to about 40% [563–566]. With an increase in the iron content, 
the portion of the ω phase in the alloy after HPT also increases. It reaches 
almost 100% at an iron concentration of 4 wt%. Then it begins to 
decrease with increasing iron concentration and drops to 10–30% at 
10 wt% of iron. It is important to mention that, despite the diffusion-like 
mass transfer during HPT, the transformation of the β phase into the ω 
phase occurs according to the martensitic mechanism and is associated 
with a certain orientation relationship between the β-phase and the 
ω-phase. It turns out that the lattice period of the β and ω phases changes 
with the addition of iron but in different ways. In both cases, the lattice 
period decreases with the addition of iron, but in the β phase, it de-
creases more rapidly. Fig. 25b shows that in the Ti-Fe alloys at a con-
centration of about 4 wt% of iron, the lines for the lattice period aω and 
̅̅̅
2

√
aβ in β and ω phases intersect. The intersection point corresponds to 

the lowest lattice mismatch. It greatly facilitates the β-to-ω trans-
formation. As a result, almost 100% of the crystal volume is converted 
after five HPT revolutions into the ω phase. A micrograph obtained at 
earlier stages of deformation of Ti-Fe alloy, namely after 1/10 of HPT 
revolutions, is shown in Fig. 26.and 26b clearly shows how the ω phase 
(shown in turquoise) surrounds the remains of the α phase (shown in 
red). Between the α phase and the ω phase, a shell of the β phase is visible 
(shown in green). It was also shown that the replacement of iron by 
cobalt in a titanium alloy leads to an increase in the lattice mismatch 
between α, β and ω phases and to the incomplete transformation of these 
phases into the ω phase [548]. 

The composition of phases (similar to their grain size) reaches the 
steady state value (e.g. after about 1.5 HPT revolutions). In some cases, 
the equifinality of the SPD-driven phase transitions is observed [568]. 
Equifinality means that the composition and portion of phases after HPT 
do not depend on the composition and portion of phases before SPD 
[519]. However, pre-SPD treatment can sometimes influence the phase 
transformations. For example, if the Ti-based alloys are annealed below 
the temperature of eutectoid decomposition of the β phase, they contain 
only α phase or the mixture of α phase with the corresponding inter-
metallic compound. In this case, the α phase has no chance to "use" the 
intermediate layer of the β phase to transform into the ω phase during 
HPT. Thus, the formation of the ω phase is more complicated and can be 
completely suppressed if the α phase contains enough diluted alloying 
atoms. Moreover, if the intermetallic compound exists in a certain 

Fig. 25. (a) Dependence of the ω phase volume fraction of HPT-treated Ti-Fe 
alloys on the iron concentration (samples were pre-annealed at 1233 K, 1273 K, 
893 K, 873 K) [544]. (b) Data gathered from the literature [545, 563–566] for 
the lattice periods in Ti-Fe alloys measured for ω-phase (aω, filled squares) with 
the values 

̅̅̅
2

√
aβ for β phase (open symbols). Vegard law straight lines are 

shown in (b) for the β (thin) and ω (thick) phases which intersect at ~4 wt% of 
iron [567]. 

Fig. 26. (a) Bright field TEM micrograph of the Ti-4Fe (wt%) sample pre-annealed at 1223 K quenched in water and treated by HPT (7 GPa, 0.1 rot, 1 rpm). (b) Phase 
map of a red outlined area in (a). The α phase is shown in red, the β phase is shown in green and the ω phase is shown in turquoise. The elongated α grain is 
surrounded by a layer of β phase embedded in ω matrix. The elemental analysis for the black outlined area is shown in the insets in the upper part of (b) [562]. 
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concentration interval, HPT can lead to the composition change in such 
solid solution based on the intermetallic compound. 

The HPT-driven phase transitions can be martensitic (i.e. without or 
almost without mass transfer) or diffusional (i.e. with mass transfer). For 
example, in the case of martensitic β-to-ω or α-to-ω phase transitions in 
titanium alloys, certain orientation relations between β and ω or α and ω 
phases were observed. In the case of diffusional phase transitions, the 
rate of mass transfer during HPT at room temperature is several orders of 
magnitude higher than that of conventional bulk diffusion at room 
temperature [569]. This is especially remarkable since the high pressure 
itself (i.e. without shear strain) decreases the rate of mass transfer [570, 
571]. The type of phase transformation (martensitic or diffusional) and 
chemical composition can affect the thermal stability of phases. The 
thermal stability of the ω phase obtained by HPT has been studied by the 
in situ XRD at high temperatures. It was shown that the ω phase in the 
HPT-treated Ti-based alloys with β stabilizers can remain in the samples 

up to 773–873 K. This temperature range is much higher than in pure 
titanium (~453 K). Alloying with niobium or molybdenum increases 
this temperature to 573–623 K. In Ti− Co alloys, the ω phase remains 
stable up to 673 K and in the Ti− Fe alloys even up to 823 K [567, 572]. 

Phase transformations can take place not only in the bulk but also in 
grain boundaries. They include faceting-roughening transitions [573], 
as well as wetting [574], prewetting [575–577] or premelting [578, 
579] transformations. The significance of SPD-driven grain boundary 
phase transformations was reported in a few recent studies [580, 581]. 
The HPT-driven bulk and grain boundary phase transitions open a new 
way for tailoring, grain size, phase composition and properties of 
metallic materials. In turn, it gives the new instrument in the hands of 
engineers to design materials for special applications such as titanium 
alloys for medical applications. 

Fig. 27. (a,b) Influence of plastic shear strain on the fraction of high-pressure phases in (a) TiO2 [582] and (b) Y2O3 [583] after HPT processing. (c,d) Formation of 
dislocations during phase transformations of (c) ZrO2 [584] and (d) TiO2 [582] after HPT processing. (e,f) Grain size effect on the stability of high-pressure (e) TiO2-II 
[582] and (f) monoclinic Y2O3 [583] after HPT processing. 
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4.2. Phase transformations in ceramics 

Phase transformation induced by SPD is not limited to metallic ma-
terials and such phase transformations were reported in a wide range of 
ceramics (e.g. ZrO2, BaTiO3, ZnO, TiO2, Y2O3, SiO2, Al2O3, VO2, BN, 
etc.). Among bulk-SPD methods, HPT is currently the only method used 
for controlling phase transformations in ceramics due to the high pro-
cessing pressure in this method. Processing by HPT provides some 
unique features for the phase transformation of ceramics. (i) The frac-
tion of the high-pressure phase increases with increasing the applied 
shear strain, as shown in Fig. 27a for TiO2 [582] and Fig. 27b for Y2O3 
[583]. (ii) Phase transformation can occur at a pressure below the 
transition pressure under static compression (e.g. reduction of pressure 
from 11 to 15–6 GPa in monoclinic-to-cubic phase transformation of 
Y2O3 shown in Fig. 27b). (iii) Dislocations contribute to the acceleration 
of phase transformation and the reduction of transition pressure (e.g. see 
dislocations observed during phase transformation of ZrO2 in Fig. 27c 
[584] and TiO2 in Fig. 27d [582]). (iv) High-pressure phases formed by 
HPT can remain stable after releasing pressure, particularly in grains 
with small nanoscaled sizes, as shown in Fig. 27e for TiO2 [582] and in 
Fig. 27f for Y2O3 [583]. The stability of HPT-induced phases is a striking 
issue because such phases can be used for different applications. Zinc 
oxide (ZnO) is one successful example that its high-pressure phase was 
utilized for photocatalysis, as described below in detail. 

ZnO is a well-known ceramic semiconductor with versatile proper-
ties for optoelectronic and biochemical applications [585–590] 
including applications such as ointment, pigment and vulcanization 
[591, 592]. ZnO exhibits an allotropic transformation from a wurtzite 
crystal structure to a rocksalt crystal structure as the pressure increases 
to more than ~6 GPa according to a pressure-temperature phase dia-
gram [593, 594]. For photovoltaic and photocatalytic applications 
[595–599], the rocksalt structure is more attractive than the wurtzite 
structure because its band gap is in the range of 1.2–2.6 eV so that it can 
absorb visible light [600–602], while the band gap of the wurtzite 
structure is as high as 3.1–3.4 eV so that its light absorption is limited to 
the range of UV light [596, 603]. Nevertheless, the rocksalt structure is 
not stable at ambient pressure, and thus, stabilization at ambient pres-
sure is required for its practical use. A striking report in 2017 [604] that 
the rocksalt structure can exist at ambient pressure when ZnO is strained 
under high pressure using HPT, which is mainly known as a metal 
processing method [2, 20, 23, 177]. Although enhanced photocatalytic 
activity was realized on the HPT-processed ZnO-containing samples 
[604–606], the fraction of the rocksalt phase was marginal, and thus, 
further attempts were made to enhance its fraction. 

In a recent study, high pressure was applied to HPT-processed ZnO 
and the change in the fraction of the rocksalt structure was examined 
using in situ synchrotron high-energy XRD analysis in SPring-8, Japan 
[607]. A high-pressure application system including a heating unit as 
illustrated in Fig. 28a [608] is adopted for this XRD experiment, of 
which principle was introduced earlier [57] and modification was made 
to this in situ experiment [608]. The rocksalt structure in the sample 
processed by HPT under 6 GPa for 3 turns disappeared with heating to 
temperatures higher than 433 K under ambient pressure. However, its 
fraction increased to 100% after heating above 353 K by applying 
pressures more than ~9 GPa, and remained stable after cooling down to 
room temperature even after unloading to ambient pressure. In contrast, 
the formation of the rocksalt phase was considerably suppressed for the 
ZnO powder without processing by HPT (only a minor fraction was 
formed above 453 K under 12 GPa). Fig. 28b shows a 
pressure-temperature phase diagram reproduced from a report by 
Bayarjargal and Winkler [593]. Open symbols and closed symbols 
represent phase regions corresponding to the wurtzite structure and the 
rocksalt structure, respectively. Fig. 28b also includes the results by 
Decremps et al. [594], where the transformation point from rocksalt to 
the wurtzite structure is marked by open blue squares and that from 
wurtzite to the rocksalt structure by closed blue squares. The present 

results are plotted as marked by star symbols in red. Inspection of 
Fig. 28b reveals that the presence of the rocksalt structure under high 
pressures is well consistent with the reports by Bayarjargal and Winkler 
[593] and Decremps et al. [594]. However, the presence of the rocksalt 
structure is also confirmed under ambient pressure and temperature. 
This exceptional result arose because the strain introduced in the sample 
by the HPT process generates internal pressure due to the mutual 
interaction of dislocations as argued in earlier papers [8, 584, 609]. 

In summary, SPD methods and particularly HPT are powerful tools to 
control phase transformations in ceramics. Such phase transformations, 
such as stabilization of 100% of the rocksalt ZnO phase which was 
confirmed by in situ high-energy XRD experiments, open a new path for 
the employment of these phases in functional applications such as 
photocatalysis. 

4.3. Coupled in situ and theoretical studies of phase transformations 

SPD under high pressure is mostly studied postmortem after pressure 
release, as reflected in old [1], recent [23, 182, 236] and latest [5] re-
views. Here, recent in situ experimental and theoretical studies of 
coupled SPD, strain-induced phase transformations under high pressure 

Fig. 28. (a) Schematic illustration of high-pressure application system for in 
situ XRD analysis at SPring-8, Japan [607]. (b) Temperature-pressure phase 
diagram of ZnO. Open and closed circles are reproduced from Bayarjargal and 
Winkler [593] for wurtzite and rocksalt structures, respectively. Open and 
closed blue squares are from Decremps et al. [594], representing transformation 
points from rocksalt to wurtzite structure and from wurtzite to rocksalt struc-
ture, respectively. Star symbols represent results of HPT-procesed ZnO in which 
rocksalt occupies 100% [607]. 
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obtained under compression in diamond anvil cell (DAC) or compression 
and torsion in rotational diamond anvil cell (RDAC) [8, 366] are sum-
marized. In RDAC (Fig. 29a), two diamond anvils compress the sample 
within or without a gasket, like in traditional DAC, to high pressure. 
Then torque is applied, leading to the superposition of large 
shear-dominated straining on compression. The X-ray beam is directed 
along the axial direction for the characterization of the material. The 
utilization of XRD with synchrotron radiation allowed one to determine 
the radial distribution of volume fraction of phases and pressure 
[610–614], dislocation density and crystallite size in each phase [613, 
614] and find the main laws of their evolution and interaction. Coupling 
with the finite element simulations of the sample behavior [615–617] 
allows the determination of fields of all components of the stress and 
plastic strain tensors and volume fraction of the high-pressure phase 
[618, 619] and provides a better understanding of ways to control 

occurring transformations and corresponding microstructural evolution. 
Atomistic [620–622], nanoscale [514, 623–625] (Fig. 29) and scale-free 
phase-field simulations [626, 627] allow elucidation of the main phys-
ical mechanisms of the plastic strain-induced drastic reduction in phase 
transformation pressure (by one to two orders of magnitude [8, 612, 
628, 629]), the appearance of new phases [630–632] and 
strain-controlled phase transformation kinetics [8, 610, 611, 619] in 
comparison with hydrostatic loading. Combining in situ experiments 
with multiscale theory potentially leads to the formulation of methods to 
control strain-induced phase transformation evolution and designing 
economic synthetic paths for the defect-induced synthesis of desired 
high-pressure phases, nanostructures and nanocomposites. It should be 
noted that in situ XRD during HPT [633, 634], HPS [608] and 
compression [607] were also attempted. However, XRD patterns in these 
cases are averaged over very heterogeneous fields, and just one value is 
measured for the prescribed load. Thus, it is much less informative than 
the axial diffraction measurements in RDAC. XRD in perpendicular ge-
ometry for the rotational Drickamer apparatus [635–637] has also a 
large error bar. 

It was found that the study of strain-induced phase transformations is 
significantly simplified when steady states for microstructure and 
pressure-dependent yield strength are reached before the initiation of 
strain-induced phase transformations [610, 611]. For such a case, it was 
shown that (a) the minimum pressure for the strain-induced α-ω phase 
transformation in zirconium, and the pressure-dependent yield strength 
σy(p) of ω-Zr are independent of plastic strain tensor εp and strain 
path εpath

p ; (b) crystallite size and dislocation density in a single phase 
ω-Zr are in addition independent of pressure; (c) crystallite size and 
dislocation density in ω-Zr and (with some outliers) α-Zr during phase 
transformation are independent of pressure, plastic strain tensor, and 
strain path and depend on the volume fraction of the high-pressure 
phase only. It was also found for zirconium [610, 611] and olivine 
[613] that there is a correlation between the Hall-Petch effect of the 
grain/crystallite size on the yield strength [638] and the minimum 
pressure for the strain-induced phase transformation, with correspond-
ing theoretical justification. Similar results, including correlation for the 
inverse Hall-Petch effect [638] and the minimum pressure for the 
strain-induced phase transformations, were found for silicon [612]. 
Namely, in the region when the yield strength increases with the 
reduction in grain size, the minimum pressure for the strain-induced 
phase transformation reduces; while for smaller nanoscale grain sizes, 
the yield strength reduces, and the minimum pressure for the 
strain-induced phase transformation increases. These in situ results are 
consistent with results for Y2O3 [583], TiO2 [582, 639] and ZnO [604], 
obtained with TEM: after phase transformation by HPT processing, the 
recovered high-pressure phases have smaller grain sizes and initial 
low-pressure phases have larger grain sizes. However, since TEM results 
are obtained ex situ, various other interpretations are possible [366], i.e. 
they are not conclusive. 

The obtained results imply that the factors and mechanisms that 
affect the steady grain size (see original papers [364, 365, 640–642] and 
reviews [189, 643, 644]) and dislocation density [645] are important for 
controlling strain-induced phase transformations. They change the 
general wisdom that plastic shear is responsible for reducing phase 
transformation pressure. In fact, any mode of straining and strain paths 
that belong to some classes lead to the same phase transformation 
pressure and steady microstructure. For example, variations of crystal-
lite size and dislocation density in the ω-Zr phase after α→ω phase 
transformations are shown in Figs. 30a and 30b, respectively. Since the 
plastic strain tensor and its path, as well as pressure strongly vary with 
radius and increasing load, approximate independence of the crystallite 
size and dislocation density and of the radius and load indicates that 
they reached steady values, which are independent of pressure, plastic 
strain tensor and its path. This issue is further discussed in Fig. 30c in 
which schematic of the evolution of the yield surface f(s, εp, εpath

p ) =

Fig. 29. (a) Schematic of RDAC. (b) Phase-field approach results showing 
dislocation pileup in the left grain produces a step at the grain boundary 
(superdislocation) with a strong stress concentrator leading to phase trans-
formation and dislocation slip in the right grain [624]. (c) Molecular dynamics 
results showing dislocation pileup in the right grain produces a step at the grain 
boundary in Si-I phase and amorphization in the left grain [623]. 
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σy(p) until it reaches the fixed surface of perfect plasticity φ(s) = σ1
y(p) in 

“5D” space of deviatoric stresses s at fixed pressure p is illustrated [614]. 
The initial yield surface and φ(s) = σ1

y(p) are isotropic (circles). Two 

other yield surfaces depend on εp and εpath
p , and acquire strain-induced 

anisotropy, namely shifted centers O1 and O2 (back stress) and ellip-
soidal shape due to texture. When the yield surface reaches φ(s) = σ1

y(p), 
the material deforms like perfectly plastic, isotropic with the fixed sur-
face of perfect plasticity. However, for α-Zr for some classes of straining 
paths, several other fixed surfaces of perfect plasticity φi(s) = σi

y(p) with 
larger yield strengths σi

y(p) (due to larger steady dislocation density and 
smaller crystallite size can be reached. 

In situ studies [614] lead to a key question: for which classes of 
plastic strain and strain path (and maybe pressure path), the material 
remains in each of the steady states, and for which loading classes, the 
material behavior jumps from one steady state to another? This question 
is just a translation into the language of plasticity theory of known 
technological problem: why different SPD technologies lead to different 
steady microstructures and how to design the loading process to reduce 
the grain size and phase transformation pressure and increase disloca-
tion density and strength. It is also shown that incomplete phase trans-
formation is a much more effective way to reduce the grain size to 
produce nanocomposite materials with controllable strength and 
ductility than SPD alone [366, 610, 611]. In addition, SPD under normal 
pressure, e.g. by rolling, leading to one of the steady states followed by 
compression or HPT at relatively low pressure, is a more economical 
way to produce nanostructured high-pressure phases and nano-
composites than HPT of annealed materials. The possibility of manipu-
lating synthetic paths may lead to new economic technologies at 
relatively low pressures, room temperature, and without catalysts, e.g. 
for cubic and hexagonal diamond, cubic and wurtzite BN, Si-III, etc. 
Application of the concept of plastic strain-induced phase trans-
formations (instead of pressure-induced phase transformations) [8] may 
also change various geological interpretations, like the mechanism of 
the deep-focus earthquakes [646] and the appearance of microdiamonds 
in the Earth’s crust [629]. Application of ultra-SPD [178] may lead to 
discoveries in strain-induced phase transformation. Still, the entire field 
of fundamental study of SPD and plastic strain-induced phase trans-
formation is in its infancy; one needs to find whether the above results 
are valid for other materials and material classes and to find a much 
more detailed theoretical description at each of the four scales. 

5. Mechanical properties 

The most visible effect of SPD, particularly in metallic materials, is 
the enhancement of mechanical properties such as strength and hard-
ness, mainly due to the grain refinement effect [3] and the Hall-Petch 
mechanism [6, 7]. Some studies, however, suggested that the strength-
ening of these materials by the dislocation hardening mechanism can be 
quite significant [45]. Hardening by other factors like precipitation, 
twins, segregation, phase transformation and spinodal decomposition 
was also reported in these materials [305, 647]. Materials after severe 
plastic deformation do not always exhibit hardening, and it was shown 
that softening can occur in pure metals with low melting temperatures, 
despite a decrease in grain size and an increase in dislocation density 
[399]. Such behavior, which was reported in lead, tin, indium and 
aluminum with ultrahigh purity, was attributed to the contribution of 
thermally-activated phenomena [399, 648]. In magnesium, which also 
has a low melting temperature, it was shown that storage of 
HPT-processed samples for several years leads to increasing grain size, 
decreasing dislocation density and an unusual increase in hardness via 
anneal hardening [649]. Softening can occur in some metallic alloys by 
unusual grain coarsening, phase transformation or the activation of 
thermally-activated phenomena such as grain boundary sliding [38, 
650]. Despite some exceptions mentioned above, strength usually 

Fig. 30. (a,b) Radial distribution of (a) crystallite size and (b) dislocation 
density in the ω-Zr phase for three compression steps after full transformation. 
Pressures in the upper right corner designate maximum pressure at the sample 
center [614]. (c) Schematic of the evolution of the yield surface f(s, εp, εpath

p ) =

σy(p) until it reaches the fixed surface of perfect plasticity φ(s) = σ1
y(p) in “5D” 

space of deviatoric stresses s at fixed pressure p, after which the material de-
forms like perfectly plastic, isotropic, and independent of εp and εpath

p (for some 
classes of straining paths, several other fixed surfaces of perfect plasticity φi(s)
= σi

y(p) with larger yield strengths σi
y(p) can be reached) [614]. 
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increases after SPD processing and this strengthening is not accompa-
nied by a complete loss of plasticity, as recognized by Segal et al. after 
ECAP processing [27]. HPT studies have also shown that SPD-processed 
materials can exhibit a good combination of strength and plasticity, 
although their work hardening and uniform ductility are limited [194]. 
A large number of studies attempted to enhance the ductility of 
SPD-processed materials and there is quite good progress on this issue 
[182, 651]. 

Studies on the mechanical properties of SPD-processed materials can 
be classified as: (i) torque measurements which originated from Bridg-
man’s works on HPT in the 1930 s [20], (ii) hardness-strain behaviors 
which can provide quick information about the microstructural evolu-
tion and the occurrence of steady state [400], (iii) tensile, compression 
and bending properties which are of significance for commercialization 
of SPD-processed materials [305], (iv) superplasticity which occurs 
frequently in SPD-processed materials due to large fraction of grain 
boundaries [652], (v) fatigue properties [653], (vi) creep properties 
[654], (vii) wear resistance [655], (viii) fracture toughness [656], etc. In 
the following sections, some recent findings on strain hardening, anneal 
hardening, creep resistance, superplasticity and hydrogen embrittle-
ment resistance of SPD-processed materials are discussed. Other me-
chanical properties are reviewed in other chapters of this article. 

5.1. Strain hardening 

As mentioned earlier, SPD is effective not only for grain refinement 
[1, 657, 658] but also in the generation of various kinds of defects, 
particularly dislocations [2, 659] which accordingly can enhance 

strength. Moreover, SPD can fragment intermetallic phases into nano-
sized in alloys containing elements with low diffusivity and low solu-
bility [178], such as Al-Fe [310], Al-Ca [311], Al-Zr [332], Al-RE (RE: 
rare earth elements) [315], Mg-Ca [660], Mg-Ti [322] and Mg-Zr [334], 
and further enhance the strength. The contribution of grain boundaries 
to strengthening can be estimated using the Hall-Patch relationship [6, 
661, 662]. 

ΔσGB =
k̅
̅̅
d

√ (4)  

where k is the Hall-Petch coefficient and d is the average grain size. The 
contribution of dislocations can be estimated through the Bailey-Hirsch 
relationship [663]. 

Δσρ = αMGb
̅̅̅ρ√

(5)  

where α is a constant, M is the Taylor factor, G is the shear modulus, b is 
the Burgers vector, and ρ is the dislocation density. The HPT process, 
which is operated under high pressure for processing various materials 
[181, 512, 609, 664–667], is believed to be the most effective SPD 
technique for hardening through grain refinement and dislocation 
generation [668, 669]. However, the sample in the HPT process is a disc 
that experiences heterogeneous strain distribution [154, 177], but 
methods such as ARB and HPS produce sheets that experience more 
homogenous strain [670–672]. HPS has the benefits of HPT for hard-
ening because it can be applied under high pressure, but its merit is that 
it applies to sheets [673–676], rods [238, 677–679] and pipes [239]. 
The pressure in ARB is not as high as HPT and HPS, but it is still effective 

Fig. 31. (a) TEM bright-field images of aluminum after five and 10 ARB cycles. (b) Nominal stress-strain curves at a strain rate of 1 × 10− 5 s− 1 for aluminum after 0, 
1, 3, 5 and 10 ARB cycles. (c) Nominal stress-strain curves with strain rates ranging from 1 × 10− 2 to 1 × 10− 5 s− 1 for HPS-processed aluminum. (d) Plots of yield 
stress against the number of ARB cycle at a strain rate of 1 × 10− 5 s− 1, including value of HPS-processed sample and values calculated by grain boundary and 
dislocation hardening [675]. 
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in enhancing strain hardening in sheets [19, 227]. 
Fig. 31a displays typical TEM microstructures of sheets after ARB 

processing, revealing elongated grains well-developed after five and 10 
cycles along the rolling direction, with mean grain thicknesses of 310 
and 240 nm, respectively [675]. A significant grain refinement is 
evident when compared with the mean grain size after annealing, which 
is 31 μm. Concurrently, Fig. 31b demonstrates a significant strain 
hardening by increasing ARB cycles. The strain rate dependence of the 
nominal strength is observed in sheets processed by HPS (Fig. 31c) 
[675], a fact that was also reported in ARB-processed sheets [679, 680]. 
A comparison of the yield stress of aluminum processed by HPS and ARB 
with the calculated strength through Equations 4 and 5, is shown in 
Fig. 31d. It was shown that yield strength by the HPS process is com-
parable to those obtained by the ARB process for similar equivalent 
strains (a sliding distance of 15 mm for HPS compared to 10 ARB cycles). 

It is concluded that strain hardening of pure metals can be simply 
justified through Hall-Petch and dislocation hardening mechanisms 
when grain sizes are at the submicrometer level. Strain hardening be-
comes more complicated by the presence of second phases and pre-
cipitates [310, 658]. Moreover, breaks in the Hall-Petch mechanisms 
can occur when grain sizes are reduced to the nanometer level [681]. 

5.2. Anneal hardening 

Cold working increases the strength of metallic materials. Especially 
for severe plastic strains, strength levels of up to 1/3 of the theoretical 

strength can be reached [682, 683]. Subsequent heat treatment gener-
ally reduces strength as the microstructure is gradually transferred back 
to the state before cold deformation [434, 684]. However, for suffi-
ciently fine grain sizes and restricting the heat treatment to the recovery 
regime (i.e. avoiding recrystallization or grain growth), further 
strengthening instead of a softening, can be observed [671, 685–690]. 
This extra strengthening increases with annealing temperature until 
grain coarsening initiates (Fig. 32a). First reports on this subject date 
back to the 1960 s [691–693] and were related to ordering phenomena. 
However, examination of nanostructured metals in the past decades 
indicated that anneal hardening can also occur for single-phase metals 
and alloys, where decomposition or ordering can be excluded. This is 
also evident from isothermal annealing curves, showing a constant 
hardness plateau after a rapid initial increase (Fig. 32b) [685, 694], 
which contrasts with precipitation or decomposition sequences (e.g. see 
[503]). 

For single-phase metals, the hardening is hence a consequence of the 
reduction of available inter- and intragranular defects, accompanied by 
solute or impurity segregation to grain boundaries [671,685–687,689, 
690]. The required temperatures for the annihilation of dislocations at 
high-angle boundaries thus perfectly agree with those leading to the 
maximum anneal hardening increment (Fig. 32c) [695, 696]. The loss of 
existing dislocation debris requires the activation of dislocation sources 
after the heat treatment to realize plastic strain [671, 697, 698]. For 
sufficiently fine grain sizes, these sources are predominately located at 
grain boundaries [699] and are relaxed during the annealing treatment 

Fig. 32. (a) Hardness after isochronal (30 min) annealing of 316 L steel processed by HPT at ambient temperature (grain growth occurs above 823 K) [687]. (b) 
Isothermal annealing of 316 L steel processed by HPT for different times [694]. (c) Hardness of several nanostructured FCC materials after 30 min annealing as a 
function of annealing temperature (temperatures for the annihilation of lattice dislocations in high-angle grain boundaries are highlighted) [695, 696]. (d) Hardness 
of various nanostructured nickel and Ni-Mo alloys as a function of annealing temperature (annealing time <1 h), indicating that the temperature leading to the 
maximum hardness stays almost unaffected, despite large differences in grain size [690]. 
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[685, 697, 698, 700], enhancing the stresses needed to operate these 
sources [697]. The activation stress of a grain boundary source could be 
additionally affected by solute or impurity segregation [701]. For 
example, different extents of anneal hardening were reported for 
different solutes but similar grain sizes such as in Ni-W and Ni-Mo alloys 
[685, 688]. However, active interactions of segregated atoms with 
propagating dislocations are not expected from strain rate jump tests at 
ambient and elevated temperatures. At least for the studied strain rates 
and temperatures, a positive rate sensitivity was measured in any case 
[702]. 

The extent of the anneal hardening can be significant and may even 
double the strength of the nanostructures [688, 703], making it attrac-
tive to further improve the mechanical properties of SPD-processed 
materials. Apart from a few exceptions [704], the strength increment 
was found to increase with decreasing grain size [685, 688, 702]. This is 
reasonable, since according to Equation 6 [705, 706], the time, t, to 
annihilate dislocations at grain boundaries (apart from material con-
stants such as atomic volume Ω, shear modulus G, and boundary width 
δ) depends only on the boundary diffusivity, DGB and the grain size d. 

t ∼
kBTd3

GΩδDGB
(6) 

While smaller grain sizes recover faster and thus allow for a larger 
hardening, the temperatures leading to the maximum hardness increase 
are not significantly dependent on grain size [690]. This is evident by 
comparing specimens with different grain sizes, either synthesized by 
SPD at different temperatures or by comparing SPD-processed alloys 
with batches prepared by deposition techniques (allowing usually for 

smaller grain sizes), as shown in Fig. 32d. The pronounced dependence 
of boundary diffusivity on temperature may explain this result. 

As the microstructural stability is crucial for the fatigue strength of 
nanostructures [707, 708], and cyclically induced grain coarsening de-
pends on the (micro)plastic strain amplitude [709, 710], anneal hard-
ening should also have a pronounced effect on the fatigue strength. Since 
the loss of dislocation debris and the hardening of dislocation sources 
shift the onset of plasticity to higher stress levels, the fatigue limit should 
be significantly influenced by anneal hardening. Indeed, this has been 
observed for nanostructured nickel and 316 L austenitic steel [711, 
712], allowing for an additional 60% increase in the fatigue strength 
compared to the as-HPT deformed condition (Fig. 33a) [712, 713]. 

However, anneal hardening drastically shortens ductility (Fig. 33b) 
[671, 712, 714]. This is not because of an embrittlement effect (e.g. 
induced by impurity segregation), as can be deduced from the micro-
ductile fracture surfaces for as-deformed and annealed state (Fig. 33c). 
The loss of ductility and early failure is related to an enhanced tendency 
for strain localization, as defect generation after the heat treatment 
softens the material. Allowing grain growth (d > 500 nm), the strain 
softening can be balanced by hardening from dislocation-dislocation 
interactions [715], but the full strengthening potential is not exploited 
due to the coarsening. Current research activities aim to identify stra-
tegies to avoid strain localization without negating anneal hardening. 
Manipulation of the grain boundary structure, for instance by intro-
ducing nanometer-thick amorphous films [716, 717], or by applying 
slight plastic strains after the anneal hardening treatment [718, 719], 
seems promising in this regard (Fig. 33d). Future work should thus 
elaborate processing strategies to synthesize materials with dedicated 

Fig. 33. (a) Fatigue S-N (stress-cycle to failure) curves showing the effect of anneal hardening (recovery) on the quasi-static strength and the fatigue limit of a 
nanocrystalline 316 L austenitic steel prepared by HPT at room temperature [712]. (b) Representative engineering stress-strain curves of a uniaxial tensile test 
obtained on the same samples as in (a), indicating that anneal hardening drastically shortens the elongation to failure [712]. (c) Representative images of fractured 
tensile specimens and the corresponding fracture surfaces of a nanocrystalline 316 L steel in HPT-processed (black) and anneal-hardened (red) conditions [712]. (d) 
Schematics showing the general problem of the strength-ductility trade-off applying especially for anneal hardened metals, and potential solutions to this prob-
lem [690]. 
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boundary structures, but also to understand the effect of post-anneal 
deformation. This could pave the way towards unprecedented combi-
nations of strength and ductility. 

5.3. Creep resistance 

Creep is defined as the time-dependent plastic strain under constant 
applied stress and/or load at a given temperature. The various defor-
mation mechanisms operating during creep can be defined in terms of 
the creep rate given by an established phenomenological relationship 
[720]. 

ε̇ =
ADGb

kT

(
b
d

)p(σ
G

)n
(7)  

where D is the diffusion coefficient, G is the shear modulus, b is the 
Burgers vector, k is Boltzmann’s constant, T is the absolute temperature, 
d is the grain size, σ is the applied stress, p is the exponent of the inverse 
grain size. n is the stress exponent which is equal to 1/m where m is the 
strain rate sensitivity and A is an appropriate dimensionless constant. 
The value of D is given by: 

D = Doexp
(

−
Q
RT

)

(8)  

where Do is a frequency factor, Q is the activation energy for the creep 
process and R is the gas constant. It follows, therefore, that the creep 
mechanism is defined by the specific values of Q, n (or m), p and A and 
these values may be determined by conducting appropriate creep ex-
periments. A mechanism of creep deformation can be particularly 
identified through knowledge of the stress exponent n using the 
following equation [721]: 

n = (∂lnε̇/∂lnσ)T (9) 

The creep behavior of polycrystalline materials with conventional 
coarse grain sizes is well described through a series of constitutive 
equations that delineate different deformation mechanisms [721–724]. 
According to the value of the stress exponent n, the following types of 
creep regions can be classified in which corresponding operating 
deformation mechanisms exist: diffusion-based processes (n = 1) 
[725–727], a combination of diffusion and dislocation-based processes 
such as grain boundary sliding (n = 2) [721, 723, 728, 729] and 
Harper-Dorn creep (n = 1) [730, 731], the power-law controlled 
mechanisms like viscous glide creep (n = 3) [724] and power-law creep 
by glide and climb of dislocations (n = 4–7) [721, 723, 724]. At 
extremely high applied stresses, a power-law breakdown region with 
very high values of n is observed [722, 732]. 

Recent progress in producing UFG materials by SPD processing [5, 
180] together with factors like reduced grain sizes, microstructure 
instability, non-equilibrium grain boundaries, very high intragranular 
dislocation densities and increasing diffusivity resulted in significantly 
different creep behavior of UFG materials in comparison with 
coarse-grained materials. Therefore, questions naturally arise about 
whether the creep deformation and fracture mechanisms in UFG mate-
rials are similar to those operating in coarse-grained counterparts, as 
reviewed in several publications [654, 733–739]. Most studies were 
performed on pure metals or model binary alloys to separate the basic 
mechanisms related to grain refinement and microstructure. However, 
creep experiments have been limited to a narrow range of testing tem-
peratures and stresses because of the instability of non-equilibrium grain 
boundaries. Further, the experimental results and their interpretations 
by different authors are not in agreement with each other due to 
different SPD processing techniques and routes used [740]. It was re-
ported that in pure aluminum and copper, under the same loading 
conditions, the measured minimum creep rate ε̇min in the SPD-processed 
materials with ultrafine grain size was slower and the time to fracture 
(creep lives tf) was longer than in the same material in a coarse-grained 

state [5, 735, 738, 740–746]. However, such positive effects dramati-
cally decrease with increasing value of imposed strain. Microstructural 
analysis showed that after the first ECAP pass grain boundaries were 
predominantly low-angle ones and high-angle grain boundary fraction 
in SPD-pressed specimens significantly increased with increasing value 
of imposed strain [735]. This implies that high-angle grain boundaries 
have a lower strengthening effect in creep than low-angle grain 
boundaries [747]. The important conclusion from the creep experiments 
on UFG pure materials with unstable microstructure is that conventional 
creep mechanisms, already proposed for coarse-grained materials, may 
be used also to explain the creep behavior in UFG materials [735–737, 
746]. 

The creep behavior of reasonably stable precipitation and oxide 
dispersion strengthened structural materials processed by various SPD 
techniques [654, 748–753] in principle matches the behavior of 
coarse-grained materials [721–724]. The best way to confirm this view 
is to compare the resultant creep characteristics of UFG materials with 
those attained in unprocessed conditions of the same material. To 
illustrate the creep behavior of polycrystalline materials, it is most 
informative to use creep curves, which represent graphically the time 
dependence of creep strain. Fig. 34a shows schematically three creep 
stages after instantaneous strain ε0 upon loading: a primary or transient 
creep (Stage I), a secondary or steady-state creep (Stage II), and a ter-
tiary or accelerated creep (Stage III) ending up creep fracture. Figs. 34b, 
34c and 34d show the real creep curves of the precipitate-strengthened 
Zr-2.5 Nb (wt%) alloy [754], the austenitic stainless S304H steel [755] 
and the heat-resistant high chromium ferritic-martensitic P92 steel 
[750, 756], respectively. Inspection of these figures leads to the 
following observations. First, the processing by SPD has a detrimental 
effect on creep life. Generally, UFG precipitate-strengthened materials 
exhibit shorter creep lives than the coarse-grained ones under the same 
loading conditions which limits their engineering utility. Second, it 
appears that the pertinent ductility (fracture plasticity) enhancement is 
associated with the increase in the fraction of high-angle grain bound-
aries. Third, in some cases, the grain refinement after a higher number of 
SPD operations (e.g. a higher number of ECAP passes) could result in a 
dramatic decrease in the creep resistance (see Fig. 34b). 

In a similar way as in Equation 7, the equation for the time to frac-
ture, tf is given by [757, 758]:  

tf = B (σ)-m exp (Qf / kT)                                                              (10) 

where B is a material constant, m = - (∂ln tf / ∂ln σ)T is the stress 
exponent of the time to fracture, and Qf is the activation energy for the 
time to fracture. Fig. 35 shows stress dependences of the minimum creep 
rate ε̇min (Figs. 35a and 35c) and the time to fracture (Figs. 35b and 35d) 
[754, 756, 759–762]. Determined values of the stress exponents n and m 
imply that UFG structural materials obey the power-law relationship 
and suggest that occurring creep deformation mechanisms are similar to 
those operating in the same coarse-grained materials [654, 736]. 
However, such a conclusion is based on mostly short-term creep ex-
periments at medium and high applied stresses where intergranular 
(dislocation) mechanisms are dominant. By contrast, 
diffusion-controlled grain boundary-mediated processes are important 
at low applied stresses. 

In summary, creep mechanisms in UFG structural materials across all 
stress scales are not clearly resolved at present due to the complexity of 
the phenomenon. Long-term creep tests should be carried out to prop-
erly evaluate the creep strength of UFG materials under service 
conditions. 

5.4. Superplastic deformation 

When metal samples are pulled in tension they generally fail at 
relatively low elongations, typically in the range of ~10–50%. But under 
some conditions, much larger elongations may be achieved and this 
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becomes important because of the potential for using these materials in 
forming operations. Relatively high elongations, of the order of a few 
hundreds of percent, were first reported in the scientific literature about 
one hundred years ago [763, 764] but it was only later, in 1934, that a 
report appeared from Pearson in England documenting a remarkable 
tensile elongation of ~1950% in a near-eutectic Bi-Sn alloy together 
with a similar high elongation of ~1505% in a Pb-Sn alloy when these 
samples were pulled to failure at room temperature [24]. The result for 
the Bi-Sn alloy is shown in Fig. 36 where the tensile sample has been 
coiled after failure to facilitate the recording of a photographic record. 
Although this result was unique and truly remarkable, it attracted little 
interest in western scientific circles where it remained simply a labo-
ratory curiosity. Nevertheless, similar investigations were undertaken in 
the Soviet Union and numerous reports appeared in the Russian litera-
ture describing the potential for achieving high elongations in various 
metals when pulling in tension. In fact, it was the translation of the 
Russian word sverkhplastichnost′, meaning “ultrahigh plasticity”, that led 
to the introduction of the new word of “superplasticity” in the English 
language literature when it first appeared in Chemical Abstracts in 1947 
[765]. 

It was the publicity from these Russian articles, and especially the 
publication of a comprehensive review of the Russian results [766], that 
prompted establishing a superplastic testing facility at M.I.T. and the 

subsequent demonstration that superplastic forming provided the po-
tential for fabricating, relatively easily, complex curved shapes that may 
be used for many industrial applications [767]. This represented the 
nucleus of the modern superplastic forming industry which now pro-
cesses many thousands of tons of sheet metals and produces beautifully 
curved products that have many applications in numerous consumer and 
architectural applications and especially in fabricating the bodies and 
many major parts for the aerospace and automotive industries. A review 
was presented earlier describing the transition of superplasticity from a 
laboratory curiosity to a major tool in modern industrial metal forming 
operations [768]. Full details of superplastic forming are now available 
[769, 770] including overviews [771–774] and descriptions of the 
development of applications in specific industries such as in the manu-
facture of cars [775]. 

Superplastic flow is a diffusion-controlled creep process and it is 
reasonable to anticipate that it will be governed by the conventional rate 
equation that is used to denote the steady-state creep rate in all crys-
talline materials. Specifically, in high-temperature creep, the steady- 
state creep rate for all flow mechanisms is expressed through a gen-
eral creep relationship (Equation 7) [723, 776], given in the previous 
chapter. Early tests were conducted in superplasticity where tensile 
specimens were pulled at the same high temperature but using a 
different strain rate for each sample and these results showed that the 

Fig. 34. (a) Schematic representation of a creep curve. (b) Creep curves for Zr-2.5 Nb (wt%) cladding alloy [754]. (c) Creep curves for austenitic S304H steel [755]. 
(d) Creep curves for creep-resistant P92 steel with 9 wt% Cr [756]. 
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flow stress varied with the strain rate through three distinct regions 
where region I at low strain rates was not superplastic with a value of m 
≈ 0.2, region II at intermediate strain rates exhibited superplastic flow 
with m ≈ 0.5 and region III at high strain rates was again not 

superplastic with m ≈ 0.2 [777]. These results demonstrate that the 
strain rate sensitivity is close to ~0.5 in superplastic flow and compre-
hensive sets of experiments, covering a range of experimental variables, 
showed that superplastic flow required a small grain size, typically less 
than ~10 μm, and a temperature typically higher than ~0.5Tm where Tm 
is the absolute melting temperature [778]. By using experimental data 
to construct deformation mechanism maps for superplastic materials 
[779], it was established that the critical grain size delineating the onset 
of superplastic flow is a grain size equal to or smaller than the equilib-
rium grain size that forms within the grains under creep conditions. 
These equilibrium grain sizes are similar for metals [720], ceramics 
[780] and geological materials [781, 782]. 

In superplasticity, the polycrystalline grains remain essentially 
equiaxed so that the dominant flow process is grain boundary sliding 
[783] but this must be accompanied by the occurrence of some intra-
granular slip to prevent the opening of cracks at the grain boundaries. 
Experimental evidence is available confirming the occurrence of this slip 
[784–787] including some recent reports where tests were conducted on 
a superplastic Al-Mg-Li alloy [788–790]. Using experimental results, a 
model for superplasticity was developed where grain boundary sliding 
occurs on a boundary and thereby produces a stress concentration at a 
triple point, this leads to slip in the next grain so that the dislocations 
pass through the grain and pile up at the opposite grain boundary in the 
absence of any subgrain boundaries and finally the rate of flow is 

Fig. 35. Stress dependences of (a,c) the minimum creep rate έmin, and (b,d) the time to fracture tf: for (a,b) Zr-2.5 Nb (wt%) alloy [754] and (c,d) P92 steel [756]. The 
creep results for coarse-grained materials published by Pahutova et al. [759], Hasegawa [760], Sawada et al. [761], and Lee et al. [762] are also listed. 

Fig. 36. An exceptional superplastic elongation of ~1950% in a Bi-Sn alloy, 
reported by Pearson [24]. 
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controlled by the climb of these dislocations into the boundary. For these 
conditions, the superplastic strain rate is given by the general creep 
relationship with D = Dgb for grain boundary diffusion, n = 2, p = 2 and 
with A having a value of ~10. Based on the available experimental data, 
superplasticity is now defined as an elongation of at least 400% and a 
strain rate sensitivity close to m ≈ 0.5 so that the stress exponent is n ≈ 2 
[346]. 

The requirement of a small grain size for superplasticity was ach-
ieved initially in the superplastic forming industry by subjecting metals 
to appropriate thermo-mechanical treatments but these procedures were 
not capable of producing grain sizes smaller than ~2–3 μm. This situa-
tion changed in 1988 with a Russian publication showing that a much 
smaller grain size may be achieved using the procedure now known as 
HPT [33]. This report introduced the processing of metals using SPD 
techniques and this approach has now been adopted and investigated in 
many laboratories around the world. Thus, materials have been pro-
cessed to give submicrometer or nanometer grain sizes using the pro-
cedures of HPT [177], ECAP [193] and very recently using the new 
processing technique of t-HPS [54, 159]. To obtain a direct comparison 
with the very early work of Pearson [24], recent investigations have 
been conducted using t-HPS on various Bi-Sn alloys that are close to the 
eutectic structure [223]. An example of the excellent superplasticity that 
may be attained by t-HPS is shown in Fig. 37 where an elongation of 
2320% was achieved after processing through 100 turns and pulling to 
failure at room temperature [224]. 

In summary, superplasticity refers to a tensile elongation of at least 
400% and a strain rate sensitivity close to ~0.5. This requires a very fine 
grain size, typically smaller than ~10 μm, and in practice, exceptionally 
small grain sizes, in the submicrometer or nanometer range, may be 
achieved using SPD processing. Recent experiments using these new SPD 
techniques have demonstrated the potential for achieving excellent su-
perplastic properties. 

5.5. Low- and room-temperature superplasticity 

As mentioned earlier, high-temperature plastic flow, including su-
perplasticity, can be expressed by the general creep equation (Equation 
7) [791]. The temperature dependence of superplasticity arises from the 
presence of the diffusion coefficient in the general creep equation. The 
creep equation shows that decreasing grain size increases strain rate and 
decreases the temperature of superplasticity. Such an effect of grain size 
on superplasticity leads to two types of superplasticity: low-temperature 
superplasticity and high-strain rate superplasticity. As the most effective 
grain refinement techniques, SPD methods have been used effectively to 
attain significant grain refinement leading to low-temperature super-
plasticity. Al-, Mg- and Ti-based alloys are the most commonly studied 
alloy systems to achieve low-temperature superplasticity using SPD. 
Details of SPD processing of these alloys and principles of grain refine-
ment were described in detail in a previously published overview paper 

[792]. In this section, superplastic elongation values in the severely 
deformed alloys and their microstructural origin are described. 

Low-temperature superplastic elongations reported in severely 
deformed alloys are shown in Fig. 38a-d. In general, elongation to failure 
of Mg-based alloys is scattered in a wide range between 330% and 
1330% [793–801] with an exception of 2400% which is the highest 
low-temperature superplastic elongation in severely-deformed alloys 
(Fig. 38a). Ti-based alloys, on the other hand, exhibit superplastic 
elongations between 474% and 1400% (Fig. 38b) [802–809]. Relatively 
lower superplastic elongations below 700% were reported in the 
Al-based alloys (Figs. 38c and 38d) [810–823]. As an extreme example 
of low-temperature superplasticity, some low-melting point alloys 
exhibited superplastic elongation even at room temperature [824–831]. 
Mostly, the Al-Zn alloy system has been studied to attain 
room-temperature superplasticity. The highest elongation at room 
temperature was reported in the ECAP-processed Zn-0.3Al alloy as 
1000% (Fig. 39) [829]. 

The main reason for high superplastic elongations in the severely 
deformed alloys was stated to be their equiaxed and UFG microstructure 
having large grain boundary area leading to easy grain boundary sliding 
as the main deformation. However, more recently it was shown that 
engineering grain-boundary composition and diffusion could also be 
used to achieve low-temperature superplasticity. Diffusion coefficient D 
in the creep equation should be equal to the coefficient for grain 
boundary diffusion for grain boundary sliding. The coefficient of diffu-
sion depends strongly on the deformation temperature, and a higher 
temperature brings about a higher diffusion coefficient. Thus, the 
diffusion coefficient should be increased without increasing temperature 
to achieve low-temperature superplasticity. Besides the UFG micro-
structure, zinc segregation at the difficult-to-slide Al/Al grain bound-
aries was stated to be the main reason for lowering the superplastic 
temperature of HPT-processed Al-4.8Zn-1.2Mg-0.14Zr (wt%) alloy 
[811, 812]. Segregation of zinc at grain boundaries accelerates diffusion 
and enhances sliding which results in superplasticity at lower temper-
atures [811, 812]. A similar result was also reported in the 
friction-stir-processed Mg-9Li-1Zn (wt%) alloy [799, 832]. The β phase 
(lithium solid solution) particles precipitated at the grain boundaries 
and triple junctions contributed to the stress relaxation and accommo-
dated grain boundary sliding [832]. It was also specified that lithium 
segregation at Mg-rich α/α phase boundaries increases the boundary 
diffusivity and contributes to phase boundary sliding at relatively low 
temperatures leading to high superplastic elongation of 1104% in 
Mg-9Li-1Zn alloy [799]. All these results show that besides the UFG 
formation, controlling the grain boundary composition and 
grain-boundary segregation using a proper SPD method and alloying 
element selection is effective for low- and room-temperature super-
plasticity (e.g. addition of lithium, sodium, calcium, strontium, sele-
nium, bismuth and tellurium to magnesium can enhance the diffusivity) 
[351, 833]. 

The effect of grain-boundary segregation on the mobility of grain 
boundaries was reported to lead to the achievement of room- 
temperature superplasticity in Al-30Zn (at%) [351] and Mg-8Li (wt%) 
[350] alloys. One of the most interesting results of grain boundary en-
gineering to attain room-temperature superplasticity was reported in the 
Al-Zn alloy [351]. It was reported that 200 turns of HPT did not cause 
further grain refinement compared to lower strains but resulted in the 
segregation of zinc atoms at α/α grain boundaries. High zinc concen-
tration enhanced grain-boundary diffusion along these boundaries and 
made them favorable for grain boundary sliding. Thus, improved 
diffusivity at the α/α boundaries activated grain boundary sliding as the 
main deformation mechanism and brought about high superplastic 
elongation in Al-30Zn at room temperature [351]. HPT processing of 
Mg-8Li alloy also resulted in the segregation of lithium atoms at the α/α 
boundaries and enhanced diffusion capability of these boundaries [350]. 
Such a modification on the grain boundaries resulted in a high super-
plastic elongation of 440% at room temperature corresponding to 

Fig. 37. Appearance of Bi-43Sn (wt%) samples after processing by t-HPS for 
100 turns and pulling to failure at 298 K [224]: the elongation of 2320% ex-
ceeds the elongation of 1950% reported in early experiments by Pearson [24]. 
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0.35Tm which is the lowest homologous temperature for the 
low-temperature superplasticity in the severely deformed metals. 

Regarding the results summarized above it can be concluded that 
besides UFG formation, the type and chemical composition of grain 
boundaries also play an important role in decreasing the temperature for 
superplasticity. Thus, modification of the grain boundaries via SPD can 
be considered a promising way to achieve low- and room-temperature 
superplasticity. 

6. Functional properties 

Although SPD-processed materials primarily received attention for 

their mechanical properties, there is a general trend in the field toward 
functional properties. Since these materials show more than one func-
tionality and their functional properties are superior to conventional 
engineering materials, they are sometimes referred to as multifunctional 
or superfunctional materials. A review of the recent literature published 
on the functional properties of SPD-processed materials suggests that the 
main investigated functional properties include: electromagnetic prop-
erties (electrical conductivity [834, 835], superconductivity [836, 837], 
thermoelectric properties [838, 839], dielectric properties [840] and 
magnetic properties [841]), thermal conductivity [842], catalytic 
properties (catalyst [843], photocatalyst [844] and electrocatalyst 
[845]). hydrogen-related applications (hydrogen storage [846], 
hydrogen production [847] and hydrogen embrittlement [848]), 
corrosion resistance [849], irradiation resistance [850], biocompati-
bility [851], etc. In the following sections, the main functional properties 
of SPD-processed materials are reviewed. 

6.1. Electrical conductivity 

Electrical conductivity (σE, S/m) is a property of materials defined as 
the capability to allow electron flow under an applied electric field 
[852–854], or the inverse of electrical resistivity (ρ, Ωm) and calculated 
using Equation 11. 

σE =
1
ρE

(11) 

According to the International Annealed Copper Standard (IACS%), 
the electrical conductivity can be expressed as a percentage of that of 
annealed copper (100 IACS%). Conductive metallic materials should 
exhibit high strength and good ductility, with high thermal stability and 
electrical conductivity. For pure metals, the main scattering mechanism 
consists of the interaction between conduction electrons and the 

Fig. 38. The variation of superplastic elongation values with strain rate at different temperatures in severely-deformed alloys: (a) Mg-based alloys, (b) Ti-6Al-4 V (wt 
%) alloy, (c) 7xxx series of Al-based alloys and (d) other Al-based alloys [792]. 

Fig. 39. Room temperature superplastic elongations of some severely deformed 
alloys [792]. 
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vibrating lattice (ρlattice), which has a strong temperature dependence. 
However, microstructural features, especially in metallic alloys, can 
increase the electrical resistivity. Matthiessen’s rule expressed in 
Equation 12 considers the contribution of two components: (i) lattice 
resistivity (ρlattice) and (ii) residual resistivity (ρresidual). The latter is 
associated with local distortion of the lattice, solute atoms, grain 
boundaries and crystal defects. Their contribution to the total resistivity 
can be added and designated as B, which is weakly dependent on tem-
perature. A is a constant independent of temperature [852–854]. 

ρE = ρlattice + ρresidual ≈ A • T+B (12) 

Processing copper and aluminum alloys by SPD increases their 
strength and decreases the electrical conductivity due to the high den-
sity of grain boundaries and crystal defects, which hinder dislocation 
motion but promote electron scattering mechanisms [180, 236, 

855–862]. Traditionally, high strength and highly conductive Cu-based 
alloys are expected to have ultimate tensile strength (UTS) of 
300–800 MPa and electrical conductivity of 50–95 IACS% [856]. 
Meanwhile, Al-based alloys should achieve at least a UTS of 300 MPa 
and 52 IACS% [857]. Such ranges of properties are indicated in Figs. 40a 
and 40b as hatched areas. Copper alloys can be strengthened with 
restored electrical conductivity through several processing routes. A 
summary of such results is shown in Fig. 40a.  

• Grain refinement by HPT of high-purity copper increases its strength 
to 440 MPa [859] with electrical conductivity of ~87 IACS% at the 
steady state [860]. During microstructure evolution high density of 
dislocations are produced, but the microstructure undergoes dy-
namic recrystallization with a grain size of ~ 0.2 μm and lower 
density of dislocations at the steady state.  

• Age hardenable Cu-Cr-X alloys processed by SPD with further 
annealing allow the precipitation of particles rich in chromium. 
Meanwhile, SPD at high temperatures promotes dynamic strain 
aging and particle precipitation. The low solute content in the copper 
matrix reduces the electron scattering and optimizes the electrical 
conductivity [254, 856, 861–863]. Islamgaliev et al. [862] processed 
a Cu-Cr-Ag alloy by HPT at room temperature followed by aging at 
723 K for 1 h and achieved UTS of 840 MPa and conductivity of 85 
IACS%, as shown in Fig. 40a.  

• Fine grains and nanoscale twins have been shown to minimize the 
scattering of conduction electrons and still serve as barriers to 
dislocation motion [864–868]. Fig. 41a shows a bright-field image of 
high-purity copper with nanoscale twins produced by pulsed elec-
trodeposition (PED), which shows yield stress of ~900 MPa and 
conductivity of 96.9 IACS%. This result is also shown in Fig. 40a 
[864]. 

The mechanical and electrical properties of aluminum alloys have a 
close relationship with the nature and fraction of alloying elements 
[834, 855, 870]. UFG Al-based alloys subjected to post-processing heat 
treatment after SPD or SPD at elevated temperatures have been reported 
to produce decomposition of supersaturated solid solutions and pre-
cipitation of second phase particles of Mg2Si [870–876], Al3Fe, Al6Fe 
[869, 877–880], Al11RE3 (RE: rare-earth elements) [881, 882] and Al3Zr 
[332, 883–886]. A summary of these results is shown in Fig. 40b. For 
instance, processing AA6201 by HPT at elevated temperatures (403 K, 
453 K and 503 K) allowed the precipitation of nano-sized Mg2Si due to 
dynamic strain aging and increased electrical conductivity with pro-
cessing temperature: 55.6 IACS%, 58.4 IACS% and 59.0 IACS% 
respectively [870]. Consequently, strength decreases to 412, 365 and 
275 MPa by annealing, respectively, as shown in Fig. 40b. On the other 
hand, UFG Al-2Fe (wt%) alloys with nanosized Al3Fe and Al6Fe parti-
cles, as indicated by arrows in Figs. 41b and 41c were produced by HPT 
for 20 and 75 revolutions, respectively. Both were peak-aged at 473 K 
and attained UTS of 600 and 650 MPa with 55 and 54 IACS% respec-
tively [869, 877]. This result is also shown in Fig. 40b. 

In summary, the thermal dependence of electrical resistivity, grain 
boundaries and grain size allows the balance of mechanical and elec-
trical properties by thermomechanical routes, such as SPD com-
plemented by static or dynamic aging [9, 373, 887]. On the other hand, 
scaling up sample dimensions and optimization of continuous SPD 
methods can open a new path for the industrial application of 
high-performance UFG copper and aluminum conductors [154, 164, 
179, 241]. 

6.2. Magnetic properties 

Magnetic materials are key materials needed, for the electrification 
of mobility and the generation and conversion of electrical energy 
[888]. In recent years, interest in the magnetic properties of 
SPD-processed materials increased as microstructure strongly influences 

Fig. 40. Electrical conductivity with respect to strength in (a) copper and (b) 
aluminum alloys [834]. 
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the magnetic properties and HPT can be used to tune it [841]. For 
example, the coercivity Hc of soft and hard magnetic materials correlates 
with the grain size (Fig. 42a) [888–893] and HPT leads to strong grain 
refinement [23, 38, 894]. Other advantages include the potential to 
form nanostructured composites with a high density of interfaces or 
supersaturated solid solutions, while at the same time enabling a shear 

texture formation through the deformation processes [895, 896]. 
Powder-based HPT processing (Fig. 42b-d) offers even more interesting 
and unique opportunities for the fabrication of hard or soft magnetic 
materials [841]. Using elemental powders or intermetallic phases in the 
form of powders, a free choice of combinations is possible, without the 
limitations given by the phase diagrams or, better, by phase formation 

Fig. 41. (a) TEM bright-field image of as-deposited copper with diffraction pattern (as inset) [864]. (b,c) TEM bright/dark-field images of Al-2Fe (wt%) alloy after 
HPT processing for (b) 20 and (c) 75 revolutions at peak-aged condition [869]. 

Fig. 42. (a) Schematic representation of coercivity (Hc) as a function of grain size (D) for soft (upper graph) and hard magnetic (lower graph) materials (different 
logarithmic scales for Hc of soft and hard magnetic are used) [888–893]. (b) Powder blends for the HPT process, (c) schematic representation of powder-based HPT 
processes and (d) schematics of bulk materials produced by HPT from powder blends with enhanced microstructural features [841]. 
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from a melt as in metallurgical processing routes (Fig. 42b). As 
mentioned earlier, HPT processing of powders can produce bulk nano-
structured materials (e.g. nanocomposites), while at the same time 
processes like mechanical alloying, phase transformations and super-
saturations can be used to enhance the magnetic properties [897, 898]. 
The free choice of starting powders is particularly interesting because 
thermodynamically metastable chemical compositions and various 
composite structures can be achieved. Fig. 43 summarizes examples of 
microstructures of different magnetic materials or nanocomposites that 
can be obtained by HPT processing of powders [841]. Here some recent 
findings are reviewed. 

Smaller grain sizes compared to single-phase materials can be ach-
ieved in HPT-deformed Cu-Co [897–899] and Fe-Cu alloys [900] with 
supersaturated phases, in which semi-hard, tunable magnetic properties 
are obtained. Additionally, annealing treatments are used to modify 
magnetic properties [899]. To achieve soft magnetic properties, ternary 
Fe-Co-Cu alloys were studied [901]. The addition of iron decreases the 
magnetocrystalline anisotropy and increases the saturation magnetiza-
tion [902]. Giant magneto-resistance (GMR) is observed in materials 
that consist of nanometer-sized ferromagnetic particles dispersed in 
non-magnetic metallic matrixes (termed ‘granular’) [903, 904]. In 
HPT-deformed binary and ternary powder mixtures consisting of 
different compositions of elemental copper, cobalt, nickel and iron 
[905–907], similar GMR values as in materials processed with different 
methods are found. HPT processing of powders is further used to obtain 
hard magnetic materials. In recent studies, Nd-Fe-B-based bulk materials 
were processed by HPT from amorphous precursors, in which the 
deformation-induced texture further led to anisotropic magnetic prop-
erties and a maximum energy product of 22.8 MGOe [908, 909]. 

For nucleation-controlled magnets, the four classical magnetic 
interaction mechanisms with the different microstructures (type I-IV) 
can be implemented via powder-based HPT (Fig. 43). Powder blends of 
SmCo5 and magnetically different binder phases, i.e. copper (diamag-
netic) [910], iron (ferromagnetic) [911], nickel (ferro), cobalt (ferro), 
zinc (para), tin (para) and chromium (antiferromagnetic) [841], were 
deformed by HPT. A type I magnetic material (aligned/textured 
single-domain ferromagnetic particles are separated by a thin 
non-magnetic layer leading to magnetic decoupling of ferromagnetic 
particles) was obtained using copper as a diamagnetic phase [910]. Type 
II magnets (exchange-coupled ferromagnetic particles) were fabricated 
as well by deforming SmCo-based intermetallic powders by HPT [841]. 
An exchange-coupled type III system (a combination of soft and hard 
magnetic phases) was synthesized using iron in addition to SmCo5 
[911]. A type IV ferro-antiferromagnetic composite is processed by 
deforming SmCo5 and chromium [841]. The highest saturation 

magnetization was obtained for the Fe-containing composition (type III) 
and the lowest for the diamagnetic and antiferromagnetic binder phases 
(type I and IV). According to Fig. 42a it has been shown that a refine-
ment of the microstructure and grain size of the hard ferromagnetic 
phase increases the coercivity, whereas the largest coercivity is achieved 
with copper and chromium as a binder phase [841]. The highest coer-
civity is obtained in the Cu-SmCo5 system (type I) due to the magnetic 
decoupling of the SmCo5 particles by copper [910]. Successful pro-
cessing of type IV magnetic materials by HPT was also reported in the 
Fe-NiO [912] and Co-NiO [913] systems. 

Phase transformations by HPT can also be employed to synthesize 
different hard magnetic phases such as L10-FeNi [340], Mn-Al-C [914] 
and MnBi [915]. Soft magnetic properties in HPT-processed bulk 
single-phase materials (cobalt [509, 916], nickel [917–919], iron 
[919–923], Fe-Si [917, 919, 921], FeCo [917, 921], FeNi [921]) have 
not yet been achieved due to large grain sizes and high density of de-
fects. In HPT-processed hard magnetic materials, grain refinement 
generally leads to coercivity enhancement [924–928], partial amorph-
ization [924, 929–932] or phase decomposition [933]. By deformation 
of amorphous magnetic materials [934–939], type III magnetic mate-
rials can be obtained [934]. 

In summary, SPD processing and particularly powder-based HPT 
offers strong advantages in the design of magnetic microstructures based 
on the possibility to freely combine hard, soft and non-magnetic phases 
for forming a textured nanocomposite. SPD processing opens thereby 
new pathways to future magnetic materials with unique microstructures 
covering the whole range of soft-to-hard magnetic properties. 

6.3. Optical bandgap narrowing and solar energy harvesting 

Metal oxides, such as TiO2 and ZnO, are efficient semiconductors for 
light harvesting and photocatalysis because they generate a large 
number of electrons and holes upon light irradiation. However, their 
efficiency is low under sunlight because their bandgap is large and is in 
the range of ultraviolet (UV) light and sunlight only contains about 
2–3% of UV light. To enhance the efficiency of metal oxide across the 
solar spectrum, it is necessary to broaden their light absorption to the 
visible light region by reducing their bandgap. Various approaches, such 
as doping with anions like nitrogen [940–942], carbon [943], hydrogen 
[944], fluorine [945], chlorine [945], bromine [945] and iodine [945] 
and/or cations like tungsten [946, 947], ruthenium [948], tantalum 
[949], sodium [950], bismuth [951], lanthanum [952], molybdenum 
[953], zinc [954], calcium [954] and cobalt [955] have been employed 
to reduce the bandgap of metal oxide semiconductors. When metal oxide 
is doped with anions like nitrogen or carbon, N 2p states in nitrogen and 

Fig. 43. Different types of microstructures which can be generated by HPT applied to powder/powder blends and their corresponding schematic magnetic hysteresis 
curves [841]. 
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C 2p states in carbon couple with O 2p states of the metal oxide, 
resulting in the formation of acceptor levels above the valence band of 
the host metal oxide [956]. The formation of such acceptor levels re-
duces the bandgap of the metal oxide whose valence band is composed 
of O 2p orbitals. Although doping or co-doping with anions/cations is an 
effective method for reducing the bandgap of most metal oxides, it has 
been challenging in some aspects. Dopants often tend to precipitate and 
alter the chemical composition of the host material. Another limitation 
is the low solubility of dopants in the host material. Additionally, high 
temperatures are typically required to enhance the crystallinity of the 
host material and this can lead to the unintended expulsion of dopants. 

An effective method for reducing the bandgap is the introduction of 
defects into the host material. Taking TiO2 as an example, defects such 
as oxygen vacancies have been shown to reduce its bandgap. The major 
intrinsic defects in TiO2 include oxygen vacancies, titanium interstitials 
and titanium vacancies [957–959]. Among these, oxygen vacancies are 
the most common type of intrinsic defect. Introducing plastic strain by 
HPT method is shown to be effective for the formation of the oxygen 
vacancies in many semiconductors such as TiO2 [582, 639, 960], ZnO 
[604], Y2O3 [583], BiVO4 [961], TiO2/ZnO [605], CsTaO3 [962], 
LiTaO3 [962], Bi2O3 [963], ZrO2 [666], GaN/ZnO [606], BaTiO3 [840] 
and Al2O3 [964]. In this method, dopants are not used, while oxygen 
vacancies are effectively formed. The generation of oxygen vacancies 
arises from the crystal structure of most oxides including TiO2. In TiO2, 
bridge bonding oxygen atoms are two-fold coordinated and can be easily 
removed from the lattice by introducing plastic strain. Therefore, oxy-
gen vacancies are known to be the most reactive sites in TiO2. Genera-
tion of one oxygen vacancy leaves two valence electrons that occupy 
empty Ti 3d levels. As a consequence, energy levels below the conduc-
tion band are generated, leading to the bandgap reduction of the metal 
oxide semiconductor. 

Another interesting feature of introducing the simultaneous plastic 
strain and high pressure is reducing the bandgap of materials by stabi-
lizing the high-pressure phases at ambient pressure. These high-pressure 
phases have theoretically been calculated to have better light absor-
bance and narrower bandgaps that coincide with visible light. For 
example, columbite TiO2-II with an orthorhombic structure is calculated 
to have a bandgap of 2.59 eV, but it is stable only at pressures higher 
than 2 GPa [639, 960]. The application of HPT for stabilizing the TiO2-II 
phase showed that the high-pressure phase was stable for at least 6 
months. The high-pressure rocksalt phase of ZnO [604] and the mono-
clinic phase of Y2O3 [583] are some successful examples of bandgap 
reduction through the formation of high-pressure phases. Fig. 44a shows 
the UV-Vis light absorbance spectra of TiO2 samples before HPT and 
after HPT. The absorption edge of the starting TiO2 powder is 400 nm, 
while it shifted to 470 nm, after HPT processing. The bandgap of sam-
ples was calculated by the Kubelka-Munk equation as shown in Fig. 44b, 
being 3.1 eV and 2.7 eV for samples before HPT and after HPT pro-
cessing. Comparing the bandgaps of samples before HPT and after HPT 
processing, it is clear that the formation of a high-pressure phase is an 
effective approach for reducing the bandgap of oxides. A schematic 
illustration of bandgap reduction is shown in Fig. 45. Fig. 45a represents 
the bandgap of a pure metal oxide, whose bandgap is shown to be wide. 
Fig. 45b shows the cation-doped oxide, where donor states are respon-
sible for the bandgap narrowing. Fig. 45c shows an anion-doped oxide, 
where donor states are responsible for bandgap narrowing. Bandgap 
narrowing through oxygen vacancies produced by HPT processing also 
falls into this group, with the difference that no dopants are present in 
this case. Fig. 45d represents the bandgap of a pure metal oxide with 
high-pressure phases. In this case, the high-pressure phase itself has a 
narrower bandgap without any donor/acceptor states. Table 5 is a 
summary of publications in the literature that studied the effect of the 
HPT method on the bandgap of various semiconductors and ceramics 
[323–327, 844, 965, 966]. 

Taken altogether, inducing plastic strain using the SPD is an effective 
approach for the formation of oxygen vacancies and/or high-pressure 

phases in semiconductors to enhance light harvesting via bandgap 
narrowing. This feature of SPD has opened a pathway for the develop-
ment of photocatalysts, as will be discussed in the next chapters. 

6.4. Photocatalytic CO2 conversion 

Among all scientific attempts to solve the global warming crisis, 
photocatalytic CO2 conversion has been introduced as one of the 
cleanest methods to convert CO2 to CO and useful organic components 
[967–969]. Photocatalytic CO2 conversion reactions are performed on 
the surface of a semiconductor under solar irradiation where electrons 
and holes are separated and immigrated to the surface as shown in  
Fig. 46a [970]. A variety of methods such as doping with impurities 
[971–974], defect/surface engineering [975, 976] and the introduction 
of heterojunctions [977, 978] have been reported to enhance the 

Fig. 44. (a) UV-Vis absorbance spectra and (b) bandgap calculation by the 
Kubelka-Munk theory for TiO2 before and after HPT processing and after HPT 
followed by annealing [639]. 

Fig. 45. Schematic illustration of bandgap reduction mechanisms: (a) pure 
metal oxide, (b) cation-doped oxide in which donor states are responsible for 
bandgap narrowing, (c) anion-doped oxide in which acceptor states are 
responsible for bandgap narrowing and (d) high-pressure phases with oxygen 
vacancies in which bother donor and acceptor states are responsible for 
bandgap narrowing. 
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efficiency of different photocatalysts, but doping with impurities is the 
most feasible one. Since this method suffers from the impurity-induced 
recombination of electrons and holes [974, 979, 980], it is necessary to 
introduce new strategies to improve the photocatalytic activity. SPD 
through the HPT method which was employed to improve the photo-
catalytic dye degradation [604, 956, 964] and water splitting [606, 639, 
666], showed high potential to suppress electron-hole recombination 
and enhance the photocatalytic CO2 conversion efficiency. SPD 
enhanced photocatalytic CO2 conversion by the introduction of (i) ox-
ygen vacancies and strain, (ii) high-pressure phases, (iii) defective 
high-entropy oxides and (iv) low-bandgap high-entropy oxynitrides, as 

discussed below [981, 982].  

• Simultaneous oxygen vacancy generation and strain engineering 
using the HPT method was employed to improve the properties and 
photocatalytic activity of BiVO4 for CO2 conversion [961], due to the 
high recombination rate and inappropriate conduction band position 
of this material [983]. Using various characterization tools, it was 
observed that lattice strain and oxygen vacancies increase in the 
BiVO4 sample by increasing the HPT turns [961]. These changes 
resulted in systematically increasing the light absorbance, narrowing 
the bandgap and suppressing the recombination rates. The 

Table 5 
Summary of publications related to the effect of SPD via the HPT method on bandgap of various semiconductors and ceramics.  

Material Bandgap before 
HPT (eV) 

Bandgap After 
HPT (eV) 

Factors Affect Bandgap Color Before 
HPT 

Color After 
HPT 

Application Ref. 

TiO2  3.1  2.4 High-pressure phase, 
Oxygen vacancy 

White Green Water splitting H2 production [582, 639, 
960] 

ZnO  3.4  1.8 High-pressure phase, 
Oxygen vacancy 

White Yellow Dye degradation [604] 

Y2O3  5.82  5.69 Phase transformation White Pink Photoluminescence [583] 
BiVO4  2.4  2.1 Defect formation Yellow Orange and 

Rose 
CO2 conversion [961] 

TiO2-ZnO  3.2  1.6 High-pressure phase, 
Oxygen vacancy 

White Black Water splitting H2 production [605] 

CsTaO3  4.6  3.3 Oxygen vacancy - - Water splitting H2 production [962] 
LiTaO3  4.7  4.2 Oxygen vacancy - - Water splitting H2 production [962] 
Bi2O3  2.5  2.3 Oxygen vacancy Yellow Black Photocurrent [963] 
ZrO2  5.1  4.0 High-pressure phase, 

Oxygen vacancy 
White Black Water splitting H2 production [666] 

GaN-ZnO  2.7  2.4 Nitrogen vacancy Yellow Magenta Water splitting H2 production [606] 
Al2O3  5.7  2.5 Oxygen vacancy White Black Dye degradation [964] 
TiHfZrNbTaO11  0  2.9 High-entropy phase Metallic Orange Water splitting H2 production, 

CO2 conversion 
[323, 324] 

TiZrNbTaWO12  >3.0  2.3 High-entropy phase White Orange Water splitting O2 production [325] 
TiZrHfNbTaO6N3  2.9  1.6 High-entropy phase Orange Black Water splitting H2 production, 

CO2 conversion 
[326, 327]  

Fig. 46. (a) Schematic of photocatalytic CO2 conversion mechanism [981]. (b) Photocatalytic CO production rate of BiVO4 versus time for powder and samples 
processed by HPT with 0.25, 1 and 4 turns [961]. (c) High-resolution TEM image of sample processed by HPT containing TiO2-II high-pressure phase [985]. (d) Rate 
of CO generation for TiO2 samples before HPT, after HPT and after HPT and annealing [985]. 
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conduction band was also aligned to an upper level of energy which 
could advance the reactions thermodynamically. The BiVO4 sample 
processed by HPT showed an improved CO production rate under UV 
light and the activity increased by increasing the HPT turns due to 
increasing lattice strain and oxygen vacancy as shown in Fig. 46b 
[961]. A similar concept was recently employed by HPT processing 
to produce oxygen vacancy-rich black rookite as an active photo-
catalyst for CO2 conversion [984].  

• As mentioned in the earlier chapter, columbite TiO2-II is the high- 
pressure phase of TiO2 which was formed by SPD through the HPT 
method (Fig. 46c) and employed for photocatalytic CO2 conversion 
[985]. The resultant material after HPT was annealed to decrease the 
oxygen vacancy concentration in bulk. The annealed sample con-
taining the TiO2-II phase showed higher light absorbance in the 
visible region and lower bandgap. Recombination of electrons and 
holes suppressed significantly for the annealed sample and it could 
successfully generate a photocurrent much higher than the initial 
anatase powder. All these improvements led to considerable photo-
catalytic activity of anneal sample containing TiO2-II compared to 
anatase powder as shown in Fig. 46d [985].  

• Since high-entropy ceramics have shown superior properties for 
various ranges of applications, especially in the catalysis field [986, 
987], a defective high-entropy oxide was fabricated using HPT and 
consequent high-temperature oxidation and examined for photo-
catalytic CO2 conversion [324]. The synthesized high-entropy oxide 
TiZrNbHfTaO11 containing nanograin boundaries and defects such as 
oxygen vacancy and dislocations adsorbed the light in both UV and 
visible regions with the bandgap value of 3 eV. It showed lower 
recombination of electrons and holes compared to anatase TiO2 and 
BiVO4 as conventional photocatalysts and successfully generated 

photocurrent. This material showed a high CO production rate 
similar to P25 TiO2 as a benchmark catalyst and lower than anatase 
TiO2 and BiVO4. This study reported the first application of 
high-entropy materials for photocatalytic CO2 conversion [324].  

• By considering the high potential of the mentioned TiZrNbHfTaO11 
synthesized by HPT for CO2 photoreduction and the promising low 
bandgap of metal oxynitrides [988], the TiZrNbHfTaO6N3 
high-entropy oxynitride was fabricated by nitriding the TiZrNbHf-
TaO11 [327]. The material showed an appropriate electronic band 
structure with an extremely narrow bandgap of 1.6 eV which is 
lower than P25 TiO2 and the high-entropy oxide as shown in Fig. 47a 
[327]. The light absorbance of this high-entropy oxynitride was 
higher than P25 TiO2, high-entropy oxide and all corresponding bi-
nary oxides (Fig. 47b) [326, 327]. The recombination rate of this 
material was significantly suppressed compared with P25 TiO2 and 
the high-entropy oxide and it adsorbs the CO2 molecules with both 
physisorption and chemisorption better than P25 TiO2 and the 
high-entropy oxide (Fig. 47c) [327]. The result of these improve-
ments caused by HPT processing was the effective enhancement of 
photocatalytic CO2 conversion activity of TiZrNbHfTaO6N3 
compared to P25 TiO2 as a benchmark photocatalyst, the 
high-entropy oxide (Fig. 47d) and almost all reported photocatalysts 
in the literature [327]. 

In summary, SPD was introduced as an effective tool to improve the 
structural and optical properties and consequently activity of conven-
tional photocatalysts for CO2 conversion. This method also showed 
promising potential to synthesize the new high-entropy ceramics with 
superior photocatalytic efficiency comparable to benchmark photo-
catalysts for CO2 conversion. The ability of HPT to develop these highly 

Fig. 47. (a) Electronic band structure of TiZrNbHfTaO6N3 high-entropy oxynitride (HEON), P25 TiO2 and TiZrNbHfTaO11 high-entropy oxide (HEO) [327]. (b) 
UV–vis light absorbance spectra for TiZrNbHfTaO6N3 compared to TiZrNbHfTaO11 and corresponding binary oxides [326]. (c) Diffuse reflectance infrared Fourier 
transform spectra for TiZrNbHfTaO6N3 compared to P25 and TiZrNbHfTaO11 [327]. (d) Rate of CO production for TiZrNbHfTaO6N3 compared to P25 TiO2 and 
TiZrNbHfTaO11 [327]. 

K. Edalati et al.                                                                                                                                                                                                                                 



Journal of Alloys and Compounds 1002 (2024) 174667

60

active catalysts for CO2 photoreduction is attributed to the formation of 
defects such as oxygen vacancies which act as active sites to adsorb and 
activate the CO2 molecules [981, 982]. For the future outlook, the SPD 
can significantly extend in the field of photocatalysis to develop new and 
effective catalysts to convert CO2 to CO and also hydrogenate to other 
useful components such as CH4. The HPT method is expected to play the 
most important role in this regard because the method applies to a wide 
range of hard-to-deform materials such as optical ceramics [15, 844], 
semiconductors [512, 989] and oxides [513, 989]. 

6.5. Photocatalytic hydrogen production 

Clean production of hydrogen is a promising alternative to fossil fuel 

utilization, but its production is still a challenge [990]. Photocatalysis, 
by splitting water in the presence of light and a photocatalyst [991, 
992], produces hydrogen with minimum CO2 emission. Fig. 48a shows a 
schematic representation of a photocatalytic process. The main limita-
tion of the photocatalysis is the photocatalyst itself. The photocatalyst 
must have great light absorbance, narrow bandgap, good efficiency and 
high stability. Several popular photocatalysts such as TiO2 [639, 993], 
ZnO [604, 994, 995], perovskites [323, 962] and oxynitrides [606, 996] 
show these characteristics; however, various studies demonstrate the 
necessity of the improvement of activity of these catalysts. SPD pro-
cessing via HPT [604, 639, 962], ball milling [997–1000] and tubular 
channel angular pressing (TCAP) [1001] were demonstrated to be 
beneficial in improving photocatalytic activity. SPD can tune three 

Fig. 48. (a) Schematic representation of the photocatalytic water splitting reaction for hydrogen production. (b) Enhanced photocatalytic activity of zirconia by 
oxygen vacancy introduction via HPT processing [666]. (c) Enhanced photocatalytic activity TiO2 by stabilization of high-pressure columbite phase [1002]. (d) 
Density functional theory calculations, showing high surface activity of the (101) atomic plane of high-pressure columbite for H2O to OH + H decomposition [1002]. 
(e) Photocatalytic hydrogen production for TiO2-ZnO composite under UV light after HPT processing for 3 and 15 turns [605]. (f) Schematic representation of charge 
separation in TiO2-ZnO interface boundary as heterojunctions [605]. 
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major characteristics of the photocatalysts: (i) defects introduction [606, 
666], (ii) high-pressure phase transformation [604, 639, 1002] and (iii) 
heterojunctions [325, 605, 997, 998]. 

Due to the pressure-strain effect, vacancy formation is one of the 
most common defects when processing ceramics by SPD. A arge con-
centration of oxygen vacancies was found in black ZrO2 [666], TiO2 
[639], ZnO [604, 1003], Al2O3 [995], CsTaO3 [962] and LiTaO3 [962] 
and MgO [956] after being processing by SPD. The oxygen vacancies are 
beneficial for photocatalytic activity in all the cases [604, 666, 956, 962, 
995]. The study performed on black ZrO2 demonstrated that oxygen 
vacancy concentration can be increased by high-temperature processing 
[666]. In addition, these strain-induced vacancies improve the hydrogen 
generation in the sample as shown in Fig. 48b. The oxygen vacancies can 
enhance the photon absorption, narrow optical bandgap and function as 
active sites for photocatalytic activity [639, 666, 956, 1002]. Nitrogen 
vacancies were also observed in GaN-ZnO after HPT [606]. The study 
concluded that the nitrogen-vacancy complexes can reduce the bandgap 
by modifying the energy levels above the top of the valence band and 
below the conduction band [606]. Vacancies generally diminish the 
electron-hole recombination and narrow the bandgap of the material. 
The defect introduction by SPD processing not only can improve several 
properties but also contribute to the stabilization of high-pressure 
phases. 

The transformation to a high-pressure phase can be highly beneficial 
for photocatalytic activity. For ZnO, the transformation to Rocksalt de-
creases the bandgap from 3.4 to 1.8 eV [604]. However, as mentioned 
earlier, the rocksalt phase is only stable under high pressure but could be 
stabilized in ambient pressure by HPT [604]. Similarly, the TiO2 
high-pressure columbite phase is unstable under ambient pressure; 
however, it can be stabilized by the shear strain introduced by HPT 
[1004]. The shear strain induces gradual modifications on the anatase 
crystal structure until it transforms to ~70% columbite [1004]. 
Columbite stabilization in combination with the anatase, rutile and in-
termediate sheared structures significantly improves the water-splitting 
efficiency (Fig. 48c) [639, 1002, 1004]. Columbite is demonstrated to be 
highly active for water splitting in the atomic plane (101). The DFT 
results for the reaction pathway observed in Fig. 48d showed low acti-
vation energy for the water-splitting reaction compared to anatase and 
rutile [1002]. 

Several composites have been also subjected to plastic deformation 
or SPD methods to improve their coupling: SnO2/TiO2 [997, 1005], 
p-CuO/n-ZnO [998], p-CuBi2O4/n-TiO2 [999], g-C3N4/ZnO [1000], 
CuFe2O4/Bi4Ti3O12 [1006] and TiO2-ZnO [605, 1005]. As shown in 
Fig. 48e, TiO2-ZnO after HPT processing for 3 turns showed greater 
photocatalytic activity compared to TiO2 and ZnO. Ball milling is 
commonly utilized to couple the oxides into a composite [997, 1006], 
but it is also able to generate improvements in the photocatalytic ac-
tivity of the composites. At an optimum time of milling, the activity is 
enhanced, but it reduces after increasing the time due to the agglom-
eration of the powders [998, 999] or reduction of crystallinity [605]. 
The reason for the enhancement of the photocatalytic activity, as in the 
HPT, is attributed to the presence of heterojunction for easy 
electron-hole separation [605, 997, 1000, 1006]. In a TiO2-ZnO com-
posite, the electron transfer occurs from the conduction band of ZnO to 
TiO2, and the holes move from the valence band of TiO2 to ZnO [605, 
1005] (Fig. 48f). When processing TiO2-ZnO composite by HPT, the 
stabilization of high-pressure phases generates additional interphase 
boundaries between phases which positively contribute to the increment 
of active sites [605]. Therefore, SPD can contribute to the enhancement 
of photocatalytic hydrogen production through different routes such as 
the stabilization of vacancies, high-pressure phase transformations and 
heterojunction formation. 

6.6. Electrocatalytic hydrogen production 

As mentioned in an earlier chapter, hydrogen is emerging as a new 

energy carrier and is gaining global acceptance as a potential fuel 
pathway. Unlike all carbon-based fuels, hydrogen can be truly carbon- 
neutral [1007–1009]. Electrocatalytic water splitting to produce 
renewable hydrogen has been widely regarded as a promising strategy 
for the coming hydrogen society [1010, 1011]. Similar to photocatalytic 
water splitting discussed earlier, the electrocatalytic water-splitting 
process is also composed of two half-reactions [1012]. The oxygen 
evolution reaction (OER) happens at the anode to produce O2, while the 
hydrogen evolution reaction (HER) happens at the cathode to produce 
hydrogen. Equation 13 is the reaction of water splitting which can be 
separated into two half-cell reactions (Equations 14 and 15). 

H2O→H2 +
1
2

O2 E◦ = 1.23V vs. SHE (13)  

2H+ +2e− → H2 E◦ = 0V (14)  

2H2O→ O2 +4H+ +4e− E◦ = 1.23V (15) 

Developing efficient and stable electrocatalysts for HER and OER of 
water splitting is very important for electrocatalytic hydrogen produc-
tion [1013, 1014]. Noble metal catalysts, such as Pt-, Pd- and Ru-based 
compounds have shown excellent electrocatalytic water splitting cata-
lytic performance [1015, 1016], however, their application is limited 
due to high price, few resources, etc. Amorphous alloys, which can be 
prepared by rapid solidification [1017, 1018], have shown promising 
catalytic and electrocatalytic properties because of the long-range 
disordered atomic structure [1019–1022]. Moreover, it was reported 
that amorphous alloys can show significantly enhanced HER and OER 
performances of water splitting after being processed by SPD [845].  
Fig. 49a shows the schematic illustration for the fabrication of 
Fe78Si9B13 nanoglass alloy by melt spinning followed by HPT [1023]. 
Fig. 49b shows that the nanoglass requires an overpotential of only 
112 mV to achieve the current density of 10 mA cm–2 in 1.0 M KOH, 
which is much smaller than those of the corresponding amorphous alloy 
(385 mV) and crystalline alloy (465 mV). Similar improvements in HER 
properties by HPT can also be seen in the Fe73.5Si13.5B9Cu1Nb3 [1024] 
and Fe75B25 [1025] amorphous alloy. 

Since the Fe-based amorphous alloys are usually quite hard, the HPT 
treatment would induce nanocrystallization upon the amorphous ma-
trix, and the effect of nanocrystals on the catalytic performance is 
difficult to elucidate. A Pd40Cu30Ni10P20 amorphous alloy, which is 
much softer than Fe-based alloys, is subjected to HPT treatment to study 
the HER catalytic performances. The HPT treatment did not cause 
crystallization. The overpotentials at 10 mA cm− 2 of the HPT-treated 
Pd40Cu30Ni10P20 amorphous alloys were 76 mV and 209 mV in 
0.5 M H2SO4 and 1.0 M KOH, respectively, which were much smaller 
than those of 179 mV and 379 mV for the melt-spun Pd40Cu30Ni10P20 
amorphous alloy at the same conditions [1015]. The improved HER 
performances should be mainly attributed to the significantly increased 
density of flow units in the amorphous matrix by SPD [1027]. 

FeOOH nanocrystals have been explored as remarkable OER cata-
lysts in past years [1028, 1029]. Based on a previous study, the 
HPT-treated Fe78Si9B13 nanoglass with an in situ formed FeOOH layer on 
the surface was prepared by a cathodic corrosion activation method. The 
FeOOH-covered nanoglass showed excellent OER performances because 
the FeOOH layer not only exposes more active sites but also generates 
hydroxyl radicals (OH⋅) in oxygen vacancies to activate the Fe-based 
nanoglass matrix. Fig. 49c shows that the FeOOH-covered nanoglass 
generates an overpotential of only 240 mV at 10 mA cm− 1 in 1 M KOH, 
and the Tafel slope is as low as 42 mV dec− 1 [1026]. The OER catalytic 
mechanism has been revealed as shown in Fig. 49d. Firstly, under the 
action of an electric field, electrons are separated from oxygen vacancies 
to form positively charged oxygen vacancies (Vo+) [1030].  

Vo → e- + Vo+ (16) 

Secondly, Vo+ adsorbs the hydroxide ions and water on the catalyst 
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surface to produce hydroxyl radicals [1031, 1032].  

OH− + Vo+ → OḢ+ Vo                                                                (17)  

H2O + Vo+ → H+ + OḢ+ Vo                                                       (18) 

Thirdly, hydroxyl radicals attack Fe (0) to produce Fe (II).  

Fe (0) + 2OḢ→ Fe (II) (OH)2                                                       (19) 

Afterward, Fe (II) continues to be oxidized to produce oxygen mol-
ecules [1031, 1033, 1034]:  

Fe (II) (OH)2 + OḢ→ Fe (II&III) OOH + H2O                                (20) 

Fe (II&III) OOH + OḢ→ Fe (III) ads + O2 + H2O(21) 
Finally, the reaction products Fe (III) near the amorphous matrix 

continuously react with Fe (0) to produce intermediate product Fe(II) 
(OH)2, which participates in the catalytic cycle process [1035, 1036].  

2Fe (III) ads + Fe (0) → 3Fe (II) ads                                             (22)  

Fe (II) ads + 2OH− → Fe (II) (OH)2                                              (23) 

In addition, Fe (III) eventually exists in the alkaline medium as Fe 
(III) (OH)3 colloids in the absence of Fe (0) by the following reaction.  

Fe (III)ads + 3OH− → Fe (III) (OH)3                                              (24) 

Furthermore, the catalytic performance of the FeOOH-covered 
nanoglass remains almost unchanged after 50 h continuous reaction 
(Fig. 49e). In short, the FeOOH-covered nanoglass can perfectly combine 
self-activation and synergistic catalysis between volume and surface, 
leading to high activity, fast reaction kinetics and stability of activity for 
OER. Besides good electrocatalytic activity for hydrogen production, 
SPD-processed nanoglasses are expected to show good activity for 
hydrogen storage [1037]. 

In summary, SPD can greatly enhance electrochemical hydrogen 
production through the formation of new nanoglass structures. After 
SPD, the overpotentials at the current density of the amorphous alloys 
can be greatly reduced, and the stability of HER and OER can be greatly 
enhanced. It can be predicted that SPD-processed materials will make 
outstanding contributions to electrochemical catalytic applications. 

6.7. Hydrolytic hydrogen production 

In recent decades, hydrogen generation from hydrolysis of some 
special materials has been an important research topic [1038]. Fig. 50a 
shows the commonly used materials for hydrolytic hydrogen produc-
tion. Among them, active metals like magnesium and aluminum can 
react chemically with water with the following fundamental reaction 
equation:  

Fig. 49. (a) Schematic illustration for the fabrication of Fe78Si9B13 nanoglass alloy [1023]. (b) Linear sweep voltammetry (LSV) curves of the Fe78Si9B13 amorphous 
alloy upon HPT treatment [1023]. (c) LSV curves (iR compensation 90%) of melt-spinning glass (MSG), HPT-processed nanoglass (NG), glass covered by FeOOH 
(FeOOH@MSG) and and nanoglass covered by FeOOH (FeOOH@NG) [1026]. (d) OER catalytic mechanism of the FeOOH@NG [1026]. (e) stability performance 
obtained from chronoamperometric curves of all samples at the working voltage at 10 mA cm− 2 [1026]. 
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M + nH2O → M(OH)n + n/2 H2                                                   (25) 

where M represents the metal and n stands for the number of elec-
trons transferred in the reaction [1038, 1041]. This hydrolysis reaction, 
however, is often inhibited by the oxide film on the metal surface. 
Adding some catalysts or destroying the oxide film via mechanical 
activation are basic strategies to enhance the hydrogen generation 
behavior (Fig. 50b) [1038, 1041–1043]. SPD is one of the effective 
methods that can combine the advantages of the above strategies [846]. 
Successful attempts have been made in the Al-Sn and Al-Bi systems via 
HPT [1040, 1044, 1045]. In the Al-Sn binary system [1044], the 
improved hydrogen generation behavior was mainly attributed to the 
increased amount of micro-galvanic cells between aluminum and tin 
after HPT processing. The further addition of zinc to the Al-Sn system 
can promote pitting corrosion and therefore enhance hydrogen pro-
duction [1045]. As bismuth can play both the role of tin and zinc, binary 
Al-Bi alloys show much higher hydrogen yield and hydrogen generation 
rate than Al-Sn alloys [1040]. The addition of graphite to the Al-Bi alloys 
can further enhance the hydrolysis speed due to the easy fragmentation 
of the reaction products (Figs. 50b and 50c). 

Currently, most research on hydrogen production from the hydro-
lysis of Al-based materials is focused on finding materials with high 
reaction rates. For example, the instantaneous hydrogen flow rate of Al- 
5LiH-5Ga2O3 (wt%) is as high as 3837 mL H2 min− 1 g− 1 (Fig. 50b) 
[1039]. Although the high rate is important for emergency cases, a 
stable hydrogen flow rate is more favorable for fuel cells [1046]. An 
ideal material may be one that can meet these two directions of appli-
cation with proper treatments. As shown in Fig. 50c, HPT-processed 
Al-30Bi-10 C (wt%) composite can exhibit high instantaneous (10 HPT 
turns with a maximum hydrogen flow rate of ~1600 mL min− 1 g− 1) or 
stable hydrogen flow rate (5 HPT turns with a stable hydrogen flow rate 
of ~600 mL min− 1 g− 1) depending on HPT turns [1040]. However, the 

underlying kinetic as well as the catalytic mechanism of such materials 
remain complex and need more in-depth studies. For kinetic studies, the 
shrinking core model is currently a common method to predict and 
simulate the practical experimental data of the aluminum hydrolysis 
reaction [1047–1050]. With proper modifications (e.g. considering the 
impact of single product AlOOH densification with time), this simulating 
model can correlate well with the actual data [1051–1053]. However, 
the aqueous solutions of such studies are primarily using acidic or 
alkaline solutions which is not eco-friendly and few studies have been 
done on the hydrolysis of bulk materials in neutral solution. Besides the 
common catalytic effect of catalysts, the catalytic mechanism for the 
hydrolysis of severely plastic-deformed Al-based materials can be 
influenced by deformation-induced microstructures. The accelerating 
effect of micro/nano galvanic cells on aluminum hydrolysis can be 
mainly attributed to the reduced grain size [1054, 1055]. In addition to 
the grain size effect, high-angle grain boundaries as well as the defor-
mation texture may also have positive effects on the hydrolysis reaction 
[1056, 1057]. Several theoretical calculations also pointed out that 
aluminum hydrolysis can also be improved by some special surface 
orientations [1058–1060]. 

As for Mg-based materials, the hydrolysis reaction is similar to the 
Al-based materials but often occurs at higher temperatures and the 
passive oxide film is also the key problem. The methods for eliminating 
the passivation layer include adding acid [1061], reducing particle size 
[1062], alloying [1063, 1064] and adding strong acids and weak alka-
line salts [1065, 1066]. Adding acid can effectively remove the passiv-
ation layer, but acid may change the hydrolysis reaction path, which will 
greatly reduce the theoretical hydrogen yield. Reducing the particle size 
of magnesium can improve the reaction conversion rate, but too small a 
particle size increases the difficulty of storage. Adding strong acids and 

Fig. 50. (a) Materials used for hydrolytic hydrogen production [1038]. (b) Hydrolytic hydrogen flow rate curves ofAl - 5 wt% LiH - x wt% Ga2O3 (x = 1, 3, 5, 7 and 
10) at 298 K [1039]. (c) Hydrolytic hydrogen production curves of HPT-processed Al-30Bi-10 C (wt%) composite with different HPT turns [1040]. (d) Combination 
of three strategies to promote aluminum hydrolysis by high-pressure torsion [1040]. 
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weak alkaline salts to promote magnesium hydrolysis is a practical and 
very effective way [1067, 1068]. With the combination of the above 
strategies, MgLi-10EG (wt%) alloy exhibited a hydrogen yield of ~100% 
and a maximum hydrogen generation rate of 1147 mL min− 1 g− 1 

[1069]. 

In summary, SPD can combine the advantages of several effective 
strategies for hydrolytic hydrogen production such as the nano-galvanic 
cell effect, pitting corrosion effect and fragmentation effect, as shown in 
Fig. 50d. Future work should pay more attention to the kinetic studies 
and catalytic mechanism of materials with deformation-induced 

Fig. 51. (a) Structural and geometrical features relevant to hydrogen sorption in nanomaterials [1081]. The growth of the hydride phase, depicted in green, requires 
H2 dissociation possibly favored by a catalyst, subsurface penetration and H diffusion, which is accelerated along internal interfaces or line defects (dislocations). (b) 
Dehydrogenation kinetic measurements obtained at 573 K and 1 kPa for nanocrystalline magnesium powders catalyzed by Nb2O5 and/or carbon nanotube (CNT) and 
for the corresponding HPT-processed discs [1086]. (c) High-resolution lattice image of cycled HPT-processed Mg + Nb2O5 + CNT composite (inset: selected area 
electron diffraction pattern) [1086]. (d) Hydrogen desorption curves of cold rolled AZ91 alloy at room temperature (CR) and at low temperature (LTR) [1098]. (e) 
XRD pattern of a Mg-22Ni (wt%) alloy after fast forging at 480◦C with the significant formation of Mg2Ni [1102]. (f) Hydrogen absorption kinetic curves of an ECAP 
and ECAP + ARB processed ZK60 alloy measured at 623 K, under 2 MPa pressure [1103]. 
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microstructures. 

6.8. Solid-state hydrogen storage 

Hydrogen-based energy storage can be a promising technology 
shortly [1070, 1071]; however, there are still technological challenges 
in the way of realizing it in practice. One obstacle is the difficulty of 
storing hydrogen. A hydrogen storage system has to possess high storage 
capacity, appropriate charge/discharge rate and long operational cycle 
life [1072]. In the past decades, a lot of effort was put into the devel-
opment of material-based hydrogen storage systems, including metal 
hydrides [1073, 1074], as they generally offer large storage capacity by 
volume and reversible operation [1075, 1076]. Metal hydrides store 
hydrogen not only on the surface but in the whole volume of the ma-
terial as well through a chemisorption reaction [1077–1079]. Thus, 
hydrogenation/dehydrogenation of these materials involves both 
long-range diffusion of hydrogen atoms and phase transformations. 
Structural inhomogeneities, nanostructuring and lattice defects can 
promote these processes [1080]. It was reported that altering the 
microstructure by SPD methods is an effective way to enhance the 
hydrogen absorption and desorption kinetics of these materials, see  
Fig. 51a [847, 1081, 1082]. Moreover, mechanical treatment by SPD can 
induce the formation of dislocations and grain boundaries in the oxide 
layer that is usually present on the surface of metal hydrides, thus 
making it permeable to hydrogen for easy activation. In this section, 
various SPD methods applied to hydrogen storage materials are 
reviewed and the impact of such process on the thermodynamics, ki-
netics and activation of these materials will be discussed in coming 
sections.  

• HPT can be applied to various hydrogen storage systems, as 
demonstrated in a recent overview [358]. When MgH2 powder is 
deformed by HPT, an intensive nanostructure formation takes place, 
which positively influences the hydrogen storage performance 
[1083]. The application of high-energy ball milling before HPT can 
promote mechanochemical routes, resulting in the formation of 
intermetallic compounds with advantageous hydrogen storage 
properties. Plastic strain generated by HPT can increase the 
maximum hydrogen capacity of ball-milled Mg70Ni30 nanopowders 
by 50 % due to an increased number of defects [1084]. It was 
established recently that carbon nanotubes (CNTs) can provide fast 
diffusion channels during hydrogenation and dehydrogenation for 
the hydrogen atoms through the passivated surface layer into the 
bulk material [1085]. The addition of Nb2O5 to magnesium cata-
lyzed by CNTs plays a crucial role in attaining suitable hydrogen 
capacity (see Fig. 51b) [1086]. The CNT sections presented in 
Fig. 51c are preserved during the plastic deformation of ball milling 
+ HPT and subsequent sorption cycling. The hydrogenation behavior 
of fully disordered systems, like metallic glasses can significantly be 
improved when the material is subjected to severe shear deformation 
by HPT [1087, 1088]. The enhanced hydrogen sorption kinetics of a 
melt-spun Mg65Ni20Cu5Ce10 nanoglass subjected to torsional strain-
ing are attributed to the abundant pathways for hydrogen diffusion 
at the interfaces between the nanoglass regions that are developed 
during the HPT process [1037].  

• ECAP is often used to enhance the hydrogen storage properties of 
different bulk materials. It was shown that the number of ECAP 
passes [1089] and the deformation route [1090] have a significant 
effect on the absorption/desorption time and the maximum revers-
ible capacity of different Mg-based alloys. The improvements were 
attributed to the increased grain boundary fraction that presents 
nucleation sites for the hydride and provides fast diffusion channels 
for hydrogen atoms. The use of ECAP can also induce the crystalli-
zation of different second-phase particles (for example, Mg17Al12 in 
AZ61 and AZ31 alloys) that can enhance the absorption/desorption 
performance of the material as catalysts [1091, 1092]. Improvement 

of the long-term cycling stability up to 1000 cycles was demonstrated 
for ZK60 magnesium alloy after ECAP processing [1093].  

• Cold rolling was shown to reduce the necessary activation time for 
different Mg-based materials [1094, 1095] and the TiFe alloy [1096, 
1097]. Rolling can also be performed at cryogenic temperatures, 
which results in a more refined microstructure and better absorp-
tion/desorption kinetics than the sample rolled at room temperature 
(see Fig. 51d) [1098]. ARB offers the possibility to synthesize com-
posites in which the secondary phase particles can act as nucleation 
sites as was demonstrated for the Mg-Ti system [1099]. It was shown 
that cold rolling induces a strong (002) texture in magnesium and 
this texture promotes the hydrogen absorption capability of the 
specimen.  

• Fast forging, a less conventional SPD technique, can operate at larger 
scales and shorter times [1100]. Earlier research on the mechanical 
processing of MgH2 + 5 wt% Fe by fast forging resulted in a good 
dispersion of the catalyst particles and significant nanostructuring 
[1101]. A Mg+Ni powder mixture processed by fast forging exhibits 
a threshold processing temperature, below which hydrogen absorp-
tion is mainly governed by the formation of defects and cracks, 
enhancing hydrogen diffusion into the bulk, however, forging at 
elevated temperature yields the solid-state formation of Mg2Ni 
nanocrystals that can act as a catalyst, see Fig. 51e [1102].  

• Combination of different SPD techniques, for example, ARB + ECAP 
[1103] and ECAP + cold rolling [1104], can further improve 
hydrogen storage performance compared to the use of only a single 
method (see Fig. 51f). 

In conclusion, several SPD methods can significantly improve the 
hydrogen storage capabilities of different classes of materials via 
refining their microstructure, generating grain boundaries, and inducing 
lattice defects, hence improving the diffusion of hydrogen and the 
nucleation of the hydride phase. Nevertheless, the different SPD tech-
niques promote different microstructures (different types and densities 
of defects, texture, etc.) which can result in different hydrogen sorption 
properties. 

6.8.1. Thermodynamic tailoring of hydrogen storage materials 
Solid hydrogen storage materials such as solid-state hydrides have 

been studied for over 50 years [1105], for their uses as energy storage 
materials [1106–1108]. As discussed in an earlier chapter, the merits of 
these materials include lower operation pressure and energy consump-
tion, higher volumetric hydrogen density and safety compared with 
compressed high-pressure or cryogenic liquid hydrogen storage 
[1109–1116]. A main concern regarding these materials is tailoring 
their thermodynamics. Hydrogen is reversibly absorbed and desorbed 
via a chemical reaction accompanied by energy change [1117].  

M + x/2H2 ⇌MHx + ΔH                                                              (26) 

where M is the metal or alloy, x is the amount of reacted hydrogen 
and ΔH is the enthalpy change. Fig. 52a illustrates the reversible phase 
transition process between metal (in the α phase) and metal hydrides (in 
the β phase) [1118]. Hydrides can be divided into two categories of 
interstitial and non-interstitial hydrides, which are comprised of 
metallic and covalent or ionic bonds, respectively [1119]. The dehy-
drogenation temperatures of solid-state hydrides are positively corre-
lated with bond strength [1120]. This means the dehydrogenation 
temperature of the hydrides is determined by thermodynamics, which 
can be obtained from the van’t Hoff equation [1121, 1122]: 

lnPH2 = −
ΔH
RT

+
ΔS
R

(27) 

In Equation 27, P is hydrogen pressure, T is temperature, R is gas 
constant and ΔS is the entropy change which is approximately equal to 
130 J/(K mol H2) [1123, 1124]. Fig. 52b indicates the corresponding 
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relationship between pressure-composition-temperature (PCT) iso-
therms and the van’t Hoff equation [1122, 1123]. For the reversible 
desorption/absorption of hydrogen at a temperature close to room 

temperature, the ideal dehydrogenation enthalpies of hydrides are 
25–35 kJ/mol H2 [1124, 1125]. Therefore, thermodynamic tailoring is 
in great need to design materials for practical applications [1126]. 

Fig. 52. (a) Diagrammatic representation of phase transition during reversible hydrogen storage process [1118]. (b) Typical pressure-composition isotherm, phase 
diagram, and van’t Hoff plot of a metal hydride [1122, 1123]. 

Fig. 53. (a) XRD pattern of Mg4NiPd after 1500 HPT turns [359]. (b) Pressure-composition isotherm of Mg4NiPd at 305 K [359]. (c) Pressure-temperature phase 
diagram of MgH2 [515]. (d) Heat flow in differential scanning calorimetry for MgH2 processed by HPT for various turns [515]. 
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Thermodynamic tailoring can be realized by the following approaches: 
(i) nanoengineering [1127–1129]; (ii) alloying [1118, 1129–1132]; (iii) 
phase transition control [1101, 1133]; and (iv) reaction pathway 
changes [1129, 1134, 1135]. 

SPD has been proven to be a powerful tool for thermodynamics 
tailoring, by taking MgH2 as an example. MgH2 is widely regarded as a 
promising hydrogen storage material because (i) its high hydrogen ca-
pacity is 7.6 wt%, and (ii) magnesium is the ninth most abundant 
element in the universe [1129]. High dehydrogenation thermodynamics 
of 75 kJ/mol H2 for MgH2, however, hinders its application at room 
temperature [1129]. Thermodynamic destabilization of magnesium is a 
main topic for hydrogen storage at room temperature. Recently, a 
Mg-based ternary alloy Mg4NiPd was designed based on the prediction 
of first-principles calculations. The Mg4NiPd alloy was expected to have 
moderate hydrogen binding energy between the Mg2Ni and Mg2Pd ones 
[359, 1077]. It was successfully prepared with an ordered BCC-based 
structure (Fig. 52a) through 1500 turns of HPT processing and was 
found to exhibit a reversible 0.7 wt% hydrogen storage capacity at room 
temperature (Fig. 53a). Among the possible octahedral sites of 4Mg-2Ni, 
4Mg-1Ni-1 Pd and 4Mg-2 Pd in Mg4NiPd, the 4Mg-1Ni-1 Pd site with 
the hydrogen binding energy of − 0.12 eV was found to be responsible 
for the room-temperature hydrogen storage. Furthermore, a series of 
alloys with elevated hydrogen storage properties have been fabricated 
by the HPT process, such as Mg65Ni20Cu5Y10 alloy [1088], Mg65Ce10-

Ni20Cu5 nanoglass [1037], MgTiVCrFe HEA [314], etc. [1082]. HPT has 
become a popular technology to improve the performances of many 
hydrogen storage materials including, but not limited to TiFe alloys 
[664, 1136, 1137], Mg-based alloys [313, 515, 1083, 1138, 1139], HEAs 
[1082] and others [192, 309, 322]. 

Another strategy to tailor the thermodynamics of hydrogen storage 
materials is through phase transformations. For example, MgH2 has an α 
phase with a stable tetragonal structure at ambient pressure and trans-
fers into the γ phase or the β phase at higher pressures (Fig. 53c) [1077, 
1133]. A transition from the α phase to the γ phase occurs by HPT 
processing under 5 GPa, and the proportion of the γ phase increases with 
the increase of HPT turns. The formation of almost 100% γ phase was 
obtained after HPT processing for 15 turns. With the increase of the γ 
phase fraction, the dehydrogenation temperature reduced gradually. 
The formation of the nanocrystalline γ phase by 15 turns of HPT pro-
cessing resulted in a decrease of the dehydrogenation temperature by 
80 K (Fig. 53d) [515]. The results indicate that HPT processing is also 
effective in reducing the thermodynamic stability of MgH2. 

In conclusion, SPD is a powerful tool that helps to tailor the ther-
modynamics of hydrogen storage materials by fabricating metastable 
alloys or preparing unstable phases. Among the different SPD methods, 
HPT is currently the most popular method for tailoring the thermody-
namics of such materials. However, HPT has main drawbacks to be 
overcome [1077, 1082]: it is hard to prepare samples on a large scale. In 
the future, HPT technology and other SPD methods are expected to be 
further improved for the preparation of samples with not only larger 
sizes but also improved properties. 

6.8.2. Kinetic tailoring of hydrogen storage materials 
Kinetics of hydrogen storage in metal hydrides, particularly in 

magnesium and magnesium-based hydrides, are actively investigated 
because of their potential for commercial applications [1140]. One way 
to increase the hydrogenation kinetics in metal hydrides is by mechan-
ical deformation. Many techniques have been used, such as ECAP [1093, 
1141–1144], HPT [181, 192, 309, 334, 359, 1139, 1145, 1146] and cold 
rolling (also called ARB) [5, 1147–1150]. This last technique is arguably 
the easiest to scale up to the industrial level. However, cold rolling is 
usually performed in a horizontal fashion which may be problematic for 
metal hydride materials because they are often in a powder form. The 
solution to this problem is to perform the rolling vertically. In the cold 
rolling process, the deformation is mostly plane strain compression. The 
strain tensor is expressed as εij (i, j = 1, 2, 3) where 1 is the rolling 

direction (RD), 2 is the transverse direction (TD) and 3 is the normal 
direction (ND). In the ideal case, the strain in cold rolling is ε11 = -ε33 
and all other strains are zeros (ε22 = ε12 = ε13 = ε23 = 0). The effective 
strain is then equal to the von Mises equivalent strain [1151]. 

ε =

̅̅̅
2
3

√

ε11 (28) 

Magnesium is ductile but has only four slip planes [1152]. This 
means that magnesium will experience important work hardening after 
only a few rolling passes. For hydrogen storage applications, this is not a 
problem because the metal hydrides are usually used in the form of 
powders. Also, upon hydrogenation/dehydrogenation a metal hydride 
will decrepitate. Therefore, work hardening is acceptable for metal hy-
drides. Many groups have investigated the effect of cold rolling on pure 
magnesium and they found that cold rolling improved the hydrogena-
tion kinetics [1098, 1141, 1153–1156]. The same conclusion was 
reached from investigations on magnesium alloys such as AZ91 [1098], 
MRI153 [1157], ZK60 [1158] and Elektron 21 [1156]. Other systems 
such as Mg-Al [1159], Mg-Cu [1160], Mg-Fe [1161], Mg-Ni [1162] and 
Mg-Pd [1163] have been also investigated. Fig. 54a shows a comparison 
of the first hydrogenation of magnesium and two magnesium alloys 
(MRI153 and AZ91D) after cold rolling while Fig. 54b shows the second 
hydrogenation [1164]. It is clear that cold rolling is beneficial for the 
hydrogenation kinetics. A more in-depth discussion of all these systems 
could be found in a recent review paper [1165]. Cold rolling can be also 
used on hydrogenated powder. Fig. 54c shows the effect of cold rolling 
and ball milling on MgH2 powder [1166]. We see that the hydrogenation 
kinetics is much faster for the mechanically processed samples. Ball 
milling produced a sample with a higher hydrogen capacity and faster 
kinetics. However, the difference is that ball-milled powder should al-
ways be under an argon atmosphere while cold-rolled samples are 
processed in the air. 

In conclusion, SPD methods are efficient in improving the hydroge-
nation kinetics of hydrogen storage materials. In this regard, cold rolling 
of magnesium alloys is promising because of its potential for scaling up 
and industrial use, although there are still many technical investigations 
that need to be done. For example, appropriate magnesium compounds 
should be searched, and the effect of cold rolling parameters such as 
rolling speed, number of rolls, temperature of rolling, number of rolling 
passes, thickness reduction at each pass, etc. should be studied. But 
arguably the most important investigation is to get a more in-depth 
understanding of the exact mechanism that makes the kinetics of hy-
drogenation better after SPD processing. 

6.8.3. Activation and air resistance of hydrogen storage materials 
In addition to thermodynamics and kinetics, activation is another 

important issue that should be considered for the industrial application 
of hydrogen storage materials. Difficult activation results in no hydro-
genation, even when the material is thermodynamically favorable for 
hydrogen storage. Difficult activation is usually due to the formation of 
an oxide layer in air on the surface which hinders hydrogen dissociation 
and diffusion. The formation of oxide reduces the air resistance of these 
materials, and thus, they should be usually handled under an inert gas 
atmosphere. Hydrogen storage materials are activated either by heating 
to high temperatures under vacuum, chemical or mechanical modifi-
cation. Perhaps, TiFe is the most famous hydrogen storage material that 
suffers from difficult activation. TiFe has a B2 crystal structure and is 
known as a good candidate for stationary (housing) and semi-stationary 
(submarines) hydrogen storage applications because its hydrogenation 
is thermodynamically possible at room temperature, its volumetric 
storage capacity is high and it is reasonably cheap [1167–1172]. 
Nevertheless, the practical use of TiFe is hindered due to the difficulty of 
initial activation for the hydrogenation which requires exposure to a 
vacuum or a hydrogen atmosphere under a pressure of ~3 MPa at 
temperatures higher than ~673 K [1167–1172]. SPD has introduced a 
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new pathway for easy activation of TiFe and many other materials as 
will be discussed in this section [664, 1136, 1137, 1173]. 

An example of the effect of SPD on activation is shown in Fig. 55a 
where TiFe was processed by HPT for different numbers of turns 
including the samples after annealing and after compression but without 
rotation [1136]. While hydrogen absorption is essentially negligible in 

the samples after annealing and after compression, the absorption oc-
curs by 1.6–2.1 wt% after HPT processing. It is important to note that 
this hydrogen absorption was realized after exposure to air for several 
hundred days following HPT processing. Moreover, when an 
HPT-processed sample was left in the air for 400 days, subjected to 
hydrogenation for five cycles, and left in the air for an extra 30 days, 
hydrogen absorption still occurred without activation. Such experiments 
thus demonstrate that HPT-processed TiFe is quite air resistant and 
hardly deactivated in the air once it is processed by HPT [1136]. Here it 
should be noted that TiFe is an extremely hard and brittle material, but 
its SPD processing could be realized by HPT [1, 2, 23, 177, 179]. As 
discussed earlier, the high processing pressure in HPT makes it appli-
cable not only to metallic materials [177, 674, 1174] but also to 
hard-to-deform materials such as intermetallics [1175–1178], ceramics 
[584, 844, 1179] and semiconductors [512, 1180–1185]. 

Activation of hydrogen storage materials by SPD is not limited to the 
HPT method. As an alternative to the HPT process, which uses small 
disc- or ring-shapes, the HPS process has been developed [57]. The HPS 
utilizes sheets, and thus, it has the potential to upscale the sample size 
[179, 240, 1187]. As mentioned earlier, the strain in HPS is accumulated 
by the reciprocation of anvils with respect to the sample [1188], while 
the rotation of the anvils is adopted in HPT [20]. Because HPS is oper-
ated under high hydrostatic pressure as in HPT, its application is also 

Fig. 54. (a) First and (b) second hydrogenation at 623 K under 2 MPa of 
hydrogen for cold-rolled pure magnesium, MRI153 and Az91D alloys [1157, 
1164]. (c) Normalized kinetic absorption at 623 K and under 2.0 MPa hydrogen 
pressure for MgH2 in as-received, cold rolled (five passes, CR5X) and me-
chanically milled for 30 min (BM 30 m) [1166]. 

Fig. 55. (a) pressure-composition isotherms of TiFe at 303 K for annealed 
sample, sample processed by compression under 6 GPa (N = 0) and samples 
processed by HPT for N = 1/4–10 turns [1136]. (b) Variation of hydrogen 
content against hydrogenation time at room temperature after the first and 
second exposure to hydrogen under a pressure of 2 MPa for Ti-Fe-Mn inter-
metallic processed by HPS including as-received ingot and HPT-processed 
disc [1186]. 
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feasible to hard-to-deform materials [240, 244, 1187]. In a recent study, 
a TiFe intermetallic containing a minor addition of Mn (TiFe1-xMnx with 
x = 0.3) was processed by HPS to enhance its hydrogen storage acti-
vation [1186]. The addition of Mn to TiFe reduces the hydrogenation 
pressure and activation temperature [1189, 1190], but the material still 
needs activation [1173]. Fig. 55b shows the hydrogenation kinetics 
curves of the HPS-processed strip and an as-received ingot [1186]. For 
comparison, a hydrogenation curve is also included from the 
HPT-processed sample [1173]. The hydrogenation occurs quickly in the 
sample processed by HPS, while no appreciable hydrogenation proceeds 
in the as-received ingot without the HPS process, at least for the period 
exposed to the hydrogen atmosphere. Incubation of ~60 min is observed 
after the first exposure of the HPS-processed sample to hydrogen, but the 
hydrogenation starts immediately after the second exposure in the 
HPS-processed sample. The fast hydrogenation for the second exposure 
without incubation is similar to the one observed in the HPT-processed 
sample (measured after the fourth hydrogenation cycle) [1173]. 

The activation of hydrogen storage materials by SPD processing was 
also reported by cold rolling [1137], rolling and HPT [1191] and ball 
milling [1192, 1193]. Here, it should be noted that the materials pro-
cessed by ball milling as a powder-SPD method are not air resistant, 
while materials processed by cold rolling, HPS and HPT as bulk-SPD 
methods are quite air resistant. As discussed earlier [1136], the 
enhanced activation and air resistance by bulk-SPD methods should be 
due to the formation of a high density of lattice defects such as dislo-
cations and grain boundaries. Particularly, grain boundaries are ex-
pected to provide pathways for fast hydrogen diffusion and improve 
both hydrogenation activation and kinetics [1136]. Future studies are 
needed to clarify the exact mechanism underlying the positive effect of 
SPD on hydrogen storage activation. 

6.8.4. Mass sample production for hydrogen storage 
Magnesium is one of the most appropriate hydrogen storage mate-

rials [1194, 1195], while SPD-processed magnesium has both fast ki-
netics and large hydrogen uptake, as discussed in recent review papers 
[5, 1077, 1196]. Hydrogen diffusion, restricted solid solution of 
hydrogen in magnesium and nucleation of hydrides are some issues that 
are positively affected by SPD processing [1197–1200]. However, mass 
production of SPD-processed materials is a main challenge for their 
commercialization in hydrogen storage applications. Besides cold roll-
ing, as reviewed in an earlier chapter, fast forging (high-speed drop 
forging) and ECAP are two methods with high potential for upscaling, as 
will be discussed in this section. 

The so-called fast forging process (Fig. 56a) was applied to Mg-based 
materials. The flow of material takes a rather perfect two-dimensional 
isotropic character in the open die fast forging procedure contrarily to 
the one-dimensional transformation of the microstructure in cold roll-
ing. Moreover, compared to cold rolling with a 50% thickness reduction, 
a much higher thickness reduction (90%) can be achieved by fast forging 
in only one pass [1201]. For example, a cylinder billet of a Mg-rich alloy 
with 12 mm in diameter and 20 mm in height, transforms into a disc of 
~38 mm in diameter and ~2 mm in height (thickness) in one pass of fast 
forging [1202]. Another benefit of fast forging is that the process is 
operated fast within 5 × 10-3 s with a flow rate of at least 25 m/s [1100, 
1203]. In fast forging, the kinetic energy E of the free-falling load is 
assumed to expand mostly on the impact energy of plastic deformation 
ΔW [1204]. The heat flux of the adiabatic process on impact takes the 
form ρcΔT ~ kP ΔW (ρ: density, c: heat capacity, T: Temperature kP: the 
coefficient determining the fraction of sample converted by plastic 
deformation at a given internal heat level). Other specific parameters 
like energy loss due to external friction with both the hammer and the 
die, intense friction between grains, formation of cracks and elastic vi-
brations can be defined by an additional k coefficient, leading to ΔT ~ 
kkP ΔW/ρc = ~ 200 K. This thermal effect in fast forging enables parts of 
the sample to reach an intermediate situation between fragile to ductile 
states [1205, 1206]. It can be shown using the Crockroft and Latham 

criterion [1207, 1208] that the thermal effect and non-uniform metal 
flow may generate porosities, de-cohesion then create extended frac-
tures which are positive features for hydrogen storage materials. 

Since the early paper published by Skripnyuk et al. [1209], ECAP has 
been demonstrated as an efficient SPD method for the mass production 
of Mg-based materials with fast hydrogen sorption kinetic [1045, 1143, 
1210–1213]. After most of ECAP procedures, high-energy ball milling is 
applied to hydrogen storage materials to obtain a higher specific surface, 
but the time for milling is quite short [1214]. Nevertheless, the ECAP 
route showed high potential for the delivery of various 
hydrogen-reactive Mg-based materials such as ZK60 [1103], AZ31 
[1215]) or more specific alloys [1216]. However, the sorption kinetics 
after ECAP are not still as fast as the widely reported data reported in the 
literature for the ball-milled powders with catalyst addition 
[1217–1223]. An ECAP instrument used to process hydrogen storage 
materials at the laboratory scale is shown in Fig. 56. 

The performance of fast forging and ECAP for hydrogen storage 
materials is reasonably comparable notwithstanding the study where 
powders of pure magnesium (5–20 µm grain size) were compacted and 
processed by both fast forging and two passes of ECAP [1224]. The 
mechanically treated materials remained particularly fragile, so no 
subsequent high-energy ball milling was needed, but only attrition was 
applied for a few tens of seconds. Table 6 summarizes the results of 
hydrogen absorption and desorption, indicating the performances of the 
two methods are reasonably comparable. 

Fig. 56. (a) Fast Forging instrument of the drop type (sample is placed in an 
argon-filled chamber and can be also heated using an induction coil). (b) ECAP 
instrument (die can be heated on demand by resistive inserts placed in the die. 
The deformation rate can be controlled in both instruments by computer- 
connected sensors [1100]. 
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The reduction of the grain sizes to the UFG level (multiplication of 
the grains boundaries) and simultaneous creation of pores and cracks 
appear to be desirable to achieve such enhanced properties. The addi-
tion of catalysts during mass production to these UFG materials with 
pores and cracks can provide additional benefits for hydrogen storage 
[1225]. It is expected that the knowledge produced in recent years for 
SPD can facilitate the mass production of metal hydrides, particularly 
using methods such as cold rolling, fast forging and ECAP. 

6.9. Hydrogen embrittlement resistance 

The susceptibility to hydrogen embrittlement is markedly increased 
in high-strength steels with a tensile strength higher than 1.2 GPa. The 
addition of carbide-forming elements such as titanium, vanadium and 
molybdenum and subsequent high-temperature tempering are designed 
not only to contribute to secondary hardening but also to provide irre-
versible trapping into the martensite matrix to prevent local hydrogen 
concentration at prior austenite grain boundaries in BCC steels 
[1226–1228]. The roles of the lattice defects in the hydrogen embrit-
tlement mechanisms are widely varied with different crystal structures, 
i.e. BCC and FCC structures [1229]. For austenitic stainless steel with an 
FCC structure, titanium-bearing Fe–25Ni–15Cr (wt%) steel is recognized 
as precipitation-hardened austenitic steel, which is strengthened via the 
dispersion of fine Ni3(Al,Ti) precipitates. However, this type of steel is 
susceptible to hydrogen embrittlement despite containing large amounts 
of rare metal elements [1230]. Solid solution strengthening by inter-
stitial atoms such as nitrogen enhances hydrogen-induced strain local-
ization, which reduces the hydrogen embrittlement resistance [1231]. 
By contrast, Macadre et al. reported that grain refinement to approxi-
mately 1 µm mitigated the hydrogen-induced ductility loss in 

Fe–16Cr–10Ni steel [1232]. Further, Mine et al. investigated [1233, 
1234] the hydrogen effects on the tensile properties of UFG stainless 
steels produced by HPT processing and demonstrated that post-HPT 
annealing reduced the hydrogen-induced ductility loss while maintain-
ing their high strength by reducing the dislocation density and mixing 
secondary phases in UFG austenite. Recently, it has been reported that 
high strength and reduced hydrogen embrittlement susceptibility were 
attained by introducing UFG and nanotwins into HEAs with an FCC 
structure [1235, 1236]. 

For metastable austenitic steels, although transformation-induced 
plasticity (TRIP) and twinning-induced plasticity (TWIP) phenomena 
improve the balance between tensile strength and ductility, the me-
chanical properties are considerably degraded in the presence of 
hydrogen [1237, 1238]. Park et al. and Bai et al. reported that grain 
refinement suppressed the hydrogen embrittlement in the TWIP steels 
[1239, 1240]. Metastable austenitic stainless steels such as types 301 
and 304 with ordinary grain sizes undergo severe hydrogen embrittle-
ment, which is attributed to deformation-induced martensitic trans-
formation during tensile loading [1241, 1242]. Fig. 57 shows the effect 
of hydrogen on the deformation and fracture morphology of 
ordinary-grained type 304 stainless steel [1237]. The uncharged spec-
imen exhibits a typical cup-and-cone failure with dimples on the fracture 
surface (Fig. 57a). The cross-section area is reduced at a part remote 
from the fracture surface along with a significant uniform elongation 
(Fig. 57b). Fig. 57c shows the EBSD phase map of the microstructure 
near the fracture surface at a longitudinal cross-section of the fractured 
specimen. Grains are substantially elongated along the tensile axis and α′ 
martensite is densely formed at the fracture surface (Fig. 57c). By 
contrast, the specimen containing ~25 mass ppm of hydrogen exhibited 
plastic inhomogeneity and less α′ martensitic transformation (Fig. 57d) 
when compared to the uncharged specimen (Fig. 57c). The 
hydrogen-charged specimen was fractured on the plane macroscopically 
perpendicular to the loading axis with many microcracks on the free 
surfaces (Fig. 57e). In addition, the fracture surface of the 
hydrogen-charged specimen was composed of quasi-cleavages and flat 
facets (Fig. 57f). Microtension testing studies successfully characterized 
the hydrogen-induced quasi-cleavage and flat facet formations using 
single-crystalline and twin bi-crystalline specimens, respectively [1243, 
1244]. Hydrogen-induced quasi-cleavages in metastable austenitic 
stainless steel occurred at the interphase boundaries between the 

Table 6 
Hydrogen absorption and times and temperature for magnesium powder pro-
cessed by ECAP and fast forging [1224].  

SPD 
Process 

Absorption (~7 w 
%) 

Time 
(min.) 

Desorption (100 w 
%) 

Time 
(min.) 

ECAP 
(2BC) 

2 MPa, 380◦C 
(cycle 3)  

45 15 kPa, 380◦C 
(cycle 3)  

30 

Fast 
Forging 

2 MPa, 380◦C 
(Cycle 1)  

60 15 kPa, 320◦C 
(cycle 1)  

60  

Fig. 57. SEM images of fracture surface, side view and EBSD phase maps at longitudinal cross-section in (a–c) uncharged and (d–f) hydrogen-charged specimens of 
ordinary-grained type 304 stainless steel [1237]. 
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austenite and α′ martensite formed during the tensile loading, which was 
triggered by excess hydrogen generated owing to the differences in the 
hydrogen diffusivity and solubility between the two phases [1245]. The 
flat facet formation associated with twin boundary separation is the 
primary mechanism for premature failure concerning hydrogen 
embrittlement of the metastable austenitic stainless steels [1244, 1246]. 
It is then hypothesized that the dispersion of dynamic martensitic 
transformation suppresses the local hydrogen concentration at the 
interphase and twin boundaries. 

Fig. 58 shows the effects of hydrogen charge on the tensile properties 
of type 304 stainless steels with different grain sizes, which is obtained 
using microtension testing [848, 1247]. Both uncharged and 
hydrogen-charged specimens well held the Hall-Petch relationship be-
tween yield stress and average grain size (Fig. 58a). The friction stress 
was increased by 40% by hydrogen charging but the Hall–Petch coef-
ficient was invariable. This indicates that hydrogen strengthens the 
matrix via the solid solution effect, but does not influence the grain 

refinement strengthening. The relationship between the reduction of 
area and UTS in the uncharged specimens reveals that the area reduction 
is reduced with increasing UTS in the average grain size range larger 
than ~0.4 µm, whereas it remains unchanged in the smaller grain sizes 
(Fig. 58b). The hydrogen-charged specimens have 1–1.5 GPa UTS with 
60% area reduction in the UFG microstructures with grain sizes smaller 
than ~0.4 µm. In other words, ultra-grain refinement not only improves 
the balance between strength and ductility but also mitigates the 
hydrogen embrittlement susceptibility in metastable austenitic stainless 
steel. It has been argued that dynamic α′ martensitic transformation is 
the crucial factor determining hydrogen embrittlement susceptibility 
[1245, 1248, 1249]. The saturated hydrogen concentration is lower in α′ 
martensite than in austenite by an order of magnitude [1250]. When 
austenite containing hydrogen is transformed to α′ martensite, excess 
hydrogen can be generated, which corresponds to the difference in the 
saturated hydrogen concentration between the two phases. Subse-
quently, excess hydrogen diffuses out of the formed α′ martensite to the 
surrounding austenite and is accumulated at the interface boundaries 
because of the extremely high diffusivity of hydrogen in martensite 
compared to that in austenite. A finite element calculation study by 
Wang et al. supported [1251] that cracking occurs in the austenite re-
gion neighboring the formed α′ martensite. UFG austenite formed a 
single-variant α′ martensite from each grain, whereas ordinary-grained 
austenite selected several α′ martensite variants with a favorable 
orientation [1252]. For this reason, excess hydrogen generated from 
UFG austenite is dispersed, which results in reduced local hydrogen 
concentration and in turn, mitigates the hydrogen-induced ductility loss. 
As shown in Fig. 58b, the area reduction and UTS relationship reveals 
that the nanotwinned microstructures as well as the UFG microstruc-
tures can contribute to the strengthening while reducing the hydrogen 
embrittlement susceptibility in metastable austenitic stainless steel 
[848, 1253]. This supported that the hydrogen embrittlement resistance 
was enhanced in type 304 and TWIP steels with bimodal microstructures 
consisting of nanotwin bundles and recrystallized grains [1254–1256]. 

In summary, introducing UFG and nanotwins into metastable 
austenitic stainless steels is effective for mitigation of hydrogen-induced 
ductility loss through controlling dynamic α′ martensitic transformation. 
Plastic deformation processes of metastable austenitic steels at 
controlled moderate temperatures are a promising strategy for obtaining 
sustainable materials. 

6.10. Corrosion resistance 

With the advent of SPD, the effect of plastic deformation on corrosion 
has again come back to being an important topic of materials science 
[849, 1257, 1258]. In the ultrahigh strain range, microstructural fea-
tures such as dislocation density, misorientation, and structures of grain 
boundaries develop progressively into an ultimate form of UFG or 
nanocrystalline structures which can affect the corrosion resistance 
[454]. For example, the introduction of a very high strain yields a 
maximum dislocation density of approximately 1015 m− 2 in pure copper 
[454, 1259] and iron [446, 1260]. Moreover, the final grain size is 
copper is reduced to 0.4 μm by ECAP at room temperature [1261, 1262] 
and 80 nm by HPT at 100 K [1263]. After reaching the complete UFG 
structure, dislocations inside grains decrease; however, some residual 
dislocations remain. Such high-density grain boundaries with residual 
dislocations impact the corrosion behavior even in pure metals or 
single-phase materials [849]. A similar situation occurs in HEAs or 
multi-principal elements alloys (MPEAs), which are a new class of ma-
terials with superior mechanical properties, and some of them have very 
high corrosion resistance [1264]. The effect of SPD on the corrosion 
resistance of metals and conventional alloys is of great importance in 
scientific and practical viewpoints and the corrosion resistance of 
SPD-processed HEAs is waiting to be explored [1265]. Although corro-
sion resistance has been investigated for a wide range of alloys, Fe-based 
alloys and steel received the most significant attention due to their 

Fig. 58. (a) Grain size dependence of yield stress and (b) relationship between 
area reduction and ultimate tensile strength for 304 stainless steels with 
different grain sizes [848]. 
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Fig. 59. (a) Hierarchal steps leading to the protective ability of passive films from the corrosive environment and microstructure of base metals [849]. (b) Relation 
between grain size of UFG stainless steels obtained via various methods versus the difference in pitting potentials of UFG (Eb’) and coarse-grained (Eb’) materials 
(“Cr” and “No Cr” indicate that chromium enrichment in passivation films was observed or not) [849]. (c) Relation between the pitting potential of Fe-12Cr (wt%) 
alloys and grain size after ECAP (eigth passes) and subsequent annealing (the numbers in the figure indicate the annealing temperature) [1275]. 
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practical applications. The formation of a protective “passive film” on 
the surface and the effect of SPD on this film are the most critical issues 
studied in recent years. In this section, the features of the passive layer 
and corrosion resistance of steels are discussed. 

6.10.1. Corrosion passive film features 
Studies have shown that the corrosion resistance of Fe-based alloys 

in passive environments is enhanced by grain refinement down into the 
submicron or nanoscale level [1266]. This beneficial effect in Fe-Cr al-
loys has been attributed to the enhanced protective nature of the passive 
film due to a greater chromium enrichment in the film [1266]. Two 
independent mechanisms for greater chromium enrichment in passive 
films have been proposed: enhanced selective dissolution of iron and 
faster chromium diffusion [849, 1257, 1266]. Both mechanisms are 
supposed to originate from high-density of grain boundaries, as reported 
using high-resolution observation techniques such as high-angle annular 
dark-field scanning transmission electron microscopy (STEM) [1267] 
and in situ atomic force microscopy [1268]. Examination of nano-
crystalline 316 L stainless steel processed by a surface mechanical roll-
ing treatment (SMRT) has shown that protective passive films with 
surface chromium enrichment were localized to a zone at grain 
boundaries with a width of up to 50 nm [1267]. Maurice et al. showed 
the presence of an inhomogeneous chromium distribution that stems 
from the grain boundaries of the base metal and the granular structure of 
the passive film using in situ atomic force microscopy [1268]. This 
finding suggests that both these mechanisms, facilitated by grain 
refinement, might be capable of homogeneous passive film formation 
over the entire surface if the grain size is extremely small (possibly, 
<100 nm), which cannot be achieved by most classical SPD methods. 
Therefore, for the formation of a uniform and homogeneous passive film 
on all grains, the role of factors other than grain size should be consid-
ered. Fig. 59a shows the hierarchal relation between the protective 
ability of passive films formed on base metals of Fe-Cr alloys and 
structural parameters [849]. The protective ability is affected by the 
semi-conductive properties such as ion/point defect transport [1269, 
1270] and/or chemical stability against dissolution into the solution 
[1271]. These properties are further related to crystal structure, 
compactness, structural or chemical inhomogeneity, and chemical 
composition. The passivity of Fe-Cr alloys appears in neutral to acidic 
solutions when the bulk chromium content exceeds approximately 12% 
[1272]. The passivation involves chromium enrichment in the passive 
film [1273], which has generally been explained based on the selective 
dissolution of iron and oxidation of chromium at the surface [1274]. 
Therefore, the structure of passive films is affected by the environment 
as well as the structure of the base metal. 

Fig. 59b depicts the very low correlation between the difference in 
the pitting potentials of nanocrystals (Eb’) and their coarse-grained 
counterpart (Eb) and the grain size of nanocrystals obtained using 
various methods [849]. Bulk-SPD [1275–1277] and physical vapor 
deposition (PVD) [1278, 1279] resulted in a significantly large 
improvement, as high as 0.8 V, in UFG materials although there were 
some exceptions [1280–1282]. Although surface-SPD methods such as 
SMAT can reduce the grain size to levels comparable to that of PVD 
[1267, 1283–1286], its effect on corrosion resistance appears to be less, 
probably owing to the presence of surface defects such as contamination 
or roughness. In Fig. 59b, the closed dots indicate that the chromium 
enrichment in the passive film after passivation was confirmed by X-ray 
photoelectron spectroscopy (XPS) or glow discharge optical emission 
spectroscopy (GD-OES) whereas the open dots indicate that chromium 
enrichment was not observed or confirmed. Despite a relatively large 
grain size and insufficient grain boundary area in the materials pro-
cessed by bulk-SPD, uniform surface chromium enrichment might be 
achieved. The residual dislocations and their internal stress are the 
possible promotors of more uniform protective films over the entire 
surface. Fig. 59c shows the pitting potential of Fe-12Cr (wt%) alloys 
after eight ECAP passes and subsequent annealing [1275]. Note that the 

pitting potential decreased appreciably after flash annealing at 698 K 
despite of negligible grain growth. The reduction of the peak-broadening 
in XRD after this flash annealing indicates that strain associated with 
residual dislocations, and possibly non-equilibrium grain boundaries 
was reduced. Thus, stress relaxation associated with structural recovery 
could degrade corrosion resistance. 

The enhancement of the Cr/Fe ratio in the passivation film by the 
elastic or plastic deformation has been reported in Fe-Cr alloys 
[1287–1289]. One can consider the effect of dislocations on the Cr/Fe 
ratio based on the kinetics of the anodic dissolution of iron and chro-
mium. For the anodic dissolution of the Fe-Cr solid-solution system, the 
degree of preferential dissolution of iron could be estimated by the ratio 
of the dissolution currents of iron and chromium. Under the stress field 
of dislocations, the interaction energy, w, arises between the solute 
chromium and the stress field and affects the dissolution currents of 
chromium and iron atoms differently according to the following 
equations. 

iFe = AxFeexp
{

−
ΔQo,Fe − (1 − β)Fμ

kT

}

(29)  

iCr = AxCrexp
{

−
ΔQo,Cr − (1 − β)Fμ − w

kT

}

(30)  

where xFe and xCr are the atomic fractions of iron and chromium, 
respectively, ΔQo,Fe and ΔQo,Cr are the activation energy at equilib-
rium, F is the Faraday constant, β is a symmetrical factor, μ is the po-
tential drop, A is constant, k is Boltzmann’s constant and T is 
temperature. A simple estimation of the interaction energy arising from 
atomic mismatch and modulus misfit between the solute chromium in 
iron indicates that the interaction energy becomes − 0.06 eV at the core 
of the edge dislocations and − 0.07 eV at screw dislocations [849]. The 
negative value of the interaction energy means that the solute chromium 
is stabilized near dislocations, which leads to lower dissolution kinetics 
than iron. Assuming that all solute chromium atoms are positioned at 
the core of screw dislocations, the selective dissolution, iFe/iCr, could 
reach 2.2 × 104, where iFe and iCr are anodic currents corresponding to 
the dissolution of iron and chromium atoms, respectively. This value is 
more than 102 higher than that for no residual dislocations. The 
high-density residual dislocations of the order of 1015–1016 m− 2 in UFG 
can affect the dissolution balance between iron and chromium through 
their stress field and may promote the local chromium enrichment and 
protective ability of passive films [849]. 

6.10.2. Corrosion resistance of steels 
As discussed in an earlier chapter, processing steels using SPD 

techniques enables obtaining UFG-structured steels with improved me-
chanical properties and corrosion resistance [1290, 1291]. The main 
mechanism for enhancing corrosion resistance by SPD is the formation 
of a passive protective layer that is more stable than in coarse-grained 
(CG) steels, mainly because of the high grain boundary density. The 
native oxide layer is formed in both coarse-grained and UFG steels, as 
shown in Fig. 60a. However, the high density of grain boundaries in UFG 
steels produces a uniform, compacted and well-adhered passive layer. 
This in turn results in uniform corrosion instead of localized corrosion 
because there are no preferential sites for cathodic or anodic corrosion 
[1276, 1292]. In addition, there are high-energy boundaries that also 
contribute to corrosion enhancement. Although corrosion in steels pre-
fers to take place in the high-energy grain boundary region, there is also 
high atomic activity through diffusion to the surface as well as long 
diffusion paths. This influences the re-passivation process forming a 
thicker and more efficient passive layer [1293]. This mechanism has 
been also observed for other severely deformed metals [1258, 1294]. 

Different studies have been performed using SPD techniques to study 
the enhanced corrosion resistance over a range of steels. For carbon, 
alloyed and stainless steels, which have been mainly processed using 
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ECAP and HPT, the stability of the protective layer has been mainly 
characterized in neutral and alkaline environments by the corrosion 
potential (Ecorr), the corrosion current density (Icorr) and the pitting po-
tential (Epit). The corrosion potential indicates the tendency of the steel 
to corrode, and therefore it should be low. The corrosion current char-
acterizes the rate at which the steel corrodes in a given environment and 
it also should be low [1301]. The pitting potential indicates the passivity 
layer breakdown and therefore, it should be high. The enhanced 
corrosion resistance and the stability of the passive layer in different 
steels processed using ECAP have been reported in low- and 
medium-carbon steels [1302, 1303], extremely low-carbon steels 
[1277], austenitic alloyed steels [1296], mild steels [1304] and 
interstitial-free (IF) steels [1295]. For stainless steels, although they are 
commonly characterized by good corrosion resistance, most of the 
literature also confirms that they can be improved considerably using 
SPD processing. In particular, the improved corrosion for stainless steels 
has been reported for 304 SS [1297], 316 L SS [1298, 1305] and F138 SS 
[1306] after ECAP processing and also for 316 L SS after HPT processing 
[1299, 1300]. For comparison, Fig. 60b shows some results for Ecorr and 
Icorr in these steels. It should be noted that surface-SPD techniques such 
as SMAT [5] were also applied to low-carbon steels [1307], AISI 304 
[1308], AISI 316 [1309, 1310] and AISI 316 L [1311]. By SMAT, a 
decreased grain size can be obtained along with high surface roughness 
[1312]; however, depending on the surface roughness and defects pro-
duced, the passive layer stability would be affected. In this sense, SMAT 
could be used for providing short-term corrosion protection to steels 
[1310]. 

Although there is a notable enhancement in corrosion resistance of 
steels processed using surface-SPD and bulk-SPD techniques, it is 
necessary to consider other factors that also influence corrosion 

resistance, such as surface roughness, high density of defects and strain- 
induced martensite. For example, it is known that martensitic steels 
have lower corrosion resistance, because martensite promotes the 
pitting sensitivity of the steel, forming or accumulating crack nucleation 
sites, and as a result, it decreases the stability of the passive film [1313]. 
In this sense, the strain-induced martensite formed during the SPD 
process, especially for austenitic stainless steels deteriorates the corro-
sion resistance [1314, 1315]. 

6.11. Biomaterials 

Biomaterials are defined as materials capable of being introduced 
into a biological environment to elicit a desired physiological response, 
such as the promotion of tissue growth or repair. Conversely, they are 
also expected to not induce any adverse effects, such as inflammation, 
cytotoxicity, or thrombogenicity [1316–1318]. Biomaterials are intrin-
sically related to the concept of biocompatibility, which can be defined 
as the ability of a material to perform with an appropriate host response 
in a specific application [1319, 1320]. It is important to emphasize that 
biocompatibility extends beyond the material itself; rather, it encom-
passes the entire material-host interplay [1321]. The properties of bio-
materials are strongly influenced by their composition and grain size 
and they are available in various forms, including polymers, ceramics, 
metals and composites. Among these, metallic biomaterials stand out as 
a pivotal category, finding utility in a broad range of medical devices 
ranging from dental and orthopedic implants, heart valves and intra-
ocular lenses to artificial hearts, biosensors and pacemakers 
[1322–1324]. Unquestionably, titanium and its alloys represented the 
most prominent group within the metallic biomaterials, mainly because 
of the desired combination of properties required for a biomaterial, such 
as high strength, low Young’s modulus, high corrosion resistance, good 
fatigue properties, lightweight and good biocompatibility [1325–1328]. 
While titanium is of high interest for permanent implants, magnesium 
alloys are receiving significant attention for biodegradable implants. 
Despite the remarkable achievements with the utilization of titanium, 
magnesium and their alloys in their microcrystalline form in many 
different biomedical devices and components, the introduction of these 
biomaterials in the UFG form is considered the next smart generation of 
biomaterials [132, 1329, 1330]. 

When metallic biomaterials are scaled down to the nanometer level, 
their compatibility and bioactivity with osteoblast and fibroblast cells 
undergo a remarkable enhancement. This leads to a substantial increase 
in cell adhesion and proliferation on the surfaces of these materials, as 
evidenced by various studies [1331–1333]. Moreover, nanostructured 
materials exhibit higher levels of protein adsorption, cell attachment, 
proliferation and differentiation when compared to conventional ma-
terials [1333]. These physiological processes, involving the interaction 
of human cells with the surface of biomaterials, are notably enhanced at 
the nanometer scale, ensuring robust osseointegration [1331–1335]. It 
has been shown that a surface with nanoscale grain size exhibits higher 
bone formation efficiency compared with micro-grained surfaces [1334, 
1335]. Within this context, SPD techniques have proven to be an 
outstanding and straightforward method for producing UFG bio-
materials [1325, 1329, 1330, 1336]. Numerous studies have highlighted 
the enhanced properties of nanostructured titanium and its alloys when 
subjected to SPD methods compared to non-processed titanium. These 
improvements encompass superior corrosion resistance [1337, 1338], 
enhanced mechanical attributes including hardness, strength and wear 
resistance [657, 1329, 1339], enhanced bacterial adhesion [1340, 
1341], improved wettability [1342, 1343] and high bioactivity and cell 
adhesion [1344–1346]. Notably, osteoblast cell proliferation on nano-
structured titanium has been reported to be up to 19 times greater than 
on conventional titanium [1345]. Nanostructured titanium alloys, 
including Ti-6Al-4 V [1347, 1348], Ti-6Al-7 Nb [1349, 1350], Ti-Nb 
[312, 1351], Ti-Mo [1352, 1353] and Ti-Nb-Ta-Zr (TNTZ) [1354, 
1355], have demonstrated remarkable mechanical properties and 

Fig. 60. (a) Differences between coarse grain (CG) and ultrafine/nanograined 
(UFG/NC) in the formation of native oxide passivation layer in steels [1276]. 
(b) Comparison of corrosion potential and current density between different 
steels processed by SPD: IF steel by ECAP [1295], austenitic steel by ECAP 
[1296], 304 stainless steel by ECAP [1297], 316 L stainless steel by ECAP 
[1276, 1298] and 316 L stainless steel by HPT [1299, 1300]. 
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biocompatibility enhancements when prepared using SPD methods such 
as ECAP or HPT. These materials have showcased advantages over 
microcrystalline forms of pure titanium and conventional titanium al-
loys [312, 1347–1355]. 

In the following sections, the effect of SPD on Ti- and Mg-based 
biomaterials is reviewed. Moreover, the contribution of SPD to the 
development of innovative biomaterials such as HEAs [317, 1356] and 
metal-protein nanocomposites [1357] is briefly discussed. 

6.11.1. Biocompatible titanium alloys 
Titanium and its alloys are known for their lightweight nature and 

excellent mechanical properties, corrosion resistance and biocompati-
bility. Compared to other major metallic biomaterials used in bone 
replacement implants, such as stainless steel and Co-Cr alloys, titanium 
demonstrates higher biocompatibility, making it a popular choice in the 
field of metallic biomaterials. Moreover, titanium stands out as the only 
metal capable of osseointegration, forming a bond with bone at the 
optical microscope level. Due to this unique characteristic feature, it 
finds extensive application in devices that interact with bone, including 
artificial hip joints, spinal fixation and dental implants. Presently, the 
most commonly used titanium alloy for biomedical purposes is the 
α+β-type Ti-6Al-4 V ELI (extra low interstitial), which boasts greater 
toughness than the Ti-6Al-4 V alloy [1358]. Pure titanium, such as 
commercially pure titanium grade 2 [538, 1359–1361] and grade 4 
[1362–1364], which have lower strength than Ti-based alloys, have 
better biocompatibility than alloys, but they suffer from relatively low 
strength. There have been attempts to strengthen these materials by SPD 
which resulted in their commercialization. Here, some findings about 
SPD processing of Ti-based biomaterials are reviewed. 

It was reported that the fatigue properties increased to 220 MPa from 
180 MPa when etching the surface of UFG titanium grade 4 obtained 
through ECAP [1362]. Ti-based alloys exhibit high heat treatability, and 
their initial microstructure can be transformed into a lamellar structure 
or martensite through SPD, promoting grain refinement. Raab et al. 
conducted a study on titanium grade 4, characterized by a high impurity 
concentration among pure titanium materials, by quenching from the β 
region to form martensite [1363]. Subsequently, they subjected the 
materials to ECAP processing which resulted in a remarkable tensile 
strength of 1100 MPa and an elongation of 7.2%. The ECAP processing 
in the state of martensite further contributed to grain refinement by 
reducing the ability for grain boundary mobility, propagation of dislo-
cations in grain interiors, and stress localization at interphase 
boundaries. 

The α+β-type Ti-based alloy, such as Ti-6Al-4 V (wt%) alloy 
[1365–1371], Ti-13 V-3Al (at%) [1372], Ti-6Al-7 Nb (wt%) [1373, 
1374], have been also studied by SPD. The strength can be increased in 
the α+β type Ti-based alloy by controlling the initial microstructure. In 
the Ti-6Al-4 V ELI alloy, Alagić et al. reported that both high tensile 
strength of 1546 MPa and total elongation of 18.8% can be achieved 
with HPT at 500 ℃ using the initial microstructure of approximately 
90% α’ martensite [1375]. In the Ti-6Al-7 Nb alloy, which was devel-
oped for medical use by replacing toxic vanadium with biocompatible 
niobium, Polyakova et al. reported 1460 MPa tensile strength and 11% 
of ductility after ECAP [1373]. Reportedly, 1280 MPa tensile strength 
and 22% of total elongation were obtained in Ti-6Al-7 Nb after HPT with 
the bi-modal initial microstructure of equiaxed α and α’ grains [1374]. 
Since high Young’s modulus leads to bone resorption, β-type Ti-based 
alloys with low Young’s modulus, such as Ti-3 Nb [1376], Ti-10M-
o-8 Nb-6Zr [1377, 1378], Ti-18Zr-15 Nb [1379, 1380], Ti-15Mo 
[1353], Ti-13 Nb-13Zr [1381, 1382], Ti-29 Nb-13Ta-4.6Zr (TNTZ) 
[1383], Ti-3.5Al-5Mo-4 V [1384] (all in wt%), have been processed by 
ECAP or HPT. Recently, Ti-containing HEA TiNbZrTaHf was processed 
by HPT which showed a high hardness of 564 HV with a low Young’s 
modulus of 79 GPa and good biocompatibility of high entropy alloy after 
HPT [317]. 

Grain refinement not only enhances the mechanical properties of 

titanium but also improves corrosion resistance and biocompatibility. 
The corrosion resistance of UFG pure titanium grade 2 is enhanced 
through grain refinement by ECAP, leading to the formation of a passive 
layer on the titanium surface more effectively [1360]. Chen et al. re-
ported that grain refinement of Ti-6Al-7 Nb alloy by HPT leads to 
enhanced osteogenic differentiation, as shown in Fig. 61 [1385]. The 
SPD process increases the fraction of grain boundaries and dislocations 
and positively changes the thickness and chemical component of the 
surface layer for biocompatibility [560, 1385]. All these findings suggest 

Fig. 61. Histogram of target mRNA expression levels after 7 days of induction 
in MC3T3-E1 cells cultured on Ti-6Al-7 Nb (wt%) alloy before HPT (HPT-0), 
after HPT under 2 GPa (HPT-2) and after HPT under 6 GPa (HPT-6) in com-
parison with tissue-culture-treated polystyrene dishes (TCPS). Expression of (a) 
Runx2, (b) Col1α1 and (c) Akp2 was detected by real-time RT-PCR [1385]. 
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that SPD techniques provide a powerful means for fabricating advanced 
biomaterials, holding immense potential for further innovation and 
development in the biomedical industry. 

6.11.2. Biocompatible magnesium alloys 
New-generation biodegradable implants possess the potential to 

supplant permanent medical implants as they assist fractured bones 
throughout the healing process and subsequently undergo controlled 
absorption by the body [1386, 1387]. Among the biodegradable 
metallic materials, magnesium alloys are the most relevant. The 
fundamental concept of designing Mg-based alloys as biomaterials be-
gins with the formulation of alloy composition, followed by the imple-
mentation of manufacturing and processing techniques (e.g. utilizing 
SPD techniques) as well as surface modifications to achieve the desired 

properties. This process culminates in the production of finalized 
products intended for long-term clinical trials, as depicted in Fig. 62a. 
Magnesium alloys with UFG morphology, produced via SPD techniques 
such as ECAP and HPT [5, 23, 32, 299, 1388], are especially interesting 
biomaterials for temporary orthopedic implants as they exhibit 
enhanced mechanical properties, adequate corrosion resistance and 
biocompatibility [1389]. 

ECAP processing of magnesium alloys is especially interesting as this 
technique can provide large-scale samples allowing the fabrication of 
bone screws and plates. When doing ECAP of magnesium alloys, not only 
grain refinement by shear but also dynamic recrystallization plays a 
substantial role due to the temperature rise during the process, stored 
energy in deformation-induced defects, and the low deformation rate 
[1390]. The extent of refinement depends also on the initial grain size. 

Fig. 62. (a) Concept of designing Mg-based alloys as biomaterials. (b,c) Tensile strength and elongation at fracture for Mg-Zn-Ca alloys processed by (b) ECAP and (c) 
HPT (the numbers in parentheses for HPT-processed samples indicate the number of rotations and ‘HT’ indicates a subsequent heat treatment) [1389]. 
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Texture development during ECAP can lead to enhanced ductility and 
softening effects [1391–1393]. Additionally, ECAP induces fragmenta-
tion and redistribution of hard particles within a magnesium matrix, 
contributing to both, grain refinement and precipitation strengthening 
[1394–1396]. The popular Mg-Al-based alloys like AZ31 [1397, 1398], 
AZ91 [1399] or LAE442 [1400–1403] processed by ECAP show signif-
icant grain refinement and increased yield and tensile strength. How-
ever, the potential use of alloys with aluminum addition as 
biodegradable implants is limited because the neurotoxic effect of 
aluminum can cause Alzheimer’s disease or dementia when exceeding 
the daily dose [1404, 1405]. Magnesium alloys containing zinc and 
calcium are therefore in the research focus of different groups 
[1406–1412]. They are characterized by excellent biocompatibility and 
demonstrate attractive properties desirable for medical applications 
without possible side effects [1406, 1408]. These alloys also exhibit 
enhanced mechanical properties after ECAP, attributed to grain refine-
ment and precipitation hardening, as shown in Fig. 62b. Rare-earth el-
ements, in general, improve the mechanical properties of magnesium 
alloys [1395, 1396, 1413–1415] and their corrosion resistance [1416], 
with some alloys demonstrating good biocompatibility, such as the 
WE43 alloy containing rare-earth elements and zirconium. However, 
their content must be controlled to avoid the risk of harmful effects on 
the human body [1417–1420]. The Mg-Ag alloys, known for their 
antibacterial properties, exhibit increased strength and ductility after 
ECAP processing [1421–1425], making an interesting option for 
biodegradable medical implants to reduce the symptoms of local 
inflammation or infection that can arise in the first weeks after 
implantation. 

HPT processing of magnesium alloys results in an initially inhomo-
geneous microstructure, but a gradual evolution towards relatively 
uniform microstructures due to saturation tendencies occurs [177, 1138, 
1426, 1427]. The number of turns required to achieve a homogeneous 
microstructure depends on the applied pressure during HPT [1426, 
1428]. Additionally, HPT induces a strong basal texture with the c-axis 
parallel to the normal direction of the disc [1427, 1429, 1430]. Particles 
in the magnesium alloy matrix undergo fragmentation and redistribu-
tion during HPT [1431], although the high hydrostatic pressure of the 
process limits their breakage and spreading. Compared to ECAP, the 
HPT process of magnesium alloys can be performed at lower tempera-
tures – even at room temperature – and the induced strain is generally 
higher. For Mg-Al alloys, HPT processing results in significantly smaller 
grain sizes (100–200 nm) compared to ECAP, thereby resulting in even 
higher hardness values [1426, 1428, 1432–1434]. HPT-processed 
Mg-Zn, Mg-Ca and Mg-Zn-Ca alloys (Fig. 62c), which are exclusively 
alloyed with essential elements found in the human body, exhibit 
improved mechanical properties through grain refinement and precipi-
tation strengthening [1409, 1435–1437]. Moreover, magnesium alloys 
containing rare-earth elements [1438–1440], such as the WE43 alloy 
[1441], exhibit increased hardness, yield stress and tensile strength after 
HPT processing. 

Magnesium alloys have high corrosion rates due to their non-noble 
nature, which poses challenges for their use in biodegradable im-
plants. The corrosion mechanism involves the formation of hydrogen gas 
and magnesium hydroxide and subsequent transformations, influenced 
by factors like chlorine ions [1441] and the presence of impurities 
[1409, 1442]. Alloying elements and thermomechanical treatments 
affect corrosion and biodegradation, with galvanic coupling and 
micro-galvanic corrosion playing a role [1443]. The influence of SPD 
methods on biodegradation varies depending on the specific alloy and in 
vitro testing conditions [1412, 1423, 1444–1452]. An increase in the 
density of grain boundaries and especially changes in particle distribu-
tion after SPD processing can positively affect the corrosion rate of 
magnesium alloys. In vivo studies on SPD-processed magnesium alloys 
are limited but suggest improved degradation resistance and bioactivity 
compared to untreated alloys [1453–1455]. 

In conclusion, magnesium alloys, which exhibit good 

biocompatibility and homogenous and slow biodegradation, can 
considerably be improved in terms of mechanical behavior by SPD 
processing to be used for load-bearing medical implants in orthopedics. 
A heat treatment or a coating to regulate the degradation rate in the first 
stages of implementation might help to further improve their applica-
bility for biodegradable medical implants. Future in vivo studies are 
needed to clarify the effect of SPD on the biocompatibility of these 
materials. 

6.11.3. Innovative biomaterials 
The outstanding performance of nanostructured titanium and mag-

nesium in the biomedical field has inspired ongoing efforts to develop 
novel biomaterials with even superior mechanical properties and 
exceptional biocompatibility. Several studies have contributed to this 
endeavor by harnessing the synergistic benefits of novel compositions 
and nanostructuring achieved through SPD techniques. Notably, 
emerging materials like HEAs [317, 1356] and Ti-protein composites 
[1357] - especially designed for biomedical applications - have emerged 
as promising candidates. These new biomaterial compositions processed 
by the HPT method have presented mechanical properties and 
biocompatibility fairly superior in comparison to traditional bio-
materials such as pure titanium, Ti-6Al-4 V, Ti-6Al-7 Nb, Co-Cr-Mo and 
316 L alloys. As an example of this innovative approach, exceptional 
properties including ultrahigh hardness, a low elastic modulus and 
remarkable cellular activity for functions such as proliferation, viability 
and cytotoxicity were reported for TiAlFeCoNi alloy after processing by 
HPT [1356]. As shown in Fig. 63a, the average hardness witnessed a 
notable increase from 635 Hv to 880 Hv by HPT processing due to grain 
refinement. Additionally, the elastic modulus is 123 GPa which is 
comparable to titanium, as shown in Fig. 63b. The cellular metabolic 
activity of the TiAlFeCoNi alloy surpasses that of pure titanium and the 
Ti-6Al-7 Nb alloy by an impressive margin ranging from 260% to 
1020%. 

Since SPD is capable of cold consolidation of powders, a recent study 
processed the mixture of titanium and small amounts of an endogenous 
protein BSA (bovine serum albumin) by the HPT method [1357]. This 
new family of metal-protein nanocomposites exhibited an exceptional 
combination of high strength and superior biocompatibility. The scan-
ning electron microscope (SEM) images, depicted in Figs. 64a and 64b, 
show a reasonable mixing between the titanium and BSA particles at the 
micrometer level and the elemental mapping of Fig. 64c confirms that 
the black particles correspond to the BSA protein containing carbon 
atoms which are surrounded by a titanium matrix. After HPT processing, 
the BSA protein is mixed with titanium particles forming well-defined 
protein layers that are distributed all over the sample, while the tita-
nium phase keeps its three-dimensional network, as displayed in 
Fig. 64d-f. The cellular viability after HPT processing was evaluated by 
in vitro cell culture experiments employing the MC3T3-E1 cells, as 
indicated in the MTT assay in Fig. 64g. As can be seen, the 
HPT-processed composites present superior biocompatibility in com-
parison with the coarse-grained titanium reference and the sample with 
5 vol% of BSA showing the best biocompatibility performance among 
other counterparts. 

In conclusion, the introduction of innovative biomaterials, such as 
HEAs and Ti-protein composites, represents a significant stride in the 
biomedical field by the contribution of SPD. These newly designed 
materials offer enhanced mechanical properties and biocompatibility 
compared to conventional counterparts and can be further tuned for 
particular biomaterial applications. 

7. Ultrafine-grained materials processed by SPD 

Although SPD processing was preliminarily considered a metal 
processing technology [1, 2], its application is now extended to a wide 
range of metallic/nonmetallic materials, inorganic/organic materials 
and traditional/innovative materials. SPD processing of metals goes 
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back at least to the Bronze Age and SPD processing of organic materials 
should have a very old history in food making; however, SPD processing 
of hard and brittle materials was realized in the 1930 s following the 
introduction of the HPT method [20, 22]. Although SPD processing is 
mainly applied to metals (magnesium, aluminum, titanium, iron, etc.) 
and their alloys [1, 2], there are appreciable attempts to design new 
metallic materials (including, composites, new conventional alloys, 
HEAs and metallic glasses) using the SPD methods for different func-
tionalities, as discussed in previous chapters. The application of SPD to 
semiconductors [1456], ceramics [1457] and polymers [14] also expe-
rienced significant progress in recent years, although the number of 
groups actively working on these materials is still limited. In the 
following section, research activities on various SPD-processed UFG 
materials are reviewed. 

7.1. Magnesium alloys 

The inherent brittleness of magnesium sets difficulties for room 
temperature processing. Therefore, early attempts for processing 
through ECAP [1458, 1459] and ARB [1460] were carried out at high 
temperatures. Processing routes which included extrusion followed by 
ECAP [1461] and the application of a back pressure in ECAP [1462] 
were developed, enabling the fabrication of UFG magnesium, but the 
minimum grain sizes achieved were in the range of several hundreds of 
nanometers. True nanocrystalline magnesium, with grain sizes of 
~100 nm or smaller, is only produced via HPT processing at room 
temperature. Thus, the increase in research groups using HPT in recent 
years unveiled many interesting aspects of magnesium properties, such 
as the relationship between flow stress and grain size. 

The early reported experimental data were limited to relatively 
coarse-grained samples and they usually fitted the well-established Hall- 

Petch relationship in which the flow stress is inversely proportional to 
the square root of the grain size. The proportionality factor, Hall-Petch 
slope K, was usually high and exhibited a pronounced dependency on 
temperature [1463, 1464]. Recent studies show that this relationship is 
not constant for all grain sizes. A change in slope in plots of flow stress 
vs. grain size and grain refinement softening at small grain sizes have 
been reported [1465–1469]. A recent review [1470] evaluated multiple 
magnesium alloys and showed that a change in slope takes place at grain 
sizes of ~ 4 µm. The data is shown in Fig. 65 and two distinct regimes are 
observed. Hence, data for coarse-grained magnesium alloys follow a 
larger slope attributed to twinning-controlled deformation, while data 
for ultrafine and nanocrystalline follow a reduced slope associated with 
slip-controlled deformation. It is worth noting that the data in the range 
of slip-controlled deformation agree with the mechanism of grain 

Fig. 63. (a) Variation of Vickers microhardness against distance from disc 
center for ingot and sample processed by HPT. For comparison, hardness for 
TiAlFeCoNi after compression (N = 0) and N = 1 turn of HPT, as well as the 
hardness range for Ti-based biomaterials, were included. (b) Nanoindentation 
load against displacement for HPT-processed TiAlFeCoNi sample [1356]. 

Fig. 64. (a,b) SEM images in backscatter electron mode and (c) corresponding 
energy-dispersive X-ray spectroscopy elemental mappings of Ti + 5 vol% BSA 
protein before HPT processing. (d-f) SEM images at different magnifications in 
backscatter electron mode for Ti + 5 vol% of BSA composite after 5 turns of 
HPT under 2 GPa. (g) MTT cell viability assay examined by light absorbance at 
570 nm for pure titanium and for nanocomposites containing 2 and 5 vol% of 
BSA protein produced by 5 turns of HPT under 2 GPa in comparison with 
hardness of coarse-grained annealed titanium [1357]. 
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boundary sliding [1471] in which the flow stress is predicted by Equa-
tion 31. This mechanism has shown good agreement with experimental 
data for multiple materials with different grain sizes and tested at 
different temperatures and strain rates [739, 1472, 1473]. 

σ ≈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3GkT
2dsb2 ln

(
ε̇ds

3

10δDgb
+ 1

)√
√
√
√ (31)  

where σ is the flow stress, G is the shear modulus, k is the Boltzmann’s 
constant, T is the absolute temperature, ds is the spatial grain size, ε̇ is 
the strain rate, b is the Burgers vector, δ is the grain boundary width and 
Dgb is the coefficient for grain boundary diffusion. The data in Fig. 65 
shows that high strength, in the range of 400 MPa, might be observed in 
UFG magnesium alloys. The highest strength in a magnesium alloy was 
reported in a Mg-17Ni-17 Pd (at%) alloy with the BCC structure pro-
cessed by HPT [296] but this value is not shown in Fig. 65. A noticeable 
increase in elongation to failure is observed in the grain size range 2–8 
μm which is the range for transition in deformation mechanism. Thus, a 
good combination of strength and ductility is observed in this grain size 
range. 

Early papers showed that ECAP can introduce superplastic behavior 
in magnesium alloys [796, 798, 1474–1477]. In practice, grain refine-
ment enables a decrease in temperature and/or an increase in strain rate 
for superplasticity. Also, the elongations reported in magnesium pro-
cessed by ECAP tend to be larger than in conventional 
thermo-mechanical processing. Fig. 66a shows the appearance of tensile 
specimens of a ZK60 alloy processed by different numbers of passes of 
ECAP and pulled to failure at 473 K. Exceptional elongations of over 
1000% were reported, including an elongation of 3050% [1475]. 

It was shown later that superplasticity is also observed in magnesium 
processed by HPT [801, 1479, 1480] and analyses of experimental data 
showed that the strain rate for superplasticity agrees with theoretical 
predictions from the mechanism of grain boundary sliding [349, 1481]. 
In addition to the development of high-temperature superplasticity, 
severe plastic deformation may also introduce exceptional ductility in 
magnesium at low temperatures and even at room temperature. For 
instance, superplastic elongations were reported in an AZ91 alloy tested 
at 423 K [1480] and in an Mg-Li alloy tested at 373 K [800]. Although 
many magnesium alloys display brittle behavior at room temperature, 
extraordinary ductility has been reported in UFG pure magnesium 
[1482] and the Mg-8Li (wt%) alloy processed by HPT [350]. Fig. 66b 
shows the stress-strain curves of the Mg-8Li (wt%) alloy tested in tension 
at room temperature in the extruded condition and after 5 and 200 turns 
of HPT. An increase in elongation is observed after 5 turns of HPT and 
further processing to 200 turns increases the elongation to over 400%, 
which is considered a superplastic elongation [350]. 

As discussed earlier, SPD processing also improves the hydrogen 
storage performance of magnesium [1077]. It was shown that ECAP 
processing increases hydrogen desorption kinetics [1143]. It was also 
demonstrated that HPT processing improves hydrogen storage capacity 

[1138]. A significant advance in this field was achieved by mixing 
magnesium with other metals using ultra-SPD through many turns in 
HPT. Thus, a Mg4NiPd alloy with BCC structure processed by 1500 turns 
of HPT exhibited room-temperature hydrogen storage capability [359]. 
The hydrogen pressure composition isotherm for tests at 305 K under 
hydrogen pressures up to 10 MPa shows up to 0.86 wt% of hydrogen 
adsorption after the fifth cycle with 0.7 wt% reversibility [359]. Besides 
the improvement in hydrogen storage, it has been suggested that grain 
refinement can induce pseudo-uniform corrosion due to the increase in 
the volume fraction of grain boundary area [1258]. Experiments in pure 
magnesium [1483] and a magnesium alloy [1484] processed by HPT 
support this suggestion. Also, many papers [1485–1488] reported a 
decrease in the corrosion rate of magnesium and its alloys after SPD. 

Fig. 65. Flow stress and elongation to failure of magnesium alloys plotted as a 
function of the grain size [1470]. 

Fig. 66. (a) Appearance of tensile specimens of a ZK60 alloy processed by 
different number of passes of ECAP and tested at 473 K [1475]. (b) Stress vs. 
strain curves and appearance of tensile specimens of an Mg-8Li (wt%) alloy 
processed by extrusion and different number of turns of HPT and tested at room 
temperature [350]. (c) The corrosion rate of magnesium and magnesium alloys 
plotted as a function of the flow stress [1478]. 

K. Edalati et al.                                                                                                                                                                                                                                 



Journal of Alloys and Compounds 1002 (2024) 174667

80

These observations suggest that SPD processing can improve the per-
formance of magnesium for biological applications as temporary im-
plants. Fig. 66c shows experimental data of flow stress and corrosion 
rate for magnesium before and after SPD processing, indicating that HPT 
processing can increase the strength and decrease the corrosion rate of 
magnesium [1478]. 

7.2. Aluminum alloys 

Since the early works of the late 20th century and early 21st century 
on the processing of UFG materials by SPD techniques, much attention 
has been paid to Al-based materials. They possess a highly attractive 
combination of functional properties: outstanding strength-to-weight 

ratio, fair corrosion resistance, notable formability and so on. In addi-
tion, aluminum belongs to a limited number of elements that might be 
used as conductors being the cheapest variant among all. Therefore, Al- 
based alloys are widely used as constructional and conductive materials 
in transportation, food, construction, sport and other industries. How-
ever, their strength is relatively low while advanced applications require 
Al-based alloys with improved mechanical and functional performance. 
Thus, the enhancement of their mechanical and functional properties 
through nanostructuring by SPD is an important task to develop novel 
high-performance Al-based alloys for innovative applications. Funda-
mental studies and recent achievements in this field have been analyzed 
in the most recent reviews [835, 1489] and are summarized below. 

The most important motivation for the application of different SPD 

Fig. 67. (a) A possible modification of the Hall-Petch relationship for UFG FCC metals and solid solutions [1497]. (b) Evidence on grain boundary sliding at room 
temperature in UFG pure Al, shown by three-dimensional atomic force microscopy (AFM) [1498]. (c) The Al/Al boundaries strongly segregated by solute zinc atoms, 
causing wetted grain boundaries in SPD-processed Al-30Zn (at%) alloys [351]. (d) High-resolution TEM image showing a wetting layer along an Al/Al grain 
boundary in the HPT-processed Al-30Zn (at%) sample [1499], (e) Surface morphologies of the compressed pillars on the surface of the HPT-processed Al-30Zu (wt%) 
sample, demonstrating a direct evidence for the occurrence of intensive grain boundary sliding without any deformation localization [1500]. 
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methods comes from the 70-year-old Hall-Petch relationship [661, 
1490], describing the improvement of the yield stress with decreasing 
grain size. The possibility of achieving high-strength states following the 
Hall-Petch equation, engineering superplastic behavior and other 
properties of metallic materials by forming UFG structures has tradi-
tionally been the motivation for research and development in the SPD 
field [1491]. Consequently, several early efforts have been made to 
refine the grain size in aluminum [1492–1495] and its alloys [348, 810, 
817, 820, 1492]. Presently, the use of various SPD techniques has 
become the main approach in obtaining different UFG materials with 
nanoscale and submicron grain sizes. An important factor for UFG ma-
terials is that depending on the SPD processing regimes, different types 
of grain boundaries are formed in metals and alloys, including 
aluminum materials, such as low- and high-angle grain boundaries, 
equilibrium and non-equilibrium ones, as well as the grain boundaries 
containing significant segregations of alloying elements, which typically 
has a very strong influence on their properties [304, 373, 1496]. Besides, 
experimental experience indicates that the conventional Hall-Petch 
equation cannot be typically maintained in its original form for UFG 
materials. A possible modification of the original Hall-Petch equation 
has been suggested [1497] for a uniform description of submicron-sized 
FCC metals and solid solutions (Fig. 67a). 

Together with the strengthening effect, the average grain size also 
plays an important role in the plastic deformation process, such as su-
perplastic flow, where the main deformation mechanism is grain 
boundary sliding [791, 1501–1503]. Experimental evidence [1498] on 
room temperature grain boundary sliding in UFG pure aluminum 
deformed by Vickers indentation has been detected by using 
three-dimensional atomic force microscopy (Fig. 67b). Analysis of the 
pileups formed around the Vickers pattern suggests that the contribution 
of grain boundary sliding to the total strain in the UFG aluminum sample 
can reach up to 70% [1504]. Besides the grain-refinement, SPD may 
result in strong decomposition of the microstructure [351, 817, 1500, 
1505–1507] and intensive segregation of solute atoms to grain bound-
aries (Fig. 67c) [351, 1499, 1508], causing so-called wetted grain 
boundaries [351, 1499, 1507–1509] in UFG alloys (Fig. 67d). It has been 
shown that segregated grain boundaries have an enhancing effect on 
grain boundary diffusion, facilitating grain boundary sliding, as shown 
in Fig. 67e, and leading to super-ductility [817] or even superplasticity 
[351, 1510] at room temperature in Al-Zn alloys. The grain boundary 
segregation also has a unique effect [812] in the case of UFG 
Al-Zn-Mg-Zr (7xxx) commercial alloys, where conventional materials 
can show superplastic behavior only at a relatively high homologous 
temperature of about 0.7–0.8 Tm [315, 810, 814, 1511–1513]. Recent 
results have demonstrated the significance of enhanced diffusion along 
grain boundaries at low temperatures in a UFG Al-Zn-Mg-Zr commercial 
alloy, leading to its superplasticity with a record elongation higher than 
500% at 443 K (0.47 Tm) (Fig. 68a), and maintaining relatively high 
strength after superplastic deformation [1510]. Considering the tem-
perature dependence of the superplasticity of commercial aluminum 
alloys, the summary graph in Fig. 68b shows the significance of the 
mentioned new results obtained on the ultralow-temperature super-
plasticity of the UFG Al-Zn-Mg-Zr alloy. 

Combining high mechanical strength with high electrical conduc-
tivity has always been a challenge for the aluminum industry, especially 
for the design of power transmission lines [1514] or for the development 
of advanced wirings for automotive applications [1515]. Alloying ele-
ments in solid solution or precipitates increase the strength but signifi-
cantly scatter electrons giving rise to an increase of the electrical 
resistivity. The best compromises achievable by traditional treatments 
have been demonstrated with 6xxx alloys [857] but the design of UFG 
structures by SPD processes opens principally new possibilities to 
expand the limits of the trade-off between strength and conductivity in 
conductor alloys [834, 835]. There are however some limitations: (i) 
UFG structures require some stabilizers, solutes or particles that pin 
grain boundaries and limit grain growth [310]; (ii) grain boundaries are 

known to scatter conduction electrons and when the grain size is below 
the free mean path of the electrons, the electrical resistivity is signifi-
cantly affected [1516]. Different strategies involving SPD have been 
proposed to overcome these barriers. The most straightforward 
approach (Fig. 69a) is to combine precipitation hardening and grain 
boundary strengthening in traditional conductor aluminum alloys (such 
as Al-Mg-Si [872, 1517–1520] or thermally stable Al-Zr-based alloys 
[884, 1521, 1522]). SPD might be carried out in the solutionized state or 
after precipitation treatment. In the first case, however, under SPD 
conditions the crystalline defects and strain-induced segregations 
[1519] may affect the precipitation and specific heat treatments and/or 
doping with other elements are required [872, 1518, 1521, 1522]. 

Alternatively, the potentiality of SPD to tailor new innovative sys-
tems has been explored, such as immiscible Al-RE (RE: rare earth) [315, 
881, 1523], Al-Fe [310, 869, 877, 879, 880, 1524–1526] or Al-Ca [311, 
1527] alloys. As-cast structures with a high-volume fraction of fine 
intermetallic particles or solute segregations (Fig. 69b) promote the 
grain refinement and the stability of UFG structures with limited effect 
on the electrical conductivity. Besides, SPD can additionally expand the 
limits for the structural design of Al-based alloys by forming grain 
boundary segregations providing extra-strengthening of the UFG state 
[1528] or by creating supersaturated solid solutions of elements that are 
immiscible under near equilibrium conditions [311, 315, 877, 881, 

Fig. 68. (a) Deformation curves of an UFG Al-Zn-Mg-Zr (7xxx) alloy, showing a 
record total elongation higher than 500% at 443 K (homologous temperature: 
0.47) [812]. (b) Significance of the UFG structure having grain boundaries 
segregated by solute atoms, resulting in ultralow-temperature superplasticity in 
the Al-Zn-Mg-Zr alloy (denoted as Present Study) [812]. 
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1524], which can transform these alloys to a type of age-hardenable 
ones. Basic theoretical estimations accounting for structural contribu-
tions to yield stress and resistivity can predict the limits of the 
strength-conductivity ratio for SPD-engineered Al-based alloys as shown 
in Fig. 69c [1519], but these estimations need to be modernized 
considering the latest findings. 

Note that the morphology of the intermetallic phase in the as-cast 
state can severely affect the SPD efficiency for immiscible systems 
[880, 1523]. Here a combination of advanced casting techniques (such 
as electromagnetic casting [1529]) to disperse intermetallic eutectics 
before SPD can be fruitful [879, 1523, 1526]. As a result, electromag-
netically cast bulk specimens of Al-Fe alloys after complex SPD-assisted 
treatment demonstrate enhanced thermal stability similar to Al-Zr 
conductors with a strength/conductivity ratio comparable to advanced 
Al-Mg-Si alloys [879, 1526]. Moreover, metal matrix composites pro-
cessed by continuous SPD methods also offer some unique possibilities 
to achieve conducting wires [1530–1534]. Composites combining 
different aluminum alloys or Al-Cu alloys are more complex to produce, 
but extend the possibilities of strength/conductivity combinations. The 
full range of property combinations that could be expanded using the 

different SPD-based approaches is summarized in Fig. 69d (based on the 
literature data collected in [835]). It is worth noting that there are 
several issues in the SPD-driven development of high-strength light-
weight conductors, which are still poorly documented in the literature. 
Limited studies address such important properties as fatigue [876, 
1515], creep [737, 1535] and corrosion [1515, 1536] behavior of 
electrotechnical UFG aluminum alloys, vitally important for their in-
dustrial applications. Despite the fewer promising results, these areas 
still wait for comprehensive exploration. 

Results obtained on SPD-processed UFG aluminum alloys clearly 
show the innovation potential of unique grain boundary phenomena, 
such as the advantage of intensive grain boundary sliding at room 
temperature for micro-devices, formation of special grain boundary 
segregations for the combination of high strength and low-temperature 
superplasticity in commercial aluminum alloys. There is also obviously 
an open field for the design of unique UFG structures in lightweight Al- 
based alloys to achieve a full range of exceptional combinations of 
mechanical strength and electrical conductivity and multifunctional 
properties [180]. 

Fig. 69. (a) A strategy to improve the strength-conductivity ratio in age-hardenable aluminum alloys by SPD-controlled nano-precipitation [835]. (b) Grain 
boundary segregations in SPD-processed immiscible Al-RE (RE: rare earth) alloys [1523]. (c) A theory-based predictive approach to define limits of the 
hardness-conductivity trade-off in UFG Al-Mg-Si alloys as a function of the grain size and with 0.2 wt% of solutes left in solid solution. Different curves correspond to 
different contributions considered for the estimations: without precipitates (blue), with precipitates with density corresponding to the conventional T6 (red), with 
precipitates and maximal measured dislocation density after HPT at room temperature (orange). Green and orange squares correspond to experimental data collected 
on the 6101 and 6201 alloys, respectively [1519]. (d) A potentiality of SPD to expand the space of improving the strength and conductivity of conductor aluminum 
alloys [835]. IACS stands for International Annealed Copper Standard [857]. 
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7.3. Titanium alloys 

Titanium and its alloys have a special positioning in the SPD field 
because one of the most important successes in the commercialization of 
SPD is the use of Ti-based materials for biomedical applications. 
Application of SPD to pure titanium results in grain refinement to the 
submicrometer level and enhancement of strength over 1000 MPa. 
When pure titanium is processed by HPT under high pressure (usually 
over 4 GPa), it shows a phase transformation to the ω phase which is 
hard and brittle. SPD is also widely applied to various titanium alloys 
with different initial phases, leading to grain refinement and phase 
transformations. Most studies on Ti-based alloys are directed toward 
biomedical applications by studying the mechanical properties, 
biocompatibility and corrosion resistance. This section reviews some 
recent findings on the application of SPD to titanium alloys with a focus 
on biomedical applications. 

Prosthetic devices (Fig. 70a) are growing fast in commercial and 
medical importance, but progress in implant materials is limited [1537, 
1538]. Developing new biomaterials for implants is challenging due to 
conflicting requirements [1327], as also described in earlier chapters. 
Prostheses must be biocompatible, free of toxic elements like vanadium, 
nickel, copper and cobalt [342, 1539, 1540], promote bioactivity, and 
have high corrosion and wear resistance. They should also possess su-
perior mechanical properties, like a small Young’s modulus similar to 
bone tissue to prevent stress shielding [1541–1544]. Titanium and its 
alloys are ideal for dental and orthopedic implants due to their 
biocompatibility and corrosion resistance. They possess a natural oxide 

layer [1545] that protects against corrosion but does not promote bone 
healing or combat infections [1546]. Surface modifications and coatings 
can improve bone formation and reduce the risk of infections [556, 
1350, 1547–1556]. Ti-based implants display exceptional mechanical 
properties (maximum load, bending, stiffness and fatigue strength) 
[1547, 1548, 1557]. These properties may effectively promote bone cell 
phenotypic needs [1558–1560]. Moreover, they have reasonably similar 
properties to bone tissue [1560]. Pure titanium is corrosion-resistant 
and is the best material so far for applications such as dentistry. 
Ti-6Al-4 V alloy has been chosen as a biomaterial because of its me-
chanical properties; however, there are concerns about its high elastic 
modulus [1561] and the cytotoxicity effects of aluminum and vanadium 
ions that can be released into the body due to corrosion or friction [342] 
and result in adverse bone tissue reactions [342, 1539, 1540]. Therefore, 
it is imperative to design single-phase β titanium alloys with high 
strength that are completely non-toxic and free from allergens (β alloys 
possess a lower elastic modulus intrinsically than α-Ti and the α+β 
Ti-6Al-4 V alloy) [342, 1557]. More comprehensive and up-to-date in-
sights into the effect of thermomechanical processing on the micro-
structure and mechanical behavior of Ti-based alloys are given 
elsewhere [342, 1327]. 

Grain refining via SPD processes like ECAP and HPT can enhance the 
mechanical properties of Ti-based alloys. These methods effectively 
reduce grain sizes to the UFG or even nano-size range [1, 2, 177, 299, 
556, 657, 668, 1364, 1549, 1550, 1562, 1564–1567], leading to 
improved strength, wear resistance and bioactivity. In addition to me-
chanical strength and stability, appropriate surface 

Fig. 70. (a) Examples of prosthetic devices for joint and teeth replacement. (b) Average grain size and (c) hardness in titanium alloys Ti-6Al-7 Nb (TAN), Ti-13-Nb- 
13Zr (TNZ) and Ti-35 Nb-7Zr-5Ta (TNZT) processed by HPT under different pressures, where 2 t, 3 t and 5 t refers to the number of HPT turns and SC, FC and QA 
refer to the initial condition before HPT processing (samples were heated treated at 1023 K for 1 h and cooled down; SC: slow cooling from the β phase region in the 
furnace; FC: fast cooling from the β phase region by water quenching; QA: quenching, aging at 773 K for 5 h and cooling in air). (d) Young’s modulus for undeformed 
and HPT-processed samples of Ti-6Al-7 Nb, Ti-13 Nb-13Zr and Ti-35 Nb-7Zr-5Ta alloys [556, 1562, 1563]. 
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nano/micro-roughness is crucial for producing reliable implants with a 
low risk of failure incidence [1568]. The high strength of UFG implants 
allows for smaller sizes and less invasive surgeries while maintaining 
functionality [851]. In addition to grain refinement, when processing 
titanium and its alloys through SPD, phase transformations can occur. 
The formation of metastable phases such as the ω phase and martensite 
α" phase [556, 562, 1550, 1569–1571] can impact the tenacity and 
elastic modulus of titanium alloys [556, 1569, 1572, 1573]. Implants 
also require stress shielding and corrosion resistance and high bioac-
tivity for a sufficient bone-bonding ability. This can be achieved by 
creating UFG microstructures through SPD and applying extra surface 
modifications such as anodization and acid + alkaline treatment. 

Different titanium alloys like Ti-6Al-7 Nb (TAN) [1562, 1567], 
Ti-13-Nb-13Zr (TNZ) [556, 1550, 1566], Ti-35 Nb-7Zr-5Ta (TNZT) 
[556] and commercially pure titanium [1550, 1553] were subjected to 
SPD with varying strain rates, applied loads, starting phases and mor-
phologies. An overview of the results of HPT processing, including phase 
transformations, structural/microstructural characterization, mechani-
cal and corrosion properties, surface treatments (anodization and acid +
alkaline treatment) and bioactivity has been compiled in [1563]. 
Deformation by HPT induces phase transformation in these alloys, 
which depends on the amounts of α or β stabilizers, the strain rate, 
applied load, starting phases and α phase morphologies [556, 1550, 
1562, 1563, 1566]. When there are high levels of α stabilizers like ox-
ygen or aluminum and α’ present, a phase transformation to the ω phase 
is prevented. If α’ is present, the fraction of the β phase increases with 
decreasing applied pressure. At high pressures, an α phase with a 
lamellar morphology transforms into the ω phase, while at low pres-
sures, a fine globular α phase transforms into the ω phase (at higher 

pressures, β can transform to α as well). The process of HPT is highly 
effective in achieving high grain refinement in Ti-based alloys down to 
grain sizes of 120 nm (Fig. 70b) leading to a maximum hardness of 
1.4 GPa (Fig. 70c) [556, 1562, 1563]. A Hall-Petch analysis revealed 
that the strength of titanium alloys is not solely determined by the 
number of grain boundaries but also by specific characteristics, 
including different phases and their sizes [1563]. However, Young’s 
modulus is solely affected by the phases, and an increase in the fraction 
of the β phase leads to a decrease in modulus (Fig. 70d). 

To enhance the surface properties of SPD-processed titanium alloys, 
oxide nanotubes were made via anodization on α or α’ phase surfaces 
[1563]. It was reported that the β phase produces oxide nanopores 
(thicker-walled tubular morphology), while treatment by acid + alka-
line media can change the morphology to sponge-like structures [556, 
1350, 1550]. The corrosion properties (Figs. 71a and 71b) indicate that 
the HPT-processed samples perform the best, although all cases have low 
current densities, indicating effective control of mass transport through 
the oxide layer [1550, 1553, 1554, 1563]. Corrosion potentials 
increased significantly with anodizing the surfaces, suggesting an 
effective strategy for the further improvement of SPD-processed alloys. 
Regarding bioactivity (Figs. 71c and 71d), polished surfaces are not 
bioactive due to their hydrophobic nature. In comparison to hydrophilic 
anodized alloys, commercially pure titanium hydrophilic anodized 
surfaces are more bioactive, regardless of the deformation of the surface. 
Morphologically, surfaces containing nanopores + nanotubes or only 
nanopores are not promising as well as pure titanium for apatite pre-
cipitation. Surface charges have a negative impact on precipitation for 
both anodized and chemically treated surfaces. For chemically treated 
surface tentacles to promote apatite formation, a critical dimension is 

Fig. 71. (a,b) Corrosion behavior shown by potentiodynamic polarization curves recorded in simulated body fluid (SBF) at 310 K for (a) Ti-13-Nb-13Zr (TNZ) and (b) 
Ti-35 Nb-7Zr-5Ta (TNZT) alloys compared to commercially pure (CP) titanium with and without HPT processing. (c,d) Mass gain of apatite after immersing samples 
in SBF as a function of the soaking time, comparing treated and untreated surfaces of (c) TNZT and (d) TNZ before and after HPT processing [556, 1550, 1553, 
1554, 1563]. 

K. Edalati et al.                                                                                                                                                                                                                                 



Journal of Alloys and Compounds 1002 (2024) 174667

85

necessary for biological fluid bonding. Grain refinement is a crucial 
factor in surface bioactivation, as proven by the superior results attained 
by anodized and HCl-treated surfaces of HPT-deformed samples [556, 
1550, 1563]. 

Nanostructuring by SPD effectively improves the properties of tita-
nium and its alloys, particularly for biomedical applications [1563]. 
While HPT is limited in sample size for medical implant production [53, 
177], alternatives like ECAP [1350, 1543, 1549] and ECAP-conform 
[156, 193] are better suited for commercial processing of Ti-based 
materials for biomedical applications [1330, 1574]. 

7.4. Iron alloys and steels 

Iron and steel alloys are the most-used engineering metallic mate-
rials. These materials have also received high attention in the SPD field 
and several SPD techniques have been applied to them over the last 
decades. SPD processing of pure iron, its strength can exceed 1 GPa due 
to grain refinement. SPD has been applied to various iron alloys and 
steel. The application of SPD to austenitic stainless steel usually results 
in martensitic phase transformation and the reduction of grain size 
below 100 nm. Among iron alloys, carbon-based steels including 
pearlitic, bainitic and martensitic grades are of special interest to the 
SPD community because they play a crucial role in our society consid-
ering typical engineering applications such as bearings or gear wheels or 
products for the mobility sector (e.g. for railway transportation). In 
many of these applications contact fatigue and wear arise and may lead 
to great microstructural changes of the steels [1575]. As a consequence, 
defects may form and restrict the lifetime of components [1576–1578]. 
The microstructural changes can be experimentally simulated using SPD 
in a well-defined manner, as far as the applied strain and temperature 
are concerned [1579]. In this sense, it represents an industrial applica-
tion of SPD for testing and ranking materials exposed to contact fatigue. 
The foundation for this SPD contribution is analyzing the microstruc-
tural evolution of such steels for the understanding of material 
strengthening and changes in ductility [1580], fracture resistance 
[1581] and fatigue crack growth behavior [1582] along with the con-
nected mechanical anisotropy. This section provides an overview of the 
underlying structural and mechanical changes of pearlitic, bainitic and 
martensitic steels subjected to SPD, particularly to HPT [1583]. 

Although cold wire drawing is sometimes not considered an SPD 
technique due to the changing sample dimensions [5], it must be 
mentioned in the context of SPD of steels due to (i) its importance in 

industry [1584], (ii) its close ability to deform materials of high hard-
ening capacity [1585] and (iii) its status leading to the currently 
strongest pearlitic steels and therefore the strongest engineering alloy in 
the world [1586]. Cold-drawn pearlitic steels belong to the best-studied 
SPD materials and have been studied systematically with the pioneering 
work of Emburry and Fisher in 1966 [1587]. This production route 
provides thorough insights into the structural evolution up to the highest 
deformation strains. Different methodologies were used to reveal the 
loss of the initial colony structure, consisting of alternating ferrite and 
cementite lamellae, using X-ray-based techniques [1588], TEM [1589] 
or atom probe tomography [682], as presented in Fig. 72. 

The transfer to a single-phase ferrite nanograin structure is accom-
panied by a severe change in ductility [682] and toughness [683]. 
Similar observations have been made by studying the structural evolu-
tion of pearlitic steels during HPT [1590], although the highest SPD 
strains are to date not accessible due to experimental restrictions 
[1591]. However, in any application field in which pearlitic steels and 
their components are exposed to severe strains (e.g. in rails [1592]), one 
has to deal with these structural changes to better forecast the lifetime or 
even actively counteract the deterioration of the lifetime by novel alloy 
design concepts. Deformation in a quasi-constrained setup by HPT also 
enables to study of the structural changes in bainitic [1593] and 
martensitic steels [1594]. Especially for the latter case, its inherent 
brittleness does not allow for cold drawing to elevated strains at ambient 
conditions. Yet, martensitic steels are imposed to severe straining in 
bearings, where so-called white etching layers limit their lifetime 
[1595]. Thus, studying their structural changes at high strains provides 
important insights into the basic deformation and failure mechanisms 
during service. 

A recent overview demonstrated that severe deformation of the 
different initial steel microstructures leads finally to a very similar ar-
chitecture as the limit of deformation, as summarized in Fig. 73 [1583]. 
The microstructures consist of elongated nano-sized ferritic grains 
decorated with carbon that stabilizes grain and phase boundaries 
[1596]. These findings show the importance of carbon distribution, as it 
has been investigated in martensite for decades [1597]. The evolution in 
the low and intermediate deformed regime is however strongly depen-
dent on the initial structure, even if the ferrite composite structure 
consists of a percolating lamellar or randomly distributed carbide 
structure. It is astonishing that despite the lower carbon concentration in 
a martensitic Ck10 steel (~0.1 wt% carbon), only slightly coarser 
lamellar spacings can be achieved in ferrite, as compared to fully 

Fig. 72. Evolution from an initially lamellar structure (strain: εd = 1.96) to a ferritic subgrain structure with carbon either supersaturated in the matrix or segregated 
to subgrain boundaries (strain: εd = 6.52) by straining [682]. 
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pearlitic steel (0.6–0.8 wt% carbon), at the highest HPT strains. These 
similarities may indicate that white etching layers in pearlitic and 
martensitic steels, which are subjected to severe strains during service, 
might be related to similar mechanisms. Along with the microstructural 
similarities, the mechanical properties of pearlitic and martensitic steels 
show comparable tendencies within the deformation limits [1596, 
1598], which highlights the importance of grain architecture for me-
chanical properties. Despite these clear trends, there are indications that 
the interface structure plays a significant role in plasticity, strength and 
fracture [1599–1601], and thus, further scientific scrutiny is required. 
The current major restriction to push forward the structural refinement 
of these steels is however the strength of the HPT anvil materials and the 
applicable hydrostatic pressure. 

7.5. Lattice-softened alloys 

Furuta et al. reported in 2015 that severely cold worked Fe-24.6Ni- 
5.8Al-0.4 C (wt%) had a yield strength of 2 GPa and a fracture elonga-
tion of 20%, [1602] which attracted attention since such a combination 
of strength and ductility outperforms the conventional trade-off. They 
designed the alloy composition by considering the phase stability, where 
they controlled the averaged valence electron number to generate lattice 
softening. With these mechanical properties, they also reported that the 
Lüders-type band propagates multiple times during tensile tests, 
resulting in high ductility. After the first report by Furuta et al., several 
high-strength lattice-softened alloys such as Fe-Ni-Al-C, Fe-Mn, 
Fe-Cr-Ni, Fe-Ni-Mn have been reported to show similar Lüders-type 
deformation when they are processed by cold working [1603–1613].  
Fig. 74a shows the relationship between tensile strength and total 
elongation, while Fig. 74b shows the relationship between stress of 
Lüders deformation, σL, and Lüders strain. Other reports have been made 
on these high-strength alloys [1614–1625], but among them, the 
Fe-Ni-Al-C alloy shows the best strength-ductility balance. There have 
been limited numbers of reports on the effects of alloy compositions and 
cold working conditions on mechanical properties and the propagation 
behavior of the Lüders bands in high-strength steels [1606–1608, 
1610–1612, 1626]. However, it has been reported that the stability of 
the γ phase affects the magnitude of Lüders strain, while the strategies 
for controlling the microstructure to achieve high strength and high 
ductility are currently unknown. 

Two publications recently reviewed the features of high-strength 
lattice-softened alloys [1628] and high-strength alloys with Lüders 
deformation [1627]. Recent experiments attempted to increase the 
strength of these lattice-softened alloys further by compositional mod-
ifications [1627]. A higher amount of aluminum increases the strength 

and decreases the ductility in Fe-25Ni-(5.0–6.0)Al-0.3 C (wt%) alloys. 
The addition of aluminum increases the volume fraction of the B2 phase, 
Ni-rich second phase, which decreases the γ-phase stability of the matrix 
and accelerates transformation from γ to α’ during cold rolling and 
tensile deformation. It was also confirmed that the γ-phase stability af-
fects the Lüders strain. Fig. 74c shows tensile stress-strain curves of the 
specimens after cold rolling by 60% (a-n represent points where Lüders 
type deformation was confirmed). The alloy with 5.0 wt% Al has a yield 
point of about 1000 MPa and a total elongation of about 39%, and the 
alloy with 5.5 wt% Al, has higher strength and lower ductility. 
Increasing aluminum to 6.0 wt% leads to a higher deformation stress, 
but the sample fractured at a lower strain. The profiles for local strain 
along the center line parallel to the tensile axis in the gauge section were 
determined by digital image correlation (DIC) analysis at each point (a-f 
in the stress-strain curves of the alloy with 5.0 wt% Al and 60% cold 
rolling), as shown in Fig. 74d. The local strain increases near 10 mm of 
the gauge section at point a, after the yield point drop; the local strain 
profile changes as the nominal strain increases to point c; and the local 
strain increases and the deformation area expands over the entire test 
specimen, indicating that typical Lüders-type deformation proceeds. 
Similar Lüders-type deformation can be seen during the deformation at 
points d-f. In addition, the higher rolling reduction increased the Lüders 
strain. For example, severe cold rolling by 80% enabled the prolonged 
Lüders strain as much as 25% in nominal strain. This prolonged Lüders 
strain was achieved by multiple propagation of Lüders-type bands. 

There exists specific phase stability of the γ phase and deformation 
texture that enables sustained and prolonged Lüders deformation in 
lattice-softened alloys. The importance of phase stability on deformation 
behavior has been also reported in other lattice-softened alloys [1629, 
1630]. The stable Lüders deformation suppresses subsequent uniform 
deformation with large work hardening, which raises the deformation 
stress and promotes premature fracture. Although the Fe-Ni-Al-C alloy 
has interstitial carbon, the simple dislocation-locking mechanism cannot 
explain multiple propagation of Lüders-type bands. Besides the mecha-
nism of dislocation locking, the Lüders deformation has also been found 
in UFG materials including pure metals [715, 1631–1635] and alloys 
[1636, 1637], which do not usually show the yield point phenomenon in 
coarse grain sizes. The microstructure in the SPD-processed lattice--
softened Fe-Ni-Al-C specimens is still very complicated [1626], so 
further investigation on the effect of such microstructure on the Lüders 
deformation is required in the future. 

7.6. High-entropy alloys 

The newly developed generation of single-phase, multi-element (five 

Fig. 73. Schematic illustration of the structural evolution of (a) pearlitic, (b) bainitic and (c) martensitic structures during quasi-constrained HPT deformed up to 
current technological limits [1583]. 
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or more principal elements) solid solution alloys with concentrations 
between 5 and 35 at. percent of the individual elements, referred to as 
high-entropy alloys (HEAs) or multi-principal element alloys (MPEAs), 
has shifted the design concept away from the corners of phase diagrams 
toward the center, enabling compositions that go beyond the scope of 
traditional alloys [1638, 1639]. Such an approach offers unprecedented 
properties, challenges, and opportunities for a variety of structural and 
functional applications. HEAs exhibit certain remarkable mechanical 
properties. One of the most important aspects is the trade-off between 
strength and ductility, especially as the temperature decreases, resulting 
in excellent fracture toughness at cryogenic temperatures [1640, 1641]. 

Since SPD-processed materials with small grain sizes have been 
shown to have exceptional properties, including high yield strength and 
moderate ductility, and the ability to undergo superplastic forming [5], 
many scientists started to apply the SPD methods to HEAs. A current 
compilation of the publications covering SPD of HEAs is given in [1642]. 
The compilation shows that most of the work relates to FCC HEAs, 
mainly the equiatomic Cantor alloy CrMnFeCoNi [1643], a small part to 
BCC and dual phase FCC + BCC, but not to HCP HEAs. The inspection of 
publications also indicates that the main SPD process applied to HEAs is 
HPT. In the following sections, after reviewing the reported results about 
structural, microstructural and mechanical property changes in Cantor 
alloys after HPT processing, the hardening behavior, nanomechanical 
behavior, superplasticity and superficial properties of SPD-processed 
HEAs are reviewed. 

7.6.1. Microstructural and mechanical behavior of Cantor alloy 
Most SPD work has concentrated on the HPT processing of the Cantor 

alloy [1642]. Therefore, this section aims to provide an overview of the 
HPT processing of this HEA, with emphasis on microstructure and 
texture evolution, phase transformation, strength and ductility as well as 
superplasticity and thermal stability [273]. During HPT processing of 
the Cantor alloy, a very fast refinement of the FCC microstructure takes 
place [290, 1644]. The grain size at room temperature and liquid ni-
trogen temperature (77 K) reaches a very low steady-state value of 
24 nm after a shear strain of about 20 (Fig. 75a). Simultaneously, the 
dislocation density saturates at a high value of 3×1016 m− 2 at room 
temperature (Fig. 75b), while it is surprisingly lower after 
cryogenic-SPD at 77 K (1016 m− 2). The twin density at room tempera-
ture reaches a maximum value of 2% at a shear strain of 20 (Fig. 75c). 
During HPT at 77 K instead of mechanical twinning a 
deformation-induced phase transformation from FCC to HCP is observed 
(Fig. 75d) [290]. The onset pressure decreases with decreasing tem-
perature [274], while there is a reverse transformation of the HCP phase 
produced by HPT at liquid nitrogen during long-term storage under 
ambient conditions [274]. The textures of HEAs processed by HPT are 
typical for shear, but they are quite weak [274, 290, 1645]. 

The room-temperature hardness of the Cantor alloy deformed by 
HPT at room temperature and in liquid nitrogen increases with shear 
strain and saturates at a certain strain level depending on pressure and 
HPT temperature (Fig. 76a) [274, 290]. Surprisingly, samples deformed 
in liquid nitrogen are softer (about 15%) than those deformed at room 
temperature. This also holds for compression down to 4 K (Fig. 76b) 
[291, 295]. The strength anomaly (softening) of the Cantor alloy is 
related to the martensitic phase transformation. Assuming that during 
pressure release and/or temperature increase as well as during 

Fig. 74. (a, b) Mechanical properties and Lüders deformation behavior in the literature, where the number indicated at each plot corresponds to the reference 
number. (a) Total elongation versus ultimate tensile strength, (b) Lüders strain versus stress of Lüders deformation, σL. ●: Fe-Ni-Al-C [1602, 1603, 1605, 1608], ○: 
Fe-Mn [1604, 1606, 1607, 1611, 1612], △: Fe-Cr-Ni [1609, 1610], ×: Fe-Ni-Mn [1613]. (c) Stress-strain curves obtained by tensile tests for specimens rolled by 60% 
[1627]. (d) Local strain profiles along the tensile axis in the gauge section of the 5.0Al-60% cold-rolled specimen in (c). 
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room-temperature indentation, the HCP phase becomes unstable, then a 
reverse transformation is very likely. This process leads to a reduction of 
internal stresses and the formation of dislocation-free new grains of the 
FCC phase. Consequently, because of this process, the overall dislocation 
density of the FCC phase and the hardness of the polyphase aggregate 
are lowered. Moreover, the microstructure and microhardness become 
quite inhomogeneous [274]. The strength of the severely deformed 
Cantor alloy can be further increased by annealing (Fig. 76c) [503]. For 
this effect, precipitation seems to play a major role, along with other 
factors discussed in [689, 694, 702, 1646]. The softening above a certain 
temperature is due to the dissolution of precipitates and grain growth 
(precipitation leads to a loss of ductility) [503]. Moreover, the nano-
crystalline Cantor alloy shows superplasticity above about half the 
melting temperature (Fig. 76d) [1647–1650]. This deformation mech-
anism is favored by reduced grain growth due to sluggish diffusion 
[1651] and/or nanosized precipitates often forming at elevated tem-
peratures [1652, 1653]. 

In conclusion, similar to traditional metallic alloys, SPD processing 
of the Cantor alloy leads to UFG microstructures, high dislocation den-
sities and weak textures. This is associated with a high strengthening 
effect and a loss of ductility. However, due to the multi-element solid 
solution, the Cantor alloy in the high-energy SPD state becomes quite 
unstable with respect to phase transformations, grain boundary segre-
gation, and phase decomposition. Due to a defect-enhanced diffusivity 
[367], the kinetics of the decomposition is increased. This offers the 
possibility of producing ultra-hard materials by SPD processes or by 
post-annealing. Reduced grain growth, either caused by sluggish diffu-
sion, segregation or nanoprecipitation, enables extremely high super-
plasticity at high strain rates [1650]. Although the effect of SPD on 

changing properties has been demonstrated mainly for the Cantor alloy 
[273], a few examples of more complex HEAs indicate the high research 
potential of this new class of advanced materials in the field of SPD 
[1642, 1654–1656]. 

7.6.2. Hardening behavior of high-entropy alloys 
The compositions of HEAs correspond to the unexplored middle parts 

of the phase diagrams; therefore, they exhibit never-before-seen be-
haviors such as high strength even at elevated temperatures, enhanced 
wear, oxidation, corrosion and radiation resistance [1638, 1643, 
1657–1659]. As mentioned in the earlier chapter, the mechanical 
properties of these alloys can be further improved by applying SPD 
techniques. During SPD processing, both grain refinement and an in-
crease in the density of lattice defects (e.g. dislocations and planar faults) 
contribute to the hardening of the as-processed materials [1, 2, 305, 855, 
1659, 1660]. The maximum dislocation density and twin fault proba-
bility in HEAs achieved by SPD are about 300 × 1014 m− 2 and 3%, 
respectively [1661–1665]. The minimum grain sizes for single-phase 
and multiphase HEAs were about 30 and 10 nm, respectively [1654, 
1665]. These values are much smaller than the saturation grain sizes 
obtained in SPD-processed conventional metals and alloys as shown in  
Fig. 77, leading to high hardness of HEAs. The saturation state of the 
microstructure in HEAs is usually achieved at the equivalent strain of 
about 20 [1657, 1666]. 

The very high defect density and small grain size in SPD-processed 
HEAs cause superior hardness compared to conventional metals and 
alloys as shown in Fig. 78a [1654, 1661–1665]. On the other hand, the 
lower hardness bound of HEAs can also be achieved by conventional 
316 L stainless steel processed by HPT at room temperature [19]. 

Fig. 75. (a) Crystallite size <x>area (area-weighted mean crystallite size) [290], (b) dislocation density ρ [290] and (c) twin density β as a function of shear strain γ 
for the Cantor alloy: after HPT processing at room temperature (open) and 77 K (full symbols) [290]. (d) Volume fraction of HCP martensitic phase versus applied 
pressure for the Cantor alloy after HPT processing at room temperature and in liquid nitrogen (LNT). The symbols represent different series of HPT samples, for which 
the phase composition was measured after the number of months indicated [274]. 
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Multiphase HEAs exhibit much higher hardness values than their 
single-phase counterparts [503, 1356, 1656, 1667–1677]. 
SPD-processed AlCrFeCoNiNb showed the highest hardness with a value 
of about 10 GPa due to the nanosized secondary phase precipitates 
[1654]. The hardening caused by SPD in the saturation state for different 
HEAs is shown in Fig. 78a where the hardness measured after SPD 
processing is plotted as a function of the values obtained before SPD. 
Fig. 78b reveals that SPD causes a higher relative hardening in HEAs 

which had lower initial hardness values before SPD. Namely, below the 
initial hardness of about 3 GPa, the ratio of the hardness values after and 
before SPD varies between 1.6 and 4.5 while for HEAs with an initial 
hardness higher than 3 GPa, the hardening ratio is consistent with the 
value only of about 1.4. Fig. 78c shows the SPD-induced hardness in-
crease versus the initial hardness in a double-logarithmic scale plot for 
different MPEAs having initial hardness values smaller than 3 GPa. The 
points in this plot follow an approximate linear trend which suggests the 
following relationship. 

HSPD

Hinit
= AHinit

δ (32)  

where HSPD and Hinit are the hardness values given in MPa unit after and 
before SPD processing, respectively, and A = 6870 and δ = − 1.05 
[1667]. 

As mentioned earlier, the high hardness of HEAs caused by SPD can 
be further enhanced by post-deformation annealing. This phenomenon 
was also observed for conventional SPD-processed alloys and called 
anneal hardening, as discussed earlier [689]. This effect was observed 
after annealing at moderate homologous temperatures between 0.3 and 
0.4. Fig. 78d shows the hardness achieved by annealing after SPD versus 
the hardness observed immediately after SPD for different HEAs. The 
hardening effect of post-SPD annealing varies between 6% and 75%. 
Anneal hardening can be attributed to the reduction of mobile disloca-
tion density, the relaxation of grain boundary structure and the forma-
tion of precipitates [1670, 1672, 1673, 1675–1677]. The highest 
hardness of about 11 GPa was achieved in AlNbTiV alloy processed by 
HPT at room temperature and then heat treated at 973 K [1677]. In this 

Fig. 76. (a) Room-temperature Vickers hardness as a function of shear strain γ after HPT processing at room temperature (open) and 77 K (full symbols) [290]. (b) 
Temperature dependence of the yield stress σ0.2 in nanograined Cantor alloy processed by HPT at room temperature and 77 K in comparison with coarse-grained 
sample [273]. (c) Vickers hardness of isochronally annealed (1 h) Cantor alloy samples after HPT processing at room temperature [503]. (d) Engineering 
stress-elongation curves at different temperatures for samples processed by HPT at room temperature [1647]. 

Fig. 77. The grain size versus the dislocation density obtained for FCC and BCC 
Al-, Cu-, Ni- and Fe-based conventional alloys and multi-principal element al-
loys (MPEAs) processed by HPT at room temperature [1667]. 
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alloy, anneal hardening was caused by precipitation. Due to superior 
hardness and strength, SPD-processed HEAs are expected to be used in 
different applications, e.g. as structural materials or surgical implants 
[1356, 1678]. 

7.6.3. Nanomechanical behavior of high-entropy alloys 
Recently, the nanoindentation technique has been actively applied to 

characterize the mechanical behavior of HPT-processed medium-en-
tropy alloys (MEAs) and HEAs [1679]. Moreover, employing different 
strain rates during nanoindentation has allowed the investigation of 
rate-dependent plasticity in HPT-processed alloys, providing valuable 
insights into the relationship between microstructural refinement and 
the enhancement of mechanical properties in these materials [1680]. 
This section describes the principles of nanoindentation for analyzing 
the rate-dependent plasticity in HEAs. The study of HEAs by nano-
indentation was initially motivated by the relatively limited under-
standing of the grain refinement effect on rate-dependent plasticity in 
this new family of alloys compared to conventional materials. 

The strain rate sensitivity (m) and activation volume (V*), which are 
two important indicators for rate-dependent plastic deformation, pro-
vide a clue to a better understanding of thermally-activated deformation 
mechanisms. According to the power-law response between nanohard-
ness HN, and indentation strain rate (ε̇ = h− 1(dh/dt), where h is 
displacement and t is time [1681]), the m and V* values can be deter-
mined at a given strain ε, and temperature T, by [1682]: 

m =

(
∂lnHN

∂lnε̇

)

ε,T
=

(
lnHN,2 − lnHN,1

lnε̇2 − lnε̇1

)

ε,T
(33)  

V* =
̅̅̅
3

√
kTC

(
∂lnε̇
∂HN

)

ε,T
=

̅̅̅
3

√
kTC

(
lnε̇2 − lnε̇1

HN,2 − HN,1

)

ε,T
(34)  

where k is Boltzmann’s constant and C is the constraint factor. Note that 
C is often taken as ~3, but it may vary with the material and loading 
conditions [1683]. In order to obtain m and V* values using nano-
indentation, constant strain rate (CSR) tests and strain rate jump (SRJ) 
tests are typically employed. The examples of employing CSR and SRJ 
experiments on a CoCrFeMnNi HEA subjected to the HPT process are 
shown in Fig. 79. As shown in Figs. 79a and 79b, the HPT process pro-
duces a nanocrystalline structure with an average grain size of ~38 nm 
after 2 turns. In the case of CSR tests, multiple nanoindentation tests 
with different strain rates are performed and m and V* values are 
determined from the slope of a ln(HN) versus ln(ε̇) plot and the slope of 
the ln(ε̇) versus HN plot (Figs. 79c and 79d). On the other hand, for the 
SRJ test, ε̇ is abruptly changed several times during a single nano-
indentation (Figs. 79e and 79f). In order to account for the indentation 
size effect, HN immediately before and after each transient change at 
specific depths is used for estimating m and V* [505, 1684]. These values 
are denoted as HN,1 and HN,2 in Equations 33 and 34, respectively. 

To better understand the effect of grain refinement on the defor-
mation mechanisms of M/HEAs, the m and V* values from the literature 
[1671, 1674, 1685–1704] are plotted as a function of grain size, d, in  
Figs. 80a and 80b. Note that only the results for FCC HEAs and MEAs are 
included in Fig. 80, since the variation in m and V* values with d in other 
crystal structures has not been extensively examined for these alloys. In 
the coarse-grain regime, the m values of HEAs and MEAs are 

Fig. 78. (a) The maximum hardness measured after SPD processing versus the values obtained before SPD for different conventional materials and multi-principal 
element alloys (MPEAs). (b) The ratio of the hardness values measured after and before SPD as a function of the hardness determined before SPD for different 
conventional materials and MPEAs. (c) A double logarithmic plot of the data shown for MPEAs in (b). (d) The maximum hardness obtained due to anneal hardening 
of SPD-processed MPEAs versus the hardness values measured immediately after SPD [1667]. 
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substantially higher than those for pure nickel, whereas HEAs, MEAs and 
pure nickel show comparable m values in the nanocrystalline regime. 
Compared to pure nickel, FCC HEAs and MEAs exhibit significantly 
lower V* values (~10–100 b3), indicating that the short-range of barriers 
(likely due to high lattice friction stress [1689, 1705] and chemical 
short-range ordering [1706, 1707]) are predominant. On the other 
hand, the V* values for nanocrystalline FCC HEAs and nickel are around 
~10 b3, suggesting that the deformation mechanism in the nano-
crystalline FCC HEAs is grain-boundary-mediated dislocation activity (e. 
g. dislocation nucleation and/or dislocation depinning at grain bound-
aries) as in the conventional nanocrystalline FCC metals [1696, 1697]. 

Fig. 80c shows the change in m of nanocrystalline CoCrFeMnNi HEA 
with testing temperature, suggesting that the m value increases abruptly 
from T = 473 K (~0.3 Tm) [505, 1690]. To explore this mechanistic 

transition, apparent activation enthalpy, ΔH , values can be determined 
by [1708, 1709]: 

ΔH =
HNV*
̅̅̅
3

√
C

∂(lnHN)

∂(1/T)
(35) 

Using Equation 35 and the T-dependent HN data (the inset of 
Fig. 80d), the variation in ΔH with temperature can be calculated (the 
main plot of Fig. 80d). The estimated ΔH for T ≤ 473 K is ~0.5 eV 
which indicates that the deformation is primarily governed by grain- 
boundary-mediated dislocation activities [1696, 1710, 1711]. On the 
other hand, the estimated ΔH for T > 473 K approaches that for grain 
boundary diffusion of nickel in CoCrFeMnNi HEA (~2.3 eV [1712]), 
suggesting that grain boundary diffusion becomes pronounced at higher 
temperatures. 

Fig. 79. Microstructures of (a) as-cast and (b) HPT-processed CoCrFeMnNi HEAs [1671] along with corresponding examples of (c,d) constant strain rate (CSR) 
nanoindentation [1671] and (e,f) strain rate jump (SRJ) nanoindentation [505]. 
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In summary, although appropriate for the estimation of strain rate 
sensitivity, activation volume, and apparent activation energy, nano-
indentation provides crucial insights into the deformation mechanisms 
of SPD-processed HEAs. The results reported so far show that: (i) the 
deformation mechanism in FCC HEAs transforms from lattice atoms- 
dislocation interaction to gran-boundary-mediated plasticity as the 
grain size is reduced to the nanocrystalline regime, and (ii) grain 
boundary diffusion can become pronounced in nanocrystalline HEAs at 
homologous temperatures higher than ~0.3 Tm. 

7.6.4. Superplasticity of high-entropy alloys 
HEAs [1638, 1643, 1713–1720] and SPD processing [54, 159, 177, 

193, 200, 224] are two extremes in materials science from the material 
and processing points of view. This resulted in the fast growth of 
research works on SPD processing of HEAs to achieve particular mi-
crostructures with advanced properties [5, 181, 1669, 1721, 1722]. 
Since superplasticity has a close connection with the SPD field [346, 
770, 778, 783–786, 791], there have been attempts to examine the su-
perplastic behavior of SPD-processed HEAs. The first evidence of su-
perplasticity in HEAs was reported more than ten years ago in a fine 
multiphase equiaxed structure of an AlCoCrCuFeNi alloy with an 
average grain size of ~2 μm processed through MDF at 1223 K [1723, 
1724]. In these experiments, a maximum elongation of 1240% was 
achieved when testing at 1273 K at a strain rate of 1.0 × 10− 2 s− 1. More 
recently, there have been several reports of high superplastic elonga-
tions in HEAs and a detailed tabulation of all results is presented else-
where [1725]. One of the most striking results available to date includes 
an elongation of 2000% in a CoCrFeNiMnAl0.5 alloy [1650]. Fig. 81 
shows results obtained on a Mo7.5Fe55Co18Cr12.5Ni7 HEA where tensile 
tests were conducted at 973 and 1273 K [1726]. As shown in Fig. 81a, 
this alloy revealed the presence of a rather complex multiphase 

microstructure including FCC, BCC, martensite and an Mo-rich μ phase 
before tensile testing. The results in Fig. 81b demonstrate the occurrence 
of superplastic elongations of 500% when testing at 1273 K but with an 
absence of superplasticity at 973 K. The latter result was attributed to 
the formation of more Mo-rich μ precipitates at the higher testing tem-
perature. Close inspection of the superplastic samples in Fig. 81b shows 
that they represent true superplasticity because there is no evidence of 
any additional necking within the gauge lengths [1727]. 

An important requirement in superplasticity is to test the applica-
bility of the grain boundary sliding model (i.e. general creep equation 
Equation 7) which was first developed for conventional superplastic 
alloys without processing by SPD techniques. Several analyses demon-
strate that there is very good agreement between published data for 
various conventional Al- and Mg-based alloys and the predictions of the 
general creep equation for superplasticity [1728–1730]. The results of 
this analysis are shown in Fig. 82 where the temperature and grain size 
compensated strain rate is plotted against the normalized stress. The 
data for Fig. 82 were taken from several published reports [1481, 1647, 
1650, 1652, 1653, 1724–1726, 1731–1734] and full details of the 
analysis were given elsewhere [1725]. The solid line labeled ε̇sp repre-
sents the prediction of the model and it is apparent that there is generally 
excellent agreement between the experimental datum points and the 
rates predicted by the superplastic model based on the occurrence of 
grain boundary sliding [791]. This analysis confirms that superplasticity 
in HEAs is similar to the superplasticity occurring in other materials both 
with and without SPD processing. 

7.6.5. Superfunctional high-entropy alloys and ceramics 
High-entropy materials include two major groups of HEAs and high- 

entropy ceramics. Similar to HEAs [1735, 1736], high-entropy ceramics 
are defined as materials with five or more cations or with an entropy of 

Fig. 80. Variations in (a) strain rate sensitivity and (b) activation volume of various FCC metals and alloys as a function of grain size [1671, 1674, 1685–1704]. (c,d) 
Results of high-temperature nanoindentation experiments for HPT-processed nanocrystalline CoCrFeMnNi HEA [505, 1690]. 
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mixing more than 1.5R (R: gas constant) (Fig. 83a) [986]. The high 
entropy of these materials results in low Gibbs free energy and their 
consequent high stability [983,1732,17333]. High-entropy materials 
have shown high potential for a varied range of not only mechanical 
properties but also functional properties due to their superior features 
including sluggish diffusion, lattice strain and the cocktail effect 
[1737–1744]. SPD methods, especially HPT, have been employed for 
processing and synthesizing high-entropy materials mainly for me-
chanical properties [391, 1236, 1745–1749] and partly for achieving 
functional properties [1145]. Ultrahigh hardness, hydrogen embrittle-
ment resistance, hydrogen storage capability, biocompatibility, photo-
voltaic and photocatalysis are the reported functional properties and 
applications of SPD-processed/synthesized high-entropy materials, 
which are briefly reviewed below [1642].  

• In connection with classic works on SPD processing of conventional 
materials [4, 38], there have been attempts to improve the me-
chanical properties of HEAs by SPD methods to levels comparable to 
those of ceramics [1642]. A combination of the concept of SPD and 
HEAs resulted in the introduction of the two HEAs processed by HPT 
with ultrahigh hardness levels up to 10 GPa [1654, 1655]. Among all 
reported HEAs, carbon-doped AlTiFeCoNi as a dual-phase HEA, 
which was designed by CALPHAD (calculation of phase diagram) 

method and processed by HPT, showed an ultra-high hardness of 950 
Hv [1655]. One of the highest hardness values (1030 Hv) was ach-
ieved in HPT-processed AlCrFeCoNiNb HEA with six principal ele-
ments and two cubic and hexagonal phases (Fig. 83b) [1654]. These 
high levels of hardness values of HEAs are attributed to the formation 
of nanograins, dislocation and nanoprecipitates [1642, 1654].  

• As mentioned earlier, one critical issue in developing a hydrogen- 
based energy system is achieving materials with high hydrogen 
embrittlement resistance [1750]. Enhanced hydrogen embrittlement 
resistance was observed in some FCC HEAs due to their high plas-
ticity in the presence of hydrogen [1240, 1751], but coarse-grained 
HEAs suffer from low yield strength. It was reported that HPT was 
effective in enhancing the yield strength of CrMnFeCoNi HEA as a 
hydrogen-compatible material, as shown in Fig. 83c [1235, 1752]. 
Dark-field images and high-resolution TEM images of CrMnFeCoNi 
after HPT processing show the presence of defects with low mobility 
such as twins (Fig. 83d), Lomer-Cottrell locks (Fig. 83e) and D-Frank 
partial dislocations (Fig. 83d) which should be responsible for sup-
pressing hydrogen-enhanced localized plasticity (HELP) mechanism 
[1752].  

• Solid-state hydrogen storage at room temperature is another critical 
issue in developing a hydrogen-based energy system [1076, 1753]. 
For the solid hydrogen storage concept, since the SPD methods such 
as ECAP and HPT could improve the properties of conventional metal 
hydride in terms of kinetic and thermodynamic [359, 1754], there 
were some attempts to synthesize new HEAs such as MgTiVCrFe by 
HPT for hydrogen storage [314]. Although MgTiVCrFe showed low 
hydrogen storage capacity, this study was a starting point to develop 
various HEAs for fast and reversible hydrogen storage at room 
temperature by employing theoretical studies (Fig. 84a): 
TiZrCrMnFeNi (Fig. 84b) [1755], TiZrNbFeNi [1756], TiZrNbCrFe 
[1757] and TixZr2-xCrMnFeNi [1758] (x = 0.4–1.6). These materials 

Fig. 81. (a) XRD patterns of Mo7.5Fe55Co18Cr12.5Ni7 HEA before (annealed) 
and after HPT processing [1650]. (b) Elongation versus strain rate plot for 
HPT-processed Mo7.5Fe55Co18Cr12.5Ni7 before and after tensile testing at 
elevated temperatures [1727]. 

Fig. 82. Temperature and grain size compensated strain rate for SPD-processed 
HEAs with superplasticity behavior, showing excellent agreement with the 
theoretical prediction for conventional superplasticity [1650]. ε̇sp: strain rate, k: 
Boltzmann’s constant, T: absolute temperature, Dgb: coefficient for grain 
boundary diffusion, d: grain size, b: Burgers vector, σ: applied stress G: shear 
modulus). Experimental data were taken from [1481, 1647, 1650, 1652, 1653, 
1724–1726, 1731–1734]. 
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also showed a promising potential to be used as anode materials in 
nickel-metal hydride batteries [1759].  

• Biocompatibility is another application of HEAs, which is getting 
high attention [1760, 1761]. Application of the HPT method to a 
material designed by CALPHAD calculations (TiAlFeNiCo HEA) was 
reported to be effective in enhancing the strength, decreasing the 
elastic modulus (by phase transformation) and improving the 
biocompatibility of this material [1356]. The material showed a 
larger microhardness and better biocompatibility (cell 
proliferation-viability-cytotoxicity activity) compared to 
coarse-grained and UFG pure titanium and the Ti-6Al-7 Nb alloy 
representing two conventional biomaterials (Fig. 84c) [1356]. In 
another report, ultra-SPD with extremely high shear strain was 
employed to synthesize TiNbZrTaHf HEA with BCC structure as a 
biomaterial [317]. The material showed higher hardness compared 
to corresponding binary, ternary and medium-entropy alloys with an 
elastic modulus better than that of some typical biomaterials [317].  

• Photovoltaic and photocatalysis are two functional properties of 
some high-entropy ceramics. The semiconductors having these two 
properties can adsorb the light to generate electricity (photovoltaic) 
and consequently advance a reaction (photocatalysis). TiZrHfNb-
TaO11 high-entropy oxide [323, 324, 982] and TiZrHfNbTaO6N3 
high-entropy oxynitride (HEON) [326, 327, 982] are two 
high-entropy ceramics synthesized by HPT which could generate the 
electric current under light as shown in Fig. 84d. The potential of 
HPT to improve the photovoltaics was also reported in conventional 
semiconductors [963]. These two high-entropy ceramics also 
showed activity for photocatalytic hydrogen evolution and the 

efficiency of TiZrHfNbTaO6N3 was higher than Ga6ZnON6 as shown 
in Fig. 84e [323, 326]. High-resolution TEM image of TiZrHfNb-
TaO6N3, which contains FCC and monoclinic phases and has higher 
light absorbance than TiZrHfNbTaO11 due to its low bandgap, is 
shown in Fig. 84f [326, 327]. As mentioned in the earlier chapter, 
these two materials later were employed for photocatalytic CO2 
conversion with high efficiency [324, 327]. TiZrHfNbTaO11 showed 
a high CO production rate the same as P25 TiO2 used as a benchmark 
photocatalyst [324]. The efficiency of TiZrHfNbTaO6N3 for CO2 
photoreduction was even higher than that of P25 TiO2 and all re-
ported photocatalysts in the literature [327]. TiZrNbTaWO12 is 
another HEO synthesized by arc melting and processed by HPT 
which showed photocatalytic activity for oxygen evolution [325] 
due to the heterojunction effects [1762]. 

The combination of the concepts of high-entropy materials and SPD 
resulted in the discovery of various superfunctional high-entropy ma-
terials for various ranges of applications. Perhaps, the introduction of 
the first high-entropy photocatalysts is the biggest contribution of the 
SPD field in this regard. Since there are urgent needs for functional 
biomaterials and energy materials for carbon-neutral energy develop-
ment, it is expected that the application of SPD in the field of high- 
entropy materials will be extended from mechanical properties to 
functional properties in the near future. 

7.7. Amorphous and glass materials 

Amorphous alloys are one of the most attractive topics of modern 

Fig. 83. (a) Entropy of mixing versus number of elements [986]. (b) Hardness of AlCrFeCoNiNb synthesized by HPT for N = 1/16, 1/4, 1 and 4 turns [1654]. (c) 
Engineering stress versus engineering strain before and after hydrogen exposure for CrMnFeCoNi before and after HPT processing with varied turns [1752], (d) 
Dark-field image of twins with relevant selected area electron diffraction patterns for CrMnFeCoNi after HPT processing for 1/16 [1752]. (e,f) High-resolution lattice 
images of CrMnFeCoNi after HPT processing for 1/4 turn containing (e) Lomer-Cottrell locks and (f) D-Frank partial dislocations [1752]. 
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materials science [1763–1765]. They are usually obtained as thin rib-
bons by the rapid quenching from the melt at typical cooling rates of 
about 106 К/s [1763] or in the form of bulk metallic glass (BMG) in the 
shape of cylinders with diameters of up to several centimeters at lower 
cooling rates of about 102 К/s [1764]. Deformation of amorphous alloys 
occurs through the formation and propagation of shear bands with a 
small thickness (~10 nm). Such behavior leads to extremely low tensile 
ductility; however, amorphous alloys exhibit some ductility in bending 
and compression tests. It is possible to improve the ductility of amor-
phous alloys by increasing the so-called free volume and by creating 
heterogeneities in the amorphous phase [1765]. A promising way to 
introduce high strain and therefore, to transform the structure of the 
glassy metals is the use of SPD through the HPT process [1766]. There 
are many research groups actively involved in studying the effect of HPT 
treatment on amorphous alloys and a few reviews were published as 
well [1087, 1767]. The results obtained can be summarized as follows. 

HPT allows the consolidation of amorphous rapid-quenched ribbons 
and powders into monolithic samples [1768–1770]. The structural 

changes in amorphous alloys during HPT are determined by their 
chemical composition. For instance, HPT treatment of Al-rich [1770], 
Fe-rich [529] and Nd-Fe-B alloys [1771] leads to nanocrystallization in 
the amorphous phase. In the Ti50Ni25Cu25 rapid-quenched alloy TiNi 
nanocrystals of the B2 phase precipitate in the amorphous phase [1771, 
1772]. An attempt to analyze these processes has been reported in 
[1767, 1773]. In amorphous alloys without a significant excess of the 
basic element in the composition, for example, in Zr-based BMG, 
nanocrystallization by HPT is not observed in most cases, but HPT leads 
to an increase in the free volume and the enthalpy of the amorphous 
phase (Fig. 85a) [1772, 1774, 1775]. In some cases, a cluster-type 
structure was formed, which is associated with the chemical separa-
tion in the amorphous phase as a result of HPT processing [1776, 1777]. 
Chemical separation along the shear band in HPT-treated Zr-based 
amorphous alloy was unveiled by advanced microscopy methods 
[1778]. 

Properties of amorphous alloys change significantly by HPT pro-
cessing, in particular, the microhardness decreases (Fig. 85b) [1774, 

Fig. 84. (a) Lattice structure of Ti0.4Zr1.6CrMnFeNiH6 high-entropy hydride constructed by first-principles calculations [1758]. (b) Hydrogen storage 
pressure-composition isotherms at room temperature for TiZrCrMnFeNi showing reversible hydrogen storage [1755]. (c) MTT cell viability assay (biocompatibility) 
and microhardness of TiAlFeCoNi alloy before and after HPT processing compared to titanium and Ti-6Al-7 Nb biomaterials [1356]. (d) Photocurrent generation of 
TiZrHfNbTaO11 versus time [324]. (e) Photocatalytic hydrogen production rate of TiZrHfNbTaO6N3 versus time compared to convention oxynitride Ga6ZnON6 [326]. 
(f) High-resolution TEM image of TiZrHfNbTaO6N3 containing nanograins of two phases [326]. 
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1779] and its distribution over the sample becomes less uniform [1780]. 
Serrations on the nanoindentation curves of the HPT-processed BMG are 
not observed unlike for as-cast BMG, and this can be explained by more 
homogeneous deformation in the former case due to an increase in 
amorphous phase structure heterogeneity [1775]. HPT leads to a sig-
nificant 2.5-fold increase in the strain rate sensitivity parameter from 
0.014 to 0.036, while the elastic modulus decreases slightly, from 90 to 
85 GPa [1775]. Indents analysis suggests that HPT can lead to an in-
crease in the amorphous alloy microplasticity [1781] and improvement 
of ductility [1782, 1783]. 

The structural transformation in amorphous alloys by HPT process-
ing is the result of an extremely high density of shear bands propagating 
through the amorphous matrix. TEM data show that the spacings be-
tween shear bands reach 30 nm after HPT processing [1766]. The 
spacings between shear bands in Zr-based BMG after HPT for 5 turns can 
vary from 500 nm at the center of the sample to 100 nm at the edge 
[1784]. Nanohardness measurements across shear bands in the 
deformed amorphous alloy show noticeable softening on the distances of 
about tens of microns due to free volume increase [1785]. This means 
that with the shear band density observed after HPT processing 
(Figs. 86a and 86b [1786]), the entire amorphous material undergoes 

transformations [1787, 1788], despite some possible slippage between 
anvils and a processed specimen that can occur during HPT of hard 
BMGs [1784, 1789]. A model has been proposed to explain the strain 
accumulation in an HPT-processed specimen with an account for slip-
page [1789]. Furthermore, the accumulative HPT procedure has been 
implemented for processing BMGs and hard alloys [59, 1790]. It has 
been shown that a Zr-based amorphous alloy undergoes a more pro-
nounced structural transformation after accumulative HPT as compared 
to a conventional one. Taken together, SPD provides new opportunities 
to understand the plastic behavior of brittle amorphous materials. Such 
understanding can eventually contribute to the design of amorphous 
materials with improved plasticity and new functionalities. 

7.8. Semiconductors 

Semiconductors are one of the major components used in the 21st 
century and silicon is one of the most important semiconductor mate-
rials for modern electronic devices [1791]. However, bulk crystalline 
silicon is not suitable for optical and optoelectronic applications due to 
its indirect bandgap of 1.1 eV. The well-known way to overcome this 
limitation is the use of nanostructured silicon, which exhibits photo-
luminescence in the visible light region associated with the quantum 
confinement effect [1792]. Recently, allotropes of silicon have been of 
interest for future electronic devices because they have different elec-
tronic structures [1793]. Among several silicon allotropes, metastable 
phases can be obtained by phase transformation from high-pressure 
phases. When high pressure is applied to silicon crystals, 
diamond-cubic Si-I transforms to metallic Si-II with β-Sn structure at 
about 11 GPa, and then it further transforms to orthorhombic Si-XI 
(~14 GPa) and simple-hexagonal Si-V (~16 GPa) [1794]. Upon pres-
sure release, Si-II transforms to metastable phases such as rhombohedral 
Si-XII and BCC Si-III [1795]. These metastable phases can be obtained by 
high-pressure cells [1795, 1796] and indentation experiments 
[1797–1799]. However, it is difficult to obtain the bulk samples by these 
methods. SPD processing of semiconductor materials has attracted 
attention for altering optical and electrical properties because grain 
refinement and phase transformation are expected to occur simulta-
neously. Among several SPD techniques, HPT is suitable for processing 
brittle semiconductor materials due to constraining in the cavity of an-
vils. Recently, large-scale samples (> 10 mm in diameter) could be 
processed by HPT [179]. The first HPT processing of semiconductors 
was reported by Bridgeman [20] and further investigated by several 
researchers for silicon [1180, 1183] and germanium [1181, 1182]. HPT 
processing of semiconductors such as silicon [1184, 1800–1805], 
germanium [1185, 1806, 1807] and GaAs [1808] were conducted in 
recent years and the main findings were summarized in some overview 
articles [512, 1809]. The functional properties of some HPT-processed 
semiconductors such as silicon [1810, 1811] and Si0.5Ge0.5 alloy 
[1812] were also reported recently. 

Fig. 87a shows the XRD profiles of the silicon samples after HPT 
processing at a nominal pressure of 6 GPa. The XRD profiles consist of Si- 
III/Si-XII as well as Si-I. The diffraction peak intensities of Si-III/Si-XII 
increase with increasing the number of anvil rotations. The volume 
fractions of Si-III and Si-XII after 100 HPT turns are > 0.3 and ~0.2, 
respectively. The formation of Si-III/Si-XII indicates the strain-induced 
phase transformation from Si-I to Si-II during HPT processing and 
phase transformation from Si-II to Si-III/XII during pressure release [8, 
1813]. The HPT processing also affects the electrical, optical and ther-
mal properties. The resistivity of the silicon samples (20 Ω⋅cm) decreases 
to 0.7 Ω⋅cm after HPT processing for 100 turns due to the formation of 
Si-III having a semi-metallic property [1814] with a narrow gap 
(30 meV) [1815]. A weak broad photoluminescence peak associated 
with Si-I nanograins appeared in the visible light region after annealing. 
The thermal conductivity of bulk silicon (~140 W m− 1 K− 1) was 
reduced to ~3 W m− 1 K− 1 after HPT processing for N ≥ 50 [1810]. To 
investigate the phase transformation of the metastable phases in 

Fig. 85. (a) Structural relaxation enthalpy and (b) elastic modulus (E) and 
hardness (H) values as a function of HPT rotation number. The inset in (a) 
shows differential scanning calorimetry curves of the sample processed with 50 
HPT turns, where red and black lines denote the 1st and 2nd heating curves, 
respectively, and Tg and Tx denote the glass transition temperature and crys-
tallization temperature, respectively. The open symbols in (b) denote the data 
after annealing at 673 K for 1 h [1774]. 
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HPT-processed silicon, synchrotron XRD measurements were also per-
formed [1811]. The silicon sample was subjected to HPT processing at a 
nominal pressure of 24 GPa for 10 turns, and then cut into ~1 mm strips 
for the XRD measurements. The XRD profiles during annealing showed 
that the diffraction peaks of Si-III/Si-XII were almost constant up to 

433 K, and these peaks gradually decreased at 453 K. New diffraction 
peaks corresponding to hexagonal-diamond Si-IV appeared at 463 K. At 
473 K, the Si-IV and Si-I diffraction peaks appeared and Si-III/Si-XII 
peaks disappeared. These results on the phase transformation of Si-IV 
from Si-III during annealing indicate that the combination of HPT pro-
cessing and annealing is effective in obtaining new metastable phases. 
[1797, 1816, 1817]. It should be noted that Si-IV has been predicted to 
be a semiconductor having a bandgap of 0.95 eV [1814]. 

Fig. 87b shows XRD profiles of HPT-processed Si0.5Ge0.5 after pure 
compression and HPT processing for 10 turns. The diffraction peaks 
correspond to a diamond-cubic phase for the sample without rotation. 
Additional peaks corresponding to a bc8 phase appear after 10 HPT 
turns. The formation of bc8-Si0.5Ge0.5 is consistent with the high- 
pressure experiments at high temperatures [1818]. The lattice con-
stant of bc8-Si0.5Ge0.5 is 0.678 nm, which is in good agreement with the 
value found from Vegard’s law comprising 0.6784 nm. The electrical 
resistivity increased from ~9 × 10− 3 Ω⋅cm to ~5 × 10− 2 Ω⋅cm after 
compression and decreased slightly to ~3 × 10− 2 Ω cm after 10 turns of 
HPT. The decrease in resistivity after HPT is similar to that observed in 
HPT processing of silicon [1803, 1810], suggesting that bc8-Si0.5Ge0.5 
has a semi-metallic property [1812]. 

SPD processing of silicon and related semiconductors appears a 
promising method to achieve novel functional properties through 
nanograin refinement and the formation of metastable phases [1456]. 
Considering the current global crisis concerning semiconductors, such 
studies deserve to receive higher attention in the SPD field. 

7.9. Ceramics 

Plastic deformation of ceramics (including oxides, carbides, nitrides, 
etc.) is quite difficult under ambient conditions due to their hard and 
brittle nature. There have been long-term efforts to process these ma-
terials by plastic deformation, particularly because of the importance of 
this issue in geological studies [1819]. The first success in processing 
these materials by SPD was reported in 1935 when Bridgman recognized 
high pressure as the key to the plastic deformation of ceramics [20, 
1820]. The introduction of HPT and its use for processing ceramics led to 
similar studies in the last century by other scientists mainly in the fields 
of geology [1821–1823] and physics [1824–1827]. The combination of 
HPT [20] with diamond anvil cells [1828] and the introduction of shear 
(rotational) diamond anvil cells in the 1980 s [1829, 1830] improved 
the research in this field because of increasing the level of processing 
pressure and the possibility of in situ examinations [8, 366]. Although 
high-energy ball milling can also introduce deformation in ceramics, 
pure plastic deformation can be hardly achieved in ceramics by ball 
milling due to the limited applied pressure [43]. Following a publication 
in 2010 [1179], which attempted to consolidate ceramic powders by 
HPT, SPD processing of ceramics to achieve functional properties 

Fig. 86. (a,b) SEM images showing shear bands in a Zr52.5Cu17.9Ni14.6Al10Ti5 metallic glass processed by HPT with 5 rotations, where (b) is a magnified view 
indicating formation of interacting shear band networks with increaseing strain [1786]. 

Fig. 87. XRD profiles of (a) silicon processed by HPT for different rotations (N) 
[1810] and (b) Si0.5Ge0.5 processed by pure compression (N = 0) and N = 10 
turns of HPT [1812]. 
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became more popular [513]. As discussed earlier in this manuscript, a 
wide range of ceramics were processed by HPT to achieve various 
properties including, high hardness [1179], electrocatalysis [960], 
photocatalysis [844], photoluminescence [583], photovoltaics [665], 
dielectric properties [840] and ion conductivity for batteries [1831]. 
The functional properties of ceramics were reviewed in previous chap-
ters, but it is worth discussing the structural and microstructural evo-
lution of ceramics compared to metals during SPD because there is 
limited information on this issue. 

Phase transformations occur frequently in ceramics, and it was 
shown that the fraction of both pressure-induced and strain-induced 
phases increases with increasing strain in ceramics, mainly because of 
the defect-pressure-strain interactions [1829, 1830]. Fig. 88a shows the 
phase transformation from the γ phase to the α phase in Al2O3 induced 
by the application of HPT [16]. Moreover, SPD processing has led to the 
discovery of new hidden or intermediate phases in ceramics [630, 631, 
1004]. The structural and phase evolutions in ceramics are principally 
similar to those in metals and the acceleration of phase transformations 
by increasing strain during SPD processing of metallic materials was also 
reported [506, 507]. 

There are similarities between the microstructural evolution of ce-
ramics and metals, but grain refinement in ceramics is more significant 
compared to metallic materials [513]. In metallic materials, grain sizes 
are usually at the submicrometer level [2, 3], except for some dual-phase 
materials, composites, HEAs and intermetallics [38, 290, 922]; however, 
grain sizes in SPD-processed ceramics always decrease to the nanometer 
level (see Fig. 88b for grain sizes in SiO2 [609]). The reason for smaller 
grain sizes in ceramics, which usually have a high melting point, is due 
to their ionic or covalent atomic bondings which make the motion of 
dislocations and grain boundaries harder than in metals [1832]. Similar 
to metallic materials, it was shown that dislocations are frequently 
generated in ceramics, especially at the early stages of straining (see 
Fig. 88c for a Lomer-Cottrell dislocation lock in TiO2 [1002]). However, 
unlike metals in which dislocations cannot stay in nanograins and 
annihilate at grain boundaries [1833], dislocations can be observed 
within the grains of nanoceramics due to their slow movement resulting 
from the strong atomic bonding and high Peierls stress [1832]. Another 
issue that can be mentioned here is that similar to reports on metallic 
materials [38], there is a steady state for grain size due to the occurrence 
of dynamic recrystallization and grain boundary migration in ceramics 
[513]. When a ceramic with grain sizes smaller than the steady-state 
grain size is processed by SPD, a grain coarsening rather than a grain 
refinement occurs (see Fig. 88d for grain coarsening in Al2O3 processed 
by HPT [1831]). Similar grain coarsening was reported during HPT 
processing of nanograined metals such as copper and nickel [38, 1834]. 
Finally, it should be noted that the formation of vacancies is also a 
general phenomenon in HPT-processed ceramics. For example, Fig. 88e 
shows the formation of vacancies in the TiO2-ZnO composite confirmed 
by electron spin resonance spectroscopy [605] and Fig. 88f shows the 
formation of oxygen vacancies in the high-pressure columbite phase of 
TiO2 simulated by the first-principles calculations [1002]. Such va-
cancies, which were frequently reported in SPD-processed metals [306, 
1835, 1836], are responsible for various functionalities of ceramics 
[513]. Taken together, there are clear similarities between the behavior 
of metals and ceramics during SPD, but deeper in situ studies using XRD 
and ex situ studies using electron microscopy are needed to clarify the 
mechanisms underlying microstructural evolutions in ceramics. 

7.10. Polymers 

SPD treatments can significantly affect the structure and properties 
of polymers. The structural states formed during SPD treatment are 
characterized by a variety of possible modes of molecular orientation, 
crystalline lamellar and interlamellar amorphous phase arrangement, 
degree of macromolecular chain orientation and intermolecular inter-
action. A distinctive feature of SPD methods compared to conventional 

polymer processing methods (extrusion, injection molding, forging) is 
the introduction of uniform, simple shear into the materials, which 
promotes homogeneous structure and property development throughout 
the extruded billet and prevents the formation of undesirable so-called 
skin-core morphology, a reduction in the cross-sectional area of the 
workpiece, etc. Studies have shown that the structural states of poly-
meric materials formed by SPD and, thus, their physical and mechanical 
properties, are mainly determined by the magnitude of the accumulated 
strain. Activation of phase and structural transitions [1837–1840], 
strain-induced diffusion [1841], and intercalation and exfoliation of 
organic and inorganic fillers [1842–1844] can occur in polymers at 
different absolute values of accumulated strain. These changes depend 
on both SPD parameters (pressure, temperature, intensity and strain 
rate) and the structure of polymers (amorphous or semi-crystalline; 
linear, branched, cross-linked, etc.). SPD is most commonly performed 
on polymers by two methods: ECAP [226] and equal-channel multi--
angle extrusion (ECMAE) [64]. Most studies on ECAP of polymers were 
limited to the case of 1–2 strain cycles, corresponding to a true strain of 
0.8–2.4 (depending on the channel intersection angle). In contrast, 
ECMAE was used to reach a higher range of strain (6.7–9.1). 

For polymers processed at low values of true strain (0.8–2.4), the 
increase in their elastic modulus and the decrease in tensile strength and 
plastic properties with increasing strain are typical [65, 1845–1854]. At 
the same time, the melting temperature and heat distortion temperature 
decrease (Table 7). The structure rearrangement in this range of true 
strains is mainly caused by the processes of molecular orientation and 
amorphization. The behavior of polymer materials processed in the 
range of high values of true strain (6.7–9.1) is fundamentally different 
from that of polymer materials deformed at low values of accumulated 
strain. At high strain levels, there is an increase in both stiffness and 
strength [64, 1855–1858]. At the same time, the melting temperature, 
heat distortion temperature and glass transition temperature increase 
(Table 7) [1859, 1860]. In semi-crystalline polymers, the amorphization 
process is replaced by the dynamic recrystallization process (strain-in-
duced crystallization) in this range of strain. The accumulation of large 
values of strain causes the formation of a larger fraction of the crystalline 
phase in the deformed polymers. With increasing strain, the conforma-
tional transitions in semi-crystalline and amorphous polymers proceed 
more intensively. As a result, the fraction of oriented polymeric mac-
romolecules, their packing density, and the degree of their orientation 
increase. This contributes to an additional increase in the stiffness and 
strength of the deformed polymers [1857]. Fig. 89 shows an example of 
the dependence of tensile strength and strain at break on accumulated 
strain for high-density polyethylene subjected to ECMAE. 

In polymers capable of polymorphic transformations, activation of 
phase transitions is observed in high strain levels. As a result of SPD 
treatment, such polymers have different properties than undeformed 
polymers or polymers treated with low strain values. For example, an 
increase in the proportion of the more ductile γ phase due to the α→γ 
transition in polypropylene and polyamide-6 contributed to an increase 
in their ductility [1838, 1839], and the transition from the α phase to the 
β phase in polyvinylidene fluoride manifested the piezoelectric effect 
[1862]. Several semi-crystalline polymers, such as high-density poly-
ethylene, polyoxymethylene and polytetrafluoroethylene, are charac-
terized by an extremely low coefficient of linear thermal expansion 
values after SPD with strains of 8.5–9.1, which are close to the values of 
the coefficient of thermal expansion of invar alloys (Table 7) [1863]. 
The invar effect is achieved by forming a crystal structure in deformed 
polymers with a high degree of continuity, an extremely high degree of 
molecular orientation and a strain-induced degree of crystallization. 
Polymers deformed to high values of true strain (6.7–9.1) exhibit sig-
nificant molecular orientation. Varying the deformation route results in 
different patterns of molecular orientation, in particular a biaxial mo-
lecular orientation [1857, 1858]. The latter provides a low anisotropy of 
elasticity and strength properties and a unique opportunity to improve 
the plastic properties of deformed polymers (Table 7). 
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SPD can be also applied to polymer-based composites as well as for 
the consolidation of polymer powders. SPD-treated polymer composites 
are characterized by increased physical and mechanical characteristics 
compared to untreated composites [1842, 1861, 1864, 1865]. Their 
feature is that an increase in the concentration of the filler does not lead 
to a decrease in the degree of its dispersion. With an increase in the 
accumulated plastic deformation, the improvement in the dispersion of 

the filler becomes more pronounced (Fig. 90a-f). This fact is because 
high pressure neutralizes the effect of an increase in melt viscosity with 
an increase in filler concentration, which hinders the movement of fillers 
inside the matrix and prevents their dispersion; however, plastic 
deformation promotes effective exfoliation of filler particles without 
damage to the polymer matrix. Such a mechanism of filler dispersion 
leads to an improvement in the physical properties of polymer 

Fig. 88. (a) TEM high-resolution image showing the γ→ α phase transformation in Al2O3 by HPT processing for 4 turns at 723 K [16]. (b) TEM High-resolution image 
showing the formation of nanograins in SiO2 by HPT processing for 5 turns at 723 K [609]. (c) TEM lattice image of a Lomer-Cottrell dislocation lock formed in TiO2 
by HPT processing for 15 turns at room temperature [1002]. (d) TEM bright-field image (top) and selected area electron diffraction pattern (down), showing grain 
coarsening from 10 nm to the submicrometer level in Al2O3 by HPT processing for 4 turns at 723 K [16]. (e) Electron spin resonance spectra of TiO2-ZnO composite 
before and HPT processing for 3 and 5 turns at room temperature, showing the formation of oxygen vacancies in TiO2 and ZnO [605]. (f) Oxygen vacancies simulated 
by density functional theory for high-pressure columbite phase of TiO2 stabilized by HPT processing [1002]. 
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composites. For example, electrical conductivity can be enhanced 
without a deterioration in mechanical properties with the introduction 
of conductive nanofillers (carbon nanotubes, carbon nanoplates) into 
polymers (Table 7) [1844, 1861]. The SPD-consolidated polymer pow-
ders (nylon 12, ultra-high molecular weight polyethylene, starch, wood 
flour, maple hardwood) materials exhibit significantly higher hardness 
and stiffness compared to reference materials produced by injection 
molding [1841, 1866–1869]. Strain-induced diffusion, which occurs in 
this case eliminates the need for the addition of a plasticizer or a binder. 
Figs. 90g and 90h show SEM images of polypropylene before and after 
strain-induced consolidation. 

In summary, SPD has a high potential to significantly improve the 
mechanical properties of polymers and achieve new functionalities. The 
published studies show that SPD-processed polymer materials are 
characterized by unique physical and mechanical properties that cannot 
be achieved by other methods, such as (i) an increase in stiffness and 
strength while maintaining ductility at the level of the original material 
for semi-crystalline polymers, amorphous polymers and polymer pow-
ders, (ii) low coefficient of linear thermal expansion for semi-crystalline 
polymers and composites, (iii) increased electrical conductivity and 
strength in the case of polymer composites containing an electrically 
conductive nanofiller. 

8. Heterostructured materials processed by SPD 

Heterostructured materials are defined as materials composed of at 
least two different zones with a large difference in mechanical or 
physical properties [1870]. For structural heterostructured materials, 
the disparities can be given by coexisting zones with different order 
scales, defects densities, crystal structure, chemical composition, or 
crystallographic orientation [1870]. For multidisciplinary hetero-
structured materials, the disparities may include electrochemical po-
tential, magnetic sensitivity, optical properties, etc. [44]. SPD 
processing, including bulk-SPD, surface-SPD and powder-SPD, is one 
solution to produce heterostructured materials. In the following section, 
after reviewing the fundamentals and properties of heterostructured 
materials, the features of two kinds of popular heterostructured mate-
rials, namely harmonic-structured materials and gradient-structured 

materials, are discussed. 

8.1. Fundamentals and properties of heterostructured materials 

Heterostructured materials are a fast-emerging field that offers a 
novel solution to various issues in materials science. Increasing both the 
strength and the strain hardening to avoid the "inevitable" strength- 
ductility trade-off is one of the most studied issues. Hetero- 
deformation-induced strengthening and work hardening [1870] by 
GNDs [1871] serve as the foundation for structural heterostructured 
materials. The hetero-deformation-induced stress, formerly known as 
back stress [1872] can be measured by uniaxial loading experiments 
[1873, 1874]. The hetero-deformation-induced stress accounts for the 
contribution of both forward stress and back stress [1870]. Back stress 
cannot be measured from the mechanical testing curves because it 
cannot be decoupled from the forward stress. 

Table 7 
Effects of accumulated true strain during SPD on physical and mechanical properties of polymers (e: true strain, E: elastic modulus, σy - yield strength, εb: strain at 
break, Tm: melting temperature, Tg: glass transition temperature, R: electrical resistance, CLTE: coefficient of linear thermal expansion). The index 0 denotes the 
corresponding parameters of undeformed polymers [1844, 1861].  

Polymer e E/E0 σy/σy0 εb/εb0 Tm or Tg*, K CLTE×106, K− 1 R0/R 

High-Density polyethylene  2.18.5  1.703.30 1.403.00 0.930.92 398410 210–7 – 
Polyoxymethylene  2.18.5  1.382.28 2.074.04 0.780.94 439443 130–5 – 
Polytetrafluoroethylene  2.18.5  1.282.33 1.322.23 1.603.10 – 220–6 – 
Polyamide 6  2.18.5  1.292.15 1.612.04 0.870.91 495500 – – 
Poly(methyl methacrylate)  2.18.5  1.191.23 1.101.30 1.501.60 390405 – – 
Linear Low-Density Polyethylene – 10 wt% Carbon Nanotubes  2.18.5  1.201.50 1.221.31 1.501.61 397402 150–6 2416 
Cellulose  1.2  1.55 - - 411 - -  

Fig. 89. Influence of the value of accumulated strain on tensile strength and 
strain at break of high-density polyethylene exposed to ECMAE [1857]. 

Fig. 90. (a-f): SEM micrographs of nanocomposites of LLDPE polymer with (a- 
c) 10 wt% of carbon nanotubes and (d-f) 20 wt% of carbon nanotube addition, 
after true strains of (a,d) e = 0, (b,e) e = 4.4, (c,f) e = 8.5 [1861]. (g,h) Mor-
phologies of compacted polypropylene powders after strains of (g) e = 0 and (h) 
e = 8.5 [1841]. 
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The outstanding mechanical properties of heterostructured materials 
come from the interactive coupling between soft and hard zones 
(Fig. 91a) [1875]. The differences in flow stress cause a strain gradient 
between the soft/hard interface and the Frank-Read dislocation source 
(Fig. 91b) [1875]. To accommodate the strain mismatch near the in-
terfaces, known as zone boundaries in heterostructured materials, GNDs 
are generated from Frank-Read sources in the soft zone. As a result, hard 
zones remain elastic while soft zones begin to deform plastically 
(Fig. 91c) before global yielding. Both soft and hard regions remain 
under mutual constraints. GNDs pile up against zone boundaries as 
applied stress increases, causing back stress in soft zones [1870, 1873]. 
To avoid cross-slip to encourage GND pileup, planar slip promoted by 
low stacking fault energy or short-range order is desired [1876]. The 
back stress acts against the dislocation source to curtail the emission of 
more dislocations [1877]. Simultaneously, the stress exerted by the head 
of the GND pileup produces forward stress in hard zones [1875, 1878, 
1879]. The creation and interaction of GNDs near the zone boundaries 
will produce a hetero-boundary-affected region [1880]. The back stress 
strengthens soft zones, while the forward stress makes hard zones easier 
to deform [44]. As a result, the soft zones sustain larger deformations, 
while the hard zones act as obstacles to dislocation gliding. Therefore, 
the heterostructured materials possess higher strain-hardening and 
strengthening than those obtained in homogeneous nanostructures or 
coarse materials [1881]. The hetero-deformation-induced strengthening 
is usually negligibly small in homogeneous materials and not considered 

in most classical models, such as the rule of mixtures. As a result, the 
yield strength and strain hardening of heterostructured materials exceed 
those predicted by the rule of mixtures [1882]. The 
hetero-deformation-induced strengthening is dominant in hetero-
structured materials, and their properties come from the synergy of 
multiple strengthening mechanisms given by microstructural defects, e. 
g. zone boundaries, twins, shear bands, stacking faults, etc. 
[1883–1885]. 

The main factors to consider during the designing of hetero-
structured materials can be divided into intrinsic and extrinsic (Fig. 92) 
[1886]. The former is material-specific and includes crystal structure, 
crystallographic texture, and those influencing the slip mode, such as 
stacking fault energy, short-range order, atomic size mismatch and shear 
modulus. The main extrinsic or processing parameters are stress state, 
equivalent strain, strain rate, temperature, time and pressure. Intrinsic 
parameters guide material selection while extrinsic parameters dictate 
the thermo-mechanical route selection. A description of each effect has 
been described in detail elsewhere [1886]. The elaboration of hetero-
structured materials has to be optimized based on their classification: (i) 
multimodal structures that can be produced by SPD techniques, SPD plus 
heat treatments, or powder metallurgy, (ii) gradient structure by surface 
nanostructuring techniques, (iii) harmonic structure by powder metal-
lurgy, powder metallurgy plus heat treatments and additive 
manufacturing, (iv) heterogeneous lamella structure by cold working 
(including SPD) plus partial recrystallization annealing, (v) layered 

Fig. 91. Fundamental of heterostructured materials. (a) Generation and distribution of long-range back and forward stress by geometrically necessary dislocation 
(GND) pileups near the zone boundary, including generation of GND pileups from a Frank-Read source that produces hetero-deformation induced (HDI) stress. The 
curve on the left of the boundary is the distribution of forward stress. (b) Distribution of strain gradient with the distance from the zone boundary. (c) Deformation 
stages (I, II and III) and their effect on dislocation behavior and HDI stress distribution near a zone boundary (τa is the applied shear stress and red circles represent 
the dislocation source) [44, 1292, 1870]. 
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structure by rolling-based processing, physical or chemical surface 
deposition, or additive manufacturing, and (vi) multiphase structure by 
heat treatments, cold working (including SPD), powder metallurgy and 
additive manufacturing [1887]. 

Among the key advantages of heterostructured materials is their 
ability to produce unique property combinations that are not present in 
their individual zones. So far, the most widely explored combinations 
are improved mechanical performance with multidisciplinary properties 
[1292, 1887]. However, other non-structural multidisciplinary mate-
rials can also be designed. Heterostructured materials are highly desir-
able for a wide range of applications, including structural, biomedical 
[1888–1890], biosafety [1891, 1892], optoelectronics [1893, 1894], 
energy storage [1895, 1896], catalysis [1891, 1897], photo-
electrochemistry [1898], food processing [1890], etc. These advances in 
the development of heterostructured materials contribute to the ongoing 
efforts to achieve sustainable energy solutions and more efficient 
multidisciplinary components. More detailed descriptions of funda-
mentals, properties and perspectives of heterostructured materials can 
be found in recent literature [44, 1292, 1875, 1899, 1900], including 
one overview of SPD-processed heterostructured materials [1886]. 

8.2. Harmonic-structured materials 

Powder metallurgy is a widely used technique for producing metallic 
and ceramic bulk materials by sintering below the melting temperature 
[1901–1903]. It is easy to produce high melting point materials by 
powder metallurgy because there is no need to melt materials. In addi-
tion, powder metallurgy is suitable for hard-to-deform materials because 
it is die-forming and does not require cutting or bending. This section 
introduces harmonic structure design [1904] as a new family of heter-
ostructured materials that can be manufactured by powder-SPD com-
bined with powder metallurgy. 

As mentioned earlier in this article, high-energy ball milling is a 
useful SPD technique for processing powders [43, 153, 1905, 1906]. In 
ball milling, plastic strain is introduced in powders by rotating, shaking 
or jetting gases in a closed vessel, and the powder collides with each 
other or with process media balls. In a single collision, the deformation 
energy of the powder is quite small, but with repeated collisions in a 
closed vessel, the deformation energy is accumulated in the powder. For 
example, in the case of planetary ball milling, Umemoto et al. [1907] 
predicted that in a single collision, the energy imparted to the powder is 
less than 1 mJ, the equivalent plastic strain is about 1, the increasing 
temperature is a maximum of 300 K, the collision time is 10− 5 s, and the 
strain rate is as high as 104 s− 1. Therefore, quite a large equivalent 

plastic strain and UFG powder formation could be expected by long-time 
ball milling [1907, 1908]. The ball milling method can also produce 
powders with heterogeneous grains by applying different levels of strain 
to the interior and surface of the powder depending on the processing 
conditions and the size of the powder. Harmonic structure design takes 
advantage of the inhomogeneity between the interior and surface of the 
powder [1908]. 

The harmonic structure is a type of heterogeneous and bimodal grain 
size microstructure consisting of a three-dimensional UFG network 
(Shell) surrounding the coarse-grained clusters (Core), as shown in  
Fig. 93a. Fig. 93b shows a cross-sectional SEM image of a pure titanium 
powder processed by high-pressure argon gas jet-milling [153], and 
Fig. 93c shows a TEM image and a selected area diffraction pattern from 
the TEM image taken from the near-surface region (such as the white 
square region) shown in Fig. 93b. An equiaxed grain structure with a 
grain size in the range of 5 μm to 10 μm was observed in the as-received 
powder, although after high-pressure gas milling, the grain size in the 
near-surface region became less than 100 nm. A ring-like pattern of the 
selected area diffraction pattern indicates the existence of high-angle 
boundaries in the HCP structure. The formation of such nanograins 
with high-angle boundary structures was attributed to the grain subdi-
vision that occurs in various bulk SPD methods, such as HPT [330, 
1909–1911] and ARB [1912–1915]. The ball-milled powder can be 
consolidated into any shape by powder metallurgy sintering. 

The harmonic structure can be introduced to all metallic materials 
and is expected to combine high strength and high ductility. Compared 
to the conventional bimodal structure with irregular coarse-grained and 
UFG distribution, the harmonic structure has a network of UFG struc-
tures at the macro scale. The isotopically developed UFG network can 
provide additional hetero-deformation-induced strengthening in multi-
ple directions during tensile deformation [1870, 1917–1922]. There-
fore, it is noteworthy that the harmonic-structured materials do not have 
anisotropic mechanical properties. In addition, the enhanced strain 
hardening and suppressed local deformation by the network structure 
can achieve a good combination of strength and ductility [1904]. The 
effect of stress partitioning on the UFG network structure during 
deformation, which is one of the most unique features of 
harmonic-structured materials, leads to hetero-deformation-induced 
strengthening, resulting in a synergy of micro- and macro-scale me-
chanical properties of the materials [1923–1926]. Fig. 93d shows the 
strength and toughness values of the harmonic-structured materials 
normalized by the values of the homogeneous coarse-grained structure 
[153]. All metallic materials show improvement in strength and 
toughness including titanium [1927–1930], copper [1931, 1932], nickel 

Fig. 92. Main intrinsic and extrinsic parameters to select starting materials and processing routes during the design of heterostructured materials [1886].  
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[1933, 1934], stainless steel [1916, 1935], and Co-Cr-Mo alloys [1936]. 
This result suggests that harmonic structure design can be a universal, 
material-independent design guideline for improving mechanical 
properties [1876, 1937]. 

This section, thus, describes harmonic-structured materials as a new 
family of heterostructured materials with high strength and high 
ductility which can be produced by the powder-SPD process. Innovative 
mechanical properties in these materials are achieved through macro-
scopic periodicity and microscopic heterogeneous microstructures. The 
harmonic-structured materials not only show improvement in tensile 
properties but also in fatigue or wear properties [1938–1940]. It is ex-
pected that further research will reveal more possibilities for 
harmonic-structured materials in industrial fields, not only for their 
mechanical properties but also for their potential functional properties. 

8.3. Gradient-structured materials 

Gradient-structured materials can be defined as materials with dra-
matic heterogeneity in strength from one zone area to another [1941]. 
The gradient-structured materials are classified as a category of heter-
ostructured materials, and thus, the relevant theories of hetero-
structured materials can be reasonably used to study gradient-structured 
materials [1942]. Production of gradient-structured materials is 
currently feasible with various surface-SPD methods developed in recent 
decades [1941, 1942]. In the following sections, the fundamentals, 
mechanical properties and functional properties of gradient-structured 
materials are discussed. 

8.3.1. Fundamentals of gradient-structured materials 
The application of gradient structures in metal materials could be 

traced back to the carburizing and nitriding process, but the gradient 
structure material was not defined at that time. Until now, composi-
tionally graded structures have also played an important role in 

structural materials [1943]. Grain size and twinning gradients generated 
during tensile tests were frequently used in the past [1944–1948]. The 
relationship between gradient structure and hardness has been shown in  
Fig. 94 [1949]. Generally, the hardness of the gradient structure grad-
ually decreases from the surface to the core, which has a certain corre-
sponding relationship with the grain size. At present, research on 
structures such as defect gradient [1950], phase distribution gradient 
[1951] and texture gradient [1952–1954] is reported. By regulating the 
gradient structure, materials with excellent strength and ductility are 
obtained. The microscopic schematic diagram of various gradient 
structures is shown in Fig. 95 [1955]. Simulations and experiments 
confirmed that gradient-structured materials have synergistic effects by 
interactions between the gradient layer and the coarse-grained layer 
[1882, 1956–1962]. The traditional strengthening mechanism cannot 
fully explain the superior combination of strength and ductility of 
gradient-structured materials, and thus, research on their strengthening 
mechanism remains open for in-depth exploration. 

The excellent properties of gradient-structured materials are attrib-
uted to the combined action of multiple strengthening theories [1955]. 
The theory of dislocation and twin strengthening is a common expla-
nation for the good properties of gradient-structured materials. 
Increasing dislocation density increases the strength, while the pileup of 
dislocations generally leads to a significant decrease in the ductility of 
materials. Twins are believed to contribute to dislocation slip and co-
ordinate deformation while increasing strength and improving the 
ductility of materials [1881, 1941, 1942]. The Zener-Holloman param-
eter (Z) has been used to express the effect of deformation on micro-
structure and mechanical properties as shown in Equation 36 [1963]. 

LnZ = Lnε̇+ Q
RT

(36)  

where Q is the activation energy for diffusion, ε̇ is strain rate and T is 
deformation temperature (Q is considered to be related to stacking fault 

Fig. 93. (a) Schematic representation of the harmonic structure. (b) Cross-sectional image of jet-milled pure titanium powder. (c) TEM image of the near-surface 
region of jet-milled pure titanium powder. (d) Normalized yield strength and tensile toughness of harmonic structured materials [1916]. 
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energy [1963]). Stacking fault energy has a considerable influence on 
the pileup of GNDs, which is closely related to the strengthening of 
heterostructured materials [44]. Hetero-deformation-induced theory 
can be used to explain the excellent mechanical properties of hetero-
structured materials, which has been discussed earlier [188, 1962]. 

The theory of shear banding and strain delocalization was also used 
to explain the good ductility of gradient-structured materials. Macro-
scopically, the orderly and progressive plastic strain of GS material 
effectively alleviates the local stress concentration of the material, in-
hibits strain localization, and enables the material to maintain uniform 
plastic deformation at a higher stress level. Nanometallic materials 
usually form narrow shear bands after yielding and then fail quickly, 
while strain localization induced by shear bands seems inevitable. 
However, in gradient-structured materials, harmful shear bands are used 
to improve ductility [1941, 1964]. The key mechanical principle to 
realize the strength-ductility synergistic effect is that the microstructure 
should be designed by preventing strain localization as far as possible to 
fully promote the uniformity of plastic flow and realize strain delocal-
ization. This requires that the work hardening capacity or strain rate 
sensitivity of the material is high enough to stabilize the plastic defor-
mation [1965]. It is difficult for traditional homogeneous materials to 
meet such requirements, but such effects have been observed in 

heterostructured materials [1966, 1967]. 
In summary, the research of gradient-structured materials as a kind 

of heterostructured materials is just beginning. In the future, a quanti-
tative understanding of structure-property relationships is vital for 
rational design and optimization of gradient-structured functional ma-
terials with desired performance. 

8.3.2. Mechanical properties of gradient structures 
For materials processed by surface-SPD methods based on impacts 

[1968–1974], contacts [125, 1975] or shocks [1976–1983], there is a 
gradient microstructure from the treated surface to the bulk region with 
three zones: (i) a nanostructured layer, (ii) a transition region where 
grains are subdivided, (iii) a deformed region where grains are plasti-
cally deformed [1984]. For materials that exhibit deformation-induced 
twinning and/or phase transformation, there is a superposed gradient 
distribution of twins and transformed phases (see Fig. 96) [1985, 1986]. 
Due to the induced microstructure and other parameters including re-
sidual stresses (Fig. 96), surface-SPD methods are able to enhance me-
chanical properties such as hardness, tensile properties, fatigue and 
wear resistance [1951, 1987]. Mechanical properties are mainly deter-
mined by the induced nanostructured layer, compressive residual stress, 
work hardening and surface roughness [1988, 1989]. In general, the 
first two parameters are beneficial for improving the properties of ma-
terials either by retarding crack initiation or delaying crack propagation 
[1990, 1991], whereas surface roughness degrades it by causing local 
stress concentration [1991, 1992]. As for work hardening induced by 
surface-SPD, it is complex due to the multiaxial nature of loading 
[1976], and it can be divided into isotropic hardening (scalar) and ki-
nematic hardening (tensor) [1993]. Isotropic hardening increases the 
strength of materials, while kinematic hardening can lower the yield 
stress of material through back stress [1994]. 

Under low-cycle fatigue, surface-SPD can significantly enhance me-
chanical strength and alter the cyclic plasticity (hardening and soft-
ening) of gradient-structured materials, depending on imposed stress 
amplitudes [1995]. In terms of fatigue life, both beneficial and harmful 
effects of surface-SPD have been observed as a function of the material’s 
type, treatment conditions and load amplitudes [1975, 1995, 1996]. 
Residual stress relaxation essentially occurs during the first cycles 
[1997], and the positive effect of compressive residual stress generated 
by surface-SPD can be quickly reduced or even lost. Significant 
improvement in fatigue life can thus not be observed, especially for high 

Fig. 94. Schematic diagram of gradient grain structure and corresponding 
microhardness of metallic samples [1949]. 

Fig. 95. Micro-schematic diagram of various gradient structures [1955].  
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load amplitudes [1998]. Improvement in the strength of materials 
induced by surface-SPD is usually accompanied by a reduction in its 
ductility [1999, 2000]. Decreased ductility, in some cases, cannot have 
an improving effect on low-cycle fatigue of materials processed by 
surface-SPD if the fatigue tests are strain-controlled, especially under 
high amplitudes [2001]. 

For high-cycle fatigue, an increase in fatigue resistance due to 
surface-SPD can usually be observed for various gradient-structured 
materials under different loading conditions [2002], if no excessive 
surface defects, such as micro-cracks, are generated by an 
over-treatment phenomenon. For a given material, the improvement is 
strongly dependent on treatment conditions which can be optimized 
according to material behavior [2003]. Under very high-cycle fatigue, 
extended lives induced by surface-SPD are frequently observed, except 
for materials with severe surface defects [2004] and excessive interior 
tensile residual stress [2005, 2006]. For almost all the cyclic loading 
modes, there is a trend of crack initiation shift from the surface in the 
high-cycle fatigue regime to the subsurface in the very high-cycle fatigue 
regime [2004, 2007]. In addition, in the case of subsurface crack initi-
ation, a fish-eye pattern is frequently observed at crack origin, especially 
for materials that have metallurgical defects such as inclusions and/or 
crystallographic defects [2008, 2009]. 

Tribological properties have also been studied for various gradient- 
structured materials processed by surface-SPD [2010–2013]. In gen-
eral, a remarkable increase in wear resistance can be observed with 
respect to coarse-grained counterparts. Several possible mechanisms 

potentially involved in improving the tribological performance are: (i) 
inducing compressive residual stresses [2014, 2015]; (ii) decreasing 
coefficient of friction [2016, 2017]; (iii) increasing hardness by nano-
structured layer and work-hardened region [2018]. However, poor wear 
resistance of a nanostructured layer can be observed due to its low 
ductility and toughness easily leading to surface cracks [2019]. 

Surface-SPD can improve material resistance by retarding crack 
initiation and delaying crack propagation through strengthened surface 
and compressive residual stresses. The contributions of grain refinement 
and that of work hardening to the strength of a structure are rather to 
increase the crack initiation resistance [1990, 1991]. For crack propa-
gation, however, grain refinement gives rise to a deleterious effect 
[2020], just like work hardening [2021, 2022], as recapitulated in  
Fig. 97. As for compressive residual stresses, they usually decrease the 
crack propagation rate by acting as crack closure stress at the crack tip 
[2023]. However, the initial residual stresses obtained after surface-SPD 
cannot be directly used for fatigue analysis because of residual stress 
relaxation [2024]. In addition, surface-SPD-induced residual stress field 
and work hardening are associated, and it is difficult to properly sepa-
rate their contributions through experiments. Their respective effects 
have thus been investigated using alternative numerical methods [2024, 
2025]. The stress-strain curves at different depths can be obtained to 
provide information about local mechanical behavior. It was highlighted 
that the presence of residual stress can significantly change the local 
stress state of materials [2025]. However, more loading modes espe-
cially fatigue loading need to be comprehensively investigated in future 

Fig. 96. Generated gradient features including (a) gradient microstructure and residual stress [1971], (b) variation of twin volume fraction [1985] and (c) dis-
tribution of phase transformation (B, C and F refer to samples processed by shot peening coverage of 100%, 300% and 1500% respectively) [1986]. 
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work. 

8.3.3. Functional properties of gradient structures 
There are two general ways to impart SPD to the surface in order to 

enhance the functional properties of gradient-structured materials: (i) 
applying a constant load onto the surface to be deformed or (ii) 
repeatedly impacting the surface with harmers or shots [46, 2026]. 
Many of the latter family of processes, such as SMAT, are derived from 
conventional shot peening [2027]. UFG structures generated by SPD are 
usually produced by the generation and accumulation of lattice defects, 
dividing and refining the initial microstructure into substructures and 
ultimately fine grains down to the nanoscale. As mentioned in an earlier 
section, the gradual cumulative strain applied from the surface creates a 
gradient microstructure which can be seen as a succession of different 
affected layers, but with a gradual transition. It goes from a refined 
surface nanocrystalline + ultrafine grain zone towards the surface to a 

“plastically deformed layer” in the depth, via a transition zone where the 
grains are undergoing the subdivision process [2028, 2029]. The tran-
sition depth between the different layers depends on the processing 
parameters which include also the peening temperature. In addition to 
the obvious modification of the grain size and density of structural de-
fects (dislocations, twins, etc.) through the depth of the samples, the 
so-called gradient microstructure is very often the combination of 
different gradients in terms of local texture, phase distribution and re-
sidual stresses [138, 1951, 2030–2034]. For example, when martensite 
forms by transformation-induced plasticity in SMAT-processed stainless 
steel, the maximum amount of α′ martensite is never found in the UFG 
layer at the vicinity of the extreme surface but within the sub-surface; at 
a depth of 50–100 μm depending on the processing conditions [1951]. 
SMAT carried out at cryogenic and room temperatures on a 5553 
β-metastable Ti-based alloy also promoted a martensitic transformation 
and kink bands produced essentially at the sub-surface [2034]. All these 

Fig. 97. (a-c) Some typical mechanical properties of gradient-structured materials including (a) low-cycle fatigue of 316 L steel in different states [1995], (b) 
high-cycle fatigue of 316 L steel in different states [125] and (c) Tribological properties of an AZ91D magnesium alloy [2012]. (d) Roles played by different pa-
rameters on fatigue and wear resistance of gradient-structured materials. 
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microstructural features can affect the functional properties of 
gradient-structured materials. 

The particular property of the UFG structures is the significantly 
high-volume fraction of high-angle grain boundaries with high energy 
and free volume resulting in the so-called non-equilibrium grain 
boundaries. The related increase in intergranular energy densities has an 
influence on the surface reactivity and the atomic transport along 
boundaries during chemical diffusion [373]. Thus, in addition to 
modifying mechanical properties through the influence of UFG, residual 
compressive stresses and potential stress raisers can be created on the 
surface by surface-SPD, which would affect the chemical and mecha-
nochemical properties of the materials [2002, 2035–2037]. Conse-
quently, surface-SPD has been used for several applications in which the 
favored atomic transport is beneficial, as discussed below. 

The enhanced diffusion of chemical species after surface-SPD has 
been used to improve corrosion resistance as well as to optimize ther-
mochemical surface treatments via “duplex” treatments. The most 
widely investigated process is the nitriding treatment, but pack bro-
mizing, aluminizing, chromizing as well as plasma electrolytic oxidation 
have also been investigated successfully (See [2038], for further 
reading). For the case of nitriding, the enhanced atomic mobility after 
mechanical surface treatment generates a thicker diffusion layer for a 
given nitriding temperature/duration or allows reducing the nitriding 
temperature [2038–2040]. The latter is of importance when considering 
austenitic stainless steels. Indeed, by nitriding at a temperature as low as 
573 K, a single-phase expended austenite is created without precipita-
tion of Cr-rich precipitates which are detrimental to corrosion resis-
tance. Also, SMAT carried out before nitriding allows producing a much 
harder surface layer due to the combination of two hardening mecha-
nisms: strain hardening due to remaining structural defects and solid 
solution hardening due to the presence of the N-enriched expended 
austenite [2038]. An important issue with the “duplex” treatments is the 
contamination that can be introduced during surface-SPD by the peen-
ing media that are also able to transfer chemical elements from the 
working chamber, locally modifying the chemical composition of the 
treated surfaces [2038, 2041, 2042]. This contamination acts as a bar-
rier to the external atomic flux. For example, it leads to the formation of 
reduced or discontinuous nitriding layers [2038, 2041] so that the 
chemical etching [2042] or mechanical polishing [2043, 2044] must be 
used as an intermediary stage to remove the surface contamination and, 
thereby, improve further the quality and thickness of the nitrided layers. 

Using surface-SPD for modifying the corrosion properties faces the 
same challenges as nitriding treatment. Plastic deformation improves 
the corrosion resistance in a passive environment whereas it increases 
the dissolution rate in a non-passive environment. SMAT has been used 
for example on a 301 stainless steel to facilitate the diffusion of Cr from 
the bulk towards the surface to form a stronger passivation film [2045]. 
Also, the effect of the surface contamination was demonstrated by 
modifying, for example, the nature of the peening shots during SMAT for 
a 2024 Al-based alloy [2046]. While the use of ceramic peening balls 
improved the corrosion resistance by the formation of a dense passive 
film, the Fe-containing layer induced by SMAT with steel balls led to the 
diminution in the corrosion resistance. 

Surface-SPD is now finding new applications for the hydrogen sector. 
As hydrogen produces no greenhouse gas emissions when it burns, 
hydrogen will be the preferred alternative to fossil fuels for decarbon-
izing both transport and industry. In addition to producing enough green 
hydrogen near the offtake sites using renewable energies, the storage 
and transportation of large amounts of hydrogen are other important 
issues for the hydrogen sector. For hydrogen storage, the objective is to 
use metallic materials as solid-state hydrogen tanks by storing the 
hydrogen in reversible metallic hydrides. Bulk-SPD induces structural 
defects and fine grains in metals which can be used to activate them as 
well as to optimize their hydrogen absorption/desorption kinetics 
[1077]. Instead of using high-energy ball milling to introduce structural 
defects and fine grains, the bulk-SPD techniques have the major 

advantage of avoiding the complexity of handling highly reactive and 
pyrophoric powders [1077, 1753, 1754]. A very good example of the 
high potential of SPD has been demonstrated for the activation of TiFe 
via groove rolling or HPT [181]. While hydrogen absorption was 
extremely limited in the coarse-grained TiFe annealed sample because of 
difficult activation, the HPT-processed samples could fully store 
hydrogen reversibly at room temperature and were not deactivated by 
long-time exposure to the air [1137]. However, in some materials like 
the Ti-V-Cr alloys, the large number of structural defects generated by 
bulk-SPD can act as trap sites, impeding the hydrogen desorption 
reversibility. In the case of these Ti-V-Cr materials, the surface-SPD 
method of SMAT could be used successfully to activate the material 
while preserving reversibility [2047]. As summarized in Fig. 98, the 
nanostructure and cracks present at the surface of the SMAT-processed 
sample could act as a pathway for hydrogen transport through the 
oxide layer and activate the material while the hydrogen atoms could be 
stored in the defect-free subsurface and bulk from where reversibility 
was possible [2047, 2048]. Compared to bulk-SPD, an additional 
advantage of surface-SPD route is that they can be more easily scaled up. 
Thus, mechanical surface treatment inducing surface gradients can then 
be regarded as having a high potential for elaborating activated indus-
trial hydrogen storage materials. 

Transportation applications based on hydrogen as a fuel also require 
preventing the hydrogen embrittlement phenomenon. Since the 
hydrogen is absorbed and diffused from the surface, surface function-
alization has been studied to prevent or reduce phenomena like 
hydrogen embrittlement. Surface functionalization can take the form of 
surface chemistry modifications like coatings and mechanical surface 
treatments [2049]. It was reported that the increase in hydrogen trap 
sites due to the surface structural refinement associated with the for-
mation of a compressive residual stress gradient is beneficial for limiting 
the hydrogen embrittlement resistance. It was proposed that the high 
density of defects associated with the accumulation of hydrogen in the 
shot-peened deformed layer is responsible for creating a mismatch be-
tween the treated surface and the non-deformed core, leading to the 
formation of sub-surface cracks which will then propagate toward the 
surface and not the core [2050, 2051]. However, the distinct influence 
of hydrogen trap site density and residual stress is not clear [2052] and 
phase transformation may also be of importance [2053]. Fig. 99 illus-
trates that gradient-structured FCC CrMnFeCoNi HEAs can exhibit a 
good combination of a high yield stress and good ductility under a 
hydrogen environment [1235]. Due to the formation of surface nano-
twins under SMAT (Figs. 99a and 99b), as opposed to the fully nano-
structured sample produced by HPT which led to brittle failure in the 
presence of hydrogen, the SMAT-processed gradient samples showed a 
2-3 times higher yield stress than the coarse-grained material coupled 
with a fair amount of ductility (Fig. 99c). Such improvement is expected 
as long as the hydrogen content is kept under a critical level to prevent 
the hydrogen-enhanced localized plasticity mechanisms. As depicted by 
the sequence of SEM images given in Fig. 99d-f, the presence of the 
gradient structure containing nanotwins was associated with a combi-
nation of both intergranular (enlarged in Fig. 99e) and transgranular 
(Fig. 99f) surface cracking mechanisms [1235]. 

Gradient-structured materials appear to exhibit high potential for 
various functional applications. Although research in this regard is 
rather limited compared to the mechanical properties of these materials, 
there are clear trends to examine the functionality of these materials for 
various applications and particularly in the energy sector. Despite these 
gradient-structured materials are currently produced by surface-SPD 
methods such as SMAT and laser shot peening. which can be operated 
remotely, various metal forming, machining and welding methods or 
some SPD methods like equal-channel angular sheet extrusion can be 
also modified to produce such materials [2054–2057]. 
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9. SPD from the Bronze Age to 2024 

SPD has been a part of human life for centuries and was used first in 
food-making and later in strategic tool-making. Sword making in the 
Bronze Age or at least during the transition from the Bronze Age to the 
Iron Age by Repeated forging and folding is perhaps the first success in 
commercializing the SPD process [5, 18]. The scientific interests in SPD 
which originated from geology at the beginning of the last century led to 
the invention of some new SPD methods such as HPT [20–22] and ECAP 
[27, 28] which are still the most popular [177, 193] even at the 
beginning of the year 2024. As discussed in previous chapters, SPD has 
been expanded in different directions in the 21st century and used to 
control microstructural and structural features to achieve novel me-
chanical and functional properties in a wide range of materials. To have 
an idea about the latest research trends in the SPDD field, some major 
articles published in 2024 are briefly reviewed in this section. 

A review of the paper published in 2024 suggests that there are still 
attempts to develop new or modified bulk-SPD methods [2057–2061]. 
These attempts are mainly to enhance the properties, modify the shape 

of samples or scale up the final product [2062, 2063]. There are also 
attempts to develop new surface-SPD methods or combine the existing 
methods with other processes [2064, 2065]. One issue that can be un-
derstood clearly from the literature survey is the high interest of re-
searchers in processing additively manufactured alloys by bulk-SPD 
[2066, 2067] or surface SPD [2068, 2069]. A combination of 3D 
printing and SPD was also employed with the objective of enhancing the 
strength-ductility synergy [2070, 2071]. Cryogenic-SPD to achieve 
enhanced mechanical properties such as high strength and high ductility 
is used by some researchers [2072], while the thermal stability of these 
materials is still a matter of investigation [2073]. There are reports to 
use the concept of ultra-SPD to synthesize materials and the synthesis of 
novel Al-Au alloys [2074], HEAs [2075] and high-entropy ceramics 
[2076] are some reported results. Deep evaluation of microstructure by 
different ex situ characterization methods is still popular as there are still 
many questions in this regard, but there are clear trends to use in situ 
methods as well [2077, 2078]. Understanding the importance of grain 
boundaries and related phenomena such as segregation and diffusion are 
other microstructure-related studies [2079–2081], while there are also 

Fig. 98. (a-c) EBSD of cross section of SMAT-processed Ti10V75Cr15 where (a) is a misorientation map, (b) is grain boundary map and (c) is internal misorientation 
map (treated surface is at bottom) [2047]. (d) pressure-composition isotherms for SMAT-processed Ti10V75Cr15, indicating reversible hydrogen storage at room 
temperature without the need to an extra activation treatment [2047]. (e) Schematics of the effect of surface-SPD on hydrogen storage behavior and activation of 
Ti-V-Cr alloys [2047]. 
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various studies on structure-related studies such as phase trans-
formations [2082–2084]. While most of these studies are experimental, 
there are some efforts to use theoretical or numerical approaches such as 
atomistic modeling [2085], first-principles calculations [1004, 2086], 
molecular dynamic simulations [2087], crystal plasticity simulations 
[2088], finite element analysis [2089] and machine learning [2090]. 

A survey of publications in 2024 indicates that the investigations of 
mechanical and functional properties for different applications are the 
most popular research topics. There are numerous publications on such 
properties and application after processing by bulk-SPD including 
hardness [2091], strain hardening [2092], anneal hardening [2093], 
ductile-brittle fracture transition [2094], fatigue resistance [2095, 
2096], creep resistance [2097, 2098], shape memory effect [2099], 
superconductivity [2100], magnetic properties [2101–2103], electro-
magnetic interference shielding [2104], thermoelectric properties 
[2086], battery application [2105, 2106], photocatalytic CO2 conver-
sion [2076], photocatalytic hydrogen production [2077], solid-state 
hydrogen storage [2107–2109], corrosion resistance [2110, 2111] and 
biomedical devices [2112–2114]. Materials processed by surface-SPD 
were also investigated for different properties including wear resis-
tance [2115, 2116], fatigue resistance [2117, 2118], superplasticity 
[2119] and corrosion resistance [2120]. There have been also attempts 
to combine bulk-SPD with laser treatment or replace bulk-SPD with 
powder-SPD to produce materials that need a large specific surface area 
such as photocatalysts [2076, 2121]. One of the latest research trends is 
the application of SPD to biomolecules to simulate their mechano-
chemical behavior which is of interest in understanding the origin of life 
[2122]. This last issue will be discussed in more detail in the next 
session. 

10. SPD from earthquake to the origin of life 

Although SPD methods are at the early stages of commercialization, 

they have significantly contributed to scientific issues regarding the 
behavior of materials under deformation. Among various SPD methods, 
HPT is perhaps the most powerful tool for fundamental studies because 
strain, pressure, temperature and strain rate can be controlled in this 
method with high precision [20]. Although HPT is currently used mainly 
for metal processing [23, 2123]; however, high pressure in the method 
makes it applicable to almost any kind of material including 
hard-to-deform materials such as ceramics [2124, 2125]. From the 
historical point of view, Bridgman employed the first HPT facility to 
process different kinds of metallic and nonmetallic substances including 
rocks and organic materials [20]. The application of HPT to rocks is 
accompanied by plastic deformation, phase transformations and snap-
ping, an observation that suggested a mechanism for the occurrence of 
deep-seated earthquakes by plastic deformation of rocks [20] which is 
still of interest in geology [646]. The first press release of HPT to the 
public by Bridgman in 1935 had the title of “Scientist Makes Miniature 
Earthquake”, as shown in Fig. 100a [23]. The HPT has continued its way 
as a scientific tool in clarification of different phenomena, and under-
standing the origin of life is one of its latest contributions that was press 
released in a TV program in 2022, as shown in Figs. 100b and 1c [2126]. 

One of the most essential biomolecules for life on Earth is protein, 
but the formation of the first protein molecules from amino acids in the 
early Earth conditions (about four billion years ago) is not well under-
stood yet. Following the discovery of amino acids in meteorites, 
particularly Murchison and Tagish Lake meteorites, the hypothesis of 
delivery of biomolecules and their polymerization by high-pressure 
impacts through small solar system bodies (meteoroids, asteroids and 
comets) has received high attention [2127, 2128]. Despite high interest 
in this hypothesis, simulations of astronomical impacts by high-pressure 
shock experiments have not led to the formation of proteins from amino 
acids so far [2129, 2130]. Neglecting the strain effect can be one 
explanation for little success in the polymerization of amino acids by 
shock experiments [2131], while straining can practically occur in such 

Fig. 99. Illustration of the effect of SMAT on the modification of the hydrogen embrittlement resistance of a CrFeMnCoNi HEA: (a-b) SEM and EBSD images of 
surface nanotwins induced by SMAT before hydrogen charging, (c) tensile stress-strain curves before (black) and after (red) hydrogen charging for gradient- 
structured samples produced by two different SMAT processing conditions or fully nanostructured sample produced by HPT, (d-f) SEM images of a fractured 
specimen after hydrogen charging revealing both intergranular enlarged in (e), and transgranular enlarged in (f) [1235]. 
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impacts due to high pressure, as schematically shown in Fig. 100b 
[2132]. Since some studies reported clear changes by straining in 
organic materials [2133, 2134], the strain effect should be included in 
the astronomical impact simulations. 

For simulating the behavior of biomolecules under astronomical 
impacts, a recent study processed glycine amino acid by HPT under 1 
and 6 GPa at ambient temperature [2126]. A loud explosion occurred 
during the HPT processing of glycine which can be recognized from the 
appearance of HPT anvils after the process, as shown in Fig. 100c. The 
gas phase could not be analyzed in this study, but examination of the 
solid phase by XRD (Fig. 101a), Raman spectroscopy (Fig. 101b) and 
nuclear magnetic resonance spectroscopy (Figs. 101c and 101d) indicate 
the stability of large amounts of glycine and the formation of some 
amounts of alcohol. The presence of large amounts of glycine after such 
severe HPT processing conditions justifies the stability of glycine re-
ported in meteorites [2127, 2128]. The detection of ethanol confirmed 
that polymerization of glycine did not occur but its decomposition to 
alcohol and nitrogen-containing molecules happened by HPT process-
ing. Despite the absence of polymerization, these findings are of 
importance because alcohol and nitrogen-containing groups are essen-
tial molecules for the development of organic materials on the Earth 
[2135]. Furthermore, both alcohol and glycine were detected in some 
comets [2136, 2137] and simulations by HPT suggested a possible 
mechanism for the formation of alcohol in comets by pressure and strain 
effects. These findings suggested that further studies by SPD under high 
pressure can be of importance from the “operational” view [2138] for a 
better understanding of the origin of life. 

11. Concluding remarks and outlook 

Severe plastic deformation (SPD) processing and the science of the 
design and synthesis of ultrafine-grained (UFG) materials by this process 
continuous its progress, although the focus of the field shows a transition 
from structural materials with enhanced mechanical properties to 
superfunctional materials with superior functional properties. This 
article attempts to highlight the most recent progress in the field and 
give new insight into the future of SPD. There are now various SPD 
methods for producing samples with appropriate shapes, large sizes and 

continuous processing for commercial applications (Chapter 2). Micro-
structure and phase transformation of severely deformed materials, 
which have a significant effect on their properties, are studied much 
deeper with advanced characterization methods and theoretical studies 
in recent years (Chapter 3 and 4). Mechanical properties of severely 
deformed materials including high hardness and strength particularly at 
room temperature as well as creep resistance and superplasticity 
particularly at high temperature are widely studied (Chapter 5). How-
ever, the general trend is to study the functional properties of these 
materials for various applications including electric/magnetic proper-
ties, catalytic performance, hydrogen-related functionalities (hydrogen 
production, hydrogen storage and hydrogen embrittlement resistance), 
corrosion resistance and biocompatibility (Chapter 6). The application 
of SPD has been now extended from the production of UFG metallic 
materials such as magnesium, aluminum, titanium and iron alloys to 
various kinds of metallic and non-metallic materials such as high- 
entropy alloys, glasses, semiconductors, ceramics and polymers (Chap-
ter 7). Another trend in the SPD field is to produce heterostructured 
materials including harmonic-structured and gradient-structured mate-
rials because these materials can show better properties for some 
particular applications compared to UFG materials (Chapter 8). These 
research trends continue to expand in different directions in the year 
2024 (Chapter 9), and one of the latest trends in the SPD field is the 
investigation of the mechanisms behind certain natural phenomena, 
including the origin of life (Chapter 10). 

SPD has shown great potential for the formalization of property- 
microstructure relationships for a few decades, but the field can move 
to the discovery of original materials that exhibit unique functionalities 
for particular applications like energy materials. In this regard, the field 
needs to be empowered by using various advanced analysis and in situ 
characterization methods. Moreover, close collaboration with theoret-
ical scientists is necessary, particularly for functional properties related 
to energy applications. Biomaterials and hydrogen-related materials 
have currently a great positioning in many countries, and interesting 
findings reported for SPD-processed materials in these applications can 
lead to a faster transition from the laboratory scale to industry adoption. 
For such a transition to industry and commercialization, scaling up the 
sample size by using methods with enlarged processing capacity or with 

Fig. 100. (a) The first press release about HPT in 1935, highlighting the potential of the method for geological studies and the mechanism of deep-seated earthquakes 
[23]. (b) A television program on TV Cultura channel in 2022 about the application of HPT for understanding the origin of life [2126]. 
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continuous processing capability is essential. Studies conducted in very 
recent years confirm that SPD can move from a metal processing tech-
nique to a multidisciplinary tool for various studies that need close 
connection with scientists from the fields of physics, chemistry, math-
ematics, geology, astronomy, life sciences and many aspects of 
engineering. 
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program (TÉT) through Grant No. 2021-1.2.5-TÉT-IPARI-RU-2021- 
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[439] J.A. Muñoz, M. Melia, M. Avalos, R.E. Bolmaro, Equal channel angular sheet 
extrusion (ECASE) produces twinning heterogeneity in commercially pure 
titanium, Mater. Charact. 181 (2021) 111460. 

[440] S. Kalácska, J. Ast, P.D. Ispánovity, J. Michler, X. Maeder, 3D HR-EBSD 
characterization of the plastic zone around crack tips in tungsten single crystals at 
the micron scale, Acta Mater. 200 (2020) 211–222. 

[441] G.C. Sneddon, P.W. Trimby, J.M. Cairney, Transmission Kikuchi diffraction in a 
scanning electron microscope: a review, Mater. Sci. Eng. R. 110 (2016) 1–12. 
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crystallization in a thermally non-primary crystallizing amorphous Al85Ce8Ni5Co2 
alloy, Scr. Mater. 54 (2006) 1733–1737. 

[529] G.E. Abrosimova, A.S. Aronin, S.V. Dobatkin, S.D. Kaloshkin, D.V. Matveev, O. 
G. Rybchenko, E.V. Tatyanin, I.I. Zverkov, The formation of nanocrystalline 
structure in amorphous Fe-Si-B alloy by severe plastic deformation, J. Metastab. 
Nanocryst. Mater. 24 (2005) 69–72. 

[530] A.M. Glezer, M.R. Plotnikova, A.V. Shalimova, S.V. Dobatkin, Severe plastic 
deformation of amorphous alloys: I. structure and mechanical properties, Bull. 
Russ. Ac. Sci. Phys. 73 (2009) 1233–1239. 

[531] A.A. Mazilkin, G.E. Abrosimova, S.G. Protasova, B.B. Straumal, G. Schütz, S. 
V. Dobatkin, A.S. Bakai, Transmission electron microscopy investigation of 
boundaries between amorphous “grains” in Ni50Nb20Y30 alloy, J. Mater. Sci. 46 
(2011) 4336–4342. 

[532] K. Wang, The use of titanium for medical applications in the USA, Mater. Sci. Eng. 
A 213 (1996) 134–137. 

[533] J. Onagawa, Preparation of high corrosion resistant titanium alloys by spark 
plasma sintering, J. Jpn. Inst. Met. 63 (1999) 1149–1152. 

[534] Q. Liu, W.Y. Yang, G.L. Chen, Preparation of high corrosion resistant titanium 
alloys by spark plasma sintering, Acta Metall. Mater. 43 (1995) 3571–3582. 

[535] K. Еdalati, Q. Wang, N.A. Enikeev, L.J. Peters, M.J. Zehetbauer, E. Schafler, 
Significance of strain rate in severe plastic deformation on steady-state 
microstructure and strength, Mater. Sci. Eng. A 859 (2022) 144231. 

K. Edalati et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref470
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref470
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref470
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref471
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref471
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref471
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref472
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref472
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref472
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref473
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref473
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref474
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref474
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref474
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref475
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref475
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref475
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref475
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref476
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref476
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref476
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref477
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref477
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref477
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref478
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref478
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref478
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref478
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref479
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref479
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref480
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref480
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref480
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref481
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref481
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref481
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref481
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref482
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref482
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref482
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref482
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref483
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref483
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref483
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref483
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref483
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref483
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref483
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref483
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref483
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref483
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref483
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref483
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref484
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref484
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref484
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref484
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref485
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref485
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref485
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref485
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref486
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref486
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref486
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref487
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref487
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref488
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref488
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref489
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref489
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref489
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref489
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref490
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref490
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref490
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref491
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref491
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref491
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref491
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref492
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref492
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref492
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref493
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref493
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref493
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref493
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref494
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref494
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref494
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref495
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref495
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref495
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref496
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref496
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref496
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref497
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref497
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref497
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref498
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref498
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref499
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref499
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref500
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref500
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref500
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref501
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref501
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref501
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref501
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref502
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref502
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref502
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref502
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref503
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref503
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref503
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref504
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref504
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref504
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref505
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref505
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref505
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref506
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref506
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref506
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref507
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref507
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref507
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref507
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref508
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref508
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref508
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref509
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref509
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref509
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref510
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref510
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref510
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref510
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref511
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref511
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref512
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref512
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref512
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref512
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref513
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref513
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref514
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref514
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref514
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref515
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref515
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref515
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref515
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref516
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref516
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref516
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref517
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref517
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref517
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref517
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref518
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref518
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref519
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref519
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref520
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref520
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref521
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref521
http://refhub.elsevier.com/S0925-8388(24)01254-4/sbref521


Journal of Alloys and Compounds 1002 (2024) 174667

122

[536] H.K. Lin, Y.H. Cheng, G.Y. Li, Y.C. Chen, P. Bazarnik, J. Muzy, Y. Huang, T. 
G. Langdon, Study on the surface modification of nanostructured Ti alloys and 
coarse-grained Ti alloys, Metals 12 (2022) 948. 

[537] R.B. Figueiredo, T.G. Langdon, Development of an ω-phase in grade 2 titanium 
processed by HPT at high hydrostatic pressure, Mater. Res. 19 (2016) 1144–1148. 

[538] S. Sinha, V.K. Sahu, V. Beura, R. Sonkusare, R. Kalsar, A.K.L. Das, J. Basu, N. 
P. Gurao, K. Biswas, Initial texture dependence of nanocrystalline omega phase 
formation during high pressure torsion of commercially pure titanium, Mater. Sci. 
Eng. A 802 (2021) 140687. 

[539] A. Sotniczuk, H. Garbacz, Nanostructured bulk titanium with enhanced properties 
- strategies and prospects for dental applications, Adv. Eng. Mater. 23 (2021) 
2000909. 

[540] W.J. Chen, J. Xu, D.T. Liu, J.X. Bao, S. Sabbaghianrad, D.B. Shan, B. Guo, T. 
G. Langdon, Microstructural evolution and microhardness variations in pure 
titanium processed by high-pressure torsion, Adv. Eng. Mater. 22 (2020) 
1901462. 

[541] H. Li, W.C. Zhang, J.L. Yang, J.Q. Pan, W.Z. Chen, G.R. Cui, G.F. Wang, G.N. Chu, 
Microstructural evolution and mechanical properties of Ti-22Al-25Nb alloy 
fabricated by high-pressure torsion under ageing treatment, J. Mater. Eng. 
Perform. 31 (2022) 07465. 

[542] P. Bazarnik, A. Bartkowska, Y. Huang, K. Szlazak, B. Adamczyk-Cieslak, J. Sort, 
M. Lewandowska, T.G. Langdon, Fabrication of hybrid nanocrystalline Al–Ti 
alloys by mechanical bonding through high-pressure torsion, Mater. Sci. Eng. A 
833 (2022) 142549. 

[543] M. Alfreider, J. Jeong, R. Esterl, S.H. Oh, D. Kiener, Synthesis and mechanical 
characterisation of an ultra-fine grained Ti-Mg composite, Materials 9 (2016) 688. 

[544] A. Kilmametov, Y. Ivanisenko, B.B. Straumal, A.A. Mazilkin, A.S. Gornakova, M. 
J. Kriegel, O.B. Fabrichnaya, D. Rafaja, H. Hahn, Transformations of α’ martensite 
in Ti–Fe alloys under high pressure torsion, Scr. Mater. 136 (2017) 46–49. 

[545] E.I. Lopez-Gomez, K. Еdalati, F.J. Antiqueira, D.D. Coimbrao, G. Zepon, D. 
R. Leiva, T.T. Ishikawa, J.M. Cubero-Sesin, W.J. Botta, Synthesis of 
nanostructured TiFe hydrogen storage material by mechanical alloying via high- 
pressure torsion, Adv. Eng. Mater. 22 (2020) 2000011. 

[546] G. Gurau, C. Gurau, F.M. Braz Fernandes, P. Alexandru, V. Sampath, M. Marin, B. 
M. Galbinasu, Structural characteristics of multilayered Ni-Ti nanocomposite 
fabricated by high speed high pressure torsion (HSHPT), Metals 10 (2020) 1629. 

[547] A. Kilmametov, A. Gornakova, M. Karpov, N. Afonikova, A. Korneva, P. Zięba, 
B. Baretzky, B. Straumal, Influence of β-stabilizers on the αTi→ωTi transformation 
in Ti-based alloys, Processes 8 (2020) 1135. 

[548] B.B. Straumal, A.R. Kilmametov, Y. Ivanisenko, A.A. Mazilkin, R.Z. Valiev, N. 
S. Afonikova, A.S. Gornakova, H. Hahn, Diffusive and displacive phase transitions 
in Ti–Fe and Ti–Co alloys under high pressure torsion, J. Alloy. Compd. 735 
(2018) 2281–2286. 

[549] B.B. Straumal, A. Korneva, A.R. Kilmametov, L. Lityńska-Dobrzyńska, A. 
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[556] D.A.G. Pérez, A.M. Jorge Junior, V. Roche, J.C. Lepretre, C.R.M. Afonso, D. 
N. Travessa, G.H. Asato, C. Bolfarini, W.J. Botta, Severe plastic deformation and 
different surface treatments on the biocompatible Ti13Nb13Zr and Ti35Nb7Zr5Ta 
alloys: microstructural and phase evolutions, mechanical properties, and 
bioactivity analysis, J. Alloy. Compd. 812 (2020) 152116. 

[557] D.R. Barjaktarevic, V.R. Djokic, J.B. Bajat, I.D. Dimic, I.L. Cvijovic-Alagic, M. 
P. Rakin, The influence of the surface nanostructured modification on the 
corrosion resistance of the ultrafine-grained Ti–13Nb–13Zr alloy in artificial 
saliva, Theor. Appl. Fract. Mech. 103 (2019) 102307. 

[558] J. Dutkiewicz, J. Kusnierz, W. Maziarz, M. Lejkowska, H. Garbacz, 
M. Lewandowska, A.V. Dobromyslov, K.J. Kurzydlowski, Microstructure and 
mechanical properties of nanocrystalline titanium and Ti–Ta–Nb alloy 
manufactured using various deformation methods, Phys. Stat. Sol. A 202 (2005) 
2309–2320. 

[559] T. Maity, O. Balci, C. Gammer, E. Ivanov, J. Eckert, K.G. Prashanth, High pressure 
torsion induced lowering of Young’s modulus in high strength TNZT alloy for bio- 
implant applications, J. Mech. Beh. Biomed. Mater. 108 (2020) 103839. 

[560] H. Yilmazer, M. Sen, M. Niinomi, M. Nakai, H.H. Liu, K. Cho, Y. Todaka, H. Shiku, 
Matsue, Developing biomedical nano-grained β-type titanium alloys using high 
pressure torsion for improved cell adherence, RSC Adv. 6 (2016) 7426–7430. 

[561] K.M. Xue, J.H. Sun, X.H. Ji, W.W. Guo, P. Li, Effect of high-pressure torsion on 
microstructure and properties of TA15R titanium alloy, Rare Metal. Mater. Eng. 
48 (2019) 1189–1194. 

[562] A. Kilmametov, Y. Ivanisenko, A.A. Mazilkin, B.B. Straumal, A.S. Gornakova, O. 
B. Fabrichnaya, M.J. Kriegel, D. Rafaja, H. Hahn, The α→ω and β→ω phase 
transformations in Ti–Fe alloys under high-pressure torsion, Acta Mater. 144 
(2018) 337–351. 

[563] R. Ray, B.C. Giessen, N.J. Grant, The constitution of metastable titanium-rich Ti- 
Fe alloys, an order-disorder transition, Metall. Trans. 3 (1972) 627–629. 

[564] B.W. Levinger, Lattice parameter of beta titanium at room temperature, Trans. 
Am. Inst. Min. Met. Eng. 197 (1953) 195–200. 

[565] S.G. Fedotov, N.F. Kvasova, M.I. Ermolova, Decomposition of the metastable solid 
solution of titanium with ipron, Dokl. Akad. Nauk SSSR 216 (1974) 363–366. 

[566] L.N. Guseva, L.K. Dolinskaya, Metastable phases in titanium alloys with group 
VIII elements quenched from the β-Region, Izv. Akad. Nauk SSSR Met. 6 (1974) 
195–202. 

[567] A. Korneva, B. Straumal, A. Kilmametov, L. Lityńska-Dobrzyńska, R. Chulist, 
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properties and degradation behavior of binary magnesium-silver alloy sheets, 
J. Phys. Chem. Sol. 133 (2019) 142–150. 

[1423] K. Bryła, J. Horky, M. Krystian, L. Lityńska-Dobrzyńska, B. Mingler, 
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[2000] H. Mughrabi, H.W. Höppel, M. Kautz, Fatigue and microstructure of ultrafine- 
grained metals produced by severe plastic deformation, Scr. Mater. 51 (2004) 
807–812. 

[2001] H.S. Ho, W.L. Zhou, Y. Li, K.K. Liu, E. Zhang, Low-cycle fatigue behavior of 
austenitic stainless steels with gradient structured surface layer, Int. J. Fatigue 
134 (2020) 105481. 

[2002] Z. Sun, J. Zhou, D. Retraint, Mechanical properties of metallic materials 
processed by surface severe plastic deformation, Mater. Trans. 64 (2023) 
1739–1753. 

[2003] C.A. Rodopoulos, S.A. Curtis, E.R. De Los Rios, J. SolisRomero, Optimisation of 
the fatigue resistance of 2024-T351 aluminium alloys by controlled shot peening 
- methodology, results and analysis, Int. J. Fatigue 26 (2004) 849–856. 

[2004] T. Gao, Z. Sun, H. Xue, D. Retraint, Effect of surface mechanical attrition 
treatment on high cycle and very high cycle fatigue of a 7075-T6 aluminium 
alloy, Int. J. Fatigue 139 (2020) 105798. 

[2005] S.A. Namjoshi, V.K. Jain, S. Mall, Effects of shot-peening on fretfing-fatigue 
behavior of Ti-8Al-4V, J. Eng. Mater. Technol. 124 (2002) 222–228. 

[2006] Z. Qin, B. Li, R. Chen, H. Zhang, H. Xue, C. Yao, L. Tan, Effect of shot peening on 
high cycle and very high cycle fatigue properties of Ni-based superalloys, Int. J. 
Fatigue 168 (2023) 107429. 

[2007] M.K. Khan, Y.J. Liu, Q.Y. Wang, Y.S. Pyun, R. Kayumov, Effect of ultrasonic 
nanocrystal surface modification on the characteristics of AISI 310 stainless steel 
up to very high cycle fatigue, Fatigue Fract. Eng. Mater. Struct. 39 (2016) 
427–438. 

[2008] Q.Y. Wang, C. Bathias, N. Kawagoishi, Q. Chen, Effect of inclusion on subsurface 
crack initiation and gigacycle fatigue strength, Int. J. Fatigue 24 (2002) 
1269–1274. 

[2009] K. Nishijima, Stepwise S-N curve and fish-eye failure in gigacycle fatigue, 
Fatigue Fract. Eng. Mater. Struct. 22 (1999) 601–607. 

[2010] Z.B. Wang, N.R. Tao, S. Li, W. Wang, G. Liu, J. Lu, K. Lu, Effect of surface 
nanocrystallization on friction and wear properties in low carbon steel, Mater. 
Sci. Eng. A 352 (2003) 144–149. 

[2011] J. Zhang, Y. Jian, X. Zhao, D. Meng, F. Pan, Q. Han, The tribological behavior of 
a surface-nanocrystallized magnesium alloy AZ31 sheet after ultrasonic shot 
peening treatment, J. Magnes. Alloy. 9 (2021) 1187–1200. 

[2012] A. Amanov, O.V. Penkov, Y.S. Pyun, D.E. Kim, Effects of ultrasonic 
nanocrystalline surface modification on the tribological properties of AZ91D 
magnesium alloy, Tribol. Int. 54 (2012) 106–113. 

[2013] Y.S. Zhang, Z. Han, K. Wang, K. Lu, Friction and wear behaviors of 
nanocrystalline surface layer of pure copper, Wear 260 (2006) 942–948. 

[2014] J. Zou, Y. Liang, Y. Jiang, C. Yin, C. Huang, D. Liu, Z. Zhu, Y. Wu, Fretting 
fatigue mechanism of 40CrNiMoA steel subjected to the ultrasonic surface 
rolling process: the role of the gradient structure, Int. J. Fatigue 167 (2022) 
107383. 

[2015] J. Wang, Y. Gao, X. Wei, Investigations of the effects of combination treatments 
on the fretting fatigue resistance of GH4169 superalloy at an elevated 
temperature, Surf. Coat. Technol. 426 (2021) 127758. 

[2016] J. Li, S. Chen, W. Zhu, Y. Zhao, L. Liu, Z. Wang, H. Pan, Microstructural response 
and surface mechanical properties of TC6 titanium alloy subjected to laser 
peening with different laser energy, Opt. Laser Technol. 158 (2023) 108836. 

[2017] S. Alikhani Chamgordani, R. Miresmaeili, M. Aliofkhazraei, Improvement in 
tribological behavior of commercial pure titanium (CP-Ti) by surface mechanical 
attrition treatment (SMAT), Tribol. Int. 119 (2018) 744–752. 

[2018] W. Yan, L. Fang, K. Sun, Y. Xu, Effect of surface work hardening on wear 
behavior of Hadfield steel, Mater. Sci. Eng. A 460–461 (2007) 542–549. 

[2019] Y. Liu, B. Jin, D.J. Li, X.Q. Zeng, J. Lu, Wear behavior of nanocrystalline 
structured magnesium alloy induced by surface mechanical attrition treatment, 
Surf. Coat. Technol. 261 (2015) 219–226. 

[2020] T. Hanlon, E.D. Tabachnikova, S. Suresh, Fatigue behavior of nanocrystalline 
metals and alloys, Int. J. Fatigue 27 (2005) 1147–1158. 

[2021] L. Wagner, M. Mhaede, M. Wollmann, I. Altenberger, Y. Sano, Surface layer 
properties and fatigue behavior in Al 7075-T73 and Ti-6Al-4V Comparing results 
after laser peening; shot peening and ball-burnishing, Int. J. Struct. Integr. 2 
(2011) 185–199. 

[2022] M. Benedetti, V. Fontanari, P. Scardi, C.L.A. Ricardo, M. Bandini, Reverse 
bending fatigue of shot peened 7075-T651 aluminium alloy: the role of residual 
stress relaxation, Int. J. Fatigue 31 (2009) 1225–1236. 

[2023] Y.K. Gao, X.R. Wu, Experimental investigation and fatigue life prediction for 
7475-T7351 aluminum alloy with and without shot peening-induced residual 
stresses, Acta Mater. 59 (2011) 3737–3747. 

[2024] Y. Xiang, Y. Liu, Mechanism modelling of shot peening effect on fatigue life 
prediction, Fatigue Fract. Eng. Mater. Struct. 33 (2010) 116–125. 
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