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MOMENT MAP FOR COUPLED EQUATIONS OF KAHLER FORMS AND
CURVATURE

KING LEUNG LEE

ABSTRACT. In this paper we introduce two new systems of equations in Kéahler geometry:
The coupled p equation and the generalized coupled cscK equation. We motivate the
equations from the moment map pictures, prove the uniqueness of solutions and find out
the obstructions to the solutions for the second equation. We also point out the connections
between the coupled cscK equation, the coupled Kéahler Yang-Mills equations and the
deformed Hermitian Yang-Mills equation.

Moreover, using this moment map, we can show the Mabuchi functional for the general-
ized coupled cscK equation, and a special case of the coupled Kéhler Yang-Mills equations
and the deformed Hermitian Yang-Mills equation are convex along the smooth geodesic,
which is different from the one using the moment map picture from the gauge group. In
our case, the geodesic is given by the natural metric on the product of smooth Kéahler
potential K(X,wp) X -+ X K(X,wg).

1. INTRODUCTION

1.1. Motivation. Over the years, many important equations in complex geometry have been
given moment map interpretations. A few examples of equations with moment map interpre-
tations are the cscK equation ([Don00] and [Fuj92]), the coupled Kéhler Yang-Mills equation
(JACGEGPT13]) and the coupled constant scalar curvature ([DP20]). In this paper, we combine
the moment maps for the latter two together with some new ideas to define a new type of canonical
metrics. We begin by recalling the definition of the coupled Kéhler-Yang-Mills equation.

Definition 1.1 (JACGEGP13]). Let P be a principal U(k) bundle on a Kdhler manifold (X, wx),
A be a connection on P, and Fa be the curvature which is an Lie(G)-valued 2 form. Then the
coupled Kdhler equation is given by

a059+a1/\2FA/\FA = c
NFa

where z € Lie(Q) is invariant under the adjoint U(k) action and c is a constant, which depended
on the topological constraint on P and ag, a1, [w]. Also, we need the integrability condition

0,2 _
F92 —o.
If P = U(1)*, then the Lie algebra is u(1) @ --- @ u(1), and the F4 can be represented as
Fa=wi+- - +wg,

where w1, ...,wy are L-valued Kéhler forms on X, which can be realized as Kéhler forms on X. In
this special case, the moment map equation is given by

k 2 n—2
ws A w,
a()Sg + o Z % = co
i=1 0
Treg (w1) = 1.
Tru, (wi) = cg-

In [HWNIS|, Hultgren and Witt Nystrom introduced another type of canonical metrics: the
coupled Kéahler Einstein equation. This equation was later generalized by Datar and Pingali
([DP20)) to the coupled cscK equation:
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Definition 1.2 ([DP20]). Let X be a Kdhler manifold and wo, ..., wy, be Kahler forms on X, and

k
let w = Zwi. Then the coupled cscK equation is given by
=0
wg oo Wi
vol(wo) T vol(wg)

Swo = Trwow + ¢,

here c is the topological constant depending on the class of w; and Ric(w). If ¢ = 0, then this
reduces to the coupled Kdhler-FEinstein equation.

Both the cKYM equation and the ccscK equation are moment map equations. For both
setups, the domains are in a subspace of Y C J X A, which for each (J, A), A € Q},’l(ad(P))
(See [ACGFGP13|, [DP20]). Notice that in order to get the topological constraint, the setups
are in the complexifed orbit. But we can study deformation of ths solutions if we consider the
bigger subspace J. When P is a principal U(1) bundle, the moment map for the coupled K&hler
Yang-Mills equation is

W2 A W2 WX AW Wl
MCKYM(JvA)(@vg):/ @(C—S(J)—ag Xwn A +a; = n —r
X

and the moment map for coupled cscK equation is

W Awy w?
MCCSCK(‘]? A)(HE,OvHE,A) = /X HE,O <C— S(‘]) + Xin + /X HE,A ﬁ -z

We will now explain how both these moment maps can be constructed using the moment map
for the cscK metrics together with a new construction involving maps between two symplectic
manifolds (X,wx) and (Y,wy) which are diffeomorphic to each others.

Definition 1.3 (Defintion 22). We denote the map
pp : Map(X,Y;p)t — Lie(Ham(X,wx) x Ham(Y,wy))*

by
) ) wh w§7p71 A f*w§’,+1 wy f*w’;{p /\w%’,

= cl—= - - - f o —=—=

Hpwxwy n—p Tl (m—p—1Dp+1) >l (n —p)'p! ’
WTPTL A prP Tl WY P AWP

whereclzfx Xf nf Y ,Q:fyf* Xn Y

w w

XX fY Y

We also have the classical moment map: Denote J;nt(X) be the space of all integrable almost
complex structure, and let

T (X, wo0) :={J € Tint(X)|wo(e,®) = wo(Je, Je), wo(e, Je) > 0}

be the space of integrable almost complex structure compactible with wg. The metric g; :=
w(e, Je) induces a pairing on 777 (X, wo), and

n

O (817, 62.7) ::/ 95(617,020) .
X n!

Then the map

n—1

n
pg (J) = (S5 — 87) 20 = Rie(X, J) A 2 — 54"
n! (n—1)! n!

is a moment map corresponding to (J (X, wq), Q7) (see [Don97], [Fuj92]), where

1 wy
Sy=— S, 0
=L Vol(X,w™) /X 7l

is the average of S;.

As X is diffeomorphic to Y, if we take wa = f*wy, then under suitable domain,
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(1) pexym(J,A) =0iff pg(J)+ crpi(f) — capd(f) = 0 for some suitable constant ci, c2;
(2) peeserx (J, A) =0 iff py(J) + cpo(f) = 0 for some suitable constant c.

Notice that with a suitable choice of domain and symplectic form, the sum of two moment
maps can also be a moment map. Therefore, we unify the ccscK equations and coupled Kéhler
Yang Mills equation into one general moment map setup, namely, the sum of different moment
maps jp with the standard moment map py. Moreover, using the same idea, we reconstruct
the moment map for deformed Hermitian Yang Mills equation (dHYM) (see [CXY17]) and the
coupled dHYM ([SS19]) in section 3.4.

1.2. Construction. We will now explain how to choose the symplectic form, the domain and
the range to make the sum of two moment maps a moment map in general by considering the
construction for the moment map p 7 + po, i.e, the moment map for ccscK, as an example.

Step 1 Define
w0 J(X,wo) x Map(X, X) — Lie(Ham(X, wo))* & Lie(Ham(X, wp) x Ham(X,w1))*
by
ng.0(J; f) = (ng, po)-
We need to show that this is a moment map for the Kahler form
Qg,0:=07 + Qo
For this moment map, the range contains more equations than we want, and the domain

J and f has no relation. We will fix this issue by the following steps.

Step 2 Consider the subgroup H 2 Ham(X,wo) x Ham (X, w1), and the embedding map ¢ : H —
Ham (X, wo) x Ham(X,wo) x Ham(X,w1) by
Woym) = (01 o)
It induces a map ¢* : Lie(Ham(X,wo) X Ham(X,wo) x Ham(X,w1))* — Lie(H)*, and
the map

oo = wi ™t A (=Ric(wo, J) + frwi — ciwo)  fawl — caw?
70 (n —1)! ’ n!

is also a moment map.
Step 3 In order to make sure the solution indeed is Kahler, we consider the subspace

Yo :={(J,NIDFIDf! € T(X,w1)},

and we need to show that this space has the following properties:

(a) It is closed under the action of H;

(b) It is a smooth manifold. If we want the solutions to be Kéhler, we need this space
to be a Kéhler manifold.

Then f*w;p is J invariant and hence it is a Kahler form. But our theory also need the

domain to be the complexified orbit space HC- (Jo, fo). Notice that this space is equivalent

to

{(¢0,91) € Map(X, X)|pfw; = w; ++/—190h; for some h; € PSH(X,w;),i=0,1}.

We will show that the solution of ¢* o /‘J»O‘HC-(JO fo) =01is equivalent to the solution of
cescK equation in the Kahler class [wo], [w1].

Remark 1.4. (1) we may also choose Q7 0.0 ,a5 = a1 7+0a290 in step 1 for some positive
number a1, a2 to affect the constant of the outcome moment map, that is,

o _ wgﬁl A (—a1Ric(wo, J) + a2 f*w1 + cjwo) a2 faw] — chw}
B0 (n—1)! ’ n!

but a1, a2 need to be positive so that Q7 o is still a symplectic (or Kdhler form if it is J
invariant).
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(2) Notice that the embedding is not unique. For example ,it may also be (o, 0,n), (0,071,n)
or (6=Y,0,n™ 1) . These embedding change part of the sign of the moment map. For
example, if we change the embedding to be (o,0,7), then the moment map becomes

o B wgﬁl A (—a1Ric(wo, J) — aa f*w1 — cjwo) a2 faw] — chwl
Ka0 (n—1) ’ n! '

(3) Notice that if (J, f) € Vo, then (J=1, f) = (=J, f) € Yo. This implies the above choices
of embedding won’t affect the space YVo. However, the corresponding Mabuchi functional
will be the same.

In general, the main technical part for this set up is to find the correct domain space (which is Yo
here). We need a space that is closed under the action and is a Kédhler submanifold. In section [5]
we will discuss the difficulties of finding the suitable complex submanifold of Map(X, X) for the
moment map fp.

Similarly, for coupled Kéahler Yang-Mills equation, we first construct

po1 = (kg +a1pg — a2p))lexy Moy =t 0 (b7, 15, 7)Y Moy

using step 1 and step 2 with a suitable embedding restricted in a suitable subspace yMOﬁ. The
subspace we take in step 3 should be

YMo1 CH{(J, f,9) € T(X,wo)xMap(X1, Xo;n—2) " xMap(X1, Xo;n—1)T|g=f~1, DfIDf ' € T(X,w1)},
such that
Q7,0100,01,05 = @027 — 15 + a2Q] > 0}

Here p* and Q* are defined in Definition as we need
/ (1w /\w([)"fl] - azw([)"]) =0,
X

k
w
where wl*l = R If we take the undual one, apQ 7 — @10 + @21 must not be positive.

1.3. Main result. To discuss the main result, We first define the coupled p equation.

Definition 1.5 (coupled p equation). Let (X,wx), (Y,wy) be symplectic manifolds which are
diffeomorphic to each other, 0 < p < n—1 and let Map(X,Y;p)t be the space of diffeomorphism
such that w?{p A f*wf, is a volume form (see definition (Z11)). Then the couple equation p is
given by

Hp = 07

where pp : Map(X,Y;p)t — Lie(Ham(X,wx) x Ham(Y,wy))* is defined by

c1— —

() = wh w§7p71 A f*w€,+1 czﬁ _ f*w’;{p /\w%’,
P nl (m—p—-Dp+1)V n! (n —p)!p!

with c1,c2 € R such that

[ [
x (n—p—=1lp+1)! x n!’
f wn*P /\wP wh

*Wx % _ 2/ v

y (n—p)p! y n!

After that, we will study the procedure of combining the moment maps i, and p 7 by a special
case which we call the generalized ccscK equation:
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Definition 1.6. Let X be a compact Kdhler manifold with Kdhler forms wo,...,wg. Then we
define the generalised ccscK equation to be the following:

k pitl g*PFl w1 wn
LPi »P0 : 0 ;00
A — Ric(wo, JO)N —— —cg—>—= = 0
;((Pi—i-l)! (n—m—l)) (0,0, J0) (n—1)! n!
n—p D
woywol A wl}tpl _ witpl - 0
(n —p1)! p1! n!
n—pk Pk n
“0,40 “ko _ “k,p, - 0
(n—pe)! pi! n!

We will show that this system of equations has a moment map setup. Moreover, there exists
a underlying space which has a Kéahler structure and is compatible with the action. Hence, by
considering the orbit space

k
OJ,f:: <H Hamgi(Xi,wi)> (L 1y s fr)-

=0

Then the moment map equation is given by theorem 311}

Theorem 1.7. Consider the moment map pz: O F Lie(Hg X ... X H)* defined by theorem
[Z9 restricted on 0, 7 Then py = 0 has a solution iff the generalized ccscK equation has a

solution (w0, , k).

In particular, if Xo = -+ = X, fi = fa =--- = f, = id, p = (0, ...,0), then this is the ccscK
equation with the classes fixed. Also, using similar idea, we can get an alternate setup for the
coupled Kihler Yang-Mills equation (see [ACGFGP13]) for the case G = U(1)*.

1.4. Application. As a result, similar consequences in [Don00], [Wan04] (see also [PS04], [PS10],
[Sz&10], |LS15], [ACGFGP13]) can be applied for generalised ccscK:

(1) Corollary L9t The solution is unique up to automorphism.
k

(2) Corollary L2} If the solution of u g , = 0 exists, then ﬂ Aut(X;, L;) is reductive.

i=0

(3) Corollary 4l Futaki invariant is given by (uz p,&); and if solution exists, then Futaki
variant are 0.

(4) Corollary [I5l Calabi functional is defined by ||z ,||%; and if ||u||? have a critical point
and Futaki invariant vanished implies ¢ = 0 has a solution.

(5) Corollary 0t The Mabuchi functional can be defined. (See definition[£8) This functional
is geodesic convex along the geodesic eV =1 - p, where ¢ € Lie(@), and the minimums (if
exists) are the solutions of = 0.

(6) Corollary EIGF If the manifold X is a toric variety, then the (S1)™ invariant solution is
unique (if it exists).

Remark 1.8. Notice that if G = Ham(X,w), there is no complexified group GC. We can still
define an orbit space, but the uniqueness of the solution still need to investigate. If the orbit
is geodesically convez, i.e., any two points can be connected by the geodesic eV 1€ . p, then the
solution is unique. However, in general, by [Darld], Ham®(X,R) is not geodesically convez.
Hence the uniqueness still need to study.
Denote K(X,w;) := {hy € C°(X,R)|w; p, := w; ++/—100h; > 0}. The smooth gedosic we
defined is given by (ho,¢, hi,¢, -+, hi,t) C (X, wo) X -+ K(X,wy) such that for all 0 <14 <k,
hie = Vhi2,.
Consider k = 1 case. In [ACGEFGP13]|, denote the space of metic on the line bundle L to be H (L),
then the geodesic (Proposition 3.17 of [ACGFGP13]) is given by (h, H) € K(X,w) x H(L).
hot = [Vho,tl,

Hy = 2dHe(JX}, ) +V=1Fu, (X, X} ).



6 KING LEUNG LEE

Notice that the second equation is twisted by the Kéahler potential h, while in our note, the
geodesic are independent by each other. Therefore, in this note, we show that the functional is
convex along different geodesic, which is more natural in the space of K(Xw,) X - K(X, wg).

1.5. More result of p,. After the above applications, we will study if the couple p equation can
be viewed as a moment map in a Kahler manifold. Unfortunately, there is no Kahler submanifold
in the domain which is closed under the action of Ham(X,wx) x Ham(Y,w), and Q is non -
degenerated . The best result is in Proposition [5.7] which implies that pp is a pseudo moment
map in X;p (as Qp‘?(f* may be degenerated).

P

After that, we give a special case for the moment map p, is still a moment map when X is a
submanifold of Y.

Finally, in the appendix, we will give a rough idea about the relation between this setup and
the setup in [ACGFGP13] and [DP20].
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2. MOMENT MAP FOR COUPLED EQUATION P

In this section, we will define a class of moment map p, on a open subset of Map(X,Y;p)* C
Map(X,Y), with a sympectic form €, on Map(X,Y;p)t. To do so, first, we define the domain
Map(X,Y;p)T and the symplectic form Q, on Map(X,Y;p)*:

Definition 2.1. Let (X,wx), (Y,wy) be two compact symplectic manifolds which are diffeomor-
phic to each other. We define (Map(X,Y;p)T,Qp) to be the space

Map(X,Y;p)t := {f € Diffeo(X,Y)|wy P A f*wl > 0}.

that is, w’;{p A f*wf, is a volume form, with the symplectic form
1
Qp(d1f, 6 = o1f,0 PN RO,
p(01f,02f) (n—p)!p!/)(wY( 1f,02f)wy ffwy

where 61 f,02f € Ty(Map(X,Y)) = f*(TY) :={sy : X = TY||s¢|a € T()Y }-
Notice that €2, is a symplectic form on Map(X, Y’; p) as wy is non degenerate and closed. Also,
we have a group H := Ham(X,wx) x Ham(Y,wy) acts on Map(X,Y’;p) defined by
(0777) f ZZWOfOUil,

where Ham(X,wx) and Ham(Y,wy) are the Hamiltonian groups with respect to wx and wy
respectively. Also, Map(X,Y;p)t is an open set in Map(X,Y;p), hence it is also a symplectic
manifold.

We will first show that the Hamiltonian action on Map(X,Y;p) is closed in Map(X,Y;p)*.
Then up to constants, we can define a map pup by

Definition 2.2. We denote the map
pp : Map(X,Y;p)t — Lie(Ham (X, wyx) x Ham(Y,wy))*

by

n w WEPTLA P TP A WP w?
2) Hp,wx wy (f)= < X X Y Bl Y X )

n—p 1F_(n—p—1)!(p+1)!’ (n—p)!p! e
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Jx @i P A frept Jy i P AWy
- , ca = - .
Jxwk Jy ¥
We will show that this is a moment map corresponding to (Map(X, Y;p)T,Qp). In particular,
if we take (X,wx) = (X,wo) and (Y, wy ) = (X, w1), then we will get the moment map for coupled
equation p.

where ¢1 =

Lemma 2.3. The group action H on Map(X,Y;p) is closed in Map(X,Y;p)t. Also, Qp is
invariant under the action of H forp=0,...,n — 1.

Proof. Let ¢ : X — R be a test function, that is ¢ > 0 is a smooth function, and there exists
x € X such that p(z) >0
Let f € Map(X,Y;p)t and denote u = 0~ 1(x). Then
[oe@ui amo ooy il = [ p@ui T Al
:/Xap(u)cr*w?;p/\f*n*wf,h
:/ch(u)w;{p/\f*o.{,h
:/ch(:c)w?{p A Sl > 0.
Hence no f oo™l € Map(X,Y;p)t. Also,if we choose ¢ such that p(x) = 1, by the above
calculation, we can see that the volume is unchanged. Finally, notice that (o,n) - (6f)|« =
9DN)(0f) 51 (s)- Hence
[ (P0G DGl oo 10k A ) 10y
=/XWY((D77)(51f),(DW)(52f))|nof(z)0*w}7pAFU?“’@
= [ e (@) G2 gy T A,
= [ er (@ Gk A S

Remark 2.4. The proof also applies to the case p = n. Indeed, Sym(X,wx) x Sym(Y,wy) C
Sym(Map(X,Y),Qp) for allp=0,...,n.

Before we prove the first main theorem, we first prove a technical lemma.

Lemma 2.5. Let (X, o, 8) be a symplectic manifold with symplectic forms o, 8. Denote 7y :
o I=P A BP. If o™ TP A BP > 0, then for any u,v € TX,
N A LB A Yp = —B(u, v)a A p.
Similarly, we have
NLu Aty Ayp = —a(u, v)a A vp.
Proof. We prove it on local coordinate. As o Ayp > 0, it is a volume form, so if we denote
a = Aj;j, then for any 2 form n = d;;,
7 p — dijAjly
aAvp
where A7 is the inverse matric of A;j. As aresult, if we denote u = ut, v="10', = B;;, then
Ny N\ LyS N . .
M A LB A p = ulA,-jkaMAlJ = ul* By = —B(u, v).
a\Yp

the second statement follows from the same proof. O

Notice that We now give the first theorem of this note.
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Theorem 2.6. Let 0 < p < n — 1, then the map p : Map(X,Y;p)T — Lie(Ham(X,wx) X
Ham(Y,wy))* defined by

up(f) ==

N O RO Py R Bl s R

n n—1—p p+1 n n—p D
1wX wy . WY wy  fawy wy
n—p

is a moment map with Tespect to the action no f oo 1, where
n! fX W 1-p /\f*wp+1 (f) n fy f*wX /\wy
ez :=ca(f) =
(n—1-p)(p+1)! Jx @t ’ (n—plp! [y wp

Proof. Recall that Lie(Ham(X,wx)) = C5°(X,R) := {¢| [y pw’s = 0} such that for any ¢ €
C*°(X,R),

c1:=ci(f) =

dp = g, wx.
Hence we have Lie(Ham(X,wx))* = Q™(X,R), the space of volume form of X.

We let (12,1) € C(X) x C(Y) and Hgp(f) = (p(F), (p,)). Then

n—1—p p+1 n P Vg n

n wy . Wy / W f*wX Wy / wy
— A + N — + — .

n—?( /Xgo(n—l—p)! ! CES IS XSD% w(”— pt "l T Yw”!

Our goal is to show that

Hpup)(f) =

LX(%WQP(U) = dH((P’w)(U).
Let f; be a family of diffeomorphism. By defining n; = ft o f~!, then f; = n: o f. we denote

e € Tiq(Map(Y, Y;p) ™).

dt{i—o
Notice that f*wy is a symplectic form which is closed, therefore,
d * _ * ok _ px _ px _ *
— flwy = — ffnfwy = ffLywy = frduwwy = df* owy .
dt—o dt g
Similarly,
A d Farx = duo f
il wWx = — wx = diy fewx.
dt o teWX dt 7::()77tﬁF * WX v JxWX

Notice that these are exact forms. By the fact that for any compact manifold M2", and for any
2k — 1 form B and 2n — 2k closed form «,

/Ma/\dﬁz—/M(da)/\Bzo.

d
We now identify v’ € TMap(X, Y)and v € TMap(Y, Y) by

It implies

U\f(x) =g

Then
dH(g,y)(v")

_ n—1— * d * d —1y\* n—p—
:(n—z:;!(p)! /XWX TIASTE A (Eft w("')) (o —np)!p! /yw (E(ft R wx) Nk TN

—-n —1— n
:m/)(¢w; 1 P/\f*wf,/\dfﬂva—i-m/ devf*wx/\f*wn p— 1/\&)5—

n * —1— * n —p—
:m/)(def vay/\wg(l p/\fwf,—m/ydw/\bvf*wx/\f*w}p 1/\w{f,
n n
:7(71—17)!(10)!/ L, WX A frpwy Aayg — 7(n—p)!p!/ e, WY Aty fawx N fray,

where ap = wy PT LA A f*wl . By Lemma[ZH] as feay = fuwy 7 1/\@){’,7

nig, Wy Aty fawx Nap = —niy fawx Mg, wy Nap = wy (v, §p) fawx Nap = —wy (&g, v) fawx Aoy
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Moreover,
Nlg,Wx A frrpwy ANagl|e =nf* (Lf*5¢f*wx A Lywy A f*oaf\f(x)>
= —wy (fs&ole, vl g (@) (Ffrwx A fraflp(a)
= —wy (fabp, v )wx Aay.
Therefore,
dH g,y (V")
1 , /
T oVl \ *Sps A ) * N fx
(= p)ipl ( /XwY(f Ep vV )wx Aoy + wa(ﬁw v)fawx A f af)
__ [ / ,
_(n—p)!p! ( /;(WY(f*ﬁv,v )UJX /\O!f +/XWY(€UJ of,v )WX /\af)
— L / _ ’
"= (/X wy (§p o f,v )wx Aay /wa(f*&,,v Jwx A af) )

On the other hand, for the action no foo~1 with (p,9) € C=(X) x C*(Y), the induced vector
field is given by
Xy =&pof — fe-&p
So
1

plo) = (n —p)ip!

LX (o) /X wy(fw of—f«- {v,v')wx Noyg = dH(Lwa)(U).

O
Remark 2.7. Notice that Map(X, Y;p)T is an open set in Map(X, Y;p), hence it is still a sym-

plectic submanifold. Also, c1, ca may not be constant, as Diffeo(X,Y;p)T may not be connected.
However, if f1, f2 are path connected, then c1(f1) = c1(f2) and c2(f1) = ca(f2).

Definition 2.8. We call the above moment map to be the moment map p with respect to wx ,wy,
denoted as p:wy wy , OT simply pp if no confusion arises.

Finally, we define the ”dual” moment map by the following.

Definition 2.9. We define the dual moment map of pp to be uy : Map(Y, X;n —p— 1t —
Ham(Y,wy) X Ham(X,wx ), with

- T T+ Din—p—1)!

4 n—p p+1 n—p—1
% wy A gFwy w'y gxwy ' Awy
n! pl(n —p)!

" n
#p(g) = fn—p—1lwy wx (9) = m C1

Notice that (uy)* = up. Also, it is obvious that
Lemma 2.10. f: X — Y solves the coupled equation p (i.e., up(f) =0) iff =1 solve

py(g) = 0.
Proof. f* = fr!and f, = (f~1)*; and the result follows. O

The main difference between pp(f) and ,u;‘,(f’l) is the following: if we put g = f~1, and we
reorder the domain into Lie(Ham(X,wx) X Ham(Y,wy))*,

_p+1
—-p

-1
pp(F70) pp (f)-
Hence, we can change the sign of the moment map without changing the action on Map(X,Y).
Also, we can change the sign by changing the action. For example, we may change the action
to be n7 1 o f oo~ !, then the sign of the second part of the moment map will change.
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3. MOMENT MAP PICTURE FOR COUPLED EQUATIONS WITH CURVATURE

3.1. Combining moment maps. We now use this moment map to get some coupled equations
related to Ricci curvature. Recall that we have the following fact:

Lemma 3.1. Let (M1, a1), (M2, a2) be two symplectic manifolds with hamiltonian group action
G1, G2, and let their corresponding moment map be p; : M; — Lie(G;)*. Let H be a subgroup of
G1 X G2 and M be a (even dimensional) submanifold of My X Mo such that H is closed under M
and (21 +Q2)|ar is non degenerate (i.e, it is a symplectic form). Then the map p: M — Lie(H)*
corresponding to the symplectic form Q1 4+ Qa2 defined by
BH = Projre my (111, p2)| m

is a moment map, where Projr;c gy« : Lie(G1)* X Lie(G2)* — Lie(H)* is the projection map.

Using this lemma, we can combine the moment map we defined above and the scalar curvature

to get different coupled equations.

Remark 3.2. IfQ is a Kahler form, and M is a complex submanifold, then Q| is also a Kahler
form. Howewver, in general, for a submanifold M, Q|pr may be degenerate. For example, we may
take M C L, where L is the Lagrangian of M1 X M>.

Let Y = X with symplectic forms w;. Let Z; := Map((X,wo), (X,w;);p)T,
1 n— *
(691, (0)2) = ———— [ i@ (6P 7 A S
(n—p)p!t Jx

Denote Ham(X, w;) := H;, and we denote the corresponding moment map to be pp ;, in which

O I N S e S
Li— T~ '/\f e '/\—'—Cz,i—' )
n—p nl (n—1-p) P+ (n—p)  pl n!

by theorem Then by considering the space Z1 X Z3 X - -+ Z;, with

k
n—p .
Q=> o Ti-18
=1

k
we have a moment map fip : 21 X .2, — H(Ho X H;) defined by

i=1

:U'p,i(f) =

. _n—p
Hp = —(/‘Pylv "'Hu'p,k)~
n
The next step is finding the suitable subgroup so that the image of moment map can be
combined. To be precise, the embedding ¢ : Hy X ...Hy — (Ho X H1) X - - X (Ho X Hy) defined by

(oo, ...,0) = (00,01,00,02, ..., 00, 0k)
k
induces a map ¢ : Lz'e(H(Ho x H;))* — Lie(Ho X Ha X ... X Hy)*. Hence the moment map
i=1
Bp 1= 1" 0 pp|z is given by

B ) % A St /% AR

n! (p+1)! (n—p—1)
pp(f1, - i) = (n—p) p! n!
Freawg Aw_i_%_;;
(n —p)! p! n!

In general, for different ¢, we can choose different 0 < p; < n — 1, hence we have the following:

Lemma 3.3. Let (X;,w;,J;) be Kdhler manifolds, and Xo is diffeomorphic to X; for all i =
0,1,....,k. Denote p= (p1,...,px). Consider the space

k

Z5 = | [ Map(Xo, Xi)},,
=1
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where

Map(Xo, X;), = {f € Map(Xo, X;)|wj "* A f*wl" > 0}.
We define the symplectic form on Z(pi,...,px) by

n —p; . )
Qp (V1,00 08), (W1, oy wp)) o= Z/Xwi(vi,wi)wg PEAwWPE
[

n
k
Then with the action of H Ham(X;,w;), the moment map is given by
i=0
k n—p;—1 pi+1
co wg _ Z 0 ‘ fz* i
nl ZHm-pi -1 (p+1)!
fi *(’J(r)bip1 wfl c1 ﬁ
ng(f) = (n—p1)!  p1! n!
frawg PF Wit Ckﬁ
(m—pe)!  pi! n!

Also, by identifying Z; and Z7, and considering

k
. p+1 ,
Q =27WHIQ¢,
=1 "

we have
k n—p;—1 % pi+1
D B /A
mn—pi—1! (pi+1)! n!

n n—pi P1
wy J1.wg w1

n
Yo

~ cg— — == AN —
py(f) = nl (n—p1)!  pi!
c ﬁ _ fk*wgipk wzk
ol (n—pe)! !

Let (J(X,wx),Qs) to be the space of all integrable almost complex structure which are

compatible to wx, and for all A,B € T;J(X,wx),
2,(4.8) = = [ (4.B)5,%.
where g (v, w) = w(v, Jw). Also, let the action Ham(X,wx) acts on J(X,wx) by
o-J=Do"'-J- Do,
and denote
AN (X) :={a € /\"(X)|/ a = 0}.
Then we have a moment map ([Don00],[Don071]) *
py J(X,wx) = Lie(Ham(X,wx))* = AJ(X)

which is given by

n—1 n

. w —w — n
1(0) = Ricwg) A 2 = 520 = (S, — 5) wh .

(n—1)! n!

where ojwx = wx,,. To sum up, we have the following lemma.

Lemma 3.4. Let Z5 be as above and consider J(X,wx) X Z5,Qj 5= 75y + TEQ
have a moment map

ﬁj’ﬁ: J(X7(UX) X Zﬁ-} L’ie(Hl X Hy X ... X Hk)*
defined by

B 5(J f1, 0 fi) = (g, 1%).

7, then we

11
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Moreover, by considering the group action ¢ : Ho X ... X Hy — Ho X Ho X H1 X ... X Hy, by
-1
(00,01, ...;0k) = (g ~,00,01, ..., 0k)
we can restrict the moment map to be
nr.p- J(X,wx) X Zﬁ—} Lie(Ho X ... X I‘Ik)’k

which is given by

k % pi+1 n—p; —1 n—1
wy Fwit w o w

DRSS fiwit o + Ric(wo, J) A —2——

nl o\ (i + 1) (n—pi — 1) (n—1)!
ol _ e
v 5T f1s e fi) = n! (n —p1)! p1!
AN

k

n! (n —pi)! P!

Remark 3.5. We can consider the action on Z; to be (o,1) - fi = (n= o fioo™1), then we can
change the sign of all the expression ciwy — fi,w;' .

Notice that it is not the equation we aim to obtain yet. In the next section, we will define
a suitable submanifold as the domain of the moment map, and discuss how to transform this
moment map equation into the moment map equation we want.

3.2. Kéahler structure on generalized ccscK. We now define the domain of the generalized
cescK Vg, which hope to be the largest Kidhler manifold which is closed in the group action, and

Vi C {(wo, - wi) € Q*(Xo,R) x - -- x Q*(Xg, R)|w; is Kihler}.

This space is important as it is useful to study the deformation of solutions. Also, with this Kahler
manifold, any complex orbit is a Kahler manifold.

Definition 3.6. Denote Jf := DfJDf~!. Define V5 C J(Xo,wo) X Z5 by
Vi = A fr o fo)l I € T(Xi,wi) )
Our goal is to show that YV is Kédhler with respect to the symplectic form
Q7.p = Q5+ Qp.

As a remark, in [DS02], the defintion of complex manifold is really the classical one; locally
homeomorphic to the tangent space, and the change of coordinate maps is biholomorphic. Or in

this case, the change of coordinate maps perserve the J.
k

Notice that we have a natural almost complex structure on J(Xop,wo) X H Map(Xo, X;),
i=1
denote by J, which
J(J,5f1,.,0fk) = (J&J, JI16f1, ., JTEG ).
On the other hand, let (X;,w;) be Kéahler manifolds diffeomorphic to each other.

Definition 3.7. Let X be a compact smooth manifold. Then we define J(X) is the space of all
almost complex structure, and Jint(X) be the space of all integrable almost complex structure.
Moreover, suppose (X,w) be a Kahler manifold. Then we denote

J(X,w) :={J € Tint(X)|w(Je, Jo) = w(e,e),w(Je, e) > 0}.

There is a natural almost complex structure in 7 (Xo, wo) anzl J (X)), where J € End(TX)x
End(TX1) x --- x End(TX},) which is defined by

T (ggre ) Aoy Ag) = (JoAo, -+, JrAp).

By [DS02], J is indeed integrable, and it is a K&hler manifold. Moreover, the map
k k
F: J(Xo,wo) x [ [ Map(Xo, X3)) = T (Xo,w0) x [ [ 7(X3)
i=1 i=1
defined by
F(J, f1, s fi) = (LT, 0 JIK) = (,DALIDSTY, o D IDFY)
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is a smooth map satisfying
J(DF(A, D)4y, 1)) = (JA, Ty, T vy = (DF)Y(J(A, D)4y, 1)

Hence J (X0, wo) X Hle Map(Xo, X;)) can be considered as a J closed submanifold of J (X0, wo) X
k

[ [ Map(Xo, X)), and
i=1
k
Vi =F 1T (Xo,wo) x [ [ T(Xi,wi)).

i=1
Therefore, .J is integrable as J = F*J, and hence F is biholomorphic. By theorem 4 of [DS02],
(J(Xo,wo) X Hf:l J(Xi,w;)) is a complex manifold, hence we have:

Lemma 3.8. Yy is a complex manifold with integrable almost complex structure J.
As a consequence, we have the following result:

Theorem 3.9. (V5,05 := Qs+ Qp, j) is a Kdhler manifold which is closed under the action
k

H Ham (X, w;), in which
i=0

(005,03 - (I, 1, f&) =(05 " - Jyo10 froog - Jop o froop)
Z(DO'()JDU(;I,Ul o f1 000—17.“ L0k O fr 0061).

Therefore, the moment map defined in Lemma [37) can be restricted in V.

We denote this moment map as pi7 5

Proof. Let (A, @1, ..., %), (B, Y1, ., ¥x) € T( g4y ,.. ,fk)yﬁv Then

QJ,ﬁ((A7§017"'7SDk)7(B7¢17' 7¢k)) A BWO +Z 'I’L—p 'p / (gohwl)w() Pz/\f* pl
Then
Qu (A @1, 08), J(B, 1, o)

" (n—pi)
=(JA, JB)uy + > Pi

(n—p')'pl/ wil i, Jf”l’) o VAT
i=1 i):Pit I X,

k .
=By 43 I [ o A S = 04t (Bt )

as JIi € J(X;,w;). Hence Q5 is J invariant, which implies it is a Kéhler form.

For the action part, first,
(00, cwy0) - (J, JI1 o JTE)

=(DooJDoy ', Doy D fi Doy ' DogJDoy ' DagDfy ' Doy, -+, Doy D fy Doy ' DogJ Doy * DogDf, ' Doy,

=(DooJDoy ', Doy DfiJDfy Doy, Doy Dfy,. JDf, Do, t).
As Jfi € T(X;,w;), wi(JTie, Jfie) = w;(e, e),
wi((DoiinDofl)o, (DoiinDagl)o) :ofwi(Jf"Doflo, inDaglo)
=wi(J/iDo; e, JfiDo; te)
=w; (Doflo, Do;lo)
=ojwi(Do; e, Do "e)
=w; (e, ).

Hence (09, ...,05) - (J, JI1, .-, Jfx) € V5.

b
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Recall that HamG (X, wx) is given as

Hamg(X,wX) = {o € Map(X, X)|¢*wx = wx +V—10505ho}

k
for some Kéhler potential h. Notice that the H Ham(X;,w;) action is closed in Yy and Vg is a
=0
complex manifold implies that the orbit space is given by

k
O,7= <H HamSi(Xi,wi)> “(d fs e fr)

i=0

is in )75. Moreover,

F((oo0,--+ o) - (J, f1,- -+, [x))

=F(DUOJD061,01 o f1 ooal,v-- ,okofkoolzl)

=(DogJDoy ', D(o1 0 f1 005 ") (DogJDog ) D(a1 0 frooy )L, -+, Doy o fx 0oy ') (DogJ Doy )D(oy o fr 0 og

=(DoogJDoy ", D(o1 0 fi)JD(o1 0 f1) "L, -+, D(og o fr)ID(ok o fx) ™)
=(w0, k) - F(J f1,+, fk)-

Therefore, we have

k
0, 5= F*l(ljo (Hamgi (X, Wz)) )

hence (’) » is also a Kéhler submanifold of V.

Remark 3.10. Notice that although (vo,- - ,¢k) - (J, f1, .., [x) is well defined, HamS(X,wX) 18

not a group. As a remark, we can consider the orbit space as a subset of the action coming from
K

[ [ Diffeo(X:).
i=0
Theorem 3.11. Consider the moment map py 5 : O — Lie(Hg X ... X Hg)* defined by

JLF
Theorem [3.9 restricted on 0, 7 Then pz =0 iff

k f* pit+1 n—p;—1 wnfl wn
P 0,0 . 0,¢0 0,¢0
— Ric(wo, Jo) N —— —¢o = 0
§<(p@+1 (n—p,-—l)!> (0.0, Jo) (n—1)! n!
n—p P
“o <P01 A Twl,ltm _ fiﬁwll,tm - 0
(n—p1)! p1! n!
n—p Pk
wOﬁPok A ;wk Pk . f;wgﬁpk Y
(n — pp)! pi! n!
In particular, if Xo = -+ =Xy, fi = fa=- = fr =1d, = (0,...,0), then this is the ccscK

equation with the classes fized.

1)71)
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Proof.
k —1 pi+1 n—p; —1 _ —1
Z (oo V'Jiviws' Ao — Ric(wo J%l)/\ —wg —cow—g = 0
i=0 (n—pi — Di(p; +1)! o (n—1)! n!
W' 1 (1)« (g swp P AW 0
1—F — =
n! (n —p1)p1!
n — Pk Pk
c Wi @k*(fk)*(ﬂoo )*Wo A wy - 0
E—y — =
nl (n — pr)'pr!
*Pitl n—p;—1 -1 n
; Aw, —1 xm w,
Z( ;?'( “o,p0 i —<p’5Ric(wo,J80“ ) A 9(90 01)' _ 0,9'90 = 0
i n—p; —1)! n—1)! n!
@0w07 PASTeTert  frerer - 0
(n — p1)'p1! n!
Phub T A el freten o
(n — pr)'pr! n! B
* P +1 n—p;—1 n—1
; ° A w * w
i, “0,¢0 s 0,%0 n
— Ric(w Jo) N —— — cow 0
Z (pl + 1 '(n_p — 1) ( 0,¢0 0) (TL— 1)| 0%0,00
Wo, Lppl /\fl wl P1 1ffw?7¢1 - 0
(n —p1)'p1! n!
-p
wOw k/\fkwk Pk fl:wgmok 0
—cp _ )
(n — pr)'ps! n!

Finally, if f; = id, and p; = 0, then f'w; ,;, = w; ¢,, the equations become

k
. n—1 n
E (Wi, — Ric(wo,pg), Jo) Awg o0 — cowp, g,
i=0
wn —clwh
0,%0 Lie1
n _ n
“o,00 Ckwk»‘Pk

which is the ccscK equation.

As a remark, ¢; are constants along the whole orbit. Also, we can
equation becomes

where b; are the normalizing constants.

k pﬁl g*prl wgfl
Pi ,0 : 10
a; N — Ric(wo, Jo) N —F— —
; l<(pi+1)! (n—pi—l)!> (0.0, Jo) (n—1)!
n—pi P1 n
wO,Ap() 1,01 _ bl wlv‘Pl
(n —p1)! p1! n!
n—pPg Pk n
0,¢0 wk,wc —b wk,wc
(m—pr)!  pg! n!

O

replace w; by a;w;, so the

wn

bO 0,¢0 — 0
n!

= 0

= 0,

3.3. An alternate setup for a special case of the coupled Kahler Yang-Mills equation.
We first construct the moment map equation described in [ACGFGP13| for U(1) case. Notice

that to solve the equation, we first need

w(Js f) = copg (J) + ar1p] (f) + azps (f)
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under a suitable subspace. We define
Q7,0100,01,00 = @07 — 195 + @207,
that is, for g=f~1:Y —» X

(29] — a1925)(691,692) = /Y WX(5917592)(0!2W$] A g*wﬂ?fz] — (c)wy A g*w[)?fl]).

Notice that we take dual moment map as we need
/Y(alwy A w[)?il] - oazwg?]) =0,

so we cannot choose this as the Kahler form.
Also, we take

YMo1 C{(J, f,9) € T(X,wx)xMap(Y, X;n—1)T xMap(Y, X;n—2)T|f =g~ 1, J € J(X,wx)}
such that
Qj,ol;ag,al,ag > 0}~

Then we have the following proposition.
Proposition 3.12. Y My, is Kdhler and closed under the action. Moreover, if
apdy — alﬂg + azQI >0,

then the map pg 01 : YMo1 — Lie(Ham(X,wx) x Ham(Y,wy ))*

Ric(X,wx, J) Awl™! Wt w2 A frotT?
ag (X ox, J) N a1 —F A fruy a2 Y [y + 2w
n—1)! n—1)! n — 2)12!
wl f) = (n=1) e (=2
f*w?( Jrw'
+a ANwy —oq
(n—1)! !
) S
is a moment map, where z = 7 cipa1 — c11a2, and here we choose a1 such that oy — ag = 0.
As a corollary, pg 01 =0 iff
aORic(X,wX,J)/\w?{1 a2w§(/\f*w?,72 :cﬁ
(n—1)! (n —2)!12! n!
—1 )
% Awy = df*w?(
(n—1)! n!

aq
where d = —, c = a1d + z.
Qa2

Proof. Notice that Y Mg is a submanifold of )y, so the complex structure is defined directly
by Yo. Then Q. is J invariant and g is Jf invariant. Also, if we define inv : Map(X,Y) —
Map(Y, X), and we define J' on Map(Y, X) such that

inv*(Jféf) = Jinv.df,

then
JDft=pDf gl =Jgpft.

That means the map inv is a biholomorphism, and Q* is also Kahler if 2 is. As wyx is J-invariant,
Q7 is also J-invariant, hence

Q7 .0100,01,00 = @027 — 015 + @20

is J-invariant, which implies Y Mg is Kéahler.
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Moreover, the moment map is given by

HKT,01 (J7 f)
Ric(X,wx,J) A w?{l w?{l w% A f:lw?fz (S )

o — AN ffwy +ag—————=— — [ — —cipa1 —cr1a2 | W%
| (n—1)! 1(n;1)! Frwy + a2 (n — 2)12! g~ fosrmonee Jex
- —1¥ns w wh

azf(nff)' ANwy — a1 f*n'X — (c2001 — c21002) T}'f
Ric(X,wx,J) A w}l(*l w?{l w% A f*w;72
o — A ffwy + o ———— + 20
_ (n —1)! (nnT 1! (n —2)!12!
fewlt” foy !
ag—=— Awy —d
2 (n—1)! Y n!
S
where z = 37 cipoal — c11az, and we choose d = a1 such that copa; — c21a = 0.
The last part is obvious. O

Hence we get the same moment map equation for the Kahler Yang-Mill’s equation with G =
U(1) case (see [ACGFGP13| for general). As a remark, we can easily generalize it into U(1)™ case.
We can generalized this moment map by considering the following equation:

ai(n —p) az(g+1)

Q‘]ypq = (onj— Q;-ﬁ- Q;

Define

YMpq C{(J, f,9) € T(X,w0)xMap(Y, X;n—p)* xMap(Y, X;n—qg—1)"|g = /71, 7/ € T(V,wy)}
such that Q7 ,, > 0. That is, f € Map(X,Y;p)" N Map(X,Y;q)". Then Y M, is closed under
the action of Ham(X,wx) x Ham(Y,wy ), and the map

Oy 4 220D )

n

BT pase0,01,a (1 f) = aopg (J) —

is the moment map for

Ric(X,wx,J) /\w?{l N w§7p71 f*w{’;rl w?{q71 /\f,:lwg,+1 + 2
o a1 — s 2w
Jf) = (n—1)! (n—p—1)!  (p+ 1! (n—q—1Y g+ 1) X
BT .pa(Js f) = —1% n—gq q n—p P n
wx Yy frwx Yy Yy
—ap——=2— AL fa;—=— AN —L — (cooa1 — c2102)
(n—q)! ! (n—p)! p! n!

Moreover, we can choose a; such that capa; — c21a2 = 0.

3.4. Coupled DHYM types equation. In [SS19], Schlitzer and Stoppa studied coupled De-
formed Hermitian Yang-Mills equation using Extended Gauged group theory. We now using the
theory in this note to recover the coupled DHYM equation.

Recall that the DHYM equation is given by the following: Let (X, w, L) be a projective mani-
fold, and o = v/—1F(L). Then the DHYM is given by
Im(eV=(w+v=1a))" =0
with Re(eV~1(w + /=1a))™ > 0. Here 6 is some constant defined by the class of w and a.
Expend the expression eV~ (w 4+ /—1a)", we get

k k
Imarginay part : cos 6 Z(—l)rcgrﬂw”*z“l Aot 4+ sing Z(—l)rc’grw”*” Aa?" = 0;
r=0 r=0
Kk k
Real part : cos 6 Z(—l)rcgrw"*% Ao — SingZ(_l)rcgwrlwanrfl Aa2rtl s 0.
r=0 r=0

Here k is the value such that the 2k =n — 1 or n.
Under the previous construction, consider
k 1

Z(—l)’" cos 0C3,. 2y — sin 6 Z(—l)’"czrﬂuzrﬂ,
r=0 s=0



18 KING LEUNG LEE

where k is chosen such that 2k <n — 1, 2l + 1 < n — 1 under the domain

n—1

Yauym C () Map(X,Y;p)*
p=0
such that

k k
cos 6 Z(—l)rcgrw'“m" A fra® —sind Z(—I)TCST+1M’”72T71 A fra?mtl > 0.
r=0 =0

Suppose this space is non empty, the equation is given by

k k—1
cosGZ(—l)T'Cgrw”72T71 A fFa? 1 —sin6 Z(—l)"cgrﬂw"*?"*? AFra? 2 = quwn
=0 r=0
k k
cos 0 Z(—l)"();;f*w”*” Aa® —sind Z(—l)ngrJrlf*w"*w*l Aa?r Tl = cea”
r=0 r=0
Rewrite it, we get
k k
cos 6 Z(—I)TCQ,.w”72T71 A f*a® 1t 4 sing Z(—l)rcgr+1wnfzr AfFa? = cwm
r=0 r=1
k k ’
cos 6 Z(—1)Tcg;f*w"*27 A 2" —sind Z(—l)rcgrﬂf*w”*z“l Aa?TTl = cpan
r=0 =0

where k is the value such that the 2k = n — 1 or n. Notice that the 2 form

k k
Q8f1,8f2) = / a(8f1,6f2) (cose D> (1) CE few™ 2 AR —sin0 > (—1)"Chhyy few™ 2T A a2T+1>
X r=0

r=0

define a positive symplectic form iff

k k
cos 6 Z(—l)rcgrw”*” Aa? —sind Z(—l)TC’g”le"*zT*l Aa2rtl > 0.
r=0 r=0
Hence, when this €2, we get the domain of the moment map. If we also restrict the subgroup to
be Ham(X,w), it is the DHYM equation. So we can recover a moment map set up in [CXY17].
However, we cannot recover the coupled DHYM using this moment map as we will couple the
scalar curvature with the imginary part, not the real part.
To recover the setup of the coupled deformed HYM, we consider another setup, namely,

1 k

pg +cos0y (=1)°Cyiposir +sindy (=1)7CH.w™ > pay;
s=0 r=0

where k, [ is chosen such that 2k <n —1, 2l +1 < n — 1. Denote the space as Yy, similar to
the definition of Vigv ar, and we can define

!
Yeary m C Tint X Yagy m

to be the largest K&hler submanifold which is closed under the orbit similar to the setup of gerenal
ccscK. Then the resulting moment map equation is given by

k k
Ric(w, J) Aw™ ! +cos0 Y (—1)"CHW™ 2 A f*a® —sin0» (—1)"Ch 0" A fraPT = cwn
r=0 r=0
k k
cos @ Z(—1)Tcgrf*w"*2“1 Aot 4 sing Z(—1)TC§T+1f*w”*2T N = coa”
r=0 r=1

if c2 is positive. In particular, if we consider the orbit space

(Ham(X,w) x Ham(X, a))* - {fo = id},
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then the equation can be reformulated as

k k
. -1 —2 2 : —2r—1 2r+1 _
Ric(wg) Awg™ " + cosd Z(—l)rcgrwg " Aoy —sind Z(—l)rchlwg TUnay =
r=0 r=0
k k
cos @ Z(—1)Tcgrwg*2“1 A ai]ﬂrl + sin@ Z(—1)TC§T+1w$*2T A aﬁf =
r=0 r=1

Finally, to avoid the sign problem, we may replace all —u, into p}, then we can make sure the Q2
is positive.

4. APPLICATION

4.1. Obstructions on solving generalized ccscK. For moment maps on the complexified
orbit, there are some standard results (see [Wan04]). For example, we can define the Futaki
invariant, Calabi functional and Mabuchi functional that can provide some obstructions of the
moment map equation p = 0 (see [Don01], [Don02], for cscK, for cescK, and
[ACGEGPTI3]| for Kihler Yang Mill). We will consider the generalized ccscK equation

k *
w5 O ia — Lie (H Ham(Xi7wi)> .
i=0
For fix f;, we can define a map f; : Diffeo(X;, X;) — Diffeo(Xo, Xo) by
fie=1f"opofi
We also denote (fi)« = (£ 1)*. Then we can define

1
Gl = Aut(Xo, Lo) N NE_, fF Aut(X;, Ly),
and

Gl = ()G,

Lemma 4.1. G; are subgroup of Aut(Xj,L;). Moreover, the embedding map

= k
LG — [ Aut(Xi, Li)
=0
defined by
L(SD) = (507 (fl)*507 Tt (fk)*go)

= k
is an homomorphism, and G(J; is the stabilizer of (J, f) as a subgroup of H Aut(X;, L;).

=0

Proof. Let ¢, € ffAut(X;, L;) Then f;opo f;l,fi oo f;l € Aut(X;, L;). Then
(fiopofifo(fiowo i)™ = fiopon ™ o fih € Aut(Xi, Ly),

hence p oyt € ff Aut(X;, L;).

For the second part, first,

mi(e(®) ) = (fiowo fi o (fiogo fi T = fiopoy ™ o fit = mi(u(po ™))

It is well known that we can identify Aut(Xo,Lo) with G;. We can identify f € gy with
&f € aut(Xo, Lo) defined by

9 ={f € 9519& = 0,1¢,w =df.}

Also, for ¢ € G(J;,
((fi)wp) - fi=fiopofitofiop™ = fi.
k
Finally, if (¢0, - ,pk) € H Aut(X;, L;) such that ¢; o f; o %1 = f;, then
=0

@i =fiopoo fi ',

which implies po € Gg . O
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Corollary 4.2. Suppose (X;, L;) is a projective manifold with line bundles with their respective
k

curvatures wo, ..., wk. Suppose generalized ccscK has a solution, then ﬂ Aut(Xy, L;) is reductive.
=0

—1
Proof. We use the result in [Wan04], corollary 12. Suppose u(]§° P05 P15 0k) = 0 has a
solution. Then GE

. 0,01, 18 reductive. By assuming (wo,ng, " ,Wk,h,) be the solution, we
have f; = id and

. ) k
G = Gl = (] Aut(X;, Ly)
1=0

is reductive. O

We can also define the Calabi functional, Futaki invariant and Mabuchi functional as follow.

k
Definition 4.3. Let £ = (&o,...,&k) be an C* action on H Aut(X;, L;), where
=0

Lg; Wi = dh;, 5]152(15) =0.
Then the Futaki invariant for the moment map defined in Theorem [T11l is defined by
Fg.5(8) =g 5(f), €

ko px Pitl n—p;—1 -1
frows Aw n n
:/ ho (3 10 0 ~ Ric(wo) A 20— %0
Xo = (pi + D(n—p; = 1)! (n—1)! n!

k Di n—p; n
w: A fio,w w;

+ Z/ hz < i ' 2,V%*0 —c ’L' ) .
i=17 X n:

pil(n — p;)!

The Futaki invariant of the ccscK equation is the case f; o =1id and p; =0 for alli=1,...,k.

Again, by the standard result (for example, see proposition 6 in [Wan04], theorem 3.9 in
for the independence; or see for the KE case), we have

Corollary 4.4. Futaki invariant is independent of the choice of w; with the given class. More-
over, if the Futaki invariant is non zero for some holomorphic vector field, then this moment
map equation has no solution in the given Kdhler classes.

Besides, we can define the Calabi functional, which is ||u||? .
By [Wan04], corollary 13, we have the following:

Corollary 4.5. We define the extremal metric corresponding to pu g 5 to be the critical point of
Cg.5- Then the extremal metric solves ug 5 =0 (in the domain Oy ;q) iff the Futaki invariaant
are zero for all holomorphic vector field.

Let K be a Lie group, and K€ be the complexify orbit. Suppose K acts on a space X with
a hamilitonian group action, and p : X — Lie(K)*, we can define a K invariant one form on
(KC/K), defined by the following: for any v € Lie(K),

o (%e’ﬁt” ~g) = (u(g - 2), ).

It is well-defined and independent of the choice of ¢’ € K - g as
(u(kg - 2), Adkg) = (Adgpu(g - 2), Ad&) = (u(g - 2), ).

Lemma 4.6. « is closed. Therefore, it is an exact form, and hence, there is a functional
M : KC€/K — R defined by

1
M(g) = /0 alge)dt,

where g¢ is any curve connecting a fix point go and g.
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Proof. Assume [£,n] = 0, then by identifying Lie(K) and Lie(K)*,

da(é,n) = <C[litt Ou(e’“’_”ﬁ~2),n>—i <u(e‘/’_“"~2)7£>

dt
=(du(JX¢),n) — (du(J Xy), &)
:(,.)(J‘X,g7 Xn) —w(J Xy, XE)
=0,

t=0

e~ V~1€ . 5 Therefore it is closed.
t=0

d
where X¢ is the vector field —

As a result, given a moment map, we can define the Mabuchi functional by

1
Mulo) = [ atgoar
where gg = id.
In our case, we can define KC as a complex manifold (the orbit space). Notice that

k
K®/K -id = [ [ PSH(Xi,w:),
=0

so we can define the Calabi functional and Mabuchi functional by the following.

Definition 4.7. Let (X;,w;) be Kdhler manifold, then we denote

n—p D

ihi N,
—p)Ip! n

(n —p)ip! wj,hj

n! w

)

HP (hiy hy) =
and the mean is defined by

) = [ )

As
Lie(Ham(X;, w;)) = {p; € C7(X)|dp = tx,wi}/R,
and
WP A frP "hp Aw wl
J i “j, “’1 ,p +1 0,ho
30'7:/ wjloj(z —/ ¢ (ho, h ;
/Xj 7 (n—p)!(p)! o (X;) i(73(@) (n —p)!! ( i) n!

o (x)

the explicit formula of Calabi and Mabuchi functional is given by the following:

k
Definition 4.8. The Calabi functional Cy 5 : H PSH(X;,w;) — R is defined by the formula
i=0
Cq5(h) =llng,5(d7)lI1?
2 o
/ ZH P he) = Sho — ZH P hy) + Spg | 2:ho
o |2 Zo BB F2h) T,

n

n—p; n—p; w',h-
+§: |H?" P (ho, hy) — HY™ P (ho, hy) 2252
—Jx; I — n!
J

The Mabuchi functional corresponding to p gz 5 is given by

k
Mgz [ PSH(X:, wi) — R
i=0
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such that the variational formula is

dM 7 5lhg,... hy (B) =g 5((00, -+ sor) - (I, f)), €p)

k k n
. . w
=/ %0 <§ CHEP T (ho, hi) = Sy +S =D Hs"““(ho,hi)> e
Xo i=1 i=1 :

k wh

0,n—p; 0,n—p; Jshj
#3227 ) )
Jj= J

where ¢ € C*°(X,R).
Following the standard result of moment map on the comlex orbit (for example, see [Don02],[Wan04] ),
as the geodesic is given by e~ V~1t¢ . g,
M (t) = (u(e™ V1 2),0),

M (1) = w(=JE€) = ||¢])* > 0.
We have the following corollary.

Corollary 4.9. M gz 5 is convex along smooth geodesics. Hence the solution of the generalized
ccscK is the minimum of M 7 5.

Notice that by [Dari4], not any two Kéhler potential can be connected by the smooth geodesic
in general, not even the limit of a sequence of smooth geodesic. Therefore, in general, the convexity
of Mabuchi functional for smooth geodesic cannot imply the critical point is unique. However,
under some special case, we will still have uniqueness result directly.

Let (X, Lo, -+, Ly) to be a polarized toric manifold and the curvature of the toric equivariant
line bundle L; is w; which are positive. Let P; be the moment polytopes corresponding to L;. We
also denoteP; is defined by the equations

Na{lf(z) > 0},

where [$(z) are affine functions. Recall that (See [Gua99] [Don02], [Gueld]), the space of the
(SH™ invariant Kahler form with the Kihler class [w;]

{p € C=(X,R)|w; + V=103 > 0,(0 - z) = p(x),0 € (S1)"}
is isometric to the space

Hi = {u € C°(P?)|u is convex,u; = Z(lf(x) log (I (), u — u; € C™°(P;)},

with the geodesic is given by u + tv, v € C°°(P;,R). Therefore, the orbit space is isometric to the
space

Ho X -+ X Hy
which is geodesicly convex. Therefore, as a direct consequence of [£9] if we have two minimum

point, we can connect them by a stricly convex geodesic, which lead a contradiction. Therefore,
we have

Corollary 4.10. Let (X, Lo, - ,Lg) to be a polarized toric manifold and the curvature of the
toric equivariant line bundle L; is w;. Then the (S1)™ invariant solution of the equation
k f_*wl_’i+1 n—p;—1 wnfl W
Z LRI N 0,0 _ RiC(UJO,Lp()yJO) A 0,00 o Op0  _ 0

S\ e+ 1) (n—pi— 1) (n—1)! n!
n—p P
woyvol A ffw1}¢1 —a ffw?;vl - 0
(n —p1)! p1! n!
n—p D
"‘1079«201C A f;wkiok c fl:wgywk 0
— e =
(n — pg)! pi! n!

is unique (if exists).
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5. KAHLER CONSTRUCTION FOR COUPLED EQUATION P

In this section, we will try to find a suitable space for the coupled equation p which is a Kahler
manifold. However, the case is much more subtle then the pervious case. The problem is, unlike
J x Map(X,Y;p)t, it is not easy to find a good complex submanifold inside Map(X, Y; p)T such
that both f*wy and wx form of X and fiwx and wy are Kahler forms of Y. Before we go on our
main disscusion, notice that if we restrict the group to be either Ham(X,wx) or Ham(Y, wy ) we
do have a good complex submanifold. For the first subgroup, the coupled moment map equation
become

n—p—1 * p+1 _ n
wy A ffwy' " = cwk.
The second subgroup gives
Jew P A WY = cowt.

We have seen this trick when we re-construct the deformed HYM.
The method we suggest is the following: we consider Fy : Map(X, X)xMap(Y,Y) — Map(X,Y)
by

Fy(o,m) =nofoo
and consider the pull back image F;I(Map(X, Y;p)T). Notice that F}:l(Qp) is not a symplectic

form as it may be degenerated. Then we can find a ”lagrest complex submanifold” X;, and the
orbit space Ham®(X, wx) x Ham®(Y,wy ) inside F~'(Map(X,Y;p)t). And we will show that if
Fy (AF) and Fy (Ham®(X,wx ) x Ham®(Y,wy )) are complex manifold, then these are the spaces
for the moment map picture for moment map p.

Let Jx to be an integrable almost complex structure of X. Then for any diffecomorphism
g: X =Y, we can define an almost complex structure of Y by

Jy = J§ = DgJxDg™*.
This is integrable as the complex local coordinate of Y can be defined by X and g, namely, if
{Ui,goi :U; - Q; C (Cn}

are complex local coordinate of X, then {g(U;),v; := @; 097!

1 g(U;) — 4} with transition map
-1 -1
Vi o¥i Ty (g-1(inuy) = i 0P lpiuinuy)

defines the complex local coordinate of Y.
However, let (X,wx, Jx), (Y,wy, Jy) be two Kéhler manifold. Notice that Jx is compatible
with wx doesn’t implies J§< is compatible with wy .

Definition 5.1. Let (X,wx,Jx), (Y,wy,Jy) be compact Kahler manifolds. Define
J(X,wx) :={J € Tint(X)|lwx (J-,J) =wx (-,),wx (J-) > 0}
Define Fy : Map(X, X) x Map(Y,Y) — Map(X,Y) to be
Fp(p,p) i=tpo fop™h
We also denote J% := Do JxDo~! for any p € Map(X, X) (and similarly for J;’/,’) Notice that
De™tJ% = Jx Dot
Then we define the following;:
Definition 5.2. Let (X,wx,Jx), (Y,wy,Jy) be compact Kaihler manifolds. Then we define
KMap,, . (X,Y; Jx) := {f € Diffeo(X, Y)\sz =DfIxDf ' € J(Y,wy)}.
We denote KMap(X,Y) = KMap,,,, (X,Y; Jx) if there is no confusion on the Kdhler form.
As a remark, we can also define KMap(X,Y) by fixing Jy and moving Jx.

Lemma 5.3. The manifold (Map(X,Y),J), where Jof := DfJxDf~16f = Jf(, is a complex
manifold.
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Proof. Tt is obvious that (Map(Y, X), Jx) is a complex manifold as Jx is integrable. Notice that
the map inv : Map(X,Y) — Map(Y, X) defined by

ino(f) = £
is a diffeomorphism, hence we can consider J on KMap(X,Y') by
invyJx = DinvilJXDinv.
For any v € TfKMap(X,Y), D(inv(v)) = Df tvo f~t € T;-1KMap(Y, X). Therefore, for any
w € Ty 'KMap(Y, X),
inveJ (v) = Df(JxDf "wo f~Y) o f=DfJIxDf tw.

Therfore, (KMap(X,Y), J) is a complex manifold with integrable almost complex structure J. O
Lemma 5.4. KMap(X,Y) and KMap(X,Y;p)T is a complex submanifold.

Proof. Consider Map(X,Y)xJ(Y,wy ) with the product complex structure J(o, A) = (Jg; o, Jy A)
for all (o, A) € Ty, 5, Map(X,Y) x J(Y,wy). Then we have a subvariety
W= {(f, JV)IDF(IX)DFH = Iy},
here Jg( is fixed. We can rewrite the relation as f«Jy — Jx = 0 as an endmorphism. By this, we
can consider the map F : Map(X,Y) x J(Y,wy) — End(TX) by
F(f,Jy) = feJy — Jx.
Then W = {F(f, Jy) = 0}. When we differenate with respect to Jy direction, say A, then

SAF(Jyv)= | (DFT'JLDf) = Df 1 ADS
t=0

which is bounded and indeed c|A| < |04 F(f, Jy)| < C|A| for some ¢, C, and for any norm. So W
is locally a graph, which gives the smooth structure of W.
d d
We now show W is a complex subvariety. Let aft = o and —J{, = A at t = 0. Then the

dt
condition on tangent space is given by

—Df 'DoDf YJyDf + Df YADf + Df 'ADoc = 0.
We now see if the vector (Jg(a, Jy A) with J;( = Jy satisfies this relation. Notice that Jg( =Jy
implies
IJxDf ' =Df 1Jy.
So
—Df *DJ,oDf YUy Df + Df "ty ADf + Df "t JyDJLo
= —JxDf 'DoDf Iy Df + IxDf *ADf + Df 1 JL Jy Do
= —JxDf 'DoDf 'JyDf + JxDf YADf + JxDf 'Jy Do
=Jx(=Df 'DoDf ' JyDf + Df 'ADf + Df "1 ADo)
=0.
Also, we need to show that the map 7 : W — Map(X,Y') is injective, holomorphic and the image
is KMap(/X7 Y). The injectivity is obvious as if 7(f, Jy) = w(f’, J{,), then f = f'. When f = f/,
Jg( = J;(. By the definition, Jy € J(X,wx), hence it is KMap,, (X,Y). Finally it is holo-

morphic as this is the restriction of the projection map 7 : Map(X,Y) x J(Y,wy) — Map(X,Y)
which is holomorphic.

Notice that KMap(X,Y;p)T is an open subset of KMap. As w?{p A wf, is J invariant for
(Ix,Jy) € T(X,wx) x J(Y,wy), so this is a complex submanifold. O

Remark 5.5. Using the same argument, we can prove that KMap(X,Y') is a complex submanifold
of Map(X,Y), Jy) as well.
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Definition 5.6. Let (X,wx,Jx), (Y,wy,Jy) be compact Kaihler manifolds. Then we define
KMap,,, (X,Y; Jx) := {f € Diffeo(X, Y)\Jf =DfJxDf e J(Y,wy)}.
We denote KMap(X, X) = KMap,, (X, X,Jx) if there is no confusion on the choice of the
Kdhler form. Then we define
X;rp = (KMap(X, X) x KMap(Y,Y)) N F;l(Map(X7Y;p)+).
Moreover, let (v, w) € T(, ) (Map(X, X)xMap(Y,Y)) we also define an almost complex structure
on Map(X, X) x Map(Y,Y) by
IMap (v, w) = (JEv, J;’/,]w).

We now prove the main proposition in this section:

Proposition 5.7. Let f : X — Y is a biholomorphism, and define an action Ham(X,wx) X
Ham(Y,wy) on Map(X, X) x Map(Y,Y) which is given by
(o,m) - (¢, %) := (g op, o).
Then
(1) Fy commutes with the group action.
(2) X;p is a complex submanifold,

(3) The action Ham(X,wx ) x Ham(Y,wy ) is closed in X;Lp‘

4) F;Qp is JMap invariant.

Proof. (1) Fp(oop,notp) =notofopto~t = (a,n) - F(p,¢).
(2) To show X;rp is a smooth manifold, we only need to show KMap(X, X) is smooth. As

Fy is continuous, so it implies X;rp is an open subset, hence it is smooth.

Define G : J(X,wx ) x KMap(X, X) — End(I'(T'X)) by
G, p)=J% —J.
Then KMap(X, X) = {(J,0)|G(J,¢) = 0.} Also, let A € T ,J(X,wx), then
DGy, (A,0) = —Id,

hence the implicit function theorem implies that there exists H : U C KMap(X, X) —
V C J(X,wx) which for G: U x V — End(I'(T'X)), we have

G(J, ) =G(H(p), ) =0.

Therefore, (U, H) gives a local coordinate, which implies KMap(X, X) is smooth. Hence
KMap(Y,Y) is also smooth, and thus X;rp is smooth.

We now show Xfp is J invariant. Again, as FJfl(Map(X, Y';p)) is open, and KMap(X, X)
and KMap(Y,Y) have the same defining function, we only need to show KMap(X, X)
is Jg; invariant. Then the argument can be used as showing KMap(Y,Y) is also J;’/,’
invariant. Suppose o € T,KMap(X, X). The equation we have is the following: for all
(v,w) € Tu X
Prwx (Jxv, Jxw) = p*wx (v, w).
Differentiating it along v, we get
wx (DoJxv, DpJxw) + wx(DpJxv, DoJxw) = wx (Dov, Dpw) + wx (Dyv, Dow).
Now
wx (J§DoJxv, DpJxw) + wx (DeJxv, JgDoJxw) — wx (J§Dov, Dow) — wx (Dev, J% Dow)
=wx (DoJxv, J¢DoJxw) + wx (J§DpJxv, DoJxw) — wx (Dov, J§ Dow) — wx (J§ Dpv, Dow)
=wx (DoJxv, DpJx Jxw) +wx (DeJx Jxv, DoJxw) — wx (Dov, DpJxw) — wx (DeJxv, Dow)
We let ©w = Jxw, then w = —Jxwu, hence the expression becomes
wx (DoJxv, DpJxu) —wx (Dpv, Dou) — wx (Dov, Dpu) + wx (DpJxv, DoJxu)
=wx (DoJxv, DpJxu) +wx (DpJxv, DoJxu) — wx (Dypv, Dou) — wx (Dov, Dpu) = 0.
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(3) As Fy preserves the group action, we only need to show KMap(X, X) x KMap(Y,Y) is
closed under the action. Let (o,7) € Ham(X,wx) x Ham(Y,wy ). Then

(op)'wx =9 o*ux = wx,

hence (o 0 p)*wx is Jx-invariant. Similarly, (n o ¥)*wy is Jy-invariant.
(4) For (v,w), (v',w") € T, yKMap(X, X) x KMap(Y,Y),

DFP(p,w(v7 w)lx = wlfogpfl(z) - DwaDsoilv‘Lpfl(z%
SO
F;QP(‘IMBP (U7 w)7 JMap (Ulv wl))
=FrQp(JGv, JYw), (JGv, JPw')
=Qp(JYw — DYDfDp~ IS v, Jw' — DYDfDp~tI%")

=Qp(JYw — DYDfIx Dy~ tv, JYw' — DYDfJIx D~ v') (- De~tJE = Jx D)
=Qp(JYw — DYJy DfDe ™ v, J¢w' — DipJy DfDe™ ') (- JyDf = DfJx)
=Q,(Jy(w — DYD D~ v), Ji:(w' — DYDfDp~v")) (. DpJy = JL DY)

:/X wy (J¥ (w — DYDfDe ™), J¥ (w' — DYDfDe™ ")t P Awh,

:/ wy ((w — DYDfDe™ ), (w' — DYDfDe™ ' )wi P Awh (- J$ e J(Y,wy))
X

:F;QP((U7 ’Ll)), (’U’, ’LU,))
Hence it is Jyfap-invariant.
O

As X;p is a complex manifold, we observe that if (v,w) € T(%L,,)(X;fp), then Jyiap (v, w) =
(JZv, J$w) € T(‘P;UJ)(X;p)' As wy(J;/ﬁm u) > 0 if u # 0, so for any (v, w), if
w— DYDfDp~ v #0,
then we can choose
(v, w'") = —JImap (v, w).
However, if w = Dy DfDy~lv, then it is degenerate. Indeed, the problem is Fy may not be
injective. Indeed, if we consider X = Y, wx = wy, then f = id solve the problems, but for
any o € Ham®(X), (0, o) will solve the equation as well. Therefore, we cannot apply the theory
directly.
As X;p is closed under the action of Ham(X,wy ) x Ham(Y,wy) and Fy preserves the action,
we can still consider the orbit space

Oy := Ham®(X, wx) x Ham®(Y,wy) - (id, id) C (X} )

(as we mentioned before, Ham®(X,wx) x Ham®(Y,wy ) is not a group). Notice that it may not
be a manifold, but only a complex variety.

Indeed, suppose there exists o € Ham®(X,wyx) N Ham®(Y,wy), and wx, wy solved coupled
equation p, then oc*wx, o™ f*wy also solved equation p. This example exists, say,

Example 5.8. Consider (X, wo,w1) with
fwo] = [wr).

Then by definition, there exists ¢ € Ham®(X,wp) such that
o*w1 = wo.

Then

n—p—1 , J*wzla+1

n—
wg, =wy; oxwy T AW =Wl

that is (id, o) € O;q solves the equation. Moreover, for any n € Ham®(X,wp) = o*Ham® (X, w1),
(n,0m) € Ojq and
oomno 7771 =0

implies it also solves the same moment map equation.
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Notice that we can consider the equivalent class, namely,

(o,m) ~ (o' ,0') if Fy((o,m)) = Fy((o’,n')),
that is,
17/ofocr/71 :770]”00'71

Notice that we may simply consider [Oy] C Map(X, Y;p)T. Hence we can restrict the moment

map into [Of] if it is a manifold.

Corollary 5.9. Let (X,wx) and (Y,wy) be two Kdhler manifolds with two Kdhler forms, and
k *

f is a biholomorphism. Suppose [Oy] is a manifold, then pp : [Of] — Lie H Ham(Xi,wi)>
i=0

is a moment map. In particular, if Ham(X,wx ) N f*Ham(Y,wy ) = id , then pp is well defined.

Proof. Notice that [Of] C Map(X,Y;p)T, and it is closed under the action. Hence l‘p|[(9f] is well

defined. O

6. MOMENT MAP FOR EMBEDDING

In the previous theory, we always assume X =Y as a same Kahler manifold, and fo = id. We
now provide a case that X and Y are not diffeomorphic.

Let (X,wx), (Y,wy) be two symplectic manifolds with dimensions n, m, where n < m. Define
EMap(X,Y) to be the space of embedding maps and

EMap(X,Y;p)" := {f € EMap(X, Y)w} P A f*wh > 0}.

Notice that f~1 is well defined on f(X) and for this case, fx = f~! on f(X). Let ZCY be ak
dimensional submanifold. Then we denote dz be the m — k current on Y, which

/6zl\azz/a
Y zZ

Lemma 6.1. Let (X,wx), (Y,wy) are two symplectic manifolds with finite volume with respect to
wx,wy, and let 0 < p < n—1. Then the moment map pp : EMap(X,Y;p)T — Lie(Ham(X,wx )X
Ham(Y,wy))* is given by

n wX UJ;L( p—1 f*W€/+1 m wm »
i) = (2 (= ) (W n (fr T A r) ) )

Proof. The proof is basically the same as the proof of theorem The main difference is that
EMap(X,Y) and Map(Y,Y’) is not a one-one correspondence. However, given v’ € TyEMap(X,Y),
v'|e € Ty(2)Y . Hence, we can still identify it as v € TyMap(f(X),Y), where g¢(y) := fr o f~1(y).
After that, we extend this g+ to gt : Y — Y. Then the same proof can be applied.

for all k forms o on Y.

d fea (WP A ffw)
= / ¢(y)*X—'
dt |0 J 11(x) (n—p)'p!
WP A fripwb
_ / (fi(a)) X D Ti ey
dt =0 (n—p)!p!
_/‘ (v P /\ft Lqu /‘ o(f *Lywy /\w’;{p /\ft*Luwffl
( p)'p! (n— p)!(p)!
TP fEow? P TP frwh
[ vl oy X NSy p g (o)) DTy
J v oo XL P [t o)
n—p
m—p wy A fi w?
SR (g o gy X STy
m Jx (n —p)ip!
Notice that this is independent of the choice of extension of g as the term f;iywy only depends
on v and ft, but not the extension v := §t|t:0. Od
Remark 6.2. Notice that as p is fized, we can take QY := LQX, Q) = LQY to
(n—p) m—p

remove the leading coefficient. We will denote this moment map as pp from now on.
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Remark 6.3. When Y is compact, given any function 1,

¥ o [ € Lie(Ham(Y,v)
- — - ie(Ham(Y, wy)).
Vol(Y) Jy = ml Y
wm
However, for the case where Y is non compact, and —Y' = 00, we cannot normalized . So
y ml!

we need to assume / Pwyt = 0.
Y

Remark 6.4. For p = n, the map pn(f) : EMap(X,Y;p)T — Lie(Ham(Y,wy );n)* is a moment
map. Therefore, we can still get a non-trivial moment map for p = n if this is an embedding.

APPENDIX A. ANALYTIC COMPUATION OF CONVEXITY OF M7 ,

In this section, we will show that the Mabuchi functional M s ; is stictly convex along the
smooth geodesic (ho,¢,- -, hi,¢), where the geodesic equation is given by

hig = [Vhigl?, , =0

for all 0 < i < k. As the standard Mabuchi functional M J, is well known to be convex, it suffices

to consider My = My , — M. For simplicity, we will only consider the case k = 1. We also
k

denote @; ; = h;,h and wll ;= u;_' As

wi(XLPiv JX%)

MO

2
|V<Pi‘wi =

The geodesic equation with Lemma [2.5] implies that
\Vgoiﬁiw?*p AaP =+/=1Indp A dp; A w?ﬂ’*l AaP.

Hence

n= p/ \Vgoi|iiw£n7p] AalPl = —/ » AV —100¢; /\wgnﬂ’*l] A alPl,
n X X

As

dMyp (0,1, #1,¢) ::/ wo,0(wh P AWl — el +/ pre(wy P AW = cal)),
X X

)



MOMENT MAP FOR COUPLED EQUATIONS OF KAHLER FORMS AND CURVATURE 29

2
dt?

=/ Sbo,t(w([),t P A [pH] C1w([ft])+/ sbl,t(w([f[”] Aw%‘?l —C2w£7ft])
X X

+/ goo,t(\/—laégoo,t A w([f;piz] A wk’jl] —c1 \/—185<p07t /\w([f;l])
X

Mp(ho,t, ha¢)

+/ #1, t(\/_a&,DOtAw[n P 1]/\60[ ])4‘/ SDOt(\/_aasolt/\w[n P I]Aw[p])
+ /X ©1,:(v/—100¢1 4 /\w([f[p] /\wk;l] — c2V—180¢p1 ¢ /\wr[”)
:/ %t(w[n p=1] 5 [”“]—01wé’ft])+/xwu(wO p]/\w[ 7] _cw%
_/ V0.2 (1wl %H P11 [P 1))
— [ 19on2, Bl nalt) - ol
+/ ©1,4(v/—=100¢0,: A w([f;pfl] Aw&{’l) +/ 00,6 (V—=180p1,¢4 A w([f;pil] /\w[ﬂ)
p+1/ |W0t|w“w“ p—1] Awh’“l L nop / Ver. t‘w“ 7] /\wlp]
+/ ©1,:(V=180¢0,¢ /\w([f[pfl] /\w;[ft) +/ ©0,t(V=180¢1,¢ /\w([f[pfl] /\w[ﬂ)
_(p+1) F/ Bpose A Bioe AlTPA Al 4 VI D) W(n / D1 A Bpre Al AP

n—p—1 0%

_ 1 - e
-V —1(/ Op1,¢ N Opo,t /\w([ft p=1 /\wf?t +/ Ao, N Op1,t /\w([ft p=1] Aw%’,’l)
X X
Using the same proof as in Lemma 2.5] and
V=10pi,i AN Opj = dpis Nd°pj = wit(Xp, ,,0) Awji(=IXp, ,,e),

the expression becomes

m/Xwo’t(x“"o’“')Awoﬂf(_]x%,t, )/\w" p— 2/\%,:1
m /le,t(til,t,O) /\wlvt(_Jle,w') /\wgyzp sz{;l
- m /le’t(xwl’“.) /\wo't(_JX<P0,t7 )/\Wn p—l /\wzl”t
:m/ wo,t(Xeo,¢» I X0 ) Awie A Awgy P lAw?l?,t
m/ Wit (Xeyr I Xy ) Awg P THAWE,
_ m /)\(th(X(Plvt’JX(PU,t) /\wg;p /\wzlj,t'

We claim that if «, 8 are two forms, then

Lolwa A B =a A tytwf = tytwB N a.
With this claim, and

let(le,t > JXwo,t) = Wl,t(tio,t I X1 )s
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the expression becomes

:(n—p— 1)!p!

1

(n—p—1)!p!
1
(n—p—1)!p!
2

—p—1
- m/;(wlyf(X%’l,tv.)/\WO»t(_JXLPO,w')/\w(r)L,tP /\wzlj,t

1 _
/;( wi,t(Xo,e = X1 e J (KXo, — Xﬁol,t))wg,t PA wit

—p—1
/ w1,t(Xeg 1 I Xpo ) Awo,t A /\wg’t p /\"Jf,t
X

n—p—1 p
/:levt(X‘Pl,t”]X‘Pl,t) ANwq ¢ Awy g

We finally show the claim. To show that, observe that
(totwa) A B = ty(twa A B) + twa A toff = to((twa) A B) + tw(a A (tvB)) — @ A LwtsS.

Therefore,

Also,

(totwa) A B — a A totwf = to((twa) A B) + tw(a A (tu)).

(totwa) A B — aAtytwB = (twteB) N — B A twtvar = tw((toB) A @) + 1o (B A (Lwer)).

as

tw((wh) A e) + (B A (twa)) = —tw(@ A (wh)) = to((Lwa) A B),

2((totwa) A B —a A twtwB) = ((Lotwa) A B —a A twtwf) + (twtvB) N — B A twtvar = 0.

Remark A.1. We could point out that from this definition, we can see that My is not strictly
convexr when X, = Xg. Hence we can see that p, is not a moment map unless we mod out this

relation.
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